1
|
Romero‐Haro AA, Cantarero A, Alonso‐Alvarez C. Early Oxidative Stress May Prevent a Red Ornament From Signaling Longevity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:70-80. [PMID: 39318264 PMCID: PMC11617810 DOI: 10.1002/jez.2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Harsh early environmental conditions can exert delayed, long-lasting effects on phenotypes, including reproductive traits such as sexual signals. Indeed, adverse early conditions can accelerate development, increasing oxidative stress that may, in turn, impact adult sexual signals. Among signals, colorations produced by red ketocarotenoids seem to depend on mitochondrial functioning. Hence, they could reveal individual cell respiration efficiency. It has been hypothesized that these traits are unfalsifiable "index" signals of condition due to their deep connection to individual metabolism. Since mitochondrial dysfunction is frequently linked to aging, red ketocarotenoid-based ornaments could also be good signals of a critical fitness component: longevity. We tested this red color per longevity correlation in captive zebra finches. In addition, we experimentally decreased the synthesis of glutathione (a critical intracellular antioxidant) during the first days of the birds' life to resemble harsh early environmental conditions (e.g., undernutrition). Longevity was recorded until the death of the last bird (almost 9 years). Males, but not females, exhibiting a redder bill in early adulthood lived longer than males with paler bills, which agrees with some precedent studies. However, such bill redness-longevity connection was absent among males with inhibited glutathione synthesis. These findings may suggest that environmental factors can alter the reliability of red ketocarotenoid-based sexual signals, making them less unfalsifiable than believed.
Collapse
Affiliation(s)
- A. A. Romero‐Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC‐CSIC‐UCLM‐JCCM)Ciudad RealSpain
| | - A. Cantarero
- Department of Physiology, Veterinary SchoolComplutense University of MadridMadridSpain
| | - C. Alonso‐Alvarez
- Evolutionary Ecology DepartmentNational Museum of Natural Sciences‐The Spanish National Research Council (MNCN‐CSIC)MadridSpain
- Instituto Pirenaico de Ecología (IPE‐CSIC)Jaca, HuescaSpain
| |
Collapse
|
2
|
McGraw KJ, Hammond R, Kraberger S, Varsani A. Variation in Plumage Coloration of Rosy-Faced Lovebirds (Agapornis roseicollis): Links to Sex, Age, Nutritional Condition, Viral Infection, and Habitat Urbanization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:48-58. [PMID: 39282773 PMCID: PMC11617812 DOI: 10.1002/jez.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 12/06/2024]
Abstract
Expression of vibrant plumage color plays important communication roles in many avian clades, ranging from penguins to passerines, but comparatively less is known about color signals in parrots (order Psittaciformes). We measured variation in coloration from three plumage patches (red face, blue rump, red tail) in an introduced population of rosy-faced lovebirds (Agapornis roseicollis) in Phoenix, Arizona, USA and examined color differences between the sexes and ages as well as relationships with several indices of quality, including disease presence/absence (infection with beak and feather disease, Circovirus parrot, and a polyomavirus, Gammapolyomavirus avis), nutritional state (e.g., blood glucose and ketone levels), and habitat type from which birds were captured. We found that different plumage colors were linked to different quality indices: (a) adults had redder faces than juveniles, and birds with brighter faces had lower glucose levels and were less likely to have polyomavirus; (b) males had bluer rumps than females; and (c) birds caught farther from the city had redder and darker tail feathers than those caught closer to the urban center. Our findings reveal diverse information underlying variation in the expression of these disparate, ornate feather traits in an introduced parrot species, and suggest that these condition-dependent and/or sexually dichromatic features may serve important intraspecific signaling roles (i.e., mediating rival competitions or mate choices).
Collapse
Affiliation(s)
- Kevin J. McGraw
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Reilly Hammond
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied MicrobiomicsArizona State UniversityTempeArizonaUSA
| | - Arvind Varsani
- School of Life SciencesArizona State UniversityTempeArizonaUSA
- The Biodesign Center for Fundamental and Applied MicrobiomicsArizona State UniversityTempeArizonaUSA
| |
Collapse
|
3
|
Hoffman AJ, Finger JW, Kavazis AN, Wada H. Developmental Thermal Conditioning Regulates Oxidative State and Beak Coloration in Response to Thermal Stressors in Adulthood. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:302-314. [PMID: 39680901 DOI: 10.1086/733518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractAt certain intensities and durations, environmental stressors during development can result in changes in physiology that prepare organisms for future stressful conditions. Such plasticity can allow organisms to maintain good condition when confronted with a poor environment, potentially conferring an advantage in fitness. However, the physiological changes underlying these adaptive phenotypic adjustments are understudied. Using captive male zebra finches (Taeniopygia castanotis), we tested whether exposure to a prolonged mild stressor during development would adaptively modify their antioxidant enzyme expression, reducing oxidative damage when exposed to a high-intensity stressor in adulthood and allowing the maintenance of a secondary sexual trait. To do this, we exposed juvenile finches to either a prolonged mild heat stressor treatment (38°C) or a control temperature treatment (22°C). As adults, these finches were then exposed to either an acute high-intensity heat stressor treatment (42°C) or control temperature treatment (22°C). The beak color of males-a sexually selected trait-was quantified, as were oxidative stress parameters in the testes and liver tissues. We saw that the mild-heat-conditioned males had beaks with higher saturation and lower brightness at baseline in adulthood but that the changes in beak color in response to the high heat stressor varied. After exposure to the high heat stressor as adults, finches had higher levels of superoxide dismutase 1 and 2 in the testes and lower levels of lipid damage in the liver if they were also exposed to the mild heat conditioning as juveniles, indicating an adaptive phenotypic change.
Collapse
|
4
|
Effects of anthropogenic noise on cognition, bill color, and growth in the zebra finch (Taeniopygia guttata). Acta Ethol 2022. [DOI: 10.1007/s10211-022-00406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Choi MP, Rubin AM, Wada H. Suboptimal Embryonic Incubation Temperature Has Long-Term, Sex-Specific Consequences on Beak Coloration and the Behavioral Stress Response in Zebra Finches. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.901303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Secondary sex characteristics, like beak color in some avian species, have indirect impacts on reproductive success, as they are considered to be honest indicators of condition, immunocompetence, and developmental history. However, little is known about the long-term effects of environmental perturbations on the production and maintenance of these secondary sex characteristics in avian species. In zebra finches (Taeniopygia guttata), redder beaks indicate increased carotenoid expression and implantation into beak tissue, and female zebra finches prefer males with pronounced bright red beaks as a mate. The present study examines the long-term effects of embryonic incubation temperature on the maturation of beak color in zebra finches. We also investigated the effects of embryonic incubation temperature on sensitivity to a handling and restraint stressor in adulthood. Specifically, the aims of this study were to examine: (1) whether suboptimal incubation temperatures affect the timing of beak color development and color characteristics before and after sexual maturity, (2) if repeated handling causes short-term changes in beak color and whether color changes are related to embryonic thermal environment, and (3) how thermal stress during incubation alters future responses to a repeated handling stressor. Zebra finch eggs were randomly assigned to one of three incubators: “Control,” “Low,” or “Periodic Cooling.” Beak color (hue, saturation, and value) was quantified before [45, 60, 75 days post-hatch (dph)] and after sexual maturity (95 dph), as well as after repeated handling stress later in adulthood (avg of 386 dph). We found that there were age- and sex- specific effects of incubation treatment on beak hue, where females from periodically cooled eggs had decreased hues (redder) in adulthood. Additionally, eggs laid later in a clutch had decreased beak saturation levels throughout life regardless of incubation environment. We found that females had lower beak hue and saturation following a capture and restraint stressor, while males showed increased beak saturation. Lastly, males subjected to the Low incubation treatment had relatively higher activity levels during restraint than those in the Control group. Overall, these findings suggest that fluctuating incubation temperatures combined with repeated, short-term stressors can have significant, sex-specific effects on sexual ornamentation and behavior.
Collapse
|
6
|
Davis SN, Clarke JA. Estimating the distribution of carotenoid coloration in skin and integumentary structures of birds and extinct dinosaurs. Evolution 2021; 76:42-57. [PMID: 34719783 DOI: 10.1111/evo.14393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Carotenoids are pigments responsible for most bright yellow, red, and orange hues in birds. Their distribution has been investigated in avian plumage, but the evolution of their expression in skin and other integumentary structures has not been approached in detail. Here, we investigate the expression of carotenoid-consistent coloration across tissue types in all extant, nonpasserine species (n = 4022) and archelosaur outgroups in a phylogenetic framework. We collect dietary data for a subset of birds and investigate how dietary carotenoid intake may relate to carotenoid expression in various tissues. We find that carotenoid-consistent expression in skin or nonplumage keratin has a 50% probability of being present in the most recent common ancestor of Archosauria. Skin expression has a similar probability at the base of the avian crown clade, but plumage expression is unambiguously absent in that ancestor and shows hundreds of independent gains within nonpasserine neognaths, consistent with previous studies. Although our data do not support a strict sequence of tissue expression in nonpasserine birds, we find support that expression of carotenoid-consistent color in nonplumage integument structures might evolve in a correlated manner and feathers are rarely the only region of expression. Taxa with diets high in carotenoid content also show expression in more body regions and tissue types. Our results may inform targeted assays for carotenoids in tissues other than feathers, and expectations of these pigments in nonavian dinosaurs. In extinct groups, bare-skin regions and the rhamphotheca, especially in species with diets rich in plants, may express these pigments, which are not expected in feathers or feather homologues.
Collapse
Affiliation(s)
- Sarah N Davis
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, 78712.,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
7
|
Sykes BE, Hutton P, McGraw KJ. Sex-specific relationships between urbanization, parasitism, and plumage coloration in house finches. Curr Zool 2020. [DOI: 10.1093/cz/zoaa060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Historically, studies of condition-dependent signals in animals have been male-centric, but recent work suggests that female ornaments can also communicate individual quality (e.g., disease state, fecundity). There also has been a surge of interest in how urbanization alters signaling traits, but we know little about if and how cities affect signal expression in female animals. We measured carotenoid-based plumage coloration and coccidian (Isospora spp.) parasite burden in desert and city populations of house finches Haemorhous mexicanus to examine links between urbanization, health state, and feather pigmentation in males and females. In earlier work, we showed that male house finches are less colorful and more parasitized in the city, and we again detected such patterns in this study for males; however, urban females were less colorful, but not more parasitized, than rural females. Moreover, contrary to rural populations, we found that urban birds (regardless of sex) with larger patches of carotenoid coloration were also more heavily infected with coccidia. These results show that urban environments can disrupt condition-dependent color expression and highlight the need for more studies on how cities affect disease and signaling traits in both male and female animals.
Collapse
Affiliation(s)
- Brooke E Sykes
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
8
|
Leary CJ, Baugh AT. Glucocorticoids, male sexual signals, and mate choice by females: Implications for sexual selection. Gen Comp Endocrinol 2020; 288:113354. [PMID: 31830474 DOI: 10.1016/j.ygcen.2019.113354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 12/29/2022]
Abstract
We review work relating glucocorticoids (GCs), male sexual signals, and mate choice by females to understand the potential for GCs to modulate the expression of sexually selected traits and how sexual selection potentially feeds back on GC regulation. Our review reveals that the relationship between GC concentrations and the quality of male sexual traits is mixed, regardless of whether studies focused on structural traits (e.g., coloration) or behavioral traits (e.g., vocalizations) or were examined in developmental or activational frameworks. In contrast, the few mate choice experiments that have been done consistently show that females prefer males with low GCs, suggesting that mate choice by females favors males that maintain low levels of GCs. We point out, however, that just as sexual selection can drive the evolution of diverse reproductive strategies, it may also promote diversity in GC regulation. We then shift the focus to females where we highlight evidence indicating that stressors or high GCs can dampen female sexual proceptivity and the strength of preferences for male courtship signals. Hence, even in cases where GCs are tightly coupled with male sexual signals, the strength of sexual selection on aspects of GC physiology can vary depending on the endocrine status of females. Studies examining how GCs relate to sexual selection may shed light on how variation in stress physiology, sexual signals, and mate choice are maintained in natural populations and may be important in understanding context-dependent relationships between GC regulation and fitness.
Collapse
Affiliation(s)
- Christopher J Leary
- Department of Biology, University of Mississippi, PO Box 1848, University, MS 38677, USA.
| | - Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| |
Collapse
|
9
|
Wilson KM, Tatarenkov A, Burley NT. Early life and transgenerational stressors impact secondary sexual traits and fitness. Behav Ecol 2019. [DOI: 10.1093/beheco/arz020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kerianne M Wilson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Nancy Tyler Burley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Swierk L, Langkilde T. Does repeated human handling of study animals during the mating season affect their offspring? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:80-86. [PMID: 29806245 DOI: 10.1002/jez.2177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 11/07/2022]
Abstract
Minimizing disturbance of study animals is a major consideration in ethological and ecological research design. One nearly universal type of disturbance is the handling of study animals as a component of trial setup. Even low to moderate levels of handling can be a substantial stressor to study animals, which may negatively affect their offspring via maternal effects. Understanding how routine human handling and manipulation may affect the outcome of research studies is therefore critical for interpreting study outcomes. We tested whether repeatedly handling and manipulating (i.e., manually disengaging) amplexed pairs of wood frogs (Rana sylvatica [Lithobates sylvaticus]), which have an explosive breeding season, would affect their reproductive output and offspring fitness. Handling and manipulation did not alter any parameter that we measured: reproductive timing, hatching success, and offspring larval duration, survival, and size at metamorphosis. These results suggest that handling and manipulation by researchers may have a negligible effect on wood frog reproduction and offspring fitness. It is possible that many species that are commonly used in reproductive studies because they suppress behavioral and physiological responses during the mating season are likewise unaffected by human handling. Nevertheless, researchers should examine possible consequences of methodological interventions on their study species in order to determine any potential influence on their results. Having a broad understanding of these effects on species that have robust or dampened stress responsiveness during the breeding season would be useful for making generalizations about potential effects.
Collapse
Affiliation(s)
- Lindsey Swierk
- Department of Biology, Intercollege Graduate Program in Ecology, and Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| | - Tracy Langkilde
- Department of Biology, Intercollege Graduate Program in Ecology, and Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
11
|
Henschen AE, Whittingham LA, Dunn PO. Male stress response is related to ornamentation but not resistance to oxidative stress in a warbler. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amberleigh E. Henschen
- Behavioral and Molecular Ecology GroupDepartment of Biological SciencesUniversity of Wisconsin‐Milwaukee Milwaukee WI USA
| | - Linda A. Whittingham
- Behavioral and Molecular Ecology GroupDepartment of Biological SciencesUniversity of Wisconsin‐Milwaukee Milwaukee WI USA
| | - Peter O. Dunn
- Behavioral and Molecular Ecology GroupDepartment of Biological SciencesUniversity of Wisconsin‐Milwaukee Milwaukee WI USA
| |
Collapse
|
12
|
Funghi C, Trigo S, Gomes ACR, Soares MC, Cardoso GC. Release from ecological constraint erases sex difference in social ornamentation. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Merrill L, Naylor MF, Dalimonte M, McLaughlin S, Stewart TE, Grindstaff JL. Early-life immune activation increases song complexity and alters phenotypic associations between sexual ornaments. Funct Ecol 2017; 31:2263-2273. [PMID: 29398763 PMCID: PMC5792086 DOI: 10.1111/1365-2435.12916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Early-life adversity can have long-lasting effects on physiological, behavioural, cognitive, and somatic processes. Consequently, these effects may alter an organism's life-history strategy and reproductive tactics.In response to early-life immune activation, we quantified levels of the acute phase protein haptoglobin (Hp) during development in male zebra finches (Taeniopygia guttata). Then, we examined the long-term impacts of early-life immune activation on an important static sexual signal, song complexity, as well as effects of early-life immune activation on the relationship between song complexity and a dynamic sexual signal, beak colouration. Finally, we performed mate-choice trials to determine if male early-life experience impacted female preference.Challenge with keyhole limpet hemocyanin (KLH) resulted in increased song complexity compared to lipopolysaccharide (LPS) treatment or the control. Hp levels were inversely correlated with song complexity. Moreover, KLH-treatment resulted in negative associations between the two sexual signals (beak colouration and song complexity). Females demonstrated some preference for KLH-treated males over controls and for control males over LPS-treated males in mate choice trials.Developmental immune activation has variable effects on the expression of secondary sexual traits in adulthood, including enhancing the expression of some traits. Because developmental levels of Hp and adult song complexity were correlated, future studies should explore a potential role for exposure to inflammation during development on song learning.Early-life adversity may differentially impact static versus dynamic signals. The use of phenotypic correlations can be a powerful tool for examining the impact of early-life experience on the associations among different traits, including sexual signals.
Collapse
Affiliation(s)
- Loren Merrill
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Urbana-Champaign, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Madeleine F. Naylor
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Merria Dalimonte
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Sean McLaughlin
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Tara E. Stewart
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana-Champaign, USA
| | | |
Collapse
|
14
|
Lewis AC, Rankin KJ, Pask AJ, Stuart-Fox D. Stress-induced changes in color expression mediated by iridophores in a polymorphic lizard. Ecol Evol 2017; 7:8262-8272. [PMID: 29075447 PMCID: PMC5648675 DOI: 10.1002/ece3.3349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/18/2017] [Accepted: 07/23/2017] [Indexed: 12/17/2022] Open
Abstract
Stress is an important potential factor mediating a broad range of cellular pathways, including those involved in condition‐dependent (i.e., honest) color signal expression. However, the cellular mechanisms underlying the relationship between stress and color expression are largely unknown. We artificially elevated circulating corticosterone levels in male tawny dragon lizards, Ctenophorus decresii, to assess the effect of stress on the throat color signal. Corticosterone treatment increased luminance (paler throat coloration) and decreased the proportion of gray, thereby influencing the gray reticulations that produce unique patterning. The magnitude of change in luminance for corticosterone‐treated individuals in our study was around 6 “just noticeable differences” to the tawny dragon visual system, suggesting that lizards are likely to be able to perceive the measured variation. Transmission electron microscopy (TEM) of iridophore cells indicated that luminance increased with increasing density of iridophore cells and increased spacing (and/or reduced size) of crystalline guanine platelets within them. Crystal spacing within iridophores also differed between skin colors, being greater in cream than either gray or yellow skin and greater in orange than yellow skin. Our results demonstrate that stress detectably impacts signal expression (luminance and patterning), which may provide information on individual condition. This effect is likely to be mediated, at least in part, by structural coloration produced by iridophore cells.
Collapse
Affiliation(s)
- Anna C Lewis
- School of BioSciences The University of Melbourne Parkville Vic Australia
| | - Katrina J Rankin
- School of BioSciences The University of Melbourne Parkville Vic Australia
| | - Andrew J Pask
- School of BioSciences The University of Melbourne Parkville Vic Australia
| | - Devi Stuart-Fox
- School of BioSciences The University of Melbourne Parkville Vic Australia
| |
Collapse
|
15
|
Lindsay WR, Wapstra E, Silverin B, Olsson M. Corticosterone: a costly mediator of signal honesty in sand lizards. Ecol Evol 2016; 6:7451-7461. [PMID: 28725412 PMCID: PMC5513280 DOI: 10.1002/ece3.2318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
The mechanisms underlying honest signal expression remain elusive and may involve the integration of social and physiological costs. Corticosterone is a socially modulated metabolic hormone that mediates energy investment and behavior and may therefore function to deter dishonest signal expression. We examined the relationship between corticosterone and green badge coloration in male sand lizards (Lacerta agilis), hypothesizing that physiological and behavioral costs resulting from elevated baseline glucocorticoids function in maintenance of honest signal expression. We found that large‐badged males had higher corticosterone titer, with this relationship apparent at the end of the season and absent early in the season. Large‐badged males also suffered higher ectoparasite load (number of tick nymphs), despite being in better condition than small‐badged males. Ectoparasite load was positively related to corticosterone titer early in the season at the time of badge formation. High‐condition individuals had lower corticosterone and lower numbers of ectoparasites than low‐condition individuals, suggestive of conditional variation in ability to withstand costs of corticosterone. We found an opposing negative relationship between corticosterone titer and endoparasite load. Corticosterone titer was also negatively associated with male mobility, a fitness‐determining behavior in this species. Because badge size is involved in mediating agonistic social interactions in this species, our results suggest that badge‐dependent variation in corticosterone is likely reflective of variation in social conditions experienced over the course of the season. Our results implicate corticosterone in maintenance of signal honesty, both early in the season through enforcement of physiological costs (ectoparasite load) and during the season through behavioral costs (male mobility). We propose that socially modulated variation in corticosterone critically functions in mediation of signal honesty without requiring a direct role for corticosterone in trait expression.
Collapse
Affiliation(s)
- Willow R Lindsay
- Department of Biological and Environmental Sciences Göteborg University Göteborg Sweden
| | - Erik Wapstra
- School of Biological Sciences University of Tasmania Hobart Tas. Australia
| | - Bengt Silverin
- Department of Biological and Environmental Sciences Göteborg University Göteborg Sweden
| | - Mats Olsson
- Department of Biological and Environmental Sciences Göteborg University Göteborg Sweden.,School of Biological Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
16
|
Tarvin KA, Wong LJ, Lumpkin DC, Schroeder GM, D'Andrea D, Meade S, Rivers P, Murphy TG. Dynamic Status Signal Reflects Outcome of Social Interactions, but Not Energetic Stress. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Merrill L, Naylor MF, Grindstaff JL. Imperfect past and present progressive: beak color reflects early-life and adult exposure to antigen. Behav Ecol 2016; 27:1320-1330. [PMID: 27656084 DOI: 10.1093/beheco/arw029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/27/2016] [Accepted: 02/06/2016] [Indexed: 12/22/2022] Open
Abstract
Secondary sexual traits may convey information about individual condition. We assessed the capacity for immune challenge with lipopolysaccharide (LPS) or keyhole limpet hemocyanin (KLH) during the prenatal and early postnatal stages to impact beak color development and expression in captive zebra finches. In addition, we tested whether adult immune challenge impacted beak color, and if early-life experience was influential. Immune challenge with KLH early in life slowed development of red beak coloration, and males challenged with KLH as nestlings had reduced red coloration as adults. Following adult KLH challenge, males exhibited a decline in beak redness. Birds challenged with KLH during development produced more anti-KLH antibodies after adult challenge. There was a significant interaction between young treatment and anti-KLH antibody production; for males not challenged with KLH early in life, individuals that mounted a weaker antibody response lost more red coloration after challenge than males mounting a stronger antibody response. Based on models of avian vision, these differences in beak coloration should be detectable to the finches. In contrast to previous studies, we found no effect of early-life or adult challenge with LPS on any aspects of beak coloration. These results provide evidence that beak color reflects developmental and current conditions, and that the signal is linked to critical physiological processes.
Collapse
Affiliation(s)
- Loren Merrill
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, OK 74078, USA and; Illinois Natural History Survey, University of Illinois, 1816 S. Oak Street, Champaign, IL 61820, USA
| | - Madeleine F Naylor
- Department of Integrative Biology, Oklahoma State University , 501 Life Science West, Stillwater, OK 74078 , USA and
| | - Jennifer L Grindstaff
- Department of Integrative Biology, Oklahoma State University , 501 Life Science West, Stillwater, OK 74078 , USA and
| |
Collapse
|
18
|
Interactions between Biliverdin, Oxidative Damage, and Spleen Morphology after Simulated Aggressive Encounters in Veiled Chameleons. PLoS One 2015; 10:e0138007. [PMID: 26368930 PMCID: PMC4569575 DOI: 10.1371/journal.pone.0138007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/24/2015] [Indexed: 12/02/2022] Open
Abstract
Stressors frequently increase oxidative damage–unless organisms simultaneously mount effective antioxidant responses. One putative mitigative mechanism is the use of biliverdin, an antioxidant produced in the spleen during erythrocyte degradation. We hypothesized that both wild and captive-bred male veiled chameleons (Chamaeleo calyptratus), which are highly aggressive to conspecifics, would respond to agonistic displays with increased levels of oxidative damage, but that increased levels of biliverdin would limit this increase. We found that even just visual exposure to a potential combatant resulted in decreased body mass during the subsequent 48-hour period, but that hematocrit, biliverdin concentration in the bile, relative spleen size, and oxidative damage in plasma, liver, and spleen were unaffected. Contrary to our predictions, we found that individuals with smaller spleens exhibited greater decreases in hematocrit and higher bile biliverdin concentrations, suggesting a revision to the idea of spleen-dependent erythrocyte processing. Interestingly, individuals with larger spleens had reduced oxidative damage in both the liver and spleen, demonstrating the spleen’s importance in modulating oxidative damage. We also uncovered differences in spleen size and oxidative damage between wild and captive-bred chameleons, highlighting environmentally dependent differences in oxidative physiology. Lastly, we found no relationship between oxidative damage and biliverdin concentration, calling into question biliverdin’s antioxidant role in this species.
Collapse
|
19
|
Kobiela ME, Cristol DA, Swaddle JP. Risk-taking behaviours in zebra finches affected by mercury exposure. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Fairhurst GD, Dawson RD, van Oort H, Bortolotti GR. Synchronizing feather-based measures of corticosterone and carotenoid-dependent signals: what relationships do we expect? Oecologia 2014; 174:689-98. [PMID: 24233689 DOI: 10.1007/s00442-013-2830-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 11/04/2013] [Indexed: 02/03/2023]
Abstract
Carotenoids produce many of the red, orange and yellow signal traits of birds, and individuals must trade off utilizing carotenoids for physiological processes versus ornamentation. Proximate mechanisms regulating this trade-off are poorly understood, despite their importance for expression of color signals. Corticosterone (CORT) may play a significant mechanistic role in signal expression because it mobilizes energy substrates and influences foraging behavior. We used a unique feather-based approach to test whether CORT mediates expression of carotenoid-based coloration. First, we investigated relationships between levels of CORT from feathers (CORT(f)) and carotenoid-based plumage signals in common redpolls (Acanthis flammea). Then, we determined how the width of growth bars and probability of having fault bars on feathers varied with CORT(f), specifically whether these metrics reflected developmental costs of elevated CORT ("stress" hypothesis) or represented an individual's quality ("quality" hypothesis). CORT(f) correlated positively with the strength of carotenoid signals, but only in adult males. However, also in adult males, CORT(f) was positively related to width of feather growth bars and negatively with probability of having fault bars, providing support for the quality hypothesis. Overall, CORT(f) was lower in adult males than in females or young males, possibly due to dominance patterns. Our results indicate that CORT may indirectly benefit feather quality, potentially by mediating the expression of carotenoid signals. We place our sex-specific findings into a novel framework that proposes that the influences of CORT in mediating carotenoid-based plumage traits will depend on the extent to which carotenoids are traded off between competing functions.
Collapse
|
21
|
McCormick GL, Langkilde T. Immune responses of eastern fence lizards (Sceloporus undulatus) to repeated acute elevation of corticosterone. Gen Comp Endocrinol 2014; 204:135-40. [PMID: 24852352 DOI: 10.1016/j.ygcen.2014.04.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 01/03/2023]
Abstract
Prolonged elevations of glucocorticoids due to long-duration (chronic) stress can suppress immune function. It is unclear, however, how natural stressors that result in repeated short-duration (acute) stress, such as frequent agonistic social encounters or predator attacks, fit into our current understanding of the immune consequences of stress. Since these types of stressors may activate the immune system due to increased risk of injury, immune suppression may be reduced at sites where individuals are repeatedly exposed to potentially damaging stressors. We tested whether repeated acute elevation of corticosterone (CORT, a glucocorticoid) suppresses immune function in eastern fence lizards (Sceloporus undulatus), and whether this effect varies between lizards from high-stress (high baseline CORT, invaded by predatory fire ants) and low-stress (low baseline CORT, uninvaded) sites. Lizards treated daily with exogenous CORT showed higher hemagglutination of novel proteins by their plasma (a test of constitutive humoral immunity) than control lizards, a pattern that was consistent across sites. There was no significant effect of CORT treatment on bacterial killing ability of plasma. These results suggest that repeated elevations of CORT, which are common in nature, produce immune effects more typical of those expected at the acute end of the acute-chronic spectrum and provide no evidence of modulated consequences of elevated CORT in animals from high-stress sites.
Collapse
Affiliation(s)
- Gail L McCormick
- Intercollege Graduate Degree Program in Ecology, Department of Biology, and The Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | - Tracy Langkilde
- Intercollege Graduate Degree Program in Ecology, Department of Biology, and The Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
22
|
Sefc KM, Brown AC, Clotfelter ED. Carotenoid-based coloration in cichlid fishes. Comp Biochem Physiol A Mol Integr Physiol 2014; 173C:42-51. [PMID: 24667558 PMCID: PMC4003536 DOI: 10.1016/j.cbpa.2014.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 02/04/2023]
Abstract
Animal colors play important roles in communication, ecological interactions and speciation. Carotenoid pigments are responsible for many yellow, orange and red hues in animals. Whereas extensive knowledge on the proximate mechanisms underlying carotenoid coloration in birds has led to testable hypotheses on avian color evolution and signaling, much less is known about the expression of carotenoid coloration in fishes. Here, we promote cichlid fishes (Perciformes: Cichlidae) as a system in which to study the physiological and evolutionary significance of carotenoids. Cichlids include some of the best examples of adaptive radiation and color pattern diversification in vertebrates. In this paper, we examine fitness correlates of carotenoid pigmentation in cichlids and review hypotheses regarding the signal content of carotenoid-based ornaments. Carotenoid-based coloration is influenced by diet and body condition and is positively related to mating success and social dominance. Gaps in our knowledge are discussed in the last part of this review, particularly in the understanding of carotenoid metabolism pathways and the genetics of carotenoid coloration. We suggest that carotenoid metabolism and transport are important proximate mechanisms responsible for individual and population-differences in cichlid coloration that may ultimately contribute to diversification and speciation.
Collapse
Affiliation(s)
- Kristina M Sefc
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Alexandria C Brown
- Department of Biology, Amherst College, Amherst, MA 01002, USA; Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003 USA
| | | |
Collapse
|
23
|
San-Jose LM, Fitze PS. Corticosterone regulates multiple colour traits in Lacerta
[Zootoca
] vivipara
males. J Evol Biol 2013; 26:2681-90. [DOI: 10.1111/jeb.12265] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- L. M. San-Jose
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
- Department of Biodiversity and Evolutionary Biology; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
- Instituto Pirenaico de Ecología (IPE-CSIC); Jaca Spain
| | - P. S. Fitze
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
- Department of Biodiversity and Evolutionary Biology; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
- Instituto Pirenaico de Ecología (IPE-CSIC); Jaca Spain
- Fundación ARAID; Zaragoza Spain
| |
Collapse
|
24
|
García-de Blas E, Mateo R, Viñuela J, Pérez-Rodríguez L, Alonso-Alvarez C. Free and Esterified Carotenoids in Ornaments of an Avian Species: The Relationship to Color Expression and Sources of Variability. Physiol Biochem Zool 2013; 86:483-98. [DOI: 10.1086/671812] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Carotenoid-based plumage coloration reflects feather corticosterone levels in male house finches (Haemorhous mexicanus). Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1591-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Meadows MG, Roudybush TE, McGraw KJ. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna. J Exp Biol 2012; 215:2742-50. [PMID: 22837446 DOI: 10.1242/jeb.069351] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent.
Collapse
Affiliation(s)
- Melissa G Meadows
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
27
|
Butler MW, McGraw KJ. Differential effects of early- and late-life access to carotenoids on adult immune function and ornamentation in mallard ducks (Anas platyrhynchos). PLoS One 2012; 7:e38043. [PMID: 22666443 PMCID: PMC3364205 DOI: 10.1371/journal.pone.0038043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/01/2012] [Indexed: 11/18/2022] Open
Abstract
Environmental conditions early in life can affect an organism’s phenotype at adulthood, which may be tuned to perform optimally in conditions that mimic those experienced during development (Environmental Matching hypothesis), or may be generally superior when conditions during development were of higher quality (Silver Spoon hypothesis). Here, we tested these hypotheses by examining how diet during development interacted with diet during adulthood to affect adult sexually selected ornamentation and immune function in male mallard ducks (Anas platyrhynchos). Mallards have yellow, carotenoid-pigmented beaks that are used in mate choice, and the degree of beak coloration has been linked to adult immune function. Using a 2×2 factorial experimental design, we reared mallards on diets containing either low or high levels of carotenoids (nutrients that cannot be synthesized de novo) throughout the period of growth, and then provided adults with one of these two diets while simultaneously quantifying beak coloration and response to a variety of immune challenges. We found that both developmental and adult carotenoid supplementation increased circulating carotenoid levels during dietary treatment, but that birds that received low-carotenoid diets during development maintained relatively higher circulating carotenoid levels during an adult immune challenge. Individuals that received low levels of carotenoids during development had larger phytohemagglutinin (PHA)-induced cutaneous immune responses at adulthood; however, dietary treatment during development and adulthood did not affect antibody response to a novel antigen, nitric oxide production, natural antibody levels, hemolytic capacity of the plasma, or beak coloration. However, beak coloration prior to immune challenges positively predicted PHA response, and strong PHA responses were correlated with losses in carotenoid-pigmented coloration. In sum, we did not find consistent support for either the Environmental Matching or Silver Spoon hypotheses. We then describe a new hypothesis that should be tested in future studies examining developmental plasticity.
Collapse
Affiliation(s)
- Michael W Butler
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America.
| | | |
Collapse
|