1
|
Bati K, Baeti PB, Gaobotse G, Kwape TE. Leaf extracts of
Euclea natalensis
A.D.C ameliorate biochemical abnormalities in high-fat-low streptozotocin-induced diabetic rats through modulation of the AMPK-GLUT4 pathway. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 11:232-252. [DOI: 10.1080/2314808x.2024.2326748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Keagile Bati
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Biomedical Sciences, School of Medicine, University of Botswana, Gaborone, Botswana
| | - Phazha Bushe Baeti
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Tebogo Elvis Kwape
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
2
|
Chen X, Lin E, Haghighatian MM, Shepard LW, Hattar S, Kuruvilla R, Zhao H. Light modulates glucose and lipid homeostasis via the sympathetic nervous system. SCIENCE ADVANCES 2024; 10:eadp3284. [PMID: 39661675 PMCID: PMC11633741 DOI: 10.1126/sciadv.adp3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Light is an important environmental factor for vision and for diverse physiological and psychological functions. Light can also modulate glucose metabolism. Here, we show that in mice, light is critical for glucose and lipid homeostasis by regulating the sympathetic nervous system, independent of circadian disruption. Light deprivation from birth elicits insulin hypersecretion, glucagon hyposecretion, lower gluconeogenesis, and reduced lipolysis by 6 to 8 weeks in male, but not female, mice. These metabolic defects are consistent with blunted sympathetic activity, and indeed, sympathetic responses to a cold stimulus are substantially attenuated in dark-reared mice. Further, long-term dark rearing leads to body weight gain, insulin resistance, and glucose intolerance. Notably, metabolic dysfunction can be partially alleviated by 5 weeks exposure to a regular light-dark cycle. These studies provide insight into circadian-independent mechanisms by which light directly influences whole-body physiology and better understanding of metabolic disorders linked to aberrant environmental light conditions.
Collapse
Affiliation(s)
- Xiangning Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eugene Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Chen X, Lin E, Haghighatian MM, Shepard LW, Hattar S, Kuruvilla R, Zhao H. Light modulates glucose and lipid homeostasis via the sympathetic nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617839. [PMID: 39416062 PMCID: PMC11483057 DOI: 10.1101/2024.10.11.617839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Light is an important environmental factor for vision, and for diverse physiological and psychological functions. Light can also modulate glucose metabolism. Here, we show that in mice, light is critical for glucose and lipid homeostasis by regulating the sympathetic nervous system, independent of circadian disruption. Light deprivation from birth elicits insulin hypersecretion, glucagon hyposecretion, lower gluconeogenesis, and reduced lipolysis by 6-8 weeks, in male, but not, female mice. These metabolic defects are consistent with blunted sympathetic activity, and indeed, sympathetic responses to a cold stimulus are significantly attenuated in dark-reared mice. Further, long-term dark rearing leads to body weight gain, insulin resistance, and glucose intolerance. Notably, metabolic dysfunction can be partially alleviated by 5 weeks exposure to a regular light-dark cycle. These studies provide insight into circadian-independent mechanisms by which light directly influences whole-body physiology and inform new approaches for understanding metabolic disorders linked to aberrant environmental light conditions.
Collapse
Affiliation(s)
- Xiangning Chen
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Eugene Lin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | | | | | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| |
Collapse
|
4
|
Lyons SA, McClelland GB. Commentary: Tracing the fate of metabolic substrates during changes in whole-body energy expenditure in mice. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111008. [PMID: 39059702 DOI: 10.1016/j.cbpb.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
For small mammals, such as mice, cannulation procedures can be quite challenging, limiting research associated with tracing isotopically labelled substrates at the whole-animal level. When cannulation in mice is possible, assessment of substrate use is further limited to when mice are either under anesthesia or are at rest, as there are no studies directly quantifying substrate use during exercise in mice. The use of isotopic tracer techniques has greatly advanced our knowledge in understanding how metabolic substrates (carbohydrates, amino acids, and fatty acids) contribute to whole-body metabolism. However, research regarding tissue-specific fuel use contributions to whole-body energy expenditure in mice at varying metabolic intensities (i.e., exercise) is lacking, despite the popularity of using mice in a variety of metabolic models. In this commentary, we briefly discuss the methodologies, advantages, and disadvantages of using radiolabelled, positron emission, and stable isotopes with a specific focus on fatty acids. We highlight recent mouse studies that have used creative experimental designs employing the use of isotopic tracer techniques and we briefly discuss how these methodologies can be further pursued to deepen our understanding of substrate use during exercise. Lastly, we show findings of a recent study we performed using a radiolabelled fatty acid tracer (14C-bromopalmitic acid) to determine fatty acid uptake in 16 muscles, two brown and two white adipose tissue depots during submaximal exercise in deer mice.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
5
|
Paracha N, Mastrokostas P, Kello E, Gedailovich Y, Segall D, Rizzo A, Mitelberg L, Hassan N, Dowd TL. Osteocalcin improves glucose tolerance, insulin sensitivity and secretion in older male mice. Bone 2024; 182:117048. [PMID: 38378083 DOI: 10.1016/j.bone.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Osteocalcin deficient mice (OC-/-), on a mixed 129/BL6J background, were reported to show glucose intolerance, insulin insensitivity and reduced insulin secretion at 1-6 mos of age. This is controversial as two studies in OC-/- mice on different backgrounds (C3H/BL6 (5-6 mos.) and C57BL/6N (5 and 9 mos.)) found no effect on glucose metabolism. To determine the role of OC in glucose metabolism we conducted glucose tolerance tests (GTT), insulin tolerances tests (ITT) and glucose stimulated insulin secretion (GSIS) on 6 and 9.5 month-old male OC-/- and OC+/+ mice on a pure C57BL/6J background and fed a normal chow diet. All results were analyzed with a two-way repeated measures ANOVA. The GTT results showed no effect on males at 6 months of age but glucose intolerance was significantly increased (p < 0.05) in male OC-/- mice at 9.5 months of age. The ITT results indicated significantly increased insulin resistance in male OC-/- mice. Glucose stimulated insulin secretion (GSIS) showed insulin significantly (p < 0.05) reduced in OC-/- at several time points. Mouse Osteocalcin injected into OC-/- mice decreased the glucose level. Our results confirm the role of OC in glucose metabolism and insulin sensitivity and demonstrate a role in insulin secretion in older male mice on a C57BL/6J background. Differences in background, age, or experimental procedures could explain controversial results. A delayed onset of the effect of OC on glucose metabolism at 9.5 months in male C57BL/6J mice highlights the importance of background on phenotype. Consideration of genetic background and age may be beneficial for human studies on osteocalcin and glucose homeostasis and may be relevant to the elderly where osteocalcin is reduced.
Collapse
Affiliation(s)
- Noorulain Paracha
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Paul Mastrokostas
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Evan Kello
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Yosef Gedailovich
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Devorah Segall
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Alexis Rizzo
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Lawrence Mitelberg
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Naif Hassan
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| | - Terry Lynne Dowd
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America; Ph.D. Program in Chemistry and Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America.
| |
Collapse
|
6
|
Hahn MK, Giacca A, Pereira S. In vivo techniques for assessment of insulin sensitivity and glucose metabolism. J Endocrinol 2024; 260:e230308. [PMID: 38198372 PMCID: PMC10895285 DOI: 10.1530/joe-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Metabolic tests are vital to determine in vivo insulin sensitivity and glucose metabolism in preclinical models, usually rodents. Such tests include glucose tolerance tests, insulin tolerance tests, and glucose clamps. Although these tests are not standardized, there are general guidelines for their completion and analysis that are constantly being refined. In this review, we describe metabolic tests in rodents as well as factors to consider when designing and performing these tests.
Collapse
Affiliation(s)
- Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Toronto, Ontario, Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Chen Q, Zhou D, Wang C, Ye M, Jia Y, Liu B, Bukulmez O, Norman RJ, Hu H, Yeung SB, Teng X, Liu W, Chen M. The adverse effects of vitrification on mouse embryo development and metabolic phenotype in offspring. FASEB J 2024; 38:e23372. [PMID: 38102977 DOI: 10.1096/fj.202301774rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Embryo vitrification is a standard procedure in assisted reproductive technology. Previous studies have shown that frozen embryo transfer is associated with an elevated risk of adverse maternal and neonatal outcomes. This study aimed to explore the effects of mouse blastocyst vitrification on the phenotype of vitrified-warmed blastocysts, their intrauterine and postnatal development, and the long-term metabolic health of the derived offspring. The vitrified-warmed blastocysts (IVF + VT group) exhibited reduced mitochondrial activity, increased apoptotic levels, and decreased cell numbers when compared to the fresh blastocysts (IVF group). Implantation rates, live pup rates, and crown-rump length at E18.5 were not different between the two groups. However, there was a significant decrease in fetal weight and fetal/placental weight ratio in the IVF + VT group. Furthermore, the offspring of the IVF + VT group at an age of 36 weeks had reduced whole energy consumption, impaired glucose and lipid metabolism when compared with the IVF group. Notably, RNA-seq results unveiled disturbed hepatic gene expression in the offspring from vitrified-warmed blastocysts. This study revealed the short-term negative impacts of vitrification on embryo and fetal development and the long-term influence on glucose and lipid metabolism that persist from the prenatal stage into adulthood in mice.
Collapse
Affiliation(s)
- Qiaoyu Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Dan Zhou
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changxin Wang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingming Ye
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanping Jia
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Binya Liu
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert J Norman
- Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hanxin Hu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shu-Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xiaoming Teng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Mussai EX, Lofft ZA, Vanderkruk B, Boonpattrawong N, Miller JW, Smith A, Bottiglieri T, Devlin AM. Folic acid supplementation in a mouse model of diabetes in pregnancy alters insulin sensitivity in female mice and beta cell mass in offspring. FASEB J 2023; 37:e23200. [PMID: 37773756 DOI: 10.1096/fj.202301491r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Epidemiological studies have reported discrepant findings on the relationship between folic acid intake during pregnancy and risk for gestational diabetes mellitus (GDM). To begin to understand how folic acid impacts metabolic health during pregnancy, we determined the effects of excess folic acid supplementation (5× recommendation) on maternal and fetal offspring metabolic health. Using a mouse (female C57BL/6J) model of diet-induced diabetes in pregnancy (western diet) and control mice, we show that folic acid supplementation improved insulin sensitivity in the female mice fed the western diet and worsened insulin sensitivity in control mice. We found no unmetabolized folic acid in liver from supplemented mice suggesting the metabolic effects of folic acid supplementation are not due to unmetabolized folic acid. Male fetal (gestational day 18.5) offspring from folic acid supplemented dams (western and control) had greater beta cell mass and density than those from unsupplemented dams; this was not observed in female offspring. Differential sex-specific hepatic gene expression profiles were observed in the fetal offspring from supplemented dams but this differed between western and controls. Our findings suggest that folic acid supplementation affects insulin sensitivity in female mice, but is dependent on their metabolic phenotype and has sex-specific effects on offspring pancreas and liver.
Collapse
Affiliation(s)
- Ei-Xia Mussai
- Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Zoe A Lofft
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ben Vanderkruk
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicha Boonpattrawong
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Andre Smith
- Department of Nutritional Sciences, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | | | - Angela M Devlin
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Ceddia RP, Zurawski Z, Thompson Gray A, Adegboye F, McDonald-Boyer A, Shi F, Liu D, Maldonado J, Feng J, Li Y, Alford S, Ayala JE, McGuinness OP, Collins S, Hamm HE. Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. J Clin Invest 2023; 133:e160617. [PMID: 37561580 PMCID: PMC10541194 DOI: 10.1172/jci160617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gβγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gβγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gβγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gβγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gβγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P. Ceddia
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dianxin Liu
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Sheila Collins
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Ramos S, Ademolue TW, Jentho E, Wu Q, Guerra J, Martins R, Pires G, Weis S, Carlos AR, Mahú I, Seixas E, Duarte D, Rajas F, Cardoso S, Sousa AGG, Lilue J, Paixão T, Mithieux G, Nogueira F, Soares MP. A hypometabolic defense strategy against malaria. Cell Metab 2022; 34:1183-1200.e12. [PMID: 35841892 DOI: 10.1016/j.cmet.2022.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
Hypoglycemia is a clinical hallmark of severe malaria, the often-lethal outcome of Plasmodium falciparum infection. Here, we report that malaria-associated hypoglycemia emerges from a non-canonical resistance mechanism, whereby the infected host reduces glycemia to starve Plasmodium. This hypometabolic response is elicited by labile heme, a byproduct of hemolysis that induces illness-induced anorexia and represses hepatic glucose production. While transient repression of hepatic glucose production prevents unfettered immune-mediated inflammation, organ damage, and anemia, when sustained over time it leads to hypoglycemia, compromising host energy expenditure and adaptive thermoregulation. The latter arrests the development of asexual stages of Plasmodium via a mechanism associated with parasite mitochondrial dysfunction. In response, Plasmodium activates a transcriptional program associated with the reduction of virulence and sexual differentiation toward the generation of transmissible gametocytes. In conclusion, malaria-associated hypoglycemia represents a trade-off of a hypometabolic-based defense strategy that balances parasite virulence versus transmission.
Collapse
Affiliation(s)
- Susana Ramos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Elisa Jentho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Qian Wu
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Joel Guerra
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Gil Pires
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany; Institute for Infectious Disease and Infection Control, University Hospital Jena, Jena, Germany; Center for Sepsis Control and Care, Jena University, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany
| | | | - Inês Mahú
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Denise Duarte
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | | | | | | | | | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Fátima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | | |
Collapse
|
11
|
Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metab 2022; 34:919-936.e8. [PMID: 35675800 DOI: 10.1016/j.cmet.2022.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/25/2022] [Accepted: 05/16/2022] [Indexed: 01/04/2023]
Abstract
Elevated liver de novo lipogenesis contributes to non-alcoholic steatohepatitis (NASH) and can be inhibited by targeting acetyl-CoA carboxylase (ACC). However, hypertriglyceridemia limits the use of pharmacological ACC inhibitors as a monotherapy. ATP-citrate lyase (ACLY) generates acetyl-CoA and oxaloacetate from citrate, but whether inhibition is effective for treating NASH is unknown. Here, we characterize a new mouse model that replicates many of the pathological and molecular drivers of NASH and find that genetically inhibiting ACLY in hepatocytes reduces liver malonyl-CoA, oxaloacetate, steatosis, and ballooning as well as blood glucose, triglycerides, and cholesterol. Pharmacological inhibition of ACLY mirrors genetic inhibition but has additional positive effects on hepatic stellate cells, liver inflammation, and fibrosis. Mendelian randomization of human variants that mimic reductions in ACLY also associate with lower circulating triglycerides and biomarkers of NASH. These data indicate that inhibiting liver ACLY may be an effective approach for treatment of NASH and dyslipidemia.
Collapse
|
12
|
Ren YR, Ye YL, Feng Y, Xu TF, Shen Y, Liu J, Huang SL, Shen JH, Leng Y. SL010110, a lead compound, inhibits gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and improves glucose homeostasis in diabetic mice. Acta Pharmacol Sin 2021; 42:1834-1846. [PMID: 33574568 PMCID: PMC8563938 DOI: 10.1038/s41401-020-00609-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
Suppression of excessive hepatic gluconeogenesis is an effective strategy for controlling hyperglycemia in type 2 diabetes (T2D). In the present study, we screened our compounds library to discover the active molecules inhibiting gluconeogenesis in primary mouse hepatocytes. We found that SL010110 (5-((4-allyl-2-methoxyphenoxy) methyl) furan-2-carboxylic acid) potently inhibited gluconeogenesis with 3 μM and 10 μM leading to a reduction of 45.5% and 67.5%, respectively. Moreover, SL010110 caused suppression of gluconeogenesis resulted from downregulating the protein level of phosphoenolpyruvate carboxykinase 1 (PEPCK1), but not from affecting the gene expressions of PEPCK, glucose-6-phosphatase, and fructose-1,6-bisphosphatase. Furthermore, SL010110 increased PEPCK1 acetylation, and promoted PEPCK1 ubiquitination and degradation. SL010110 activated p300 acetyltransferase activity in primary mouse hepatocytes. The enhanced PEPCK1 acetylation and suppressed gluconeogenesis caused by SL010110 were blocked by C646, a histone acetyltransferase p300 inhibitor, suggested that SL010110 inhibited gluconeogenesis by activating p300. SL010110 decreased NAD+/NADH ratio, inhibited SIRT2 activity, and further promoted p300 acetyltransferase activation and PEPCK1 acetylation. These effects were blocked by NMN, an NAD+ precursor, suggested that SL010110 inhibited gluconeogenesis by inhibiting SIRT2, activating p300, and subsequently promoting PEPCK1 acetylation. In type 2 diabetic ob/ob mice, single oral dose of SL010110 (100 mg/kg) suppressed gluconeogenesis accompanied by the suppressed hepatic SIRT2 activity, increased p300 activity, enhanced PEPCK1 acetylation and degradation. Chronic oral administration of SL010110 (15 or 50 mg/kg) significantly reduced the blood glucose levels in ob/ob and db/db mice. This study reveals that SL010110 is a lead compound with a distinct mechanism of suppressing gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and potent anti-hyperglycemic activity for the treatment of T2D.
Collapse
Affiliation(s)
- Yu-Ran Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Liang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ti-Fei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jian-Hua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Towards Understanding the Direct and Indirect Actions of Growth Hormone in Controlling Hepatocyte Carbohydrate and Lipid Metabolism. Cells 2021; 10:cells10102532. [PMID: 34685512 PMCID: PMC8533955 DOI: 10.3390/cells10102532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) is critical for achieving normal structural growth. In addition, GH plays an important role in regulating metabolic function. GH acts through its GH receptor (GHR) to modulate the production and function of insulin-like growth factor 1 (IGF1) and insulin. GH, IGF1, and insulin act on multiple tissues to coordinate metabolic control in a context-specific manner. This review will specifically focus on our current understanding of the direct and indirect actions of GH to control liver (hepatocyte) carbohydrate and lipid metabolism in the context of normal fasting (sleep) and feeding (wake) cycles and in response to prolonged nutrient deprivation and excess. Caveats and challenges related to the model systems used and areas that require further investigation towards a clearer understanding of the role GH plays in metabolic health and disease are discussed.
Collapse
|
14
|
Vandewalle J, Timmermans S, Paakinaho V, Vancraeynest L, Dewyse L, Vanderhaeghen T, Wallaeys C, Van Wyngene L, Van Looveren K, Nuyttens L, Eggermont M, Dewaele S, Velho TR, Moita LF, Weis S, Sponholz C, van Grunsven LA, Dewerchin M, Carmeliet P, De Bosscher K, Van de Voorde J, Palvimo JJ, Libert C. Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metab 2021; 33:1763-1776.e5. [PMID: 34302744 DOI: 10.1016/j.cmet.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/05/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
Sepsis is a potentially lethal syndrome resulting from a maladaptive response to infection. Upon infection, glucocorticoids are produced as a part of the compensatory response to tolerate sepsis. This tolerance is, however, mitigated in sepsis due to a quickly induced glucocorticoid resistance at the level of the glucocorticoid receptor. Here, we show that defects in the glucocorticoid receptor signaling pathway aggravate sepsis pathophysiology by lowering lactate clearance and sensitizing mice to lactate-induced toxicity. The latter is exerted via an uncontrolled production of vascular endothelial growth factor, resulting in vascular leakage and collapse with severe hypotension, organ damage, and death, all being typical features of a lethal form of sepsis. In conclusion, sepsis leads to glucocorticoid receptor failure and hyperlactatemia, which collectively leads to a lethal vascular collapse.
Collapse
Affiliation(s)
- Jolien Vandewalle
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Lies Vancraeynest
- Department Basic and Applied Medical Sciences, Ghent University, Ghent 9000, Belgium
| | - Liza Dewyse
- Liver Cell Biology research group, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Charlotte Wallaeys
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Lise Van Wyngene
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Kelly Van Looveren
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Louise Nuyttens
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Melanie Eggermont
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Sylviane Dewaele
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Tiago R Velho
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Luis F Moita
- Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, Jena 07743, Germany; Institute for Infectious Diseases and Infection Control, Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital and Center for Sepsis Control and Care, Jena University Hospital, Jena 07749, Germany
| | - Christoph Sponholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, Jena 07743, Germany
| | - Leo A van Grunsven
- Liver Cell Biology research group, Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research lab, VIB Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium
| | - Johan Van de Voorde
- Department Basic and Applied Medical Sciences, Ghent University, Ghent 9000, Belgium
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium.
| |
Collapse
|
15
|
Bruce CR, Hamley S, Ang T, Howlett KF, Shaw CS, Kowalski GM. Translating glucose tolerance data from mice to humans: Insights from stable isotope labelled glucose tolerance tests. Mol Metab 2021; 53:101281. [PMID: 34175474 PMCID: PMC8313600 DOI: 10.1016/j.molmet.2021.101281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The glucose tolerance test (GTT) is widely used in human and animal biomedical and pharmaceutical research. Despite its prevalent use, particularly in mouse metabolic phenotyping, to the best of our knowledge we are not aware of any studies that have attempted to qualitatively compare the metabolic events during a GTT in mice with those performed in humans. Methods Stable isotope labelled oral glucose tolerance tests (siOGTTs; [6,6-2H2]glucose) were performed in both human and mouse cohorts to provide greater resolution into postprandial glucose kinetics. The siOGTT allows for the partitioning of circulating glucose into that derived from exogenous and endogenous sources. Young adults spanning the spectrum of normal glucose tolerance (n = 221), impaired fasting (n = 14), and impaired glucose tolerance (n = 19) underwent a 75g siOGTT, whereas a 50 mg siOGTT was performed on chow (n = 43) and high-fat high-sucrose fed C57Bl6 male mice (n = 46). Results During the siOGTT in humans, there is a long period (>3hr) of glucose absorption and, accordingly, a large, sustained insulin response and robust suppression of lipolysis and endogenous glucose production (EGP), even in the presence of glucose intolerance. In contrast, mice appear to be highly reliant on glucose effectiveness to clear exogenous glucose and experience only modest, transient insulin responses with little, if any, suppression of EGP. In addition to the impaired stimulation of glucose uptake, mice with the worst glucose tolerance appear to have a paradoxical and persistent rise in EGP during the OGTT, likely related to handling stress. Conclusions The metabolic response to the OGTT in mice and humans is highly divergent. The potential reasons for these differences and their impact on the interpretation of mouse glucose tolerance data and their translation to humans are discussed. We compared the mechanisms governing glucose handling in humans and mice. Humans and mice underwent stable isotope labelled oral glucose tolerance tests. Metabolic responses between humans and mice were highly divergent. Unlike humans, most mice exhibit little EGP suppression or insulin response.
Collapse
Affiliation(s)
- Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Steven Hamley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia; Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
16
|
Cheimonidi C, Grivas IN, Sesti F, Kavrochorianou N, Gianniou DD, Taoufik E, Badounas F, Papassideri I, Rizzi F, Tsitsilonis OE, Haralambous S, Trougakos IP. Clusterin overexpression in mice exacerbates diabetic phenotypes but suppresses tumor progression in a mouse melanoma model. Aging (Albany NY) 2021; 13:6485-6505. [PMID: 33744871 PMCID: PMC7993736 DOI: 10.18632/aging.202788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/13/2021] [Indexed: 04/24/2023]
Abstract
Clusterin (CLU) is an ATP-independent small heat shock protein-like chaperone, which functions both intra- and extra-cellularly. Consequently, it has been functionally involved in several physiological (including aging), as well as in pathological conditions and most age-related diseases, e.g., cancer, neurodegeneration, and metabolic syndrome. To address CLU function at an in vivo model we established CLU transgenic (Tg) mice bearing ubiquitous or pancreas-targeted CLU overexpression (OE). Our downstream analyses in established Tg lines showed that ubiquitous or pancreas-targeted CLU OE in mice affected antioxidant, proteostatic and metabolic pathways. Targeted OE of CLU in the pancreas, which also resulted in CLU upregulation in the liver likely via systemic effects, increased basal glucose levels in the circulation and exacerbated diabetic phenotypes. Furthermore, by establishing a syngeneic melanoma mouse tumor model we found that ubiquitous CLU OE suppressed melanoma cells growth, indicating a likely tumor suppressor function in early phases of tumorigenesis. Our observations provide in vivo evidence corroborating the notion that CLU is a potential modulator of metabolic and/or proteostatic pathways playing an important role in diabetes and tumorigenesis.
Collapse
Affiliation(s)
- Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Ioannis N. Grivas
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Fabiola Sesti
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Nadia Kavrochorianou
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Fotis Badounas
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Federica Rizzi
- Dipartimento di Medicina e Chirurgia, Universita di Parma, Parma 43125, Italy
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B.), Roma 00136, Italy
| | - Ourania E. Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Sylva Haralambous
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| |
Collapse
|
17
|
Coker CR, Keller BN, Arnold AC, Silberman Y. Impact of High Fat Diet and Ethanol Consumption on Neurocircuitry Regulating Emotional Processing and Metabolic Function. Front Behav Neurosci 2021; 14:601111. [PMID: 33574742 PMCID: PMC7870708 DOI: 10.3389/fnbeh.2020.601111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
The prevalence of psychiatry disorders such as anxiety and depression has steadily increased in recent years in the United States. This increased risk for anxiety and depression is associated with excess weight gain, which is often due to over-consumption of western diets that are typically high in fat, as well as with binge eating disorders, which often overlap with overweight and obesity outcomes. This finding suggests that diet, particularly diets high in fat, may have important consequences on the neurocircuitry regulating emotional processing as well as metabolic functions. Depression and anxiety disorders are also often comorbid with alcohol and substance use disorders. It is well-characterized that many of the neurocircuits that become dysregulated by overconsumption of high fat foods are also involved in drug and alcohol use disorders, suggesting overlapping central dysfunction may be involved. Emerging preclinical data suggest that high fat diets may be an important contributor to increased susceptibility of binge drug and ethanol intake in animal models, suggesting diet could be an important aspect in the etiology of substance use disorders. Neuroinflammation in pivotal brain regions modulating metabolic function, food intake, and binge-like behaviors, such as the hypothalamus, mesolimbic dopamine circuits, and amygdala, may be a critical link between diet, ethanol, metabolic dysfunction, and neuropsychiatric conditions. This brief review will provide an overview of behavioral and physiological changes elicited by both diets high in fat and ethanol consumption, as well as some of their potential effects on neurocircuitry regulating emotional processing and metabolic function.
Collapse
Affiliation(s)
- Caitlin R. Coker
- Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Bailey N. Keller
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Amy C. Arnold
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
18
|
Metformin Preserves β-Cell Compensation in Insulin Secretion and Mass Expansion in Prediabetic Nile Rats. Int J Mol Sci 2021; 22:ijms22010421. [PMID: 33401592 PMCID: PMC7794750 DOI: 10.3390/ijms22010421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Prediabetes is a high-risk condition for type 2 diabetes (T2D). Pancreatic β-cells adapt to impaired glucose regulation in prediabetes by increasing insulin secretion and β-cell mass expansion. In people with prediabetes, metformin has been shown to prevent prediabetes conversion to diabetes. However, emerging evidence indicates that metformin has negative effects on β-cell function and survival. Our previous study established the Nile rat (NR) as a model for prediabetes, recapitulating characteristics of human β-cell compensation in function and mass expansion. In this study, we investigated the action of metformin on β-cells in vivo and in vitro. A 7-week metformin treatment improved glucose tolerance by reducing hepatic glucose output and enhancing insulin secretion. Although high-dose metformin inhibited β-cell glucose-stimulated insulin secretion in vitro, stimulation of β-cell insulin secretion was preserved in metformin-treated NRs via an indirect mechanism. Moreover, β-cells in NRs receiving metformin exhibited increased endoplasmic reticulum (ER) chaperones and alleviated apoptotic unfold protein response (UPR) without changes in the expression of cell identity genes. Additionally, metformin did not suppress β-cell mass compensation or proliferation. Taken together, despite the conflicting role indicated by in vitro studies, administration of metformin does not exert a negative effect on β-cell function or cell mass and, instead, early metformin treatment may help protect β-cells from exhaustion and decompensation.
Collapse
|
19
|
Singh V, Sagar P, Kaul S, Sandhir R, Singhal NK. Liver Phosphoenolpyruvate Carboxykinase-1 Downregulation via siRNA-Functionalized Graphene Oxide Nanosheets Restores Glucose Homeostasis in a Type 2 Diabetes Mellitus In Vivo Model. Bioconjug Chem 2020; 32:259-278. [PMID: 33347265 DOI: 10.1021/acs.bioconjchem.0c00645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolic disorders have been increasing at an alarming rate, and one such example of metabolic disorder is type 2 diabetes mellitus (T2DM). Unregulated gluconeogenesis in T2DM results in increased hepatic glucose output that causes fasting and postprandial hyperglycaemia. Extensive proofs have shown that the downregulation of the key rate-limiting enzyme phosphoenolpyruvate carboxykinase-1 (PCK-1) of gluconeogenesis improved glucose homeostasis in vivo. In the present study, we have synthesized and characterized liver-specific stearic acid conjugated octaarginine (StA-R8) functionalized 4arm-2K-PEGamineylated graphene oxide nanosheets (GPR8) for the delivery of siRNA against PCK-1 in T2DM C57BL/6 mice. We found that a single intravenous administration of siRNA (3 mg/kg BW) conjugated to GPR8 (GPR8:PCK-1siRNA(3 mg/kg BW) conjugate) in an optimized N/P ratio exploited as a therapeutic nanoformulation maintained glucose homeostasis for nearly 4 weeks in the T2DM mice. Efficient silencing of PCK-1 in T2DM liver tissue increased the phosphorylation of serine-256 of FOXO-1, thus showing a marked decrease in hepatic gluconeogenesis. Gluconeogenesis control and consequently glucose output from the liver furthermore partially enhanced liver and muscle insulin sensitivity results in the stimulation of the insulin/AKT-2 signaling pathway which indirectly restored glucose homeostasis in the treated T2DM group. Our therapeutic nanoformulation also improved glycogen storage in the liver and membrane translocation of GLUT4 in the muscle of the treated T2DM group. In conclusion, GPR8:PCK-1siRNA (3 mg/Kg BW) restored glucose homeostasis by controlling the hepatic glucose production and improved peripheral insulin sensitivity as a consequence of reduced hyperglycemia. Thus, the current approach offered an alternative strategy for the therapeutics for T2DM.
Collapse
Affiliation(s)
- Vishal Singh
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab India.,Department of Biochemistry, Panjab University, Sector 14, Chandigarh, India
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab India
| | - Sunaina Kaul
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Sector 14, Chandigarh, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab India
| |
Collapse
|
20
|
Wang L, Zhu L, Meister J, Bone DBJ, Pydi SP, Rossi M, Wess J. Use of DREADD Technology to Identify Novel Targets for Antidiabetic Drugs. Annu Rev Pharmacol Toxicol 2020; 61:421-440. [PMID: 32746768 DOI: 10.1146/annurev-pharmtox-030220-121042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) form a superfamily of plasma membrane receptors that couple to four major families of heterotrimeric G proteins, Gs, Gi, Gq, and G12. GPCRs represent excellent targets for drug therapy. Since the individual GPCRs are expressed by many different cell types, the in vivo metabolic roles of a specific GPCR expressed by a distinct cell type are not well understood. The development of designer GPCRs known as DREADDs (designer receptors exclusively activated by a designer drug) that selectively couple to distinct classes of heterotrimeric G proteins has greatly facilitated studies in this area. This review focuses on the use of DREADD technology to explore the physiological and pathophysiological roles of distinct GPCR/G protein cascades in several metabolically important cell types. The novel insights gained from these studies should stimulate the development of GPCR-based treatments for major metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Derek B J Bone
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| |
Collapse
|
21
|
Banerjee S, Ghoshal S, Stevens JR, McCommis KS, Gao S, Castro-Sepulveda M, Mizgier ML, Girardet C, Kumar KG, Galgani JE, Niehoff ML, Farr SA, Zhang J, Butler AA. Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction. J Biol Chem 2020; 295:13753-13768. [PMID: 32727846 DOI: 10.1074/jbc.ra120.014381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
The micropeptide adropin encoded by the clock-controlled energy homeostasis-associated gene is implicated in the regulation of glucose metabolism. However, its links to rhythms of nutrient intake, energy balance, and metabolic control remain poorly defined. Using surveys of Gene Expression Omnibus data sets, we confirm that fasting suppresses liver adropin expression in lean C57BL/6J (B6) mice. However, circadian rhythm data are inconsistent. In lean mice, caloric restriction (CR) induces bouts of compulsive binge feeding separated by prolonged fasting intervals, increasing NAD-dependent deacetylase sirtuin-1 signaling important for glucose and lipid metabolism regulation. CR up-regulates adropin expression and induces rhythms correlating with cellular stress-response pathways. Furthermore, adropin expression correlates positively with phosphoenolpyruvate carboxokinase-1 (Pck1) expression, suggesting a link with gluconeogenesis. Our previous data suggest that adropin suppresses gluconeogenesis in hepatocytes. Liver-specific adropin knockout (LAdrKO) mice exhibit increased glucose excursions following pyruvate injections, indicating increased gluconeogenesis. Gluconeogenesis is also increased in primary cultured hepatocytes derived from LAdrKO mice. Analysis of circulating insulin levels and liver expression of fasting-responsive cAMP-dependent protein kinase A (PKA) signaling pathways also suggests enhanced responses in LAdrKO mice during a glucagon tolerance test (250 µg/kg intraperitoneally). Fasting-associated changes in PKA signaling are attenuated in transgenic mice constitutively expressing adropin and in fasting mice treated acutely with adropin peptide. In summary, hepatic adropin expression is regulated by nutrient- and clock-dependent extrahepatic signals. CR induces pronounced postprandial peaks in hepatic adropin expression. Rhythms of hepatic adropin expression appear to link energy balance and cellular stress to the intracellular signal transduction pathways that drive the liver fasting response.
Collapse
Affiliation(s)
- Subhashis Banerjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarbani Ghoshal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Joseph R Stevens
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri USA
| | - Su Gao
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, Florida, USA
| | - Mauricio Castro-Sepulveda
- Laboratorio de Ciencias del Ejercicio. Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Maria L Mizgier
- Departamento de Ciencias de la SaludCarrera de Nutrición y Dietética and Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clemence Girardet
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - K Ganesh Kumar
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, Florida, USA
| | - Jose E Galgani
- Departamento de Ciencias de la SaludCarrera de Nutrición y Dietética and Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael L Niehoff
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Saint Louis University School of Medicine; Research Service, John Cochran Division, Saint Louis Veterans Affairs Medical Center, Missouri, USA
| | - Susan A Farr
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Saint Louis University School of Medicine; Research Service, John Cochran Division, Saint Louis Veterans Affairs Medical Center, Missouri, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Department of Metabolism and Aging, Scripps Research Institute, Jupiter, Florida, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
22
|
Pydi SP, Cui Z, He Z, Barella LF, Pham J, Cui Y, Oberlin DJ, Egritag HE, Urs N, Gavrilova O, Schwartz GJ, Buettner C, Williams KW, Wess J. Beneficial metabolic role of β-arrestin-1 expressed by AgRP neurons. SCIENCE ADVANCES 2020; 6:eaaz1341. [PMID: 32537493 PMCID: PMC7269658 DOI: 10.1126/sciadv.aaz1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/02/2020] [Indexed: 05/03/2023]
Abstract
β-Arrestin-1 and β-arrestin-2 have emerged as important signaling molecules that modulate glucose fluxes in several peripheral tissues. The potential roles of neuronally expressed β-arrestins in regulating glucose homeostasis remain unknown. We here report that mice lacking β-arrestin-1 (barr1) selectively in AgRP neurons displayed impaired glucose tolerance and insulin sensitivity when consuming an obesogenic diet, while mice overexpressing barr1 selectively in AgRP neurons were protected against obesity-associated metabolic impairments. Additional physiological, biochemical, and electrophysiological data indicated that the presence of barr1 is essential for insulin-mediated hyperpolarization of AgRP neurons. As a result, barr1 expressed by AgRP neurons regulates efferent neuronal pathways that suppress hepatic glucose production and promote lipolysis in adipose tissue. Mice lacking β-arrestin-2 (barr2) selectively in AgRP neurons showed no substantial metabolic phenotypes. Our data suggest that agents able to enhance the activity of barr1 in AgRP neurons may prove beneficial as antidiabetic drugs.
Collapse
Affiliation(s)
- Sai P. Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenyan He
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Luiz F. Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Douglas J. Oberlin
- Diabetes, Obesity and Metabolism Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Hale Ergin Egritag
- Diabetes, Obesity and Metabolism Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Nikhil Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Gary J. Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christoph Buettner
- Diabetes, Obesity and Metabolism Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Kevin W. Williams
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Tavares MR, Lemes SF, de Fante T, Saenz de Miera C, Pavan ICB, Bezerra RMN, Prada PO, Torsoni MA, Elias CF, Simabuco FM. Modulation of hypothalamic S6K1 and S6K2 alters feeding behavior and systemic glucose metabolism. J Endocrinol 2020; 244:71-82. [PMID: 31557728 PMCID: PMC8010582 DOI: 10.1530/joe-19-0364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022]
Abstract
The mTOR/S6Ks signaling is one of the intracellular pathways important for metabolic control, acting both peripherally and centrally. In the hypothalamus, mTOR/S6Ks axis mediates the action of leptin and insulin and can modulate the expression of neuropeptides. We analyzed the role of different S6Ks isoforms in the hypothalamic regulation of metabolism. We observed decreased food intake and decreased expression of agouti-related peptide (AgRP) following intracerebroventricular (icv) injections of adenoviral-mediated overexpression of three different S6Ks isoforms. Moreover, mice overexpressing p70-S6K1 in undefined periventricular hypothalamic neurons presented changes in glucose metabolism, as an increase in gluconeogenesis. To further evaluate the hypothalamic role of a less-studied S6K isoform, p54-S6K2, we used a Cre-LoxP approach to specifically overexpress it in AgRP neurons. Our findings demonstrate the potential participation of S6K2 in AgRP neurons regulating feeding behavior.
Collapse
Affiliation(s)
- Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Simone Ferreira Lemes
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Cristina Saenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Patricia Oliveira Prada
- Laboratory of Molecular Research in Obesity (LABIMO), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Carol Fuzeti Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Metabolic Disorders (LABDIME), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
24
|
Han X, Møller LLV, De Groote E, Bojsen-Møller KN, Davey J, Henríquez-Olguin C, Li Z, Knudsen JR, Jensen TE, Madsbad S, Gregorevic P, Richter EA, Sylow L. Mechanisms involved in follistatin-induced hypertrophy and increased insulin action in skeletal muscle. J Cachexia Sarcopenia Muscle 2019; 10:1241-1257. [PMID: 31402604 PMCID: PMC7663972 DOI: 10.1002/jcsm.12474] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 06/12/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Skeletal muscle wasting is often associated with insulin resistance. A major regulator of muscle mass is the transforming growth factor β (TGF-β) superfamily, including activin A, which causes atrophy. TGF-β superfamily ligands also negatively regulate insulin-sensitive proteins, but whether this pathway contributes to insulin action remains to be determined. METHODS To elucidate if TGF-β superfamily ligands regulate insulin action, we used an adeno-associated virus gene editing approach to overexpress an activin A inhibitor, follistatin (Fst288), in mouse muscle of lean and diet-induced obese mice. We determined basal and insulin-stimulated 2-deoxy-glucose uptake using isotopic tracers in vivo. Furthermore, to evaluate whether circulating Fst and activin A concentrations are associated with obesity, insulin resistance, and weight loss in humans, we analysed serum from morbidly obese subjects before, 1 week, and 1 year after Roux-en-Y gastric bypass (RYGB). RESULTS Fst288 muscle overexpression markedly increased in vivo insulin-stimulated (but not basal) glucose uptake (+75%, P < 0.05) and increased protein expression and intracellular insulin signalling of AKT, TBC1D4, PAK1, pyruvate dehydrogenase-E1α, and p70S6K, while decreasing TBC1D1 signaling (P < 0.05). Fst288 increased both basal and insulin-stimulated protein synthesis, but no correlation was observed between the Fst288-driven hypertrophy and the increase in insulin-stimulated glucose uptake. Importantly, Fst288 completely normalized muscle glucose uptake in insulin-resistant diet-induced obese mice. RYGB surgery doubled circulating Fst and reduced activin A (-24%, P < 0.05) concentration 1 week after surgery before any significant weight loss in morbidly obese normoglycemic patients, while major weight loss after 1 year did not further change the concentrations. CONCLUSIONS We here present evidence that Fst is a potent regulator of insulin action in muscle, and in addition to AKT and p70S6K, we identify TBC1D1, TBC1D4, pyruvate dehydrogenase-E1α, and PAK1 as Fst targets. Circulating Fst more than doubled post-RYGB surgery, a treatment that markedly improved insulin sensitivity, suggesting a role for Fst in regulating glycaemic control. These findings demonstrate the therapeutic potential of inhibiting TGF-β superfamily ligands to improve insulin action and Fst's relevance to muscle wasting-associated insulin-resistant conditions in mice and humans.
Collapse
Affiliation(s)
- Xiuqing Han
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Liliendal Valbjørn Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Estelle De Groote
- Faculty of Motor Science, Institute of Neuroscience, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | | | - Jonathan Davey
- Center for Muscle Research, Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Carlos Henríquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Roland Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Elbenhardt Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Paul Gregorevic
- Center for Muscle Research, Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Erik Arne Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Abarkan M, Gaitan J, Lebreton F, Perrier R, Jaffredo M, Mulle C, Magnan C, Raoux M, Lang J. The glutamate receptor GluK2 contributes to the regulation of glucose homeostasis and its deterioration during aging. Mol Metab 2019; 30:152-160. [PMID: 31767166 PMCID: PMC6807305 DOI: 10.1016/j.molmet.2019.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Islets secrete neurotransmitters including glutamate which participate in fine regulation of islet function. The excitatory ionotropic glutamate receptor GluK2 of the kainate receptor family is widely expressed in brain and also found in islets, mainly in α and γ cells. α cells co-release glucagon and glutamate and the latter increases glucagon release via ionotropic glutamate receptors. However, neither the precise nature of the ionotropic glutamate receptor involved nor its role in glucose homeostasis is known. As isoform specific pharmacology is not available, we investigated this question in constitutive GluK2 knock-out mice (GluK2-/-) using adult and middle-aged animals to also gain insight in a potential role during aging. METHODS We compared wild-type GluK2+/+ and knock-out GluK2-/- mice using adult (14-20 weeks) and middle-aged animals (40-52 weeks). Glucose (oral OGTT and intraperitoneal IPGTT) and insulin tolerance as well as pyruvate challenge tests were performed according to standard procedures. Parasympathetic activity, which stimulates hormones secretion, was measured by electrophysiology in vivo. Isolated islets were used in vitro to determine islet β-cell electrical activity on multi-electrode arrays and dynamic secretion of insulin as well as glucagon was determined by ELISA. RESULTS Adult GluK2-/- mice exhibit an improved glucose tolerance (OGTT and IPGTT), and this was also apparent in middle-aged mice, whereas the outcome of pyruvate challenge was slightly improved only in middle-aged GluK2-/- mice. Similarly, insulin sensitivity was markedly enhanced in middle-aged GluK2-/- animals. Basal and glucose-induced insulin secretion in vivo was slightly lower in GluK2-/- mice, whereas fasting glucagonemia was strongly reduced. In vivo recordings of parasympathetic activity showed an increase in basal activity in GluK2-/- mice which represents most likely an adaptive mechanism to counteract hypoglucagonemia rather than altered neuronal mechanism. In vitro recording demonstrated an improvement of glucose-induced electrical activity of β-cells in islets obtained from GluK2-/- mice at both ages. Finally, glucose-induced insulin secretion in vitro was increased in GluK2-/- islets, whereas glucagon secretion at 2 mmol/l of glucose was considerably reduced. CONCLUSIONS These observations indicate a general role for kainate receptors in glucose homeostasis and specifically suggest a negative effect of GluK2 on glucose homeostasis and preservation of islet function during aging. Our observations raise the possibility that blockade of GluK2 may provide benefits in glucose homeostasis especially during aging.
Collapse
Affiliation(s)
- Myriam Abarkan
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Julien Gaitan
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Fanny Lebreton
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Romain Perrier
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Manon Jaffredo
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, Université de Paris, Paris, France
| | - Matthieu Raoux
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Jochen Lang
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France.
| |
Collapse
|
26
|
Kalemba KM, Wang Y, Xu H, Chiles E, McMillin SM, Kwon H, Su X, Wondisford FE. Glycerol induces G6pc in primary mouse hepatocytes and is the preferred substrate for gluconeogenesis both in vitro and in vivo. J Biol Chem 2019; 294:18017-18028. [PMID: 31645433 PMCID: PMC6885632 DOI: 10.1074/jbc.ra119.011033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
Gluconeogenesis (GNG) is de novo production of glucose from endogenous carbon sources. Although it is a commonly studied pathway, particularly in disease, there is a lack of consensus about substrate preference. Moreover, primary hepatocytes are the current gold standard for in vitro liver studies, but no direct comparison of substrate preference at physiological fasting concentrations has been performed. We show that mouse primary hepatocytes prefer glycerol to pyruvate/lactate in glucose production assays and 13C isotope tracing studies at the high concentrations commonly used in the literature, as well as at more relevant fasting, physiological concentrations. In addition, when glycerol, pyruvate/lactate, and glutamine are all present, glycerol is responsible for over 75% of all glucose carbons labeled. We also found that glycerol can induce a rate-limiting enzyme of GNG, glucose-6-phosphatase. Lastly, we suggest that glycerol is a better substrate than pyruvate to test in vivo production of glucose in fasting mice. In conclusion, glycerol is the major carbon source for GNG in vitro and in vivo and should be compared with other substrates when studying GNG in the context of metabolic disease states.
Collapse
Affiliation(s)
- Katarzyna M Kalemba
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901
| | - Yujue Wang
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901
| | - Huiting Xu
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901
| | - Eric Chiles
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Sara M McMillin
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina
| | - Hyokjoon Kwon
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901; Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey 08901; Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08903.
| |
Collapse
|
27
|
Shamshoum H, Medak KD, Townsend LK, Ashworth KE, Bush ND, Halm MK, Kemp BE, Wright DC. AMPK β1 activation suppresses antipsychotic‐induced hyperglycemia in mice. FASEB J 2019; 33:14010-14021. [DOI: 10.1096/fj.201901820r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hesham Shamshoum
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Kyle D. Medak
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Logan K. Townsend
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Kristen E. Ashworth
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | | | - Margaret K. Halm
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Bruce E. Kemp
- Department of MedicineSt Vincent's Institute, University of MelbourneMelbourneVictoriaAustralia
- Mary MacKillop Institute for Health Research, Australian Catholic UniversityFitzroyVictoriaAustralia
| | - David C. Wright
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
28
|
White MC, Miller AJ, Loloi J, Bingaman SS, Shen B, Wang M, Silberman Y, Lindsey SH, Arnold AC. Sex differences in metabolic effects of angiotensin-(1-7) treatment in obese mice. Biol Sex Differ 2019; 10:36. [PMID: 31315689 PMCID: PMC6637512 DOI: 10.1186/s13293-019-0251-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background Angiotensin-(1-7) is a beneficial hormone of the renin-angiotensin system known to play a positive role in regulation of blood pressure and glucose homeostasis. Previous studies have shown that in high-fat diet (HFD)-induced obese male mice, circulating angiotensin-(1-7) levels are reduced and chronic restoration of this hormone reverses diet-induced insulin resistance; however, this has yet to be examined in female mice. We hypothesized angiotensin-(1-7) would improve insulin sensitivity and glucose tolerance in obese female mice, to a similar extent as previously observed in male mice. Methods Five-week-old male and female C57BL/6J mice (8–12/group) were placed on control diet or HFD (16% or 59% kcal from fat, respectively) for 11 weeks. After 8 weeks of diet, mice were implanted with an osmotic pump for 3-week subcutaneous delivery of angiotensin-(1-7) (400 ng/kg/min) or saline vehicle. During the last week of treatment, body mass and composition were measured and intraperitoneal insulin and glucose tolerance tests were performed to assess insulin sensitivity and glucose tolerance, respectively. Mice were euthanized at the end of the study for blood and tissue collection. Results HFD increased body mass and adiposity in both sexes. Chronic angiotensin-(1-7) infusion significantly decreased body mass and adiposity and increased lean mass in obese mice of both sexes. While both sexes tended to develop mild hyperglycemia in response to HFD, female mice developed less marked hyperinsulinemia. There was no effect of angiotensin-(1-7) on fasting glucose or insulin levels among diet and sex groups. Male and female mice similarly developed insulin resistance and glucose intolerance in response to HFD feeding. Angiotensin-(1-7) improved insulin sensitivity in both sexes but corrected glucose intolerance only in obese female mice. There were no effects of sex or angiotensin-(1-7) treatment on any of the study outcomes in control diet-fed mice. Conclusions This study provides new evidence for sex differences in the impact of chronic angiotensin-(1-7) in obese mice, with females having greater changes in glucose tolerance with treatment. These findings improve understanding of sex differences in renin-angiotensin mechanisms in obesity and illustrate the potential for targeting angiotensin-(1-7) for treatment of this condition.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Amanda J Miller
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Justin Loloi
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Sarah S Bingaman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Biyi Shen
- Department of Public Health Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, 1430 Tulane Avenue, New Orleans, LA, #8683, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
29
|
A single extra copy of Down syndrome critical region 1-4 results in impaired hepatic glucose homeostasis. Mol Metab 2018; 21:82-89. [PMID: 30583978 PMCID: PMC6407364 DOI: 10.1016/j.molmet.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/19/2023] Open
Abstract
Objectives During fasting, hepatic gluconeogenesis is induced to maintain energy homeostasis. Moreover, abnormal dysregulation of hepatic glucose production is commonly observed in type 2 diabetes. However, the signaling components controlling hepatic glucose production to maintain normal glucose levels are not fully understood. Here, we examined the physiological role of Down syndrome critical region 1–4 (DSCR1-4), an endogenous calcineurin signaling inhibitor in the liver that mediates metabolic adaptation to fasting. Methods We assessed the effect of cyclosporine A, an inhibitor of calcineurin signaling on gluconeogenic gene expression in primary hepatocytes. DSCR1-4 expression was examined in diet- and genetically-induced mouse models of obesity. We also investigated the metabolic phenotype of a single extra copy of DSCR1-4 in transgenic mice and how DSCR1-4 regulates glucose homeostasis in the liver. Results Treatment with cyclosporin A increased hepatic glucose production and gluconeogenic gene expression. The expression of DSCR1-4 was induced by refeeding and overexpressed in obese mouse livers. Moreover, transgenic mice with a single extra copy of DSCR1-4 exhibited pyruvate intolerance and impaired glucose homeostasis. Mechanistically, DSCR1-4 overexpression increased phosphorylation of the cAMP response element-binding protein, which led to elevated expression levels of gluconeogenic genes and, thus, enhanced hepatic glucose production during fasting. Conclusion A single extra copy of DSCR1-4 results in dysregulated hepatic glucose homeostasis and pyruvate intolerance. Our findings suggest that nutrient-sensitive DSCR1-4 is a novel target for controlling hepatic gluconeogenesis in diabetes. DSCR1 mRNA and protein levels are increased in livers upon nutrient availability. DSCR1-4 is overexpressed in diet- or genetically induced obesity. DSCR1-4 trisomy mice exhibit impaired glucose homeostasis and pyruvate intolerance. Trisomy of DSCR1-4 leads to increased hepatic glucose production.
Collapse
|
30
|
Loloi J, Miller AJ, Bingaman SS, Silberman Y, Arnold AC. Angiotensin-(1-7) contributes to insulin-sensitizing effects of angiotensin-converting enzyme inhibition in obese mice. Am J Physiol Endocrinol Metab 2018; 315:E1204-E1211. [PMID: 30300010 PMCID: PMC6336955 DOI: 10.1152/ajpendo.00281.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Angiotensin-converting enzyme (ACE) inhibitors reduce body weight, lower blood pressure (BP), and improve insulin sensitivity in animal models of cardiometabolic syndrome. These effects are generally attributed to reduced angiotensin (ANG) II formation; however, these therapies also increase levels of ANG-(1-7), a beneficial hormone opposing ANG II actions. We hypothesized that this ANG-(1-7) generation contributes to the insulin-sensitizing effects of ACE inhibition in obese mice. Adult male C57BL/6J mice were placed on a 60% high-fat diet for 11 wk. During the last 3 wk of diet, mice received normal water or water containing the ACE inhibitor captopril (50 mg/l) as well as the ANG-(1-7) mas receptor antagonist A779 (400 or 800 ng·kg-1·min-1) or saline vehicle via subcutaneous osmotic minipumps. At the end of treatment, arterial BP was measured, and hyperinsulinemic-euglycemic clamps were performed in conscious obese mice receiving vehicle, captopril, captopril plus A779, or A779 ( n = 6-13/group). Captopril reduced body weight (28 ± 2 vs. 41 ± 2 g saline; P = 0.001), lowered systolic BP (109 ± 6 vs. 144 ± 7 mmHg saline; P = 0.041), and improved whole-body insulin sensitivity (steady-state glucose infusion rate: 31 ± 4 vs. 16 ± 2 mg·kg-1·min-1 saline; P = 0.001) in obese mice. A779 attenuated captopril-mediated improvements in insulin sensitivity (23 ± 2 mg·kg-1·min-1; P = 0.042), with no effect on body weight (32 ± 2 g; P = 0.441) or BP (111 ± 7 mmHg; P = 0.788). There was no effect of A779 alone on cardiometabolic outcomes. These data suggest that insulin-sensitizing effects of ACE inhibition are in part due to activation of ANG-(1-7)/ mas receptor pathways and provide new insight into mechanisms underlying the positive metabolic effects of these therapies.
Collapse
Affiliation(s)
- Justin Loloi
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Amanda J Miller
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Sarah S Bingaman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
31
|
Paschen M, Moede T, Valladolid-Acebes I, Leibiger B, Moruzzi N, Jacob S, García-Prieto CF, Brismar K, Leibiger IB, Berggren PO. Diet-induced β-cell insulin resistance results in reversible loss of functional β-cell mass. FASEB J 2018; 33:204-218. [PMID: 29957055 PMCID: PMC6355083 DOI: 10.1096/fj.201800826r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although convincing in genetic models, the relevance of β-cell insulin resistance in diet-induced type 2 diabetes (T2DM) remains unclear. Exemplified by diabetes-prone, male, C57B1/6J mice being fed different combinations of Western-style diet, we show that β-cell insulin resistance occurs early during T2DM progression and is due to a combination of lipotoxicity and increased β-cell workload. Within 8 wk of being fed a high-fat, high-sucrose diet, mice became obese, developed impaired insulin and glucose tolerances, and displayed noncompensatory insulin release, due, at least in part, to reduced expression of syntaxin-1A. Through reporter islets transplanted to the anterior chamber of the eye, we demonstrated a concomitant loss of functional β-cell mass. When mice were changed from diabetogenic diet to normal chow diet, the diabetes phenotype was reversed, suggesting a remarkable plasticity of functional β-cell mass in the early phase of T2DM development. Our data reinforce the relevance of diet composition as an environmental factor determining different routes of diabetes progression in a given genetic background. Employing the in vivo reporter islet–monitoring approach will allow researchers to define key times in the dynamics of reversible loss of functional β-cell mass and, thus, to investigate the underlying, molecular mechanisms involved in the progression toward T2DM manifestation.—Paschen, M., Moede, T., Valladolid-Acebes, I., Leibiger, B., Moruzzi, N., Jacob, S., García-Prieto, C. F., Brismar, K., Leibiger, I. B., Berggren, P.-O. Diet-induced β-cell insulin resistance results in reversible loss of functional β-cell mass.
Collapse
Affiliation(s)
- Meike Paschen
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Tilo Moede
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Jacob
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Concha F García-Prieto
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Alquier T, Poitout V. Considerations and guidelines for mouse metabolic phenotyping in diabetes research. Diabetologia 2018; 61:526-538. [PMID: 29143855 PMCID: PMC5805661 DOI: 10.1007/s00125-017-4495-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Mice are the most commonly used species in preclinical research on the pathophysiology of metabolic diseases. Although they are extremely useful for identifying pathways, mechanisms and genes regulating glucose and energy homeostasis, the specificities of the various mouse models and methodologies used to investigate a metabolic phenotype can have a profound impact on experimental results and their interpretation. This review aims to: (1) describe the most commonly used experimental tests to assess glucose and energy homeostasis in mice; (2) provide some guidelines regarding the design, analysis and interpretation of these tests, as well as for studies using genetic models; and (3) identify important caveats and confounding factors that must be taken into account in the interpretation of findings.
Collapse
Affiliation(s)
- Thierry Alquier
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Office R08-418, Montreal, QC, H2X 0A9, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Vincent Poitout
- Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Office R08-418, Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
33
|
Nagy C, Einwallner E. Study of In Vivo Glucose Metabolism in High-fat Diet-fed Mice Using Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT). J Vis Exp 2018. [PMID: 29364280 DOI: 10.3791/56672] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity represents the most important single risk factor in the pathogenesis of type 2 diabetes, a disease which is characterized by a resistance to insulin-stimulated glucose uptake and a gross decompensation of systemic glucose metabolism. Despite considerable progress in the understanding of glucose metabolism, the molecular mechanisms of its regulation in health and disease remain under-investigated, while novel approaches to prevent and treat diabetes are urgently needed. Diet derived glucose stimulates the pancreatic secretion of insulin, which serves as the principal regulator of cellular anabolic processes during the fed-state and thus balances blood glucose levels to maintain systemic energy status. Chronic overfeeding triggers meta-inflammation, which leads to alterations in peripheral insulin receptor-associated signaling and thus reduces the sensitivity to insulin-mediated glucose disposal. These events ultimately result in elevated fasting glucose and insulin levels as well as a reduction in glucose tolerance, which in turn serve as important indicators of insulin resistance. Here, we present a protocol for the generation and metabolic characterization of high-fat diet (HFD)-fed mice as a frequently used model of diet-induced insulin resistance. We illustrate in detail the oral glucose tolerance test (OGTT), which monitors the peripheral disposal of an orally administered glucose load and insulin secretion over time. Additionally, we present a protocol for the insulin tolerance test (ITT) to monitor whole-body insulin action. Together, these methods and their downstream applications represent powerful tools to characterize the general metabolic phenotype of mice as well as to specifically assess alterations in glucose metabolism. They may be especially useful in the broad research field of insulin resistance, diabetes and obesity to provide a better understanding of pathogenesis as well as to test the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Csörsz Nagy
- Department of Laboratory Medicine, Medical University of Vienna
| | - Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna;
| |
Collapse
|
34
|
Xu JL, Li LY, Wang YQ, Li YQ, Shan M, Sun SZ, Yu Y, Wang B. Hepatocyte-specific deletion of BAP31 promotes SREBP1C activation, promotes hepatic lipid accumulation, and worsens IR in mice. J Lipid Res 2017; 59:35-47. [PMID: 29113994 DOI: 10.1194/jlr.m077016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/20/2017] [Indexed: 01/14/2023] Open
Abstract
Conditional knockout mice with targeted disruption of B-cell associated protein (BAP)31 in adult mouse liver were generated and challenged with a high-fat diet (HFD) for 36 or 96 days and markers of obesity, diabetes, and hepatic steatosis were determined. Mutant mice were indistinguishable from WT littermates, but exhibited increased HFD-induced obesity. BAP31-deletion in hepatocytes increased the expression of SREBP1C and the target genes, including acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1, and increased hepatic lipid accumulation and HFD-induced liver steatosis. Immunoprecipitation assay showed that BAP31 interacts with SREBP1C and insulin-induced gene 1 (INSIG1), and BAP31-deletion reduces INSIG1 expression, suggesting that BAP31 may regulate SREBP1C activity by modulating INSIG1 protein levels. Additionally, BAP31-deletion induced glucose and insulin intolerance, decreased Akt and glycogen synthase kinase 3β phosphorylation, and enhanced hepatic glucose production in mice. Expression of endoplasmic reticulum (ER) stress markers was significantly induced in BAP31-mutant mice. HFD-induced inflammation was aggravated in mutant mice, along with increased c-Jun N-terminal kinase and nuclear factor-κB activation. These findings demonstrate that BAP31-deletion induces SREBP activation and promotes hepatic lipid accumulation, reduces insulin signaling, impairs glucose/insulin tolerance, and increases ER stress and hepatic inflammation, explaining the protective roles of BAP31 in the development of liver steatosis and insulin resistance in HFD-induced obesity in animal models.
Collapse
Affiliation(s)
- Jia-Lin Xu
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Li-Ya Li
- Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110169, People's Republic of China
| | - Yan-Qing Wang
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Ya-Qi Li
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Mu Shan
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Shi-Zhuo Sun
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Yang Yu
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Bing Wang
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| |
Collapse
|
35
|
Vijayakumar A, Aryal P, Wen J, Syed I, Vazirani RP, Moraes-Vieira PM, Camporez JP, Gallop MR, Perry RJ, Peroni OD, Shulman GI, Saghatelian A, McGraw TE, Kahn BB. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport. Cell Rep 2017; 21:1021-1035. [PMID: 29069585 PMCID: PMC5771491 DOI: 10.1016/j.celrep.2017.09.091] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/06/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Lower adipose-ChREBP and de novo lipogenesis (DNL) are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO) mice with negligible sucrose-induced DNL in adipose tissue (AT). Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs) in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways.
Collapse
Affiliation(s)
- Archana Vijayakumar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ismail Syed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Reema P Vazirani
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pedro M Moraes-Vieira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Joao Paulo Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Molly R Gallop
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Odile D Peroni
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Alan Saghatelian
- Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, La Jolla, CA 92037, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA.
| |
Collapse
|
36
|
Lantier L, Williams AS, Williams IM, Yang KK, Bracy DP, Goelzer M, James FD, Gius D, Wasserman DH. SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat-Fed Mice. Diabetes 2015; 64:3081-92. [PMID: 25948682 PMCID: PMC4542443 DOI: 10.2337/db14-1810] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/14/2015] [Indexed: 12/11/2022]
Abstract
Protein hyperacetylation is associated with glucose intolerance and insulin resistance, suggesting that the enzymes regulating the acetylome play a role in this pathological process. Sirtuin 3 (SIRT3), the primary mitochondrial deacetylase, has been linked to energy homeostasis. Thus, it is hypothesized that the dysregulation of the mitochondrial acetylation state, via genetic deletion of SIRT3, will amplify the deleterious effects of a high-fat diet (HFD). Hyperinsulinemic-euglycemic clamp experiments show, for the first time, that mice lacking SIRT3 exhibit increased insulin resistance due to defects in skeletal muscle glucose uptake. Permeabilized muscle fibers from HFD-fed SIRT3 knockout (KO) mice showed that tricarboxylic acid cycle substrate-based respiration is decreased while fatty acid-based respiration is increased, reflecting a fuel switch from glucose to fatty acids. Consistent with reduced muscle glucose uptake, hexokinase II (HKII) binding to the mitochondria is decreased in muscle from HFD-fed SIRT3 KO mice, suggesting decreased HKII activity. These results show that the absence of SIRT3 in HFD-fed mice causes profound impairments in insulin-stimulated muscle glucose uptake, creating an increased reliance on fatty acids. Insulin action was not impaired in the lean SIRT3 KO mice. This suggests that SIRT3 protects against dietary insulin resistance by facilitating glucose disposal and mitochondrial function.
Collapse
Affiliation(s)
- Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN
| | - Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Karen K Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Mickael Goelzer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Freyja D James
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David Gius
- Departments of Radiation Oncology and Pharmacology and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
37
|
Enhanced mitochondrial superoxide scavenging does not improve muscle insulin action in the high fat-fed mouse. PLoS One 2015; 10:e0126732. [PMID: 25992608 PMCID: PMC4437982 DOI: 10.1371/journal.pone.0126732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2tg mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcattg mice) have increased scavenging of O2˙ˉ and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcattg mice. The goal of the current study was to test the hypothesis that increased O2˙ˉ scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2tg, mcattg and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2tg mice. Consistent with our previous work, HF-fed mcattg mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2˙ˉ scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging.
Collapse
|
38
|
Kowalski GM, Bruce CR. The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents. Am J Physiol Endocrinol Metab 2014; 307:E859-71. [PMID: 25205823 DOI: 10.1152/ajpendo.00165.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of insulin resistance and type 2 diabetes (T2D) is increasing at alarming rates. In the quest to understand the underlying causes of and to identify novel therapeutic targets to treat T2D, scientists have become increasingly reliant on the use of rodent models. Here, we provide a discussion on the regulation of rodent glucose metabolism, highlighting key differences and similarities that exist between rodents and humans. In addition, some of the issues and considerations associated with assessing glucose homeostasis and insulin action are outlined. We also discuss the role of the liver vs. skeletal muscle in regulating whole body glucose metabolism in rodents, emphasizing the importance of defective hepatic glucose metabolism in the development of impaired glucose tolerance, insulin resistance, and T2D.
Collapse
Affiliation(s)
- Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|