1
|
Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Struct Funct 2018; 223:4211-4226. [PMID: 30187194 PMCID: PMC6267273 DOI: 10.1007/s00429-018-1746-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
Abstract
Heterozygous mutations of the Forkhead-box protein 2 (FOXP2) gene in humans cause childhood apraxia of speech. Loss of Foxp2 in mice is known to affect striatal development and impair motor skills. However, it is unknown if striatal excitatory/inhibitory balance is affected during development and if the imbalance persists into adulthood. We investigated the effect of reduced Foxp2 expression, via a loss-of-function mutation, on striatal medium spiny neurons (MSNs). Our data show that heterozygous loss of Foxp2 decreases excitatory (AMPA receptor-mediated) and increases inhibitory (GABA receptor-mediated) currents in D1 dopamine receptor positive MSNs of juvenile and adult mice. Furthermore, reduced Foxp2 expression increases GAD67 expression, leading to both increased presynaptic content and release of GABA. Finally, pharmacological blockade of inhibitory activity in vivo partially rescues motor skill learning deficits in heterozygous Foxp2 mice. Our results suggest a novel role for Foxp2 in the regulation of striatal direct pathway activity through managing inhibitory drive.
Collapse
|
2
|
Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat-Carotta S, Hansen AH, Tripathy R, Traunbauer AK, Hochstoeger T, Rosoklija G, Repic M, Landler L, Stránecký V, Dürnberger G, Keane TM, Zuber J, Adams DJ, Flint J, Honzik T, Gut M, Beltran S, Mechtler K, Sherr E, Kmoch S, Gut I, Keays DA. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci 2018; 21:207-217. [PMID: 29311744 PMCID: PMC5897053 DOI: 10.1038/s41593-017-0053-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/22/2017] [Indexed: 01/31/2023]
Abstract
The formation of the vertebrate brain requires the generation, migration, differentiation and survival of neurons. Genetic mutations that perturb these critical cellular events can result in malformations of the telencephalon, providing a molecular window into brain development. Here we report the identification of an N-ethyl-N-nitrosourea-induced mouse mutant characterized by a fractured hippocampal pyramidal cell layer, attributable to defects in neuronal migration. We show that this is caused by a hypomorphic mutation in Vps15 that perturbs endosomal-lysosomal trafficking and autophagy, resulting in an upregulation of Nischarin, which inhibits Pak1 signaling. The complete ablation of Vps15 results in the accumulation of autophagic substrates, the induction of apoptosis and severe cortical atrophy. Finally, we report that mutations in VPS15 are associated with cortical atrophy and epilepsy in humans. These data highlight the importance of the Vps15-Vps34 complex and the Nischarin-Pak1 signaling hub in the development of the telencephalon.
Collapse
Affiliation(s)
- Thomas Gstrein
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Andrew Edwards
- Wellcome Trust Center for Human Genetics (WTCHG), Oxford, UK
| | - Anna Přistoupilová
- Institute of Inherited Metabolic Disorders, Charles University, Prague, Czech Republic
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ines Leca
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Martin Breuss
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | | | - Andi H Hansen
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Ratna Tripathy
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Anna K Traunbauer
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Tobias Hochstoeger
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Gavril Rosoklija
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Marco Repic
- Institute for Molecular Biotechnology (IMBA), Vienna, Austria
| | - Lukas Landler
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Viktor Stránecký
- Institute of Inherited Metabolic Disorders, Charles University, Prague, Czech Republic
| | - Gerhard Dürnberger
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Thomas M Keane
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Johannes Zuber
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Jonathan Flint
- Wellcome Trust Center for Human Genetics (WTCHG), Oxford, UK
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Karl Mechtler
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria
| | - Elliott Sherr
- Institute of Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Stanislav Kmoch
- Institute of Inherited Metabolic Disorders, Charles University, Prague, Czech Republic
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - David A Keays
- Institute of Molecular Pathology (IMP), Vienna Biocentre (VBC), Vienna, Austria.
| |
Collapse
|
3
|
Zhang Y, Poobalasingam T, Yates LL, Walker SA, Taylor MS, Chessum L, Harrison J, Tsaprouni L, Adcock IM, Lloyd CM, Cookson WO, Moffatt MF, Dean CH. Manipulation of dipeptidylpeptidase 10 in mouse and human in vivo and in vitro models indicates a protective role in asthma. Dis Model Mech 2018; 11:dmm.031369. [PMID: 29361513 PMCID: PMC5818078 DOI: 10.1242/dmm.031369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
We previously identified dipeptidylpeptidase 10 (DPP10) on chromosome 2 as a human asthma susceptibility gene, through positional cloning. Initial association results were confirmed in many subsequent association studies but the functional role of DPP10 in asthma remains unclear. Using the MRC Harwell N-ethyl-N-nitrosourea (ENU) DNA archive, we identified a point mutation in Dpp10 that caused an amino acid change from valine to aspartic acid in the β-propeller region of the protein. Mice carrying this point mutation were recovered and a congenic line was established (Dpp10145D). Macroscopic examination and lung histology revealed no significant differences between wild-type and Dpp10145D/145D mice. However, after house dust mite (HDM) treatment, Dpp10 mutant mice showed significantly increased airway resistance in response to 100 mg/ml methacholine. Total serum IgE levels and bronchoalveolar lavage (BAL) eosinophil counts were significantly higher in homozygotes than in control mice after HDM treatment. DPP10 protein is present in airway epithelial cells and altered expression is observed in both tissue from asthmatic patients and in mice following HDM challenge. Moreover, knockdown of DPP10 in human airway epithelial cells results in altered cytokine responses. These results show that a Dpp10 point mutation leads to increased airway responsiveness following allergen challenge and provide biological evidence to support previous findings from human genetic studies.
This article has an associated First Person interview with the first author of the paper. Summary: Here, we show a novel mouse model carrying a point mutation in dipeptidylpeptidase 10 (Dpp10). Our data provide evidence that DPP10 might play a protective role in asthma.
Collapse
Affiliation(s)
- Youming Zhang
- Genomics Medicine Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Thanushiyan Poobalasingam
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Laura L Yates
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Simone A Walker
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Martin S Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3, 7BN
| | | | | | - Loukia Tsaprouni
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Clare M Lloyd
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - William O Cookson
- Genomics Medicine Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Miriam F Moffatt
- Genomics Medicine Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Charlotte H Dean
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK .,MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
4
|
Vengeliene V, Bespalov A, Roßmanith M, Horschitz S, Berger S, Relo AL, Noori HR, Schneider P, Enkel T, Bartsch D, Schneider M, Behl B, Hansson AC, Schloss P, Spanagel R. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene. Dis Model Mech 2017; 10:451-461. [PMID: 28167616 PMCID: PMC5399565 DOI: 10.1242/dmm.027623] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene (Slc6a3_N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. Summary: The first systematic RDoc study of a disease mechanism proposes dopamine transporter DAT mutant rats as a model for drug development, targeting a hyperdopaminergic state.
Collapse
Affiliation(s)
- Valentina Vengeliene
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Anton Bespalov
- Department of Neuroscience Research, AbbVie Deutschland GmbH & Co KG, 67061 Ludwigshafen, Germany
| | - Martin Roßmanith
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sandra Horschitz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Stefan Berger
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Ana L Relo
- Department of Neuroscience Research, AbbVie Deutschland GmbH & Co KG, 67061 Ludwigshafen, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Peggy Schneider
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Thomas Enkel
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Miriam Schneider
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Berthold Behl
- Department of Neuroscience Research, AbbVie Deutschland GmbH & Co KG, 67061 Ludwigshafen, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| |
Collapse
|
5
|
Greenwald SH, Charette JR, Staniszewska M, Shi LY, Brown SDM, Stone L, Liu Q, Hicks WL, Collin GB, Bowl MR, Krebs MP, Nishina PM, Pierce EA. Mouse Models of NMNAT1-Leber Congenital Amaurosis (LCA9) Recapitulate Key Features of the Human Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1925-1938. [PMID: 27207593 DOI: 10.1016/j.ajpath.2016.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
The nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) enzyme is essential for regenerating the nuclear pool of NAD(+) in all nucleated cells in the body, and mounting evidence also suggests that it has a separate role in neuroprotection. Recently, mutations in the NMNAT1 gene were associated with Leber congenital amaurosis, a severe retinal degenerative disease that causes blindness during infancy. Availability of a reliable mammalian model of NMNAT1-Leber congenital amaurosis would assist in determining the mechanisms through which disruptions in NMNAT1 lead to retinal cell degeneration and would provide a resource for testing treatment options. To this end, we identified two separate N-ethyl-N-nitrosourea-generated mouse lines that harbor either a p.V9M or a p.D243G mutation. Both mouse models recapitulate key aspects of the human disease and confirm the pathogenicity of mutant NMNAT1. Homozygous Nmnat1 mutant mice develop a rapidly progressing chorioretinal disease that begins with photoreceptor degeneration and includes attenuation of the retinal vasculature, optic atrophy, and retinal pigment epithelium loss. Retinal function deteriorates in both mouse lines, and, in the more rapidly progressing homozygous Nmnat1(V9M) mutant mice, the electroretinogram becomes undetectable and the pupillary light response weakens. These mouse models offer an opportunity for investigating the cellular mechanisms underlying disease pathogenesis, evaluating potential therapies for NMNAT1-Leber congenital amaurosis, and conducting in situ studies on NMNAT1 function and NAD(+) metabolism.
Collapse
Affiliation(s)
- Scott H Greenwald
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | - Magdalena Staniszewska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | - Steve D M Brown
- Mammalian Genetics Unit, Medical Research Council (MRC), Harwell Campus, Oxfordshire, United Kingdom
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine
| | - Qin Liu
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | | | - Michael R Bowl
- Mammalian Genetics Unit, Medical Research Council (MRC), Harwell Campus, Oxfordshire, United Kingdom
| | | | | | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Nmf9 Encodes a Highly Conserved Protein Important to Neurological Function in Mice and Flies. PLoS Genet 2015; 11:e1005344. [PMID: 26131556 PMCID: PMC4488434 DOI: 10.1371/journal.pgen.1005344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/09/2015] [Indexed: 01/15/2023] Open
Abstract
Many protein-coding genes identified by genome sequencing remain without functional annotation or biological context. Here we define a novel protein-coding gene, Nmf9, based on a forward genetic screen for neurological function. ENU-induced and genome-edited null mutations in mice produce deficits in vestibular function, fear learning and circadian behavior, which correlated with Nmf9 expression in inner ear, amygdala, and suprachiasmatic nuclei. Homologous genes from unicellular organisms and invertebrate animals predict interactions with small GTPases, but the corresponding domains are absent in mammalian Nmf9. Intriguingly, homozygotes for null mutations in the Drosophila homolog, CG45058, show profound locomotor defects and premature death, while heterozygotes show striking effects on sleep and activity phenotypes. These results link a novel gene orthology group to discrete neurological functions, and show conserved requirement across wide phylogenetic distance and domain level structural changes. Genome sequencing projects have identified large numbers of genes that encode proteins of unknown function. Many of these genes show strong evolutionary conservation, predicting important and well-conserved functions. A fraction of these show strong conservation of core domains but dynamic changes in other domains, predicting both conserved and lineage-dependent functions. Here we identify neurological functions associated with one such gene identified by a forward genetic screen in mice. We use recently developed genome editing tools both to confirm the mouse studies and to test comparative functions in a model insect, the fruit fly Drosophila melanogaster. Each of these species has a single homolog of this gene family, but differ by inclusion of a ras-association (RA) domain present in most invertebrate species but missing in mammals. Null mutations in both mice and flies produce neurological phenotypes, but while the mouse phenotypes are comparatively mild (vestibular deficits, mild tremor, hyperactivity, mild circadian phenotypes and abnormal fear learning–but normal viability and breeding), null flies rarely survive to adulthood and surviving flies have severe locomotor deficits. Interestingly, heterozygous flies have significant sleep-related phenotypes. Together, our results provide a detailed first look at comparative function for a gene lineage with an unusual evolutionary history.
Collapse
|
7
|
Uchimura A, Higuchi M, Minakuchi Y, Ohno M, Toyoda A, Fujiyama A, Miura I, Wakana S, Nishino J, Yagi T. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Res 2015; 25:1125-34. [PMID: 26129709 PMCID: PMC4509997 DOI: 10.1101/gr.186148.114] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/30/2015] [Indexed: 12/19/2022]
Abstract
The germline mutation rate is an important parameter that affects the amount of genetic variation and the rate of evolution. However, neither the rate of germline mutations in laboratory mice nor the biological significance of the mutation rate in mammalian populations is clear. Here we studied genome-wide mutation rates and the long-term effects of mutation accumulation on phenotype in more than 20 generations of wild-type C57BL/6 mice and mutator mice, which have high DNA replication error rates. We estimated the base-substitution mutation rate to be 5.4 × 10−9 (95% confidence interval = 4.6 × 10−9–6.5 × 10−9) per nucleotide per generation in C57BL/6 laboratory mice, about half the rate reported in humans. The mutation rate in mutator mice was 17 times that in wild-type mice. Abnormal phenotypes were 4.1-fold more frequent in the mutator lines than in the wild-type lines. After several generations, the mutator mice reproduced at substantially lower rates than the controls, exhibiting low pregnancy rates, lower survival rates, and smaller litter sizes, and many of the breeding lines died out. These results provide fundamental information about mouse genetics and reveal the impact of germline mutation rates on phenotypes in a mammalian population.
Collapse
Affiliation(s)
- Arikuni Uchimura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Mayumi Higuchi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Mizuki Ohno
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Jo Nishino
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
8
|
Esapa CT, Hannan FM, Babinsky VN, Potter P, Thomas GP, Croucher PI, Brown MA, Brown SDM, Cox RD, Thakker RV. N-ethyl-N-Nitrosourea (ENU) induced mutations within the klotho gene lead to ectopic calcification and reduced lifespan in mouse models. PLoS One 2015; 10:e0122650. [PMID: 25860694 PMCID: PMC4393098 DOI: 10.1371/journal.pone.0122650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/11/2015] [Indexed: 11/18/2022] Open
Abstract
Ectopic calcification (EC), which is the pathological deposition of calcium and phosphate in extra-skeletal tissues, may be associated with hypercalcaemic and hyperphosphataemic disorders, or it may occur in the absence of metabolic abnormalities. In addition, EC may be inherited as part of several monogenic disorders and studies of these have provided valuable insights into the metabolic pathways regulating mineral metabolism. For example, studies of tumoural calcinosis, a disorder characterised by hyperphosphataemia and progressive EC, have revealed mutations of fibroblast growth factor 23 (FGF23), polypeptide N-acetyl galactosaminyltransferase 3 (GALNT3) and klotho (KL), which are all part of a phosphate-regulating pathway. However, such studies in humans are limited by the lack of available large families with EC, and to facilitate such studies we assessed the progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for EC. This identified two mutants with autosomal recessive forms of EC, and reduced lifespan, designated Ecalc1 and Ecalc2. Genetic mapping localized the Ecalc1 and Ecalc2 loci to a 11.0 Mb region on chromosome 5 that contained the klotho gene (Kl), and DNA sequence analysis identified nonsense (Gln203Stop) and missense (Ile604Asn) Kl mutations in Ecalc1 and Ecalc2 mice, respectively. The Gln203Stop mutation, located in KL1 domain, was severely hypomorphic and led to a 17-fold reduction of renal Kl expression. The Ile604Asn mutation, located in KL2 domain, was predicted to impair klotho protein stability and in vitro expression studies in COS-7 cells revealed endoplasmic reticulum retention of the Ile604Asn mutant. Further phenotype studies undertaken in Ecalc1 (kl203X/203X) mice demonstrated elevations in plasma concentrations of phosphate, FGF23 and 1,25-dihydroxyvitamin D. Thus, two allelic variants of Kl that develop EC and represent mouse models for tumoural calcinosis have been established.
Collapse
Affiliation(s)
- Christopher T. Esapa
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Fadil M. Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Valerie N. Babinsky
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
| | - Paul Potter
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Gethin P. Thomas
- University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | | | - Matthew A. Brown
- University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | - Steve D. M. Brown
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Roger D. Cox
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Zhang Y, Dean C, Chessum L, Nguyen D, Stewart M, Taylor M, Cookson WO, Moffatt MF. Functional analysis of a novel ENU-induced PHD finger 11 (Phf11) mouse mutant. Mamm Genome 2014; 25:573-82. [PMID: 25091723 PMCID: PMC4239810 DOI: 10.1007/s00335-014-9535-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/25/2014] [Indexed: 11/24/2022]
Abstract
Previously, human genetic studies have shown association between polymorphisms within the gene encoding plant homeodomain zinc finger protein 11 (PHF11) and asthma-related phenotypes. Initial functional studies have suggested that PHF11 may be involved in the immune response through regulation of T cell activities. In order to study further the gene’s functions, we have investigated the mouse Phf11 locus. We have established and characterised a mouse line harbouring a point mutation in the PHD domain of Phf11. Full-length mouse cDNA for Phf11 was obtained by applying rapid amplification of cDNA ends (RACE). All five exons encoding the PHD domain of Phf11 were directly sequenced in 3840 mouse DNA samples from the UK MRC Harwell ENU (N-ethyl-N-nitrosourea)-mutagenised DNA archive. Mice harbouring a valine to alanine substitution, predicted to have a significant functional impact on the PHD zinc finger domain, were re-derived. These Phf11 mutant mice were outcrossed to C3H mice and then backcrossed for ten generations in order to establish a congenic line harbouring the single point mutation in Phf11. Macroscopic examination, haematology and histological examination of lung structure revealed no significant differences between mutant and wild-type mice. After administration of lipopolysaccharide, the level of expression of Il2, NF-kB and Setdb2 were significantly increased in Phf11 mutant homozygous lungs compared to control littermates. Our results provide evidence that Phf11 can operate as a Th1 cell regulator in immune responses. Moreover, our data indicate that these mice may provide a useful model for future studies on Phf11.
Collapse
Affiliation(s)
- Youming Zhang
- Molecular Genetics and Genomics Group, Division of Respiratory Sciences, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK,
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mutations in the Gabrb1 gene promote alcohol consumption through increased tonic inhibition. Nat Commun 2014; 4:2816. [PMID: 24281383 PMCID: PMC3843143 DOI: 10.1038/ncomms3816] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/24/2013] [Indexed: 01/06/2023] Open
Abstract
Alcohol-dependence is a common, complex and debilitating disorder with genetic and environmental influences. Here we show that alcohol consumption increases following mutations to the γ-aminobutyric acidA receptor (GABAAR) β1 subunit gene (Gabrb1). Using N-ethyl-N-nitrosourea mutagenesis on an alcohol-averse background (F1 BALB/cAnN × C3H/HeH), we develop a mouse model exhibiting strong heritable preference for ethanol resulting from a dominant mutation (L285R) in Gabrb1. The mutation causes spontaneous GABA ion channel opening and increases GABA sensitivity of recombinant GABAARs, coupled to increased tonic currents in the nucleus accumbens, a region long-associated with alcohol reward. Mutant mice work harder to obtain ethanol, and are more sensitive to alcohol intoxication. Another spontaneous mutation (P228H) in Gabrb1 also causes high ethanol consumption accompanied by spontaneous GABA ion channel opening and increased accumbal tonic current. Our results provide a new and important link between GABAAR function and increased alcohol consumption that could underlie some forms of alcohol abuse.
Collapse
|
11
|
8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep 2014; 4:4689. [PMID: 24732879 PMCID: PMC3986730 DOI: 10.1038/srep04689] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/28/2014] [Indexed: 01/06/2023] Open
Abstract
Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10−7 mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.
Collapse
|
12
|
Hameed A, Bennett E, Ciani B, Hoebers LPC, Milner R, Lawrie A, Francis SE, Grierson AJ. No evidence for cardiac dysfunction in Kif6 mutant mice. PLoS One 2013; 8:e54636. [PMID: 23355886 PMCID: PMC3552957 DOI: 10.1371/journal.pone.0054636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
A KIF6 variant in man has been reported to be associated with adverse cardiovascular outcomes after myocardial infarction. No clear biological or physiological data exist for Kif6. We sought to investigate the impact of a deleterious KIF6 mutation on cardiac function in mice. Kif6 mutant mice were generated and verified. Cardiac function was assessed by serial echocardiography at baseline, after ageing and after exercise. Lipid levels were also measured. No discernable adverse lipid or cardiac phenotype was detected in Kif6 mutant mice. These data suggest that dysfunction of Kif6 is linked to other more complex biological/biochemical parameters or is unlikely to be of material consequence in cardiac function.
Collapse
Affiliation(s)
- Abdul Hameed
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Ellen Bennett
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Ciani
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Loes P. C. Hoebers
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Roy Milner
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Allan Lawrie
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sheila E. Francis
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| | - Andrew J. Grierson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
van Buerck L, Schuster M, Rathkolb B, Sabrautzki S, Hrabě de Angelis M, Wolf E, Aigner B, Wanke R, Herbach N. Enhanced oxidative stress and endocrine pancreas alterations are linked to a novel glucokinase missense mutation in ENU-derived Munich Gck(D217V) mutants. Mol Cell Endocrinol 2012; 362:139-48. [PMID: 22698525 DOI: 10.1016/j.mce.2012.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 01/01/2023]
Abstract
In the large-scale Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project murine models recapitulating human diseases were generated. In one strain, a novel missense mutation (D217V) in the glucokinase (Gck) gene was identified, resulting in decreased glucokinase activity. Heterozygous mutants display mild hyperglycaemia, disturbed glucose tolerance, and decreased glucose-induced insulin secretion. In contrast, homozygous mutants exhibit severe but not survival affecting hyperglycaemia, mild growth retardation, diminished oxidative capacity, and increased abundance of CHOP protein in the islets. Furthermore, the total islet and β-cell volumes and the total volume of isolated β-cells are significantly decreased in adult homozygous mutants, whereas in neonatal mice, β-cell mass is not yet significantly decreased and islet neogenesis is unaltered. Therefore, reduced total islet and β-cell volumes of adult homozygous mutants might predominantly emerge from disturbed postnatal islet neogenesis. Thus, we identified a novel Gck mutation in mice, with relevance in humans, leading to glycaemic disease.
Collapse
Affiliation(s)
- L van Buerck
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
High throughput sequencing approaches to mutation discovery in the mouse. Mamm Genome 2012; 23:499-513. [PMID: 22991087 DOI: 10.1007/s00335-012-9424-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022]
Abstract
Phenotype-driven approaches in mice are powerful strategies for the discovery of genes and gene functions and for unravelling complex biological mechanisms. Traditional methods for mutation discovery are reliable and robust, but they can also be laborious and time consuming. Recently, high-throughput sequencing (HTS) technologies have revolutionised the process of forward genetics in mice by paving the way to rapid mutation discovery. However, successful application of HTS for mutation discovery relies heavily on the sequencing approach employed and strategies for data analysis. Here we review current HTS applications and resources for mutation discovery and provide an overview of the practical considerations for HTS implementation and data analysis.
Collapse
|
15
|
Piret SE, Esapa CT, Gorvin CM, Head R, Loh NY, Devuyst O, Thomas G, Brown SDM, Brown M, Croucher P, Cox R, Thakker RV. A mouse model of early-onset renal failure due to a xanthine dehydrogenase nonsense mutation. PLoS One 2012; 7:e45217. [PMID: 23024809 PMCID: PMC3443222 DOI: 10.1371/journal.pone.0045217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/14/2012] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by renal fibrosis that can lead to end-stage renal failure, and studies have supported a strong genetic influence on the risk of developing CKD. However, investigations of the underlying molecular mechanisms are hampered by the lack of suitable hereditary models in animals. We therefore sought to establish hereditary mouse models for CKD and renal fibrosis by investigating mice treated with the chemical mutagen N-ethyl-N-nitrosourea, and identified a mouse with autosomal recessive renal failure, designated RENF. Three-week old RENF mice were smaller than their littermates, whereas at birth they had been of similar size. RENF mice, at 4-weeks of age, had elevated concentrations of plasma urea and creatinine, indicating renal failure, which was associated with small and irregularly shaped kidneys. Genetic studies using DNA from 10 affected mice and 91 single nucleotide polymorphisms mapped the Renf locus to a 5.8 Mbp region on chromosome 17E1.3. DNA sequencing of the xanthine dehydrogenase (Xdh) gene revealed a nonsense mutation at codon 26 that co-segregated with affected RENF mice. The Xdh mutation resulted in loss of hepatic XDH and renal Cyclooxygenase-2 (COX-2) expression. XDH mutations in man cause xanthinuria with undetectable plasma uric acid levels and three RENF mice had plasma uric acid levels below the limit of detection. Histological analysis of RENF kidney sections revealed abnormal arrangement of glomeruli, intratubular casts, cellular infiltration in the interstitial space, and interstitial fibrosis. TUNEL analysis of RENF kidney sections showed extensive apoptosis predominantly affecting the tubules. Thus, we have established a mouse model for autosomal recessive early-onset renal failure due to a nonsense mutation in Xdh that is a model for xanthinuria in man. This mouse model could help to increase our understanding of the molecular mechanisms associated with renal fibrosis and the specific roles of XDH and uric acid.
Collapse
Affiliation(s)
- Sian E. Piret
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Christopher T. Esapa
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Caroline M. Gorvin
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Rosie Head
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Nellie Y. Loh
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Gethin Thomas
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Steve D. M. Brown
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Matthew Brown
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Peter Croucher
- Garvan Institute for Medical Research, Sydney, Australia
| | - Roger Cox
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Rajesh V. Thakker
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Esapa CT, Head RA, Jeyabalan J, Evans H, Hough TA, Cheeseman MT, McNally EG, Carr AJ, Thomas GP, Brown MA, Croucher PI, Brown SDM, Cox RD, Thakker RV. A mouse with an N-Ethyl-N-nitrosourea (ENU) Induced Trp589Arg Galnt3 mutation represents a model for hyperphosphataemic familial tumoural calcinosis. PLoS One 2012; 7:e43205. [PMID: 22912827 PMCID: PMC3418237 DOI: 10.1371/journal.pone.0043205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/18/2012] [Indexed: 01/09/2023] Open
Abstract
Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism.
Collapse
Affiliation(s)
- Christopher T. Esapa
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, United Kingdom
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Rosie A. Head
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, United Kingdom
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Jeshmi Jeyabalan
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, United Kingdom
| | - Holly Evans
- The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Tertius A. Hough
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Michael T. Cheeseman
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Eugene G. McNally
- Department of Radiology, Nuffield Orthopaedic Centre and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, United Kingdom
| | - Andrew J. Carr
- NIHR Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, United Kingdom
| | - Gethin P. Thomas
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, University of Queensland, Australia
| | - Matthew A. Brown
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, University of Queensland, Australia
| | - Peter I. Croucher
- The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom
- Garvan Institute for Medical Research, Sydney, Australia
| | - Steve D. M. Brown
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Roger D. Cox
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
17
|
Chen D, Li S, Singh R, Spinette S, Sedlmeier R, Epstein HF. Dual function of the UNC-45b chaperone with myosin and GATA4 in cardiac development. J Cell Sci 2012; 125:3893-903. [PMID: 22553207 DOI: 10.1242/jcs.106435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cardiac development requires interplay between the regulation of gene expression and the assembly of functional sarcomeric proteins. We report that UNC-45b recessive loss-of-function mutations in C3H and C57BL/6 inbred mouse strains cause arrest of cardiac morphogenesis at the formation of right heart structures and failure of contractile function. Wild-type C3H and C57BL/6 embryos at the same stage, E9.5, form actively contracting right and left atria and ventricles. The known interactions of UNC-45b as a molecular chaperone are consistent with diminished accumulation of the sarcomeric myosins, but not their mRNAs, and the resulting decreased contraction of homozygous mutant embryonic hearts. The novel finding that GATA4 accumulation is similarly decreased at the protein but not mRNA levels is also consistent with the function of UNC-45b as a chaperone. The mRNAs of known downstream targets of GATA4 during secondary cardiac field development, the cardiogenic factors Hand1, Hand2 and Nkx-2.5, are also decreased, consistent with the reduced GATA4 protein accumulation. Direct binding studies show that the UNC-45b chaperone forms physical complexes with both the alpha and beta cardiac myosins and the cardiogenic transcription factor GATA4. Co-expression of UNC-45b with GATA4 led to enhanced transcription from GATA promoters in naïve cells. These novel results suggest that the heart-specific UNC-45b isoform functions as a molecular chaperone mediating contractile function of the sarcomere and gene expression in cardiac development.
Collapse
Affiliation(s)
- Daisi Chen
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, TX 77555-0641, USA
| | | | | | | | | | | |
Collapse
|
18
|
Esapa CT, Hough TA, Testori S, Head RA, Crane EA, Chan CPS, Evans H, Bassett JHD, Tylzanowski P, McNally EG, Carr AJ, Boyde A, Howell PGT, Clark A, Williams GR, Brown MA, Croucher PI, Nesbit MA, Brown SDM, Cox RD, Cheeseman MT, Thakker RV. A mouse model for spondyloepiphyseal dysplasia congenita with secondary osteoarthritis due to a Col2a1 mutation. J Bone Miner Res 2012; 27:413-28. [PMID: 22028304 DOI: 10.1002/jbmr.547] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Progeny of mice treated with the mutagen N-ethyl-N-nitrosourea (ENU) revealed a mouse, designated Longpockets (Lpk), with short humeri, abnormal vertebrae, and disorganized growth plates, features consistent with spondyloepiphyseal dysplasia congenita (SEDC). The Lpk phenotype was inherited as an autosomal dominant trait. Lpk/+ mice were viable and fertile and Lpk/Lpk mice died perinatally. Lpk was mapped to chromosome 15 and mutational analysis of likely candidates from the interval revealed a Col2a1 missense Ser1386Pro mutation. Transient transfection of wild-type and Ser1386Pro mutant Col2a1 c-Myc constructs in COS-7 cells and CH8 chondrocytes demonstrated abnormal processing and endoplasmic reticulum retention of the mutant protein. Histology revealed growth plate disorganization in 14-day-old Lpk/+ mice and embryonic cartilage from Lpk/+ and Lpk/Lpk mice had reduced safranin-O and type-II collagen staining in the extracellular matrix. The wild-type and Lpk/+ embryos had vertical columns of proliferating chondrocytes, whereas those in Lpk/Lpk mice were perpendicular to the direction of bone growth. Electron microscopy of cartilage from 18.5 dpc wild-type, Lpk/+, and Lpk/Lpk embryos revealed fewer and less elaborate collagen fibrils in the mutants, with enlarged vacuoles in the endoplasmic reticulum that contained amorphous inclusions. Micro-computed tomography (CT) scans of 12-week-old Lpk/+ mice revealed them to have decreased bone mineral density, and total bone volume, with erosions and osteophytes at the joints. Thus, an ENU mouse model with a Ser1386Pro mutation of the Col2a1 C-propeptide domain that results in abnormal collagen processing and phenotypic features consistent with SEDC and secondary osteoarthritis has been established.
Collapse
Affiliation(s)
- Christopher T Esapa
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Harris RM, Weiss J, Jameson JL. Male hypogonadism and germ cell loss caused by a mutation in Polo-like kinase 4. Endocrinology 2011; 152:3975-85. [PMID: 21791561 PMCID: PMC3176650 DOI: 10.1210/en.2011-1106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The genetic etiologies of male infertility remain largely unknown. To identify genes potentially involved in spermatogenesis and male infertility, we performed genome-wide mutagenesis in mice with N-ethyl-N-nitrosourea and identified a line with dominant hypogonadism and patchy germ cell loss. Genomic mapping and DNA sequence analysis identified a novel heterozygous missense mutation in the kinase domain of Polo-like kinase 4 (Plk4), altering an isoleucine to asparagine at residue 242 (I242N). Genetic complementation studies using a gene trap line with disruption in the Plk4 locus confirmed that the putative Plk4 missense mutation was causative. Plk4 is known to be involved in centriole formation and cell cycle progression. However, a specific role in mammalian spermatogenesis has not been examined. PLK4 was highly expressed in the testes both pre- and postnatally. In the adult, PLK4 expression was first detected in stage VIII pachytene spermatocytes and was present through step 16 elongated spermatids. Because the homozygous Plk4(I242N/I242N) mutation was embryonic lethal, all analyses were performed using the heterozygous Plk4(+/I242N) mice. Testis size was reduced by 17%, and histology revealed discrete regions of germ cell loss, leaving only Sertoli cells in these defective tubules. Testis cord formation (embryonic day 13.5) was normal. Testis histology was also normal at postnatal day (P)1, but germ cell loss was detected at P10 and subsequent ages. We conclude that the I242N heterozygous mutation in PLK4 is causative for patchy germ cell loss beginning at P10, suggesting a role for PLK4 during the initiation of spermatogenesis.
Collapse
Affiliation(s)
- Rebecca M Harris
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
20
|
Chan JSW, Snoeren EMS, Cuppen E, Waldinger MD, Olivier B, Oosting RS. The serotonin transporter plays an important role in male sexual behavior: a study in serotonin transporter knockout rats. J Sex Med 2011; 8:97-108. [PMID: 20704641 DOI: 10.1111/j.1743-6109.2010.01961.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Serotonin (5-HT) is an important neurotransmitter for sexual behaviors. Heterozygous (+/-) serotonin transporter (SERT) rats and SERT knockout rats (-/-) have serotonergic disturbances with significant elevations of basal extracellular 5-HT levels. AIM To investigate the putative role of the SERT in male sexual behavior. METHODS After extensive sexual training, the effects of the 5-HT(1A/7) receptor agonist ± 8-OH-DPAT, the 5-HT(1A) receptor antagonist WAY100 635 and a combination of both on sexual behaviors of SERT(-/-) and SERT(+/-) knockout and wildtype (SERT(+/+) ) male Wistar rats were examined. MAIN OUTCOME MEASURES Male rat sexual behaviors of mounts, intromissions, and ejaculations. RESULTS SERT(-/-) had lower basal ejaculation frequencies than SERT(+/-) and SERT(+/+) animals. ± 8-OH-DPAT enhanced sexual performance in all three genotypes to the same extent. WAY100635 dose-dependently inhibited sexual behavior in all three genotypes with significant dose to genotype interactions. WAY100635 exerted the strongest effects in SERT(-/-) animals. The combination of a dose range of ± 8-OH-DPAT and a selected dose of WAY100635 revealed only partial antagonism by ± 8-OH-DPAT of the sexual inhibitory effects of WAY100635. CONCLUSIONS Absence of the serotonin transporter reduces basal ejaculatory performance in male rats. Pharmacological experiments suggest that separate pools of 5-HT(1A) receptors regulate different aspects of sexual performance in male rats. 5-HT(7) receptors may play a minor role in the partial recovery of sexual behavior after combination of ± 8-OH-DPAT and WAY100635. The SERT(-/-) rat may be a model for chronic SSRI treatment, delayed ejaculation, anorgasmia, and/or low libido.
Collapse
Affiliation(s)
- Johnny S W Chan
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Sorbonnelaan, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Kasher PR, Namavar Y, van Tijn P, Fluiter K, Sizarov A, Kamermans M, Grierson AJ, Zivkovic D, Baas F. Impairment of the tRNA-splicing endonuclease subunit 54 (tsen54) gene causes neurological abnormalities and larval death in zebrafish models of pontocerebellar hypoplasia. Hum Mol Genet 2011; 20:1574-84. [PMID: 21273289 DOI: 10.1093/hmg/ddr034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pontocerebellar hypoplasia (PCH) represents a group (PCH1-6) of neurodegenerative autosomal recessive disorders characterized by hypoplasia and/or atrophy of the cerebellum, hypoplasia of the ventral pons, progressive microcephaly and variable neocortical atrophy. The majority of PCH2 and PCH4 cases are caused by mutations in the TSEN54 gene; one of the four subunits comprising the tRNA-splicing endonuclease (TSEN) complex. We hypothesized that TSEN54 mutations act through a loss of function mechanism. At 8 weeks of gestation, human TSEN54 is expressed ubiquitously in the brain, yet strong expression is seen within the telencephalon and metencephalon. Comparable expression patterns for tsen54 are observed in zebrafish embryos. Morpholino (MO) knockdown of tsen54 in zebrafish embryos results in loss of structural definition in the brain. This phenotype was partially rescued by co-injecting the MO with human TSEN54 mRNA. A developmental patterning defect was not associated with tsen54 knockdown; however, an increase in cell death within the brain was observed, thus bearing resemblance to PCH pathophysiology. Additionally, N-methyl-N-nitrosourea mutant zebrafish homozygous for a tsen54 premature stop-codon mutation die within 9 days post-fertilization. To determine whether a common disease pathway exists between TSEN54 and other PCH-related genes, we also monitored the effects of mitochondrial arginyl-tRNA synthetase (rars2; PCH1 and PCH6) knockdown in zebrafish. Comparable brain phenotypes were observed following the inhibition of both genes. These data strongly support the hypothesis that TSEN54 mutations cause PCH through a loss of function mechanism. Also we suggest that a common disease pathway may exist between TSEN54- and RARS2-related PCH, which may involve a tRNA processing-related mechanism.
Collapse
Affiliation(s)
- Paul R Kasher
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The generation of genetically modified animals using N-ethyl-N-nitrosourea (ENU) mutagenesis is a fast and highly effective method. The technique is based on treating male animals with the supermutagen ENU, which randomly introduces mutations in the spermatogonial stem cells. By breeding these animals with untreated females, an F1 population is generated in which each individual carries unique random ENU-induced mutations, which can be retrieved using either genotype-driven or phenotype-driven approaches. No complicated cell culturing techniques are required and since no foreign DNA is introduced, the mutant animals that are generated are not transgenic. Here, we describe the detailed protocols for ENU mutagenesis and for mutant retrieval.
Collapse
|
23
|
Speca DJ, Chihara D, Ashique AM, Bowers MS, Pierce-Shimomura JT, Lee J, Rabbee N, Speed TP, Gularte RJ, Chitwood J, Medrano JF, Liao M, Sonner JM, Eger EI, Peterson AS, McIntire SL. Conserved role of unc-79 in ethanol responses in lightweight mutant mice. PLoS Genet 2010; 6. [PMID: 20714347 PMCID: PMC2920847 DOI: 10.1371/journal.pgen.1001057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 07/08/2010] [Indexed: 11/18/2022] Open
Abstract
The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU) forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt), disrupts the homolog of the Caenorhabditis elegans (C. elegans) unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans.
Collapse
Affiliation(s)
- David J. Speca
- Department of Neurology and the Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DS); (SLM)
| | - Daisuke Chihara
- Department of Neurology and the Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Amir M. Ashique
- Department of Neurology and the Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - M. Scott Bowers
- Department of Neurology and the Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Jonathan T. Pierce-Shimomura
- Department of Neurology and the Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Jungsoo Lee
- Department of Neurology and the Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Nusrat Rabbee
- Department of Statistics, University of California Berkeley, Berkeley, California, United States of America
| | - Terence P. Speed
- Department of Statistics, University of California Berkeley, Berkeley, California, United States of America
| | - Rodrigo J. Gularte
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - James Chitwood
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Mark Liao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - James M. Sonner
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Edmond I. Eger
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Andrew S. Peterson
- Department of Neurology and the Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Steven L. McIntire
- Department of Neurology and the Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DS); (SLM)
| |
Collapse
|
24
|
Systematic generation of in vivo G protein-coupled receptor mutants in the rat. THE PHARMACOGENOMICS JOURNAL 2010; 11:326-36. [PMID: 20531371 PMCID: PMC3194067 DOI: 10.1038/tpj.2010.44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies.
Collapse
|
25
|
van Bürck L, Blutke A, Kautz S, Rathkolb B, Klaften M, Wagner S, Kemter E, Hrabé de Angelis M, Wolf E, Aigner B, Wanke R, Herbach N. Phenotypic and pathomorphological characteristics of a novel mutant mouse model for maturity-onset diabetes of the young type 2 (MODY 2). Am J Physiol Endocrinol Metab 2010; 298:E512-23. [PMID: 19952346 DOI: 10.1152/ajpendo.00465.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several mutant mouse models for human diseases such as diabetes mellitus have been generated in the large-scale Munich ENU (N-ethyl-N-nitrosourea) mouse mutagenesis project. The aim of this study was to identify the causal mutation of one of these strains and to characterize the resulting diabetic phenotype. Mutants exhibit a T to G transversion mutation at nt 629 in the glucokinase (Gck) gene, leading to an amino acid exchange from methionine to arginine at position 210. Adult Munich Gck(M210R) mutant mice demonstrated a significant reduction of hepatic glucokinase enzyme activity but equal glucokinase mRNA and protein abundances. While homozygous mutant mice exhibited growth retardation and died soon after birth in consequence of severe hyperglycemia, heterozygous mutant mice displayed only slightly elevated blood glucose levels, present from birth, with development of disturbed glucose tolerance and glucose-induced insulin secretion. Additionally, insulin sensitivity and fasting serum insulin levels were slightly reduced in male mutant mice from an age of 90 days onward. While beta-cell mass was unaltered in neonate heterozygous and homozygous mutant mice, the total islet and beta-cell volumes and the total volume of isolated beta-cells were significantly decreased in 210-day-old male, but not female heterozygous mutant mice despite undetectable apoptosis. These findings indicate that reduced total islet and beta-cell volumes of male mutants might emerge from disturbed postnatal islet neogenesis. Considering the lack of knowledge about the pathomorphology of maturity-onset diabetes of the young type 2 (MODY 2), this glucokinase mutant model of reduced total islet and total beta-cell volume provides the opportunity to elucidate the impact of a defective glucokinase on development and maintenance of beta-cell mass and its relevance in MODY 2 patients.
Collapse
Affiliation(s)
- L van Bürck
- Inst. of Veterinary Pathology, Center for Clinical Veterinary Medicine, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mul JD, Yi CX, van den Berg SAA, Ruiter M, Toonen PW, van der Elst MCJ, Voshol PJ, Ellenbroek BA, Kalsbeek A, la Fleur SE, Cuppen E. Pmch expression during early development is critical for normal energy homeostasis. Am J Physiol Endocrinol Metab 2010; 298:E477-88. [PMID: 19934402 DOI: 10.1152/ajpendo.00154.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postnatal development and puberty are times of strong physical maturation and require large quantities of energy. The hypothalamic neuropeptide melanin-concentrating hormone (MCH) regulates nutrient intake and energy homeostasis, but the underlying mechanisms are not completely understood. Here we use a novel rat knockout model in which the MCH precursor Pmch has been inactivated to study the effects of loss of MCH on energy regulation in more detail. Pmch(-/-) rats are lean, hypophagic, osteoporotic, and although endocrine parameters were changed in pmch(-/-) rats, endocrine dynamics were normal, indicating an adaptation to new homeostatic levels rather than disturbed metabolic mechanisms. Detailed body weight growth and feeding behavior analysis revealed that Pmch expression is particularly important during early rat development and puberty, i.e., the first 8 postnatal weeks. Loss of Pmch resulted in a 20% lower set point for body weight that was determined solely during this period and remained unchanged during adulthood. Although the final body weight is diet dependent, the Pmch-deficiency effect was similar for all diets tested in this study. Loss of Pmch affected energy expenditure in both young and adult rats, although these effects seem secondary to the observed hypophagia. Our findings show an important role for Pmch in energy homeostasis determination during early development and indicate that the MCH receptor 1 system is a plausible target for childhood obesity treatment, currently a major health issue in first world countries.
Collapse
Affiliation(s)
- Joram D Mul
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van Boxtel R, Gould MN, Cuppen E, Smits BMG. ENU mutagenesis to generate genetically modified rat models. Methods Mol Biol 2010; 597:151-67. [PMID: 20013232 DOI: 10.1007/978-1-60327-389-3_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.
Collapse
|
28
|
Brown SDM, Wurst W, Kühn R, Hancock JM. The functional annotation of mammalian genomes: the challenge of phenotyping. Annu Rev Genet 2009; 43:305-33. [PMID: 19689210 DOI: 10.1146/annurev-genet-102108-134143] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse is central to the goal of establishing a comprehensive functional annotation of the mammalian genome that will help elucidate various human disease genes and pathways. The mouse offers a unique combination of attributes, including an extensive genetic toolkit that underpins the creation and analysis of models of human disease. An international effort to generate mutations for every gene in the mouse genome is a first and essential step in this endeavor. However, the greater challenge will be the determination of the phenotype of every mutant. Large-scale phenotyping for genome-wide functional annotation presents numerous scientific, infrastructural, logistical, and informatics challenges. These include the use of standardized approaches to phenotyping procedures for the population of unified databases with comparable data sets. The ultimate goal is a comprehensive database of molecular interventions that allows us to create a framework for biological systems analysis in the mouse on which human biology and disease networks can be revealed.
Collapse
Affiliation(s)
- Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Boles MK, Wilkinson BM, Wilming LG, Liu B, Probst FJ, Harrow J, Grafham D, Hentges KE, Woodward LP, Maxwell A, Mitchell K, Risley MD, Johnson R, Hirschi K, Lupski JR, Funato Y, Miki H, Marin-Garcia P, Matthews L, Coffey AJ, Parker A, Hubbard TJ, Rogers J, Bradley A, Adams DJ, Justice MJ. Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin. PLoS Genet 2009; 5:e1000759. [PMID: 20011118 PMCID: PMC2782131 DOI: 10.1371/journal.pgen.1000759] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 11/09/2009] [Indexed: 12/13/2022] Open
Abstract
An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU) mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn), inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.
Collapse
Affiliation(s)
- Melissa K. Boles
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bonney M. Wilkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Laurens G. Wilming
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Bin Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank J. Probst
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer Harrow
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Darren Grafham
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Kathryn E. Hentges
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lanette P. Woodward
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrea Maxwell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Karen Mitchell
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael D. Risley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Randy Johnson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Karen Hirschi
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Hospital, Houston, Texas, United States of America
| | - Yosuke Funato
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hiroaki Miki
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Pablo Marin-Garcia
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Lucy Matthews
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Alison J. Coffey
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Anne Parker
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Tim J. Hubbard
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Jane Rogers
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - David J. Adams
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- * E-mail: (MJJ); (DJA)
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (MJJ); (DJA)
| |
Collapse
|
30
|
Stylianou IM, Svenson KL, VanOrman SK, Langle Y, Millar JS, Paigen B, Rader DJ. Novel ENU-induced point mutation in scavenger receptor class B, member 1, results in liver specific loss of SCARB1 protein. PLoS One 2009; 4:e6521. [PMID: 19654867 PMCID: PMC2715880 DOI: 10.1371/journal.pone.0006521] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/05/2009] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular disease (CVD) is the largest cause of premature death in human populations throughout the world. Circulating plasma lipid levels, specifically high levels of LDL or low levels of HDL, are predictive of susceptibility to CVD. The scavenger receptor class B member 1 (SCARB1) is the primary receptor for the selective uptake of HDL cholesterol by liver and steroidogenic tissues. Hepatic SCARB1 influences plasma HDL-cholesterol levels and is vital for reverse cholesterol transport. Here we describe the mapping of a novel N-ethyl-N-nitrosourea (ENU) induced point mutation in the Scarb1 gene identified in a C57BL/6J background. The mutation is located in a highly conserved amino acid in the extracellular loop and leads to the conversion of an isoleucine to an asparagine (I179N). Homozygous mutant mice express normal Scarb1 mRNA levels and are fertile. SCARB1 protein levels are markedly reduced in liver (∼90%), but not in steroidogenic tissues. This leads to ∼70% increased plasma HDL levels due to reduced HDL cholesteryl ester selective uptake. Pdzk1 knockout mice have liver-specific reduction of SCARB1 protein as does this mutant; however, in vitro analysis of the mutation indicates that the regulation of SCARB1 protein in this mutant is independent of PDZK1. This new Scarb1 model may help further our understanding of post-translational and tissue-specific regulation of SCARB1 that may aid the important clinical goal of raising functional HDL.
Collapse
Affiliation(s)
- Ioannis M Stylianou
- School of Medicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
31
|
D'Ascenzo M, Meacham C, Kitzman J, Middle C, Knight J, Winer R, Kukricar M, Richmond T, Albert TJ, Czechanski A, Donahue LR, Affourtit J, Jeddeloh JA, Reinholdt L. Mutation discovery in the mouse using genetically guided array capture and resequencing. Mamm Genome 2009; 20:424-36. [PMID: 19629596 DOI: 10.1007/s00335-009-9200-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 06/15/2009] [Indexed: 11/25/2022]
Abstract
Forward genetics (phenotype-driven approaches) remain the primary source for allelic variants in the mouse. Unfortunately, the gap between observable phenotype and causative genotype limits the widespread use of spontaneous and induced mouse mutants. As alternatives to traditional positional cloning and mutation detection approaches, sequence capture and next-generation sequencing technologies can be used to rapidly sequence subsets of the genome. Application of these technologies to mutation detection efforts in the mouse has the potential to significantly reduce the time and resources required for mutation identification by abrogating the need for high-resolution genetic mapping, long-range PCR, and sequencing of individual PCR amplimers. As proof of principle, we used array-based sequence capture and pyrosequencing to sequence an allelic series from the classically defined Kit locus (approximately 200 kb) from each of five noncomplementing Kit mutants (one known allele and four unknown alleles) and have successfully identified and validated a nonsynonymous coding mutation for each allele. These data represent the first documentation and validation that these new technologies can be used to efficiently discover causative mutations. Importantly, these data also provide a specific methodological foundation for the development of large-scale mutation detection efforts in the laboratory mouse.
Collapse
Affiliation(s)
- Mark D'Ascenzo
- Roche NimbleGen, 500 South Rosa Road, Madison, WI 53719, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Insulin secretion from beta-cells is affected by deletion of nicotinamide nucleotide transhydrogenase. Methods Enzymol 2009; 457:451-80. [PMID: 19426883 DOI: 10.1016/s0076-6879(09)05025-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nicotinamide nucleotide transhydrogenase (NNT) is an inner mitochondrial membrane transmembrane protein involved in regenerating NADPH, coupled with proton translocation across the inner membrane. We have shown that a defect in Nnt function in the mouse, and specifically within the beta-cell, leads to a reduction in insulin secretion. This chapter describes methods for examining Nnt function in the mouse. This includes generating in vivo models with point mutations and expression of Nnt by transgenesis, and making in vitro models, by silencing of gene expression. In addition, techniques are described to measure insulin secretion, calcium and hydrogen peroxide concentrations, membrane potential, and NNT activity. These approaches and techniques can also be applied to other genes of interest.
Collapse
|
33
|
Kasher PR, De Vos KJ, Wharton SB, Manser C, Bennett EJ, Bingley M, Wood JD, Milner R, McDermott CJ, Miller CCJ, Shaw PJ, Grierson AJ. Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem 2009; 110:34-44. [PMID: 19453301 DOI: 10.1111/j.1471-4159.2009.06104.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in spastin are the most common cause of hereditary spastic paraplegia (HSP) but the mechanisms by which mutant spastin induces disease are not clear. Spastin functions to regulate microtubule organisation, and because of the essential role of microtubules in axonal transport, this has led to the suggestion that defects in axonal transport may underlie at least part of the disease process in HSP. However, as yet there is no direct evidence to support this notion. Here we analysed axonal transport in a novel mouse model of spastin-induced HSP that involves a pathogenic splice site mutation, which leads to a loss of spastin protein. A mutation located within the same splice site has been previously described in HSP. Spastin mice develop gait abnormalities that correlate with phenotypes seen in HSP patients and also axonal swellings containing cytoskeletal proteins, mitochondria and the amyloid precursor protein (APP). Pathological analyses of human HSP cases caused by spastin mutations revealed the presence of similar axonal swellings. To determine whether mutant spastin influenced axonal transport we quantified transport of two cargoes, mitochondria and APP-containing membrane bound organelles, in neurons from mutant spastin and control mice, using time-lapse microscopy. We found that mutant spastin perturbs anterograde transport of both cargoes. In neurons with axonal swellings we found that the mitochondrial axonal transport defects were exacerbated; distal to axonal swellings both anterograde and retrograde transport were severely reduced. These results strongly support a direct role for defective axonal transport in the pathogenesis of HSP because of spastin mutation.
Collapse
Affiliation(s)
- Paul R Kasher
- Academic Neurology Unit, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
A missense mutation in the Capza3 gene and disruption of F-actin organization in spermatids of repro32 infertile male mice. Dev Biol 2009; 330:142-52. [PMID: 19341723 DOI: 10.1016/j.ydbio.2009.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 11/22/2022]
Abstract
Males homozygous for the repro32 ENU-induced mutation produced by the Reproductive Genomics program at The Jackson Laboratory are infertile, have low epididymal sperm concentrations, and produce sperm with abnormally shaped heads and poor motility. The purpose of the present study was to identify the mutated gene in repro32 mice and to define the structural and functional changes causing infertility and the aberrant sperm phenotype. In repro32/repro32 mice, we discovered a failure to shed excess cytoplasm and disorganization of the middle piece of the flagellum at spermiation, resulting in the outer dense fibers being wrapped around the sperm head within a bag of cytoplasm. Using a candidate-gene approach, a mutation was identified in the spermatid-specific "capping protein (actin filament) muscle Z-line, alpha 3" gene (Capza3). CAPZA3 protein localization was altered in spermatids concurrent with altered localization of a unique CAPZB variant isoform and disruption of the filamentous actin (F-actin) network. These observations strongly suggest the missense mutation in Capza3 is responsible for the mutant phenotype of repro32/repro32 sperm and regulation of F-actin dynamics by a spermatogenic cell-specific CAPZ heterodimer is essential for removal of the cytoplasm and maintenance of midpiece integrity during spermiation in the mouse.
Collapse
|
35
|
Aigner B, Rathkolb B, Klaften M, Sedlmeier R, Klempt M, Wagner S, Michel D, Mayer U, Klopstock T, de Angelis MH, Wolf E. Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in plasma enzyme activities as novel organ-specific disease models. Exp Physiol 2009; 94:412-21. [PMID: 19151073 DOI: 10.1113/expphysiol.2008.045864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measurement of plasma enzyme activities is part of routine medical examination protocols and provides valuable parameters for the diagnosis of various organ diseases. In the phenotype-driven Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project, clinical chemical blood analysis was carried out on more than 20,000 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the plasma enzyme activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, alpha-amylase and creatine kinase. We identified a large number of animals that consistently exhibited altered plasma enzyme activities. Transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of mutant lines for each parameter. Breeding experiments in selected lines detected the linkage of the causative mutations to defined chromosomal regions. Subsequently, identification of the mutated genes was successfully carried out in chosen lines, resulting in a novel alkaline phosphatase liver/bone/kidney (Alpl) alteration in one line and the strong indication for a dystrophin (Dmd) alteration in another line. The mouse mutants with abnormal plasma enzyme activities recovered in the Munich ENU project are novel tools for the systematic dissection of the pathogenesis of organ diseases.
Collapse
Affiliation(s)
- Bernhard Aigner
- Department of Veterinary Sciences and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ashe A, Morgan DK, Whitelaw NC, Bruxner TJ, Vickaryous NK, Cox LL, Butterfield NC, Wicking C, Blewitt ME, Wilkins SJ, Anderson GJ, Cox TC, Whitelaw E. A genome-wide screen for modifiers of transgene variegation identifies genes with critical roles in development. Genome Biol 2008; 9:R182. [PMID: 19099580 PMCID: PMC2646286 DOI: 10.1186/gb-2008-9-12-r182] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 10/22/2008] [Accepted: 12/19/2008] [Indexed: 12/22/2022] Open
Abstract
An extended ENU screen for modifiers of transgene variegation identified four new modifiers, MommeD7-D10. Background Some years ago we established an N-ethyl-N-nitrosourea screen for modifiers of transgene variegation in the mouse and a preliminary description of the first six mutant lines, named MommeD1-D6, has been published. We have reported the underlying genes in three cases: MommeD1 is a mutation in SMC hinge domain containing 1 (Smchd1), a novel modifier of epigenetic gene silencing; MommeD2 is a mutation in DNA methyltransferase 1 (Dnmt1); and MommeD4 is a mutation in Smarca 5 (Snf2h), a known chromatin remodeler. The identification of Dnmt1 and Smarca5 attest to the effectiveness of the screen design. Results We have now extended the screen and have identified four new modifiers, MommeD7-D10. Here we show that all ten MommeDs link to unique sites in the genome, that homozygosity for the mutations is associated with severe developmental abnormalities and that heterozygosity results in phenotypic abnormalities and reduced reproductive fitness in some cases. In addition, we have now identified the underlying genes for MommeD5 and MommeD10. MommeD5 is a mutation in Hdac1, which encodes histone deacetylase 1, and MommeD10 is a mutation in Baz1b (also known as Williams syndrome transcription factor), which encodes a transcription factor containing a PHD-type zinc finger and a bromodomain. We show that reduction in the level of Baz1b in the mouse results in craniofacial features reminiscent of Williams syndrome. Conclusions These results demonstrate the importance of dosage-dependent epigenetic reprogramming in the development of the embryo and the power of the screen to provide mouse models to study this process.
Collapse
Affiliation(s)
- Alyson Ashe
- Epigenetics Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland 4006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SDM. ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 2008; 9:49-69. [PMID: 18949851 DOI: 10.1146/annurev.genom.9.081307.164224] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arguably, the main challenge for contemporary genetics is to understand the function of every gene in a mammalian genome. The mouse has emerged as a model for this task because its genome can be manipulated in a number of ways to study gene function or mimic disease states. Two complementary genetic approaches can be used to generate mouse models. A reverse genetics or gene-driven approach (gene to phenotype) starts from a known gene and manipulates the genome to create genetically modified mice, such as knockouts. Alternatively, a forward genetics or phenotype-driven approach (phenotype to gene) involves screening mice for mutant phenotypes without previous knowledge of the genetic basis of the mutation. N-ethyl-N-nitrosourea (ENU) mutagenesis has been widely used for both approaches to generate mouse mutants. Here we review progress in ENU mutagenesis screening, with an emphasis on creating mouse models for human disorders.
Collapse
|
38
|
van Boxtel R, Toonen PW, Verheul M, van Roekel HS, Nijman IJ, Guryev V, Cuppen E. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals. BMC Genomics 2008; 9:460. [PMID: 18840264 PMCID: PMC2567347 DOI: 10.1186/1471-2164-9-460] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 10/07/2008] [Indexed: 01/15/2023] Open
Abstract
Background The laboratory rat (Rattus norvegicus) is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR) system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest.
Collapse
Affiliation(s)
- Ruben van Boxtel
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Goldsworthy M, Hugill A, Freeman H, Horner E, Shimomura K, Bogani D, Pieles G, Mijat V, Arkell R, Bhattacharya S, Ashcroft FM, Cox RD. Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance. Diabetes 2008; 57:2234-44. [PMID: 18477811 PMCID: PMC2494690 DOI: 10.2337/db07-0337] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor(+/-)-induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K(+) channel (K(ATP) channel) and calcium influx. CONCLUSIONS IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult beta-cell downstream of the K(ATP) channel.
Collapse
|
40
|
Aigner B, Rathkolb B, Herbach N, Hrabé de Angelis M, Wanke R, Wolf E. Diabetes models by screen for hyperglycemia in phenotype-driven ENU mouse mutagenesis projects. Am J Physiol Endocrinol Metab 2008; 294:E232-40. [PMID: 18056790 DOI: 10.1152/ajpendo.00592.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
More than 150 million people suffer from diabetes mellitus worldwide, and this number is expected to rise substantially within the next decades. Despite its high prevalence, the pathogenesis of diabetes mellitus is not completely understood. Therefore, appropriate experimental models are essential tools to gain more insight into the genetics and pathogenesis of the disease. Here, we describe the current efforts to establish novel diabetes models derived from unbiased, phenotype-driven, large-scale N-ethyl-N-nitrosourea (ENU) mouse mutagenesis projects started a decade ago using hyperglycemia as a high-throughput screen parameter. Mouse lines were established according to their hyperglycemia phenotype over several generations, thereby revealing a mutation as cause for the aberrant phenotype. Chromosomal assignment of the causative mutation and subsequent candidate gene analysis led to the detection of the mutations that resulted in novel alleles of genes already known to be involved in glucose homeostasis, like glucokinase, insulin 2, and insulin receptor. Additional ENU-induced hyperglycemia lines are under genetic analysis. Improvements in screen for diabetic animals are implemented to detect more subtle phenotypes. Moreover, diet challenge assays are being employed to uncover interactions between genetic and environmental factors in the pathogenesis of diabetes mellitus. The new mouse mutants recovered in phenotype-driven ENU mouse mutagenesis projects complement the available models generated by targeted mutagenesis of candidate genes, all together providing the large resource of models required for a systematic dissection of the pathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- Bernhard Aigner
- Institute of Molecular Animal Breeding and Biotechnology, Hackerstrasse 27, Oberschleissheim, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Bruce Beutler
- Department of Genetics, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
42
|
Oliver PL, Bitoun E, Davies KE. Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mamm Genome 2007; 18:412-24. [PMID: 17514509 PMCID: PMC1998876 DOI: 10.1007/s00335-007-9014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 12/23/2022]
Abstract
One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models.
Collapse
Affiliation(s)
- Peter L. Oliver
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Emmanuelle Bitoun
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
43
|
Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, Wolf E, Aigner B, Wanke R. Dominant-negative effects of a novel mutated Ins2 allele causes early-onset diabetes and severe beta-cell loss in Munich Ins2C95S mutant mice. Diabetes 2007; 56:1268-76. [PMID: 17303807 DOI: 10.2337/db06-0658] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The novel diabetic mouse model Munich Ins2(C95S) was discovered within the Munich N-ethyl-N-nitrosourea mouse mutagenesis screen. These mice exhibit a T-->A transversion in the insulin 2 (Ins2) gene at nucleotide position 1903 in exon 3, which leads to the amino acid exchange C95S and loss of the A6-A11 intrachain disulfide bond. From 1 month of age onwards, blood glucose levels of heterozygous Munich Ins2(C95S) mutant mice were significantly increased compared with controls. The fasted and postprandial serum insulin levels of the heterozygous mutants were indistinguishable from those of wild-type littermates. However, serum insulin levels after glucose challenge, pancreatic insulin content, and homeostasis model assessment (HOMA) beta-cell indices of heterozygous mutants were significantly lower than those of wild-type littermates. The initial blood glucose decrease during an insulin tolerance test was lower and HOMA insulin resistance indices were significantly higher in mutant mice, indicating the development of insulin resistance in mutant mice. The total islet volume, the volume density of beta-cells in the islets, and the total beta-cell volume of heterozygous male mutants was significantly reduced compared with wild-type mice. Electron microscopy of the beta-cells of male mutants showed virtually no secretory insulin granules, the endoplasmic reticulum was severely enlarged, and mitochondria appeared swollen. Thus, Munich Ins2(C95S) mutant mice are considered a valuable model to study the mechanisms of beta-cell dysfunction and death during the development of diabetes.
Collapse
Affiliation(s)
- Nadja Herbach
- Institute of Veterinary Pathology, University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Keays DA, Clark TG, Campbell TG, Broxholme J, Valdar W. Estimating the number of coding mutations in genotypic and phenotypic driven N-ethyl-N-nitrosourea (ENU) screens: revisited. Mamm Genome 2007; 18:123-4. [PMID: 17347895 DOI: 10.1007/s00335-006-0065-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 12/11/2006] [Indexed: 11/25/2022]
Abstract
We recently described methods for estimating the number of N-ethyl-N-nitrosourea (ENU)-induced coding mutations in phenotypic and genotypic screens. In this article we revisit these methods, clarifying their application. In particular, we focus on the difference between unconditional and conditional probabilities. We also introduce a website to assist investigators in the application of these equations ( http://www.well.ox.ac.uk/enuMutRat ).
Collapse
Affiliation(s)
- David A Keays
- Psychiatric Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Jeans AF, Oliver PL, Johnson R, Capogna M, Vikman J, Molnár Z, Babbs A, Partridge CJ, Salehi A, Bengtsson M, Eliasson L, Rorsman P, Davies KE. A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse. Proc Natl Acad Sci U S A 2007; 104:2431-6. [PMID: 17283335 PMCID: PMC1793901 DOI: 10.1073/pnas.0610222104] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for synaptic vesicle exocytosis, but its study has been limited by the neonatal lethality of murine SNARE knockouts. Here, we describe a viable mouse line carrying a mutation in the b-isoform of neuronal SNARE synaptosomal-associated protein of 25 kDa (SNAP-25). The causative I67T missense mutation results in increased binding affinities within the SNARE complex, impaired exocytotic vesicle recycling and granule exocytosis in pancreatic beta-cells, and a reduction in the amplitude of evoked cortical excitatory postsynaptic potentials. The mice also display ataxia and impaired sensorimotor gating, a phenotype which has been associated with psychiatric disorders in humans. These studies therefore provide insights into the role of the SNARE complex in both diabetes and psychiatric disease.
Collapse
Affiliation(s)
| | | | | | - Marco Capogna
- Medical Research Council Anatomical Neuropharmacological Unit, University of Oxford, Mansfield Road, Oxford, OX1 3TH, United Kingdom
| | - Jenny Vikman
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, SE-205 02 Malmö, Sweden; and
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, United Kingdom
| | - Arran Babbs
- *Medical Research Council Functional Genetics Unit
| | - Christopher J. Partridge
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Albert Salehi
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, SE-205 02 Malmö, Sweden; and
| | - Martin Bengtsson
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, SE-205 02 Malmö, Sweden; and
| | - Lena Eliasson
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, SE-205 02 Malmö, Sweden; and
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Kay E. Davies
- *Medical Research Council Functional Genetics Unit
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Aigner B, Rathkolb B, Herbach N, Kemter E, Schessl C, Klaften M, Klempt M, de Angelis MH, Wanke R, Wolf E. Screening for increased plasma urea levels in a large-scale ENU mouse mutagenesis project reveals kidney disease models. Am J Physiol Renal Physiol 2007; 292:F1560-7. [PMID: 17264314 DOI: 10.1152/ajprenal.00213.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney diseases lead to the failure of urinary excretion of metabolism products. In the Munich ethylnitrosourea (ENU) mouse mutagenesis project, which is done on a C3H inbred genetic background, blood samples of more than 15,000 G1 offspring and 500 G3 pedigrees were screened for alterations in clinical-chemical parameters. We identified 44 animals consistently exhibiting increased plasma urea concentrations. Transmission analysis of the altered phenotype of 23 mice to subsequent generations led to the establishment of five mutant lines. Both sexes were affected in these lines. Urinary urea levels were decreased in the mutants. In addition, most mutants showed increased plasma and decreased urinary creatinine levels. Pathological investigation of kidneys from the five mutant lines revealed a broad spectrum of alterations, ranging from no macroscopic and light microscopic kidney alterations to decreased kidney weight-to-body weight ratio, dilation of the renal pelvis, and severe glomerular lesions. Thus screening for elevated plasma urea levels in a large-scale ENU mouse mutagenesis project resulted in the successful establishment of mouse strains which are valuable tools for molecular studies of mechanisms involved in urea excretion or which represent interesting models for kidney diseases.
Collapse
Affiliation(s)
- Bernhard Aigner
- Institute of Molecular Animal Breeding and BiotechnologyInstitute of Molecular Animal Breeding and Biotechnology, Ludwig Maximilians University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Howell GR, Shindo M, Murray S, Gridley T, Wilson LA, Schimenti JC. Mutation of a ubiquitously expressed mouse transmembrane protein (Tapt1) causes specific skeletal homeotic transformations. Genetics 2006; 175:699-707. [PMID: 17151244 PMCID: PMC1800629 DOI: 10.1534/genetics.106.065177] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L5Jcs1 is a perinatal lethal mutation uncovered in a screen for ENU-induced mutations on mouse chromosome 5. L5Jcs1 homozygotes exhibit posterior-to-anterior transformations of the vertebral column midsection, similar to mice deficient for Hoxc8 and Hoxc9. Positional cloning efforts identified a mutation in a novel, evolutionarily conserved, and ubiquitously expressed gene dubbed Tapt1 (Transmembrane anterior posterior transformation 1). TAPT1 is predicted to contain several transmembrane domains, and part of the gene is orthologous to an unusual alternatively spliced human transcript encoding the cytomegalovirus gH receptor. We speculate that TAPT1 is a downstream effector of HOXC8 that may act by transducing or transmitting extracellular information required for axial skeletal patterning during development.
Collapse
|
48
|
Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, Hartford SA, Tye BK, Schimenti JC. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet 2006; 39:93-8. [PMID: 17143284 DOI: 10.1038/ng1936] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 11/03/2006] [Indexed: 12/30/2022]
Abstract
Mcm4 (minichromosome maintenance-deficient 4 homolog) encodes a subunit of the MCM2-7 complex (also known as MCM2-MCM7), the replication licensing factor and presumptive replicative helicase. Here, we report that the mouse chromosome instability mutation Chaos3 (chromosome aberrations occurring spontaneously 3), isolated in a forward genetic screen, is a viable allele of Mcm4. Mcm4(Chaos3) encodes a change in an evolutionarily invariant amino acid (F345I), producing an apparently destabilized MCM4. Saccharomyces cerevisiae strains that we engineered to contain a corresponding allele (resulting in an F391I change) showed a classical minichromosome loss phenotype. Whereas homozygosity for a disrupted Mcm4 allele (Mcm4(-)) caused preimplantation lethality, Mcm(Chaos3/-) embryos died late in gestation, indicating that Mcm4(Chaos3) is hypomorphic. Mutant embryonic fibroblasts were highly susceptible to chromosome breaks induced by the DNA replication inhibitor aphidicolin. Most notably, >80% of Mcm4(Chaos3/Chaos3) females succumbed to mammary adenocarcinomas with a mean latency of 12 months. These findings suggest that hypomorphic alleles of the genes encoding the subunits of the MCM2-7 complex may increase breast cancer risk.
Collapse
Affiliation(s)
- Naoko Shima
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cook MC, Vinuesa CG, Goodnow CC. ENU-mutagenesis: insight into immune function and pathology. Curr Opin Immunol 2006; 18:627-33. [PMID: 16889948 DOI: 10.1016/j.coi.2006.07.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 07/20/2006] [Indexed: 12/25/2022]
Abstract
In random chemical mutagenesis, gene discovery is driven by phenotypes rather than by hypotheses. A standard dose of N-ethyl-N-nitrosourea results in approximately 30 coding mutations in male G1 mice, of which approximately 4 can be propagated to homozygosity in 3 generations. In recent years, large-scale screens of such G3 mice for phenotypes of interest to immunologists have revealed clues to the number of genes responsible for key immune responses, such as innate recognition of pathogens and autoantibody production. More than 20 of the phenotypes that exhibit a simple (Mendelian) pattern of inheritance have been mapped. Novel alleles have revealed new pathways of host defense, allergy and autoimmunity.
Collapse
Affiliation(s)
- Matthew C Cook
- Frank Fenner Building, Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|