1
|
Long S, Wang Y, Cheng R, Deng L, Chen L, Dong Y. Different IL-1β levels differentially mediate neuroprotection or neurodegeneration and may be related to BDNF. Cytokine 2025; 188:156877. [PMID: 39923299 DOI: 10.1016/j.cyto.2025.156877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The detrimental and protective effects of interleukin 1β (IL-1β) have been reported. We have previously shown that the periods of IL-1β elevation is related to its dual effects. However, the effects of different IL-1β concentrations on neuropathological processes are unclear. Studies have demonstrated that mature brain-derived neurotrophic factor (mBDNF) and its precursor (proBDNF) have opposing functions in neuronal survival. We previously showed that mBDNF is involved in IL-1β-mediated neuropathology. Here, we investigated whether different IL-1β concentrations differentially affect mBDNF and proBDNF, determining their beneficial or harmful effects. METHODS HT22 cells were cultured and exposed to various IL-1β concentrations for different durations. HT22 cell viability and the expression of mBDNF, proBDNF and their receptors were evaluated by a Cell Counting Kit-8 (CCK-8) assay and western blot. RESULTS Compared with untreated cells, a significant reduction in cell viability was observed after exposure to high IL-1β concentrations for more than 24 h. Increased expression of proBDNF and its receptor p75NTR and decreased expression of mBDNF and its receptor TrkB, as well as decreased furin and PC1/3 (which promote the cleavage of proBDNF to mBDNF) expression, were detected. In contrast, low IL-1β concentrations increased cell viability, but a significant effect was observed only at an optimal concentration; in contrast to our predictions, low IL-1β concentrations did not induce significant alterations in mBDNF and proBDNF expression levels, but rather, low concentrations significantly increased the mBDNF/proBDNF ratio. CONCLUSIONS These results demonstrated that changes induced by low (neuroprotection) and high (neurodegeneration) IL-1β concentrations were oriented in different directions. These dual effects occur partly through the modulation of mBDNF signaling.
Collapse
Affiliation(s)
- Sifan Long
- School of Medicine, Yunnan University, 2 Cuihu Bei Road, Kunming, Yunnan 650091, People's Republic of China
| | - Yanmei Wang
- First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan 650032, People's Republic of China.
| | - Rong Cheng
- School of Medicine, Yunnan University, 2 Cuihu Bei Road, Kunming, Yunnan 650091, People's Republic of China
| | - Liuyuan Deng
- School of Medicine, Yunnan University, 2 Cuihu Bei Road, Kunming, Yunnan 650091, People's Republic of China
| | - Lixing Chen
- First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan 650032, People's Republic of China
| | - Yilong Dong
- School of Medicine, Yunnan University, 2 Cuihu Bei Road, Kunming, Yunnan 650091, People's Republic of China.
| |
Collapse
|
2
|
Pereira DE, de Cássia de Araújo Bidô R, da Costa Alves M, Frazão Tavares de Melo MF, Dos Santos Costa AC, Gomes Dutra LM, de Morais MM, Gomes da Câmara CA, Viera VB, Alves AF, de Araujo WJ, Leite EL, Bruno de Oliveira CJ, Rufino Freitas JC, Barbosa Soares JK. Maternal supplementation with Dipteryx alata Vog. modulates fecal microbiota diversity, accelerates reflex ontogeny, and improves non-associative and spatial memory in the offspring of rats. Brain Res 2025; 1850:149383. [PMID: 39647597 DOI: 10.1016/j.brainres.2024.149383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Maternal diet plays a crucial role in offspring development, directly affecting neural development and gut microbiota composition. This study aimed to assess if baru almond and oil (Dipteryx alata Vog.) could modulate intestinal microbiota, brain fatty acid profile, and enhance memory in offspring of rats treated during early life stages. Three groups were formed: Control- received distilled water by gavage; Oil- received 2000 mg/kg of baru oil, and Almond - received 2000 mg/kg of baru almond. Somatic development and reflex ontogenesis were evaluated in offspring during the first 21 days. In adolescence and adulthood, memory was tested using Open Field Habituation, Object Recognition, and Morris Water Maze. Brain histology and fatty acid were measured, and fecal microbiota analysis was performed. Both almond and oil groups showed increased PUFAs in breast milk and brains, accelerated reflex ontogeny, improved somatic development and better performance in the memory tests in both life stages (p < 0.05). Supplementation enhanced fecal microbiota abundance associated with neuroprotective effects. The almond group showed a 29 % increase in Eubacterium, Candidates-Arthromitus, Collinsella, and Christensenellaceae-R-7. Both oil and almond groups had higher Blautia and Clostridia-UCG-014 compared to controls. The oil group had about 10 % more Ruminococcus, UCG-005, Acetatifactor, Negativibacillus, and Lachnospiraceae-ND3007 than the others. With the present data, we can observe the safety of baru consumption by pregnant and lactating rats and verify its effects on modulating the microbiota, inducing adequate development of the offspring's nervous system, contributing to anticipated reflex maturation and improving memory.
Collapse
Affiliation(s)
- Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Rita de Cássia de Araújo Bidô
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Maciel da Costa Alves
- Department of Biofísica and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ana Carolina Dos Santos Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil; Department of Rural Technology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil.
| | | | | | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and General Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Wydemberg José de Araujo
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Elma Lima Leite
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | | | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| |
Collapse
|
3
|
Johne M, Maculewicz E, Mastalerz A, Białek M, Wojtak W, Osuch B, Majewska M, Czauderna M, Białek A. Dietary Patterns, Serum BDNF and Fatty Acid Profiles in Physically Active Male Young Adults: A Cluster Analysis Study. Nutrients 2024; 16:4326. [PMID: 39770947 PMCID: PMC11679842 DOI: 10.3390/nu16244326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Although physical activity and balanced diet may increase peripheral brain-derived neurotrophic factor (BDNF) concentration, little is known about whether these factors modify BDNF content in physically active individuals and whether the serum fatty acid (FA) profile is related. This study aimed to evaluate quality of diet, identify specific dietary patterns and assess their influence on BDNF and FA levels in serum. It is hypothesized that there is a correlation between diet quality and the concentrations of BDNF and FA in the serum of physically active male individuals. Methods: Physically active young adult male students at Jozef Pilsudski University of Physical Education in Warsaw (Poland) were enrolled. Dietary patterns were identified with cluster analysis and linear discriminant analysis (LDA) based on responses to a validated food frequency questionnaire, KomPAN® version 1.1. Results: Consumption of beverages, vegetables, milk, wholemeal bread/rolls, fruit and vegetable juices, butter, tinned vegetables and fruits were significant in the LDA model, in which three clusters were distinguished. Cluster 1 was characterized by more frequent consumption of wholemeal bread/rolls, milk, fruits, vegetables, fruit and vegetable juices and sweetened hot beverages and by significantly greater values for the pro-healthy diet index (p < 0.0001) and diet quality index (p < 0.0001) compared to Clusters 2 and 3. The diet of Cluster 2 was of the worst quality, as indicated by the higher values of the not-healthy diet index. Cluster 1 had the tendency for the highest BDNF levels (of the best quality of diet), and a tendency for decreased BDNF concentration with an increased physical activity level was observed. Conclusions: Physical activity, diet quality and BDNF level depend, correlate and interact with each other to provide both optimal physical and mental health.
Collapse
Affiliation(s)
- Monika Johne
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland; (M.J.); (E.M.); (A.M.)
| | - Ewelina Maculewicz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland; (M.J.); (E.M.); (A.M.)
- Department of Laboratory Diagnostics, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland
| | - Andrzej Mastalerz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland; (M.J.); (E.M.); (A.M.)
| | - Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (W.W.); (B.O.); (M.M.); (M.C.)
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (W.W.); (B.O.); (M.M.); (M.C.)
| | - Bartosz Osuch
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (W.W.); (B.O.); (M.M.); (M.C.)
| | - Małgorzata Majewska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (W.W.); (B.O.); (M.M.); (M.C.)
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (W.W.); (B.O.); (M.M.); (M.C.)
| | - Agnieszka Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (W.W.); (B.O.); (M.M.); (M.C.)
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, 01-043 Warsaw, Poland
| |
Collapse
|
4
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
5
|
Shinto LH, Murchison CF, Silbert LC, Dodge HH, Lahna D, Rooney W, Kaye J, Quinn JF, Bowman GL. ω-3 PUFA for Secondary Prevention of White Matter Lesions and Neuronal Integrity Breakdown in Older Adults: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2426872. [PMID: 39088212 PMCID: PMC11294966 DOI: 10.1001/jamanetworkopen.2024.26872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024] Open
Abstract
Importance Older adults with lower intake and tissue levels of long-chain ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) have more brain white matter lesions (WMLs), an association suggesting that small-vessel ischemic disease, a major contributor to the development of dementia, including Alzheimer disease, may be preventable through ω-3 treatment. Objective To determine whether ω-3 treatment reduces WML accumulation in older adults without dementia harboring WMLs and with suboptimal ω-3 status. Design, Setting, and Participants This quadruple-blinded, placebo-controlled, randomized clinical trial with treatment stratification by apolipoprotein E ε4 allele (APOE*E4) carrier status used linear mixed-effects models to estimate mean annual change between groups. The study was conducted at Oregon Health & Science University, a major academic medical center in the Pacific Northwest, from May 2014 to final participant visit in September 2019. Data analysis concluded in July 2022. Participants were adults without dementia aged 75 years and older with WMLs greater than or equal to 5 cm3 and plasma ω-3 PUFA less than 5.5 weight percentage of total. Intervention Three-year treatment with 1.65 g of ω-3 PUFA (975 mg of EPA and 650 mg of DHA) vs a soybean oil placebo matched for taste, smell, and appearance. Main Outcomes and Measures The primary outcome was annual WML progression measured using magnetic resonance imaging. Secondary outcomes included diffusion tensor imaging of fractional anisotropy (DTI-FA), representing neuronal integrity breakdown. Results A total of 102 participants (62 women [60.8%]; mean age, 81 years [range, 75-96 years]) were equally randomized, 51 per treatment group. Although the ω-3 group had less annual WML accumulation than the placebo group, the difference was not statistically significant (1.19 cm3 [95% CI, 0.64-1.74 cm3] vs 1.34 cm3 [95% CI, 0.80-1.88 cm3]; P = .30). Similarly, the ω-3 group had less annual DTI-FA decline than the placebo group, but the difference was not statistically significant (-0.0014 mm2/s [95% CI, -0.0027 to 0.0002 mm2/s] vs -0.0027 mm2/s [95% CI, -0.0041 to -0.0014 mm2/s]; P = .07). Among APOE*E4 carriers, the annual DTI-FA decline was significantly lower in the group treated with ω-3 than the placebo group (-0.0016 mm2/s [95% CI, -0.0032 to 0.0020 mm2/s] vs -0.0047 mm2/s [95% CI, -0.0067 to -0.0025 mm2/s]; P = .04). Adverse events were similar between treatment groups. Conclusions and Relevance In this 3-year randomized clinical trial, ω-3 treatment was safe and well-tolerated but failed to reach significant reductions in WML accumulation or neuronal integrity breakdown among all participants, which may be attributable to sample size limitations. However, neuronal integrity breakdown was reduced by ω-3 treatment in APOE*E4 carriers, suggesting that this treatment may be beneficial for this specific group. Trial Registration ClinicalTrials.gov Identifier: NCT01953705.
Collapse
Affiliation(s)
- Lynne H. Shinto
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
| | - Charles F. Murchison
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Department of Biostatistics, University of Alabama, Birmingham
| | - Lisa C. Silbert
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Portland VA, Portland, Oregon
| | - Hiroko H. Dodge
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Interdisciplinary Brain Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - David Lahna
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
| | - William Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland
| | - Jeffrey Kaye
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Portland VA, Portland, Oregon
| | - Joseph F. Quinn
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Portland VA, Portland, Oregon
- Parkinson’s Disease Center, Oregon Health & Science University, Portland
| | - Gene L. Bowman
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
6
|
Sreedharan S, Pande A, Pande A, Majeed M, Cisneros-Zevallos L. The Neuroprotective Effects of Oroxylum indicum Extract in SHSY-5Y Neuronal Cells by Upregulating BDNF Gene Expression under LPS Induced Inflammation. Nutrients 2024; 16:1887. [PMID: 38931243 PMCID: PMC11206423 DOI: 10.3390/nu16121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The brain-derived neurotrophic factor (BDNF) plays a crucial role during neuronal development as well as during differentiation and synaptogenesis. They are important proteins present in the brain that support neuronal health and protect the neurons from detrimental signals. The results from the present study suggest BDNF expression can be increase up to ~8-fold by treating the neuroblastoma cells SHSY-5Y with an herbal extract of Oroxylum indicum (50 μg/mL) and ~5.5-fold under lipopolysaccharides (LPS)-induced inflammation conditions. The Oroxylum indicum extract (Sabroxy) was standardized to 10% oroxylin A, 6% chrysin, and 15% baicalein. In addition, Sabroxy has shown to possess antioxidant activity that could decrease the damage caused by the exacerbation of radicals during neurodegeneration. A mode of action of over expression of BDNF with and without inflammation is proposed for the Oroxylum indicum extract, where the three major hydroxyflavones exert their effects through additive or synergistic effects via five possible targets including GABA, Adenoside A2A and estrogen receptor bindings, anti-inflammatory effects, and reduced mitochondrial ROS production.
Collapse
Affiliation(s)
- Shareena Sreedharan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alpana Pande
- Analytical R&D Department, Sabinsa Corporation, East Windsor, NJ 08520, USA
| | - Anurag Pande
- Analytical R&D Department, Sabinsa Corporation, East Windsor, NJ 08520, USA
| | - Muhammed Majeed
- Analytical R&D Department, Sabinsa Corporation, East Windsor, NJ 08520, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Food Science & Technology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Li X, Huang Z, Tian Y, Chen X, Wu H, Wang T. Association between plasma long-chain polyunsaturated n-3 fatty acids concentrations and cognitive function: findings from NHANES III. Front Psychol 2024; 15:1305570. [PMID: 38756498 PMCID: PMC11098013 DOI: 10.3389/fpsyg.2024.1305570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background With increased life expectancy, cognitive decline has emerged as a prevalent neurodegenerative disorder. Objective This study aimed to examine the correlation between concentrations of Plasma long-chain n-3 polyunsaturated fatty acids (LCPUFAs) and cognitive performance in elderly Americans. Methods Data were analyzed from older adults enrolled in two NHANES cycles. Participants completed four cognitive assessments, including the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). Linear regression and restricted cubic spline modeling examined associations between plasma LCPUFAs levels and cognitive test outcomes. Results The cohort included 610 adults aged 69 years on average, 300 (49.2%) males and 310 (50.8%) females. The median LCPUFAs concentration was 309.4 μmol/L, with an interquartile range of 244.7-418.9 μmol/L. In unadjusted and adjusted generalized linear regression model analyses, circulating LCPUFAs exhibited significant positive correlations with DRT performance. No relationships were detected among those with chronic conditions (chronic heart failure, stroke, diabetes). A significant association between LCPUFAs levels and DRT scores was evident in males but not females. Conclusion Plasma LCPUFAs concentrations were significantly associated with DRT performance in males free of chronic illnesses, including heart failure, stroke, and diabetes.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zijie Huang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yueqin Tian
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Chen
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Haidong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Zhang X, Chen C, Liu Y. Navigating the metabolic maze: anomalies in fatty acid and cholesterol processes in Alzheimer's astrocytes. Alzheimers Res Ther 2024; 16:63. [PMID: 38521950 PMCID: PMC10960454 DOI: 10.1186/s13195-024-01430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its underlying mechanisms have been a subject of great interest. The mainstream theory of AD pathology suggests that the disease is primarily associated with tau protein and amyloid-beta (Aβ). However, an increasing body of research has revealed that abnormalities in lipid metabolism may be an important event throughout the pathophysiology of AD. Astrocytes, as important members of the lipid metabolism network in the brain, play a significant role in this event. The study of abnormal lipid metabolism in astrocytes provides a new perspective for understanding the pathogenesis of AD. This review focuses on the abnormal metabolism of fatty acids (FAs) and cholesterol in astrocytes in AD, and discusses it from three perspectives: lipid uptake, intracellular breakdown or synthesis metabolism, and efflux transport. We found that, despite the accumulation of their own fatty acids, astrocytes cannot efficiently uptake fatty acids from neurons, leading to fatty acid accumulation within neurons and resulting in lipotoxicity. In terms of cholesterol metabolism, astrocytes exhibit a decrease in endogenous synthesis due to the accumulation of exogenous cholesterol. Through a thorough investigation of these metabolic abnormalities, we can provide new insights for future therapeutic strategies by literature review to navigate this complex metabolic maze and bring hope to patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuanying Chen
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yi Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
9
|
Chen X, Chen A, Wei J, Huang Y, Deng J, Chen P, Yan Y, Lin M, Chen L, Zhang J, Huang Z, Zeng X, Gong C, Zheng X. Dexmedetomidine alleviates cognitive impairment by promoting hippocampal neurogenesis via BDNF/TrkB/CREB signaling pathway in hypoxic-ischemic neonatal rats. CNS Neurosci Ther 2024; 30:e14486. [PMID: 37830170 PMCID: PMC10805444 DOI: 10.1111/cns.14486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
AIMS Dexmedetomidine (DEX) has been reported to alleviate hypoxic-ischemic brain damage (HIBD) in neonates. This study aimed to investigate whether DEX improves cognitive impairment by promoting hippocampal neurogenesis via the BDNF/TrkB/CREB signaling pathway in neonatal rats with HIBD. METHODS HIBD was induced in postnatal day 7 rats using the Rice-Vannucci method, and DEX (25 μg/kg) was administered intraperitoneally immediately after the HIBD induction. The BDNF/TrkB/CREB pathway was regulated by administering the TrkB receptor antagonist ANA-12 through intraperitoneal injection or by delivering adeno-associated virus (AAV)-shRNA-BDNF via intrahippocampal injection. Western blot was performed to measure the levels of BDNF, TrkB, and CREB. Immunofluorescence staining was utilized to identify the polarization of astrocytes and evaluate the levels of neurogenesis in the dentate gyrus of the hippocampus. Nissl and TTC staining were performed to evaluate the extent of neuronal damage. The MWM test was conducted to evaluate spatial learning and memory ability. RESULTS The levels of BDNF and neurogenesis exhibited a notable decrease in the hippocampus of neonatal rats after HIBD, as determined by RNA-sequencing technology. Our results demonstrated that treatment with DEX effectively increased the protein expression of BDNF and the phosphorylation of TrkB and CREB, promoting neurogenesis in the dentate gyrus of the hippocampus in neonatal rats with HIBD. Specifically, DEX treatment significantly augmented the expression of BDNF in hippocampal astrocytes, while decreasing the proportion of detrimental A1 astrocytes and increasing the proportion of beneficial A2 astrocytes in neonatal rats with HIBD. Furthermore, inhibiting the BDNF/TrkB/CREB pathway using either ANA-12 or AAV-shRNA-BDNF significantly counteracted the advantageous outcomes of DEX on hippocampal neurogenesis, neuronal survival, and cognitive improvement. CONCLUSIONS DEX promoted neurogenesis in the hippocampus by activating the BDNF/TrkB/CREB pathway through the induction of polarization of A1 astrocytes toward A2 astrocytes, subsequently mitigating neuronal damage and cognitive impairment in neonates with HIBD.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Andi Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jianjie Wei
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Yongxin Huang
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jianhui Deng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Pinzhong Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Yanlin Yan
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Mingxue Lin
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Lifei Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jiuyun Zhang
- Fujian Provincial Key Laboratory of Emergency MedicineFuzhouChina
| | - Zhibin Huang
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Xiaoqian Zeng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Cansheng Gong
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Xiaochun Zheng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Emergency MedicineFuzhouChina
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial Co‐Constructed Laboratory of “Belt and Road”FuzhouChina
| |
Collapse
|
10
|
Jannat K, Balakrishnan R, Han JH, Yu YJ, Kim GW, Choi DK. The Neuropharmacological Evaluation of Seaweed: A Potential Therapeutic Source. Cells 2023; 12:2652. [PMID: 37998387 PMCID: PMC10670678 DOI: 10.3390/cells12222652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
The most common neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are the seventh leading cause of mortality and morbidity in developed countries. Clinical observations of NDD patients are characterized by a progressive loss of neurons in the brain along with memory decline. The common pathological hallmarks of NDDs include oxidative stress, the dysregulation of calcium, protein aggregation, a defective protein clearance system, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, and damage to cholinergic neurons. Therefore, managing this pathology requires screening drugs with different pathological targets, and suitable drugs for slowing the progression or prevention of NDDs remain to be discovered. Among the pharmacological strategies used to manage NDDs, natural drugs represent a promising therapeutic strategy. This review discusses the neuroprotective potential of seaweed and its bioactive compounds, and safety issues, which may provide several beneficial insights that warrant further investigation.
Collapse
Affiliation(s)
- Khoshnur Jannat
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Rengasamy Balakrishnan
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| | - Jun-Hyuk Han
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ye-Ji Yu
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ga-Won Kim
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| |
Collapse
|
11
|
Kołodziej Ł, Czarny PL, Ziółkowska S, Białek K, Szemraj J, Gałecki P, Su KP, Śliwiński T. How fish consumption prevents the development of Major Depressive Disorder? A comprehensive review of the interplay between n-3 PUFAs, LTP and BDNF. Prog Lipid Res 2023; 92:101254. [PMID: 37820872 DOI: 10.1016/j.plipres.2023.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
MDD (major depressive disorder) is a highly prevalent mental disorder with a complex etiology involving behavioral and neurochemical factors as well as environmental stress. The interindividual variability in response to stress stimuli may be explained by processes such as long-term potentiation (LTP) and long-term depression (LTD). LTP can be described as the strengthening of synaptic transmission, which translates into more efficient cognitive performance and is regulated by brain-derived neurotrophic factor (BDNF), a protein responsible for promoting neural growth. It is found in high concentrations in the hippocampus, a part of the limbic system which is far less active in people with MDD. Omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) not only contribute to structural and antioxidative functions but are essential for the maintenance of LTP and stable BDNF levels. This review explores the mechanisms and potential roles of omega-3 fatty acids in the prevention of MDD.
Collapse
Affiliation(s)
- Łukasz Kołodziej
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, 90-236 Lodz, Poland; University of Lodz, Bio-Med-Chem Doctoral School of University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, 90-237 Lodz, Poland.
| | - Piotr Lech Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Katarzyna Białek
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland.
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; An-Nan Hospital, China Medical University, Tainan 709, Taiwan.
| | - Tomasz Śliwiński
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, 90-236 Lodz, Poland.
| |
Collapse
|
12
|
Dere Yelken H, Elci MP, Turker PF, Demirkaya S. Exploring the role of polyunsaturated fatty acid ratios in modulating neuroinflammation in LPS-induced microglia: A comprehensive in vitro analysis. Prostaglandins Other Lipid Mediat 2023; 168:106739. [PMID: 37105440 DOI: 10.1016/j.prostaglandins.2023.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
The study investigated the effect of different omega (ω)- 3 and omega (ω)- 6 polyunsaturated fatty acid (PUFA) ratios on cytokine secretion, cell viability, and microglial cell shape in lipopolysaccharide (LPS)-induced microglia. The addition of PUFAs at different ratios, especially ω-3 and ratios of 7/1 and 2/1 ω-6/ω-3, resulted in a significant increase in the ameboid form of microglial cells, as well as more branching of their distal branches. Microglial cells were treated with varying ratios of PUFAs, and their cytokine secretion was measured. The results showed that all PUFA ratios had lower tumor necrosis factor (TNF)-α secretion than the control group, higher interleukin (IL)- 4 secretion in the ω-6 group, and less IL-10 secretion most down IL-6 secretion in the 7/1 ratio group. The study suggests that determining the appropriate ω-6/ω-3 consumption ratio, especially the 7/1 and 2/1 ratios, may help manage neuroinflammation, develop dietary models in immune-mediated neurodegenerative diseases, and open up new treatment possibilities.
Collapse
Affiliation(s)
- H Dere Yelken
- Yeditepe University, 26 August Settlement, Atasehir, Istanbul 34755, Turkey.
| | - M P Elci
- University of Health Sciences Gulhane Health Sciences Institute, Gülhane Complex, Etlik, Ankara 06018, Turkey
| | - P F Turker
- Baskent University, Baglica Campus, Eskisehir highway 18.km Etimesgut, Ankara 06790, Turkey
| | - S Demirkaya
- University of Health Sciences, Gulhane Faculty of Medicine, Etlik, Ankara 06018, Turkey
| |
Collapse
|
13
|
Carvajal F, Sánchez-Gil A, Cardona D, Rincón-Cervera MA, Lerma-Cabrera JM. The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data. Nutrients 2023; 15:2993. [PMID: 37447319 DOI: 10.3390/nu15132993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Alcohol use poses a significant global health concern, leading to serious physical and socioeconomic issues worldwide. The current treatment options for problematic alcohol consumption are limited, leading to the exploration of alternative approaches, such as nutraceuticals. One promising target is very-long-chain n-3 polyunsaturated fatty acids (VLC n-3 PUFAs). This review aims to compile the most relevant pre-clinical and clinical evidence on the effect of VLC n-3 PUFAs on alcohol use disorders and related outcomes. The findings suggest that VLC n-3 PUFAs may alleviate the physiological changes induced by alcohol consumption, including neuroinflammation and neurotransmitter dysregulation. Additionally, they can reduce withdrawal symptoms, improve mood, and reduce stress level, all of which are closely associated with problematic alcohol consumption. However, more research is required to fully understand the precise mechanisms by which VLC n-3 PUFAs exert their function. Furthermore, PUFAs should not be considered a standalone solution, but as a complement to other therapeutic approaches. Although preliminary evidence supports the potential therapeutic effect of VLC n-3 PUFAs on problematic alcohol consumption, additional research is needed to validate these findings and determine the optimal use of PUFAs as part of a comprehensive approach to the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Francisca Carvajal
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Ainhoa Sánchez-Gil
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Diana Cardona
- Health Research Center, University of Almeria, 04120 Almeria, Spain
- Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
| | - Miguel Angel Rincón-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain
- Institute of Nutrition and Food Technology, University of Chile, Santiago 830490, Chile
| | - Jose Manuel Lerma-Cabrera
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
14
|
Unsaturated Fatty Acids and Their Immunomodulatory Properties. BIOLOGY 2023; 12:biology12020279. [PMID: 36829556 PMCID: PMC9953405 DOI: 10.3390/biology12020279] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Oils are an essential part of the human diet and are primarily derived from plant (or sometimes fish) sources. Several of them exhibit anti-inflammatory properties. Specific diets, such as Mediterranean diet, that are high in ω-3 polyunsaturated fatty acids (PUFAs) and ω-9 monounsaturated fatty acids (MUFAs) have even been shown to exert an overall positive impact on human health. One of the most widely used supplements in the developed world is fish oil, which contains high amounts of PUFAs docosahexaenoic and eicosapentaenoic acid. This review is focused on the natural sources of various polyunsaturated and monounsaturated fatty acids in the human diet, and their role as precursor molecules in immune signaling pathways. Consideration is also given to their role in CNS immunity. Recent findings from clinical trials utilizing various fatty acids or diets high in specific fatty acids are reviewed, along with the mechanisms through which fatty acids exert their anti-inflammatory properties. An overall understanding of diversity of polyunsaturated fatty acids and their role in several molecular signaling pathways is useful in formulating diets that reduce inflammation and increase longevity.
Collapse
|
15
|
Iodide intake during pregnancy and lactation stimulates KLF9, BDNF expression in offspring brain with elevated DHA, EPA metabolites. Heliyon 2023; 9:e13161. [PMID: 36816261 PMCID: PMC9932675 DOI: 10.1016/j.heliyon.2023.e13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
To investigate the effect of different iodide intake during pregnancy and lactation on thyroid function, docosahexaenoic acid (DHA), Eicosapentaenoic acid (EPA) metabolites, the expression of Krüppel-like factor KLF9 (KLF9), brain-derived neurotrophic factor (BDNF) in brain in offspring rats. In both male and female offspring rats, serum FT3, FT4 levels and the expression of KLF9, thyroid hormone receptors (TR)α, TRβ and BDNF in the hippocampal region and cerebellum were significantly increased in 5 times higher-than-normal pregnant iodide intake (5 HI) and 10 times higher-than-normal pregnant iodide intake (10 HI) group. The median levels of DHA metabolite (17-HDoHE) and EPA metabolites (15-HEPE, 17,18-EEQ, 9-HEPE and 14,15-DiHETE) were significantly increased in 5 HI and 10 HI group of offspring rats. Serum DHA, EPA metabolites and KLF9 as well as BDNF expression in brain might be potential iodine status biomarkers to reflect brain development in offspring.
Collapse
|
16
|
Carranza-Martin AC, Garcia-Guerra A, Relling AE. Effects of polyunsaturated fatty acid supplementation on plasma and follicular fluid resolvin D1 concentration and mRNA abundance in granulosa cells in ewes. J Anim Sci 2023; 101:skad310. [PMID: 37721095 PMCID: PMC10583979 DOI: 10.1093/jas/skad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
The aim of this experiment was to evaluate the effect of increasing dietary omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation on plasma and follicular fluid resolvin D1 (RvD1) concentration and the mRNA expression of genes related to RvD1 production, inflammatory response, oxidative stress, hormone receptors and production, and free fatty acid receptors in the granulosa cells of ewes. Dorset × Hampshire ewes (n = 24) aged 2 to 4 yr and with an initial body weight (BW) of 84.08 ± 13.18 kg were blocked by body condition score (BCS) and BW, and randomly assigned to 12 pens. Each pen within each block was randomly assigned to one of three treatments: 1) diet without fatty acid supplementation (control), 2) diet with 0.5% n-3 PUFA supplementation (PUFA0.5), and 3) diet with 1% n-3 PUFA supplementation (PUFA1). BW, BCS, and blood samples were obtained on day 1 and every 21 d for 3 mo. Ewes were then synchronized, superstimulated, and ovariectomized. Antral follicles were aspirated to evaluate RvD1 concentration in follicular fluid, and granulosa cells were used to determine mRNA abundance. Data were analyzed as a randomized complete block design using a mixed model (MIXED or GLIMMIX with log as a link function when data presented a nonnormal distribution). A polynomial effect of treatments was used to analyze RvD1 concentration and mRNA expression when there was no interaction. In addition, the correlation between plasma and follicular fluid RvD1 concentration was evaluated. We found no differences in BW (P = 0.28) and BCS (P = 0.29) between treatments. The concentration of RvD1 in plasma and follicular fluid linearly increased (P = 0.03) and tended to increase (P = 0.06) concomitantly to increasing PUFA supplementation. Plasma and follicular fluid RvD1 concentrations were positively correlated (r = 0.61; P < 0.01). The abundance of GPX1 and GPR32 mRNA tended to increase linearly with increasing PUFA supplementation (P = 0.06). In addition, PUFA supplementation linearly decreased and tended to decrease IL-1β and COX-2 mRNA abundance (P = 0.01 and P = 0.06, respectively). In conclusion, the correlation between plasma and follicular fluid RvD1 concentration indicates a relationship between both compartments. Also, the decrease of IL-1β and the increase of GPX1 mRNA abundance after PUFA supplementation could have beneficial effects on follicle development.
Collapse
Affiliation(s)
- Ana C Carranza-Martin
- Department of Animal Sciences, The Ohio State University, Columbus, OH 44691, USA
- IGEVET – Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CP 1900 La Plata, Buenos Aires, Argentina
| | - Alvaro Garcia-Guerra
- Department of Animal Sciences, The Ohio State University, Columbus, OH 44691, USA
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Columbus, OH 44691, USA
- Ohio State University Interdisciplinary Nutrition Program (OSUN), The Ohio State University, Columbus, OH 44691, USA
| |
Collapse
|
17
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
18
|
Pandey SN, Singh G, Semwal BC, Gupta G, Alharbi KS, Almalki WH, Albratty M, Najmi A, Meraya AM. Therapeutic approaches of nutraceuticals in the prevention of Alzheimer's disease. J Food Biochem 2022; 46:e14426. [PMID: 36169224 DOI: 10.1111/jfbc.14426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a neurological illness that causes memory loss over time. Currently, available pharmaceutical medicines and products are limited, and they have side effects at a higher price. Researchers and scientists have observed significant effects of nutraceuticals. Various preclinical and clinical studies were investigated for the Anti-Alzheimer's activity of nutraceuticals. The increasing ability of the pathogenesis of AD has led to the analysis of novel therapeutic targets, including the pathophysiological mechanisms and distinct cascades. So, current improvement will show the most adequate and prominent nutraceuticals and suggested concise mechanisms involving autophagy regulation, anti-inflammatory, antioxidant, mitochondrial homeostasis, and others. The effects of nutraceuticals cannot be ignored; it is important to investigate high-quality clinical trials. Given the potential of nutraceuticals to battle AD as multi-targeted therapies, it's vital to evaluate them as viable lead compounds for drug discovery and development. To the best of the authors 'knowledge, modification of blood-brain barrier permeability, bioavailability, and aspects of randomized clinical trials should be considered in prospective investigations. PRACTICAL APPLICATIONS: Advancements in molecular diagnostic and fundamentals have implemented particular usefulness for drug evaluation. An excess of experimental knowledge occurs regarding the effect of nutraceuticals on AD. There are various preclinical and clinical studies that have been done on nutraceuticals. In addition, various substitute inhibit and enhance some pathophysiological levels associated with AD. Nutraceuticals are easily available and have fewer side effects with cost-effective advantages. However, further investigations and clinical trials are required to encourage its effect on disease.
Collapse
Affiliation(s)
- Surya Nath Pandey
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.,Department of Pharmacology, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UP, India
| | - Gurfateh Singh
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Bhupesh Chander Semwal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
19
|
Ablinger I, Dressel K, Rott T, Lauer AA, Tiemann M, Batista JP, Taddey T, Grimm HS, Grimm MOW. Interdisciplinary Approaches to Deal with Alzheimer's Disease-From Bench to Bedside: What Feasible Options Do Already Exist Today? Biomedicines 2022; 10:2922. [PMID: 36428494 PMCID: PMC9687885 DOI: 10.3390/biomedicines10112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is one of the most common neurodegenerative diseases in the western population. The incidence of this disease increases with age. Rising life expectancy and the resulting increase in the ratio of elderly in the population are likely to exacerbate socioeconomic problems. Alzheimer's disease is a multifactorial disease. In addition to amyloidogenic processing leading to plaques, and tau pathology, but also other molecular causes such as oxidative stress or inflammation play a crucial role. We summarize the molecular mechanisms leading to Alzheimer's disease and which potential interventions are known to interfere with these mechanisms, focusing on nutritional approaches and physical activity but also the beneficial effects of cognition-oriented treatments with a focus on language and communication. Interestingly, recent findings also suggest a causal link between oral conditions, such as periodontitis or edentulism, and Alzheimer's disease, raising the question of whether dental intervention in Alzheimer's patients can be beneficial as well. Unfortunately, all previous single-domain interventions have been shown to have limited benefit to patients. However, the latest studies indicate that combining these efforts into multidomain approaches may have increased preventive or therapeutic potential. Therefore, as another emphasis in this review, we provide an overview of current literature dealing with studies combining the above-mentioned approaches and discuss potential advantages compared to monotherapies. Considering current literature and intervention options, we also propose a multidomain interdisciplinary approach for the treatment of Alzheimer's disease patients that synergistically links the individual approaches. In conclusion, this review highlights the need to combine different approaches in an interdisciplinary manner, to address the future challenges of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Ablinger
- Speech and Language Therapy, Campus Bonn, SRH University of Applied Health Sciences, 53111 Bonn, Germany
| | - Katharina Dressel
- Speech and Language Therapy, Campus Düsseldorf, SRH University of Applied Health Sciences, 40210 Düsseldorf, Germany
| | - Thea Rott
- Interdisciplinary Periodontology and Prevention, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Anna Andrea Lauer
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Michael Tiemann
- Sport Science, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - João Pedro Batista
- Sport Science and Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Tim Taddey
- Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Heike Sabine Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
20
|
Wang X, Xiao A, Yang Y, Zhao Y, Wang CC, Wang Y, Han J, Wang Z, Wen M. DHA and EPA Prevent Seizure and Depression-Like Behavior by Inhibiting Ferroptosis and Neuroinflammation via Different Mode-of-actions in a Pentylenetetrazole-Induced Kindling Model in Mice. Mol Nutr Food Res 2022; 66:e2200275. [PMID: 36099650 DOI: 10.1002/mnfr.202200275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Indexed: 11/06/2022]
Abstract
SCOPE It has been reported that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anticonvulsant effects, yet the respective mechanism of EPA and DHA on epilepsy are still unclarified. This study aimed to investigate the effect of EPA and DHA on pentylenetetrazol (PTZ) induced seizures and depression. METHODS AND RESULTS The administration of EPA and DHA at a dose of 1% (w/w) significantly inhibited PTZ-induced seizures and depressive-like behavior, whereas EPA outcompetes DHA. Further mechanistic studies revealed that the higher effect of EPA can be partly attributed to the promotion of M2 polarization, inhibition of M1 polarization of microglia, and lower iron content in the brain, resulting from the stronger activation of nuclear factor E2-related factor 2 (Nrf2). We found that DHA and EPA comparably inhibited NLRP3 inflammasome activation but with different mode-of-actions: EPA preferred to inhibit the binding of NLRP3 and ASC, while DHA decreased the protein levels of ASC and Caspase-1. CONCLUSIONS These results indicated that DHA and EPA could efficaciously alleviate PTZ-induced seizure and depressive-like behavior but with different efficiency and molecular mechanisms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xueyan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Aiai Xiao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Yueqi Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Yingcai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Cheng Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
21
|
Taoro-González L, Pereda D, Valdés-Baizabal C, González-Gómez M, Pérez JA, Mesa-Herrera F, Canerina-Amaro A, Pérez-González H, Rodríguez C, Díaz M, Marin R. Effects of Dietary n-3 LCPUFA Supplementation on the Hippocampus of Aging Female Mice: Impact on Memory, Lipid Raft-Associated Glutamatergic Receptors and Neuroinflammation. Int J Mol Sci 2022; 23:7430. [PMID: 35806435 PMCID: PMC9267073 DOI: 10.3390/ijms23137430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
Long-chain polyunsaturated fatty acids (LCPUFA), essential molecules whose precursors must be dietary supplied, are highly represented in the brain contributing to numerous neuronal processes. Recent findings have demonstrated that LCPUFA are represented in lipid raft microstructures, where they favor molecular interactions of signaling complexes underlying neuronal functionality. During aging, the brain lipid composition changes affecting the lipid rafts' integrity and protein signaling, which may induce memory detriment. We investigated the effect of a n-3 LCPUFA-enriched diet on the cognitive function of 6- and 15-months-old female mice. Likewise, we explored the impact of dietary n-3 LCPUFAs on hippocampal lipid rafts, and their potential correlation with aging-induced neuroinflammation. Our results demonstrate that n-3 LCPUFA supplementation improves spatial and recognition memory and restores the expression of glutamate and estrogen receptors in the hippocampal lipid rafts of aged mice to similar profiles than young ones. Additionally, the n-3 LCPUFA-enriched diet stabilized the lipid composition of the old mice's hippocampal lipid rafts to the levels of young ones and reduced the aged-induced neuroinflammatory markers. Hence, we propose that n-3 LCPUFA supplementation leads to beneficial cognitive performance by "rejuvenating" the lipid raft microenvironment that stabilizes the integrity and interactions of memory protein players embedded in these microdomains.
Collapse
Affiliation(s)
- Lucas Taoro-González
- Research Unit, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain;
- Instituto de Tecnologías Biomédicas de Canarias (ITB), University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (M.G.-G.); (C.R.)
| | - Daniel Pereda
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (D.P.); (C.V.-B.); (A.C.-A.)
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Catalina Valdés-Baizabal
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (D.P.); (C.V.-B.); (A.C.-A.)
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Miriam González-Gómez
- Instituto de Tecnologías Biomédicas de Canarias (ITB), University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (M.G.-G.); (C.R.)
- Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
- Instituto de Neurociencia Cognitiva (NeuroCog), University of La Laguna, 38205 San Cristóbal de La Laguna, Spain
| | - José A. Pérez
- Department of Animal Biology, Edaphology and Geology, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (D.P.); (C.V.-B.); (A.C.-A.)
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Herminia Pérez-González
- Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Covadonga Rodríguez
- Instituto de Tecnologías Biomédicas de Canarias (ITB), University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (M.G.-G.); (C.R.)
- Department of Animal Biology, Edaphology and Geology, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Mario Díaz
- Instituto de Neurociencia Cognitiva (NeuroCog), University of La Laguna, 38205 San Cristóbal de La Laguna, Spain
- Department of Physics, Faculty of Sciences, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- IUETSP (Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias), University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain; (D.P.); (C.V.-B.); (A.C.-A.)
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, 38200 Santa Cruz de Tenerife, Spain
| |
Collapse
|
22
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|
23
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
24
|
Pontifex MG, Martinsen A, Saleh RNM, Harden G, Fox C, Muller M, Vauzour D, Minihane AM. DHA-Enriched Fish Oil Ameliorates Deficits in Cognition Associated with Menopause and the APOE4 Genotype in Rodents. Nutrients 2022; 14:nu14091698. [PMID: 35565665 PMCID: PMC9103304 DOI: 10.3390/nu14091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Female APOE4 carriers have a greater predisposition to developing Alzheimer’s disease (AD) compared to their male counterparts, which may partly be attributed to menopause. We previously reported that a combination of menopause and APOE4 led to an exacerbation of cognitive and neurological deficits, which were associated with reduced brain DHA and DHA:AA ratio. Here, we explored whether DHA-enriched fish oil (FO) supplementation mitigated the detrimental impact of these risk factors. Whilst DHA-enriched fish oil improved recognition memory (NOR) in APOE4 VCD (4-vinylcyclohexene diepoxide)-treated mice (p < 0.05), no change in spatial working memory (Y-maze) was observed. FO supplementation increased brain DHA and nervonic acid and the DHA:AA ratio. The response of key bioenergetic and blood−brain barrier related genes and proteins provided mechanistic insights into these behavioural findings, with increased BDNF protein concentration as well as mitigation of aberrant Erβ, Cldn1 and Glut-5 expression in APOE4 mice receiving fish oil supplementation (p < 0.05). In conclusion, supplementation with a physiologically relevant dose of DHA-enriched fish oil appears to offer protection against the detrimental effects of menopause, particularly in “at-risk” APOE4 female carriers.
Collapse
Affiliation(s)
- Matthew G. Pontifex
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
- Correspondence:
| | - Anneloes Martinsen
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| | - Rasha N. M. Saleh
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Glenn Harden
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
- Exeter Medical School, University of Exeter, Exeter EX4 4PY, UK
| | - Michael Muller
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| | - Anne-Marie Minihane
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| |
Collapse
|
25
|
Zhang T, Chen L, Guo X, Li S, He X, Pei S, Li D. N-3 polyunsaturated fatty acids prevent the D-galactose-induced cognitive impairment by up-regulating the levels of 5-hydroxymethylcytosine in the mouse brain. Food Funct 2022; 13:4101-4113. [PMID: 35316827 DOI: 10.1039/d1fo04420f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Decreased 5-hydroxymethylcytosine (5hmC) levels caused by mitochondrial dysfunction in the brain are closely associated with the development of neurodegenerative disease. It has been reported that n-3 polyunsaturated fatty acids (PUFAs) prevent cognitive dysfunction by improving mitochondrial function in the brain. However, whether n-3 PUFA prevents cognitive dysfunction by increasing the levels of 5hmC in the brain is undisclosed. Mice were randomly divided into six groups (n = 10), injected with D-galactose (200 mg kg-1 day-1) for the model group and given different oils [0.1 mL per 10 g body weight per day, fish oil (FO), peony seed oil (PSO), corn oil (CO) and olive oil (OO)] for the prevention groups, and injected with the same dose of saline for the normal control group (NC) for 10 weeks, respectively. Peony seed oil and fish oil have shown preventive effects on D-galactose-induced cognitive dysfunction in behavioral tests. The content of docosahexaenoic acid (C22:6n-3, DHA content) in the brain was significantly higher in FO and PSO groups than in the other groups. Brain oxidative stress and neuronal apoptosis were significantly lower in PSO and FO groups than in the other groups. RNA-seq results showed that the different genes between PSO and FO compared with the model group were involved in the DNA demethylation process and the 5-methylcytosine metabolic process. The brain levels of 5hmC and the ten-eleven translocation family of dioxygenases (TETs) were significantly higher in FO and PSO groups compared with the model group, as analyzed by dot-blot and western blot. In conclusion, peony seed oil and fish oil increased the C22:6n-3 content, which activated the TET activity, led to up-regulation of the 5hmc level, resulted in inhibition of neuronal apoptosis, and then improved the cognitive function in D-gal-induced mice.
Collapse
Affiliation(s)
- Tianyu Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Lei Chen
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Xin He
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Shengjie Pei
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| |
Collapse
|
26
|
Shen J, Li J, Hua Y, Ding B, Zhou C, Yu H, Xiao R, Ma W. Association between the Erythrocyte Membrane Fatty Acid Profile and Cognitive Function in the Overweight and Obese Population Aged from 45 to 75 Years Old. Nutrients 2022; 14:nu14040914. [PMID: 35215564 PMCID: PMC8878599 DOI: 10.3390/nu14040914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/21/2022] Open
Abstract
Dietary fatty acid intake is closely related to the cognitive function of the overweight and obese population. However, few studies have specified the correlation between exact fatty acids and cognitive functions in different body mass index (BMI) groups. We aimed to explain these relationships and reference guiding principles for the fatty acid intake of the overweight and obese population. Normal weight, overweight, and obese participants were recruited to receive a cognitive function assessment and dietary survey, dietary fatty acids intake was calculated, and the erythrocyte membrane fatty acid profile was tested by performing a gas chromatography analysis. The percentages of saturated fatty acids (SFAs) in the obese group were higher, while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were lower than in the normal weight and overweight groups. In the erythrocyte membrane, the increase of n-3 PUFAs was accompanied by cognitive decline in the overweight group, which could be a protective factor for cognitive function in the obese group. High n-6 PUFAs intake could exacerbate the cognitive decline in the obese population. Dietary fatty acid intake had different effects on the cognitive function of overweight and obese people, especially the protective effect of n-3 PUFAs; more precise dietary advice is needed to prevent cognitive impairment.
Collapse
Affiliation(s)
- Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Yinan Hua
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Bingjie Ding
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;
| | - Cui Zhou
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
- Correspondence:
| |
Collapse
|
27
|
Shen J, Yu H, Li K, Ding B, Xiao R, Ma W. The Association Between Plasma Fatty Acid and Cognitive Function Mediated by Inflammation in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1423-1436. [PMID: 35573864 PMCID: PMC9091472 DOI: 10.2147/dmso.s353449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To verify the mediating role of inflammatory factors in plasma fatty acid-induced changes in cognitive function in patients with type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS In this study, we evaluated the cognitive function of 372 Chinese patients (the average age was 58.00 (52.50, 63.00) years) with T2DM by using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA), with plasma fatty acids measured by gas chromatography analysis and inflammatory cytokines determined by immune turbidimetric analysis and enzyme-linked immunosorbent assay (ELISA) to investigate whether there was a correlation between the plasma fatty acids, inflammatory cytokine levels and cognitive test scores in Chinese patients with T2DM. RESULTS We found that the increase of waist circumference and hip circumference might lead to cognitive impairment and induce the inflammatory response. Higher saturated fatty acids (SFAs) levels in plasma were linked to cognitive decline, while higher monounsaturated fatty acids (MUFAs) intake might be a protective factor for cognitive function. In addition, higher levels of plasma n-6 polyunsaturated fatty acids (n-6 PUFAs) stood out as having association with lower cognitive function scores, while higher level of plasma C22:6 n-3 could be a predictor of better cognitive function. In our study, higher SFAs led to higher proinflammatory factor levels. Apart from that, MUFAs and stearoyl-CoA desaturase-18 (SCD-18) were positively related to hypersensitive C-reactive protein (hs-CRP). Meanwhile, higher level of plasma C20:0 could lead to better MMSE delayed recall by reduce the expression of hs-CRP. CONCLUSION Levels of plasma SFAs, C18:3 n-6, and C20:3 n-6 could be a predictor for worse cognitive function, while MUFAs and C22:6 n-3 could be a predictor for better cognitive function. The level of hs-CRP could be a mediator of C20:0 induced the change of cognitive function.
Collapse
Affiliation(s)
- Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Kaifeng Li
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, People’s Republic of China
| | - Bingjie Ding
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Weiwei Ma, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China, Tel/Fax +86-10-83911651, Email
| |
Collapse
|
28
|
Schmidt M, Rossetti AC, Brandwein C, Riva MA, Gass P, Elsner P, Hesse-Macabata J, Hipler UC, Smesny S, Milleit B. Brain Derived Neurotrophic Factor Deficiency is Associated with Cognitive Impairment and Elevated Phospholipase A2 Activity in Plasma of Mice. Neuroscience 2022; 480:167-177. [PMID: 34801657 DOI: 10.1016/j.neuroscience.2021.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Decreased levels of Brain-Derived Neurotrophic Factor (BDNF) are a common finding in schizophrenia. Another well-documented protein linked to schizophrenia is intracellular Ca2+-independent Phospholipase (PLA2). However, the potential association between PLA2 and BDNF with regard to schizophrenia has yet to be examined. In the present study, male and female BDNF knockout mice, a possible genetic model of schizophrenia, were exposed to prenatal stress and tested in the nest test, open field test and T-maze. Following behavioral tests, whole brain and plasma samples were harvested to measure the activity of PLA2. BDNF knockout mice showed cognitive deficits in the T-maze. Furthermore, there was a quadratic association of PLA2 with performance in the open field test. Moreover, BDNF deficiency and female sex were associated with elevated plasma PLA2 levels. The cognitive impairment of BDNF heterozygous mice as well as their increased PLA2 activity in plasma is consistent with findings in schizophrenia patients. The particular elevation of PLA2 activity in females may partly explain sex differences of clinical symptoms in schizophrenia (e.g. age of onset, severity of symptoms). Additionally, PLA2 was significantly correlated with body and adrenal weight after weaning, whereby the latter emphasizes the possible connection of PLA2 with steroidogenesis.
Collapse
Affiliation(s)
- Michaela Schmidt
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany.
| | - Andrea Carlo Rossetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Christiane Brandwein
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Peter Elsner
- Department of Psychiatry, University Hospital Jena, D-07743 Jena, Germany
| | - Jana Hesse-Macabata
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Uta-Christina Hipler
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Stefan Smesny
- Department of Psychiatry, University Hospital Jena, D-07743 Jena, Germany
| | - Berko Milleit
- Department of Psychiatry, University Hospital Jena, D-07743 Jena, Germany; Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| |
Collapse
|
29
|
Chataigner M, Lucas C, Di Miceli M, Pallet V, Laye S, Mehaignerie A, Bouvret E, Dinel AL, Joffre C. Dietary Fish Hydrolysate Improves Memory Performance Through Microglial Signature Remodeling During Aging. Front Nutr 2021; 8:750292. [PMID: 34888336 PMCID: PMC8650686 DOI: 10.3389/fnut.2021.750292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Brain aging is characterized by a chronic low-grade inflammation, which significantly impairs cognitive function. Microglial cells, the immunocompetent cells of the brain, present a different phenotype, switching from a homeostatic signature (M0) to a more reactive phenotype called “MGnD” (microglial neurodegenerative phenotype), leading to a high production of pro-inflammatory cytokines. Furthermore, microglial cells can be activated by age-induced gut dysbiosis through the vagus nerve or the modulation of the peripheral immune system. Nutrients, in particular n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides, display powerful immunomodulatory properties, and can thus prevent age-related cognitive decline. The objective of this study was to investigate the effects of n-3 LC-PUFAs and low molecular weight peptides contained in a marine by-product-derived hydrolysate on microglial phenotypes and intestinal permeability and their consequences on cognition in mice. We demonstrated that the hydrolysate supplementation for 8 weeks prevented short- and long-term memory decline during aging. These observations were linked to the modulation of microglial signature. Indeed, the hydrolysate supplementation promoted homeostatic microglial phenotype by increasing TGF-β1 expression and stimulated phagocytosis by increasing Clec7a expression. Moreover, the hydrolysate supplementation promoted anti-inflammatory intestinal pathway and tended to prevent intestinal permeability alteration occurring during aging. Therefore, the fish hydrolysate appears as an interesting candidate to prevent cognitive decline during aging.
Collapse
Affiliation(s)
- Mathilde Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Abyss Ingredients, Caudan, France
| | - Céline Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Mathieu Di Miceli
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Sophie Laye
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | | | - Anne-Laure Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| |
Collapse
|
30
|
Mishra S, Singh VJ, Chawla PA, Chawla V. Neuroprotective Role of Nutritional Supplementation in Athletes. Curr Mol Pharmacol 2021; 15:129-142. [PMID: 34886789 DOI: 10.2174/1874467214666211209144721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. AIMS The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. METHODS This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. RESULTS The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. CONCLUSION Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacology, SRM College of Pharmacy, Delhi-NCR. India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, Punjab. India
| |
Collapse
|
31
|
Sirajunnisa AR, Surendhiran D, Kozani PS, Kozani PS, Hamidi M, Cabrera-Barjas G, Delattre C. An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Wang CC, Du L, Shi HH, Ding L, Yanagita T, Xue CH, Wang YM, Zhang TT. Dietary EPA-Enriched Phospholipids Alleviate Chronic Stress and LPS-Induced Depression- and Anxiety-Like Behavior by Regulating Immunity and Neuroinflammation. Mol Nutr Food Res 2021; 65:e2100009. [PMID: 34219360 DOI: 10.1002/mnfr.202100009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/10/2021] [Indexed: 12/17/2022]
Abstract
SCOPE A growing number of studies have reported the effects of eicosapentaenoic acid (EPA) and terrestrial phospholipids on ameliorating mood disorders. Marine-derived EPA-enriched phospholipids (EPA-PL) exhibit the structural characteristics of EPA and phospholipids. However, the effect of dietary EPA-PL, and the differences between amphiphilic EPA-PL and lyophobic EPA on mood disorders had not been studied. METHODS AND RESULTS A comparative investigation to determine the effects of dietary EPA-enriched ethyl ester (EPA-EE) and EPA-PL on improving depression- and anxiety-like behavior in a mouse model is performed, induced by 4 week chronic unpredictable mild stress (CUMS) coupled with lipopolysaccharide (LPS) challenge. It is found that dietary 4 week 0.6% (w/w) EPA-PL rescued depression- and anxiety-like behavior to a greater extent than did EPA-EE. Moreover, dietary EPA-PL significantly reduced the immobility time by 56.6%, close to the normal level, in forced swimming test, which revealed a reversal of depression-like behavior. Further studies revealed that dietary EPA-PL regulated immunity, monoamine systems, and the hypothalamic-pituitary-adrenal (HPA) axis by multi-target interactions, including inhibition of neuroinflammation and apoptosis. CONCLUSION EPA-PL exerted superior effects to EPA-EE in alleviating depression- and anxiety-like behavior. The data suggest potential novel candidate or targeted dietary patterns to prevent and treat mood disorder.
Collapse
Affiliation(s)
- Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, P. R. China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Lin Ding
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Teruyoshi Yanagita
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, P. R. China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, P. R. China
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, 840-8502, Japan
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, P. R. China
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, 840-8502, Japan
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, P. R. China
| |
Collapse
|
33
|
Talebi M, Kakouri E, Talebi M, Tarantilis PA, Farkhondeh T, İlgün S, Pourbagher-Shahri AM, Samarghandian S. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer's disease. Expert Rev Neurother 2021; 21:625-642. [PMID: 33910446 DOI: 10.1080/14737175.2021.1923479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanying memory deficits. The available pharmaceutical care has some limitations mostly entailing side effects, shelf-life, and patient's compliance. The momentous implications of nutraceuticals in AD have attracted scientists. Several preclinical studies for the investigation of nutraceuticals have been conducted.Areas covered: This review focuses on the potential use of a nutraceuticals-based therapeutic approach to treat and prevent AD. Increasing knowledge of AD pathogenesis has led to the discovery of new therapeutic targets including pathophysiological mechanisms and various cascades. Hence, the present contribution will attend to the most popular and effective nutraceuticals with proposed brief mechanisms entailing antioxidant, anti-inflammatory, autophagy regulation, mitochondrial homeostasis, and more. Therefore, even though the effectiveness of nutraceuticals cannot be dismissed, it is essential to do further high-quality randomized clinical trials.Expert opinion: According to the potential of nutraceuticals to combat AD as multi-target directed drugs, there is critical importance to assess them as feasible lead compounds for drug discovery and development. To the best of the authors' knowledge, modification of blood-brain barrier permeability, bioavailability, and features of randomized clinical trials should be considered in prospective studies.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Eleni Kakouri
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States.,Food Safety Net Services, San Antonio, Texas, United States
| | - Petros A Tarantilis
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
34
|
Lionetti V, Bollini S, Coppini R, Gerbino A, Ghigo A, Iaccarino G, Madonna R, Mangiacapra F, Miragoli M, Moccia F, Munaron L, Pagliaro P, Parenti A, Pasqua T, Penna C, Quaini F, Rocca C, Samaja M, Sartiani L, Soda T, Tocchetti CG, Angelone T. Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacol Res 2021; 168:105581. [PMID: 33781873 PMCID: PMC7997688 DOI: 10.1016/j.phrs.2021.105581] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; UOSVD Anesthesia and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy.
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Raffaele Coppini
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Andrea Gerbino
- Department of Bioscience, Biotechnology and Biopharmaceuticals, University of Bari, Bari, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Italy
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fabio Mangiacapra
- Unit of Cardiovascular Science, Campus Bio-Medico University, Rome, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy.
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Pasquale Pagliaro
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Astrid Parenti
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Teresa Pasqua
- Department of Health Science, University of Magna Graecia, Catanzaro, Italy
| | - Claudia Penna
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - Michele Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - Laura Sartiani
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlo Gabriele Tocchetti
- Interdepartmental Center of Clinical and Translational Research, Federico II University, Naples, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| |
Collapse
|
35
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
36
|
Mishra J, Vishwakarma J, Malik R, Gupta K, Pandey R, Maurya SK, Garg A, Shukla M, Chattopadhyay N, Bandyopadhyay S. Hypothyroidism Induces Interleukin-1-Dependent Autophagy Mechanism as a Key Mediator of Hippocampal Neuronal Apoptosis and Cognitive Decline in Postnatal Rats. Mol Neurobiol 2021; 58:1196-1211. [PMID: 33106949 DOI: 10.1007/s12035-020-02178-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) is essential for brain development, and hypothyroidism induces cognitive deficits in children and young adults. However, the participating mechanisms remain less explored. Here, we examined the molecular mechanism, hypothesizing the involvement of a deregulated autophagy and apoptosis pathway in hippocampal neurons that regulate cognitive functions. Therefore, we used a rat model of developmental hypothyroidism, generated through methimazole treatment from gestation until young adulthood. We detected that methimazole stimulated the autophagy mechanism, characterized by increased LC3B-II, Beclin-1, ATG7, and ATG5-12 conjugate and decreased p-mTOR/mTOR and p-ULK1/ULK1 autophagy regulators in the hippocampus of developing and young adult rats. This methimazole-induced hippocampal autophagy could be inhibited by thyroxine treatment. Subsequently, probing the upstream mediators of autophagy revealed an increased hippocampal neuroinflammation, marked by upregulated interleukin (IL)-1alpha and beta and activated microglial marker, Iba1, promoting neuronal IL-1 receptor-1 expression. Hence, IL-1R-antagonist (IL-1Ra), which reduced hippocampal neuronal IL-1R1, also inhibited the enhanced autophagy in hypothyroid rats. We then linked these events with hypothyroidism-induced apoptosis and loss of hippocampal neurons, where we observed that like thyroxine, IL-1Ra and autophagy inhibitor, 3-methyladenine, reduced the cleaved caspase-3 and TUNEL-stained apoptotic neurons and enhanced Nissl-stained neuronal count in methimazole-treated rats. We further related these molecular results with cognition through Y-maze and passive avoidance tests, demonstrating an IL-1Ra and 3-methyladenine-mediated improvement in learning-memory performances of the hypothyroid rats. Taken together, our study enlightens the critical role of neuroinflammation-dependent autophagy mechanism in TH-regulated hippocampal functions, disrupted in developmental hypothyroidism.
Collapse
Affiliation(s)
- Juhi Mishra
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Department of Biochemistry, Babu Banarasi Das University, Faizabad Road, Lucknow, Uttar Pradesh, India
| | - Jitendra Vishwakarma
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rafat Malik
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shailendra Kumar Maurya
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Manoj Shukla
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
37
|
Wang Y, Lim YY, He Z, Wong WT, Lai WF. Dietary phytochemicals that influence gut microbiota: Roles and actions as anti-Alzheimer agents. Crit Rev Food Sci Nutr 2021; 62:5140-5166. [PMID: 33559482 DOI: 10.1080/10408398.2021.1882381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The last decide has witnessed a growing research interest in the role of dietary phytochemicals in influencing the gut microbiota. On the other hand, recent evidence reveals that dietary phytochemicals exhibit properties of preventing and tackling symptoms of Alzheimer's disease, which is a neurodegenerative disease that has also been linked with the status of the gut microbiota over the last decade. Till now, little serious discussions, however, have been made to link recent understanding of Alzheimer's disease, dietary phytochemicals and the gut microbiota together and to review the roles played by phytochemicals in gut dysbiosis induced pathologies of Alzheimer's disease. Deciphering these connections can provide insights into the development and future use of dietary phytochemicals as anti-Alzheimer drug candidates. This review aims at presenting latest evidence in the modulating role of phytochemicals in the gut microbiota and its relevance to Alzheimer's disease and summarizing the mechanisms behind the modulative activities. Limitations of current research in this field and potential directions will also be discussed for future research on dietary phytochemicals as anti-Alzheimer agents.
Collapse
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia.,School of Dentistry, University of Queensland, Herston, Queensland, Australia
| | - Yau-Yan Lim
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.,School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
38
|
Endocannabinoids and aging-Inflammation, neuroplasticity, mood and pain. VITAMINS AND HORMONES 2021; 115:129-172. [PMID: 33706946 DOI: 10.1016/bs.vh.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aging is associated with changes in hormones, slowing of metabolism, diminished physiological processes, chronic inflammation and high exposure to oxidative stress factors, generally described as the biological cost of living. Lifestyle interventions of diet and exercise can improve the quality of life during aging and lower diet-related chronic disease. The endocannabinoid system (ECS) has important effects on systemic metabolism and physiological systems, including the central and peripheral nervous systems. Exercise can reduce the loss of muscle mass and improve strength, and increase the levels of endocannabinoids (eCB) in brain and blood. Although the ECS exerts controls on multiple systems throughout life it affords benefits to natural aging. The eCB are synthesized from polyunsaturated fatty acids (PUFA) and the primary ones are produced from arachidonic acid (n-6 PUFA) and others from the n-3 PUFA, namely eicosapentaenoic and docosahexaenoic acids. The eCB ligands bind to their receptors, CB1 and CB2, with effects on appetite stimulation, metabolism, immune functions, and brain physiology and neuroplasticity. Dietary families of PUFA are a primary factor that can influence the types and levels of eCB and as a consequence, the downstream actions when the ligands bind to their receptors. Furthermore, the association of eCB with the synthesis of oxylipins (OxL) is a connection between the physiological actions of eCB and the lipid derived immunological OxL mediators of inflammation. OxL are ubiquitous and influence neuroinflammation and inflammatory processes. The emerging actions of eCB on neuroplasticity, well-being and pain are important to aging. Herein, we present information about the ECS and its components, how exercise and diet affects specific eCB, their role in neuroplasticity, neuroinflammation, pain, mood, and relationship to OxL. Poor nutrition status and low nutrient intakes observed with many elderly are reasons to examine the role of dietary PUFA actions on the ECS to improve health.
Collapse
|
39
|
Liu J, Jin Y, Ye Y, Tang Y, Dai S, Li M, Zhao G, Hong G, Lu ZQ. The Neuroprotective Effect of Short Chain Fatty Acids Against Sepsis-Associated Encephalopathy in Mice. Front Immunol 2021; 12:626894. [PMID: 33584734 PMCID: PMC7876449 DOI: 10.3389/fimmu.2021.626894] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Short chain fatty acids (SCFAs) are known to be actively involved in multiple brain disorders, but their roles in sepsis-associated encephalopathy (SAE) remain unclear. Here, we investigated the neuroprotective effects of SCFAs on SAE in mice. Male C57BL/6 mice were intragastrically pretreated with SCFAs for seven successive days, and then subjected to SAE induced by cecal ligation and puncture. The behavioral impairment, neuronal degeneration, and levels of inflammatory cytokines were assessed. The expressions of tight junction (TJ) proteins, including occludin and zoula occludens-1 (ZO-1), cyclooxygenase-2 (COX-2), cluster of differentiation 11b (CD11b), and phosphorylation of JNK and NF-κB p65 in the brain, were measured by western blot and Immunofluorescence analysis. Our results showed that SCFAs significantly attenuated behavioral impairment and neuronal degeneration, and decreased the levels of IL-1β and IL-6 in the brain of SAE mice. Additionally, SCFAs upregulated the expressions of occludin and ZO-1 and downregulated the expressions of COX-2, CD11b, and phosphorylation of JNK and NF-κB p65 in the brain of SAE mice. These findings suggested that SCFAs could exert neuroprotective effects against SAE in mice.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangjie Jin
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanglie Ye
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yahui Tang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shanshan Dai
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengfang Li
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangju Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangliang Hong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhong-Qiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Chataigner M, Mortessagne P, Lucas C, Pallet V, Layé S, Mehaignerie A, Bouvret E, Dinel AL, Joffre C. Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. Brain Behav Immun 2021; 91:716-730. [PMID: 32976934 DOI: 10.1016/j.bbi.2020.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Brain aging is characterized by a decline in cognitive functions, which can lead to the development of neurodegenerative pathologies. Age-related spatial learning and memory deficits are associated with a chronic low-grade inflammation. Anxiety disorders and stress response alterations, occurring for a part of the elderly, have also been linked to an increased neuroinflammation and thus, an accelerated cognitive decline. Nutrition is an innovative strategy to prevent age-related cognitive impairments. Among the nutrients, n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides from proteins, especially those from marine resources, are good candidates for their immunomodulatory, anxiolytic and neuroprotective properties. The aim of this study is to determine the combined effect of n-3 LC-PUFAs and low molecular weight peptides on cognitive functions, and their mechanism of action. We are the first to show that a dietary supplementation with a fish hydrolysate containing n-3 LC-PUFAs and low molecular weight peptides prevented the age-related spatial short-term memory deficits and modulated navigation strategies adopted during spatial learning. In addition, the fish hydrolysate displayed anxiolytic activities with the reduction of anxiety-like behaviour in aged mice, restored the plasmatic corticosterone levels similar to adult animals following an acute stress and modulated the hypothalamic stress response. These effects on behaviour can be explained by the immunomodulatory and neuroprotective properties of the fish hydrolysate that limited microgliosis in vivo, decreased LPS-induced expression of pro-inflammatory cytokines and increased the expression of growth factors such as BDNF and NGF in vitro. Thus, n-3 LC-PUFAs and low molecular weight peptides contained in the fish hydrolysate can play an important role in the limitation of neuroinflammation and stress response alterations during aging and represent a potential strategy for the prevention of age-related cognitive decline.
Collapse
Affiliation(s)
- M Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; Abyss Ingredients, 56850 Caudan, France
| | - P Mortessagne
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - V Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - S Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | - E Bouvret
- Abyss Ingredients, 56850 Caudan, France
| | - A L Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
41
|
Tsuboi H, Sakakibara H, Matsunaga M, Tatsumi A, Yamakawa-Kobayashi K, Yoshida N, Shimoi K. Omega-3 Eicosapentaenoic Acid Is Related to Happiness and a Sense of Fulfillment-A Study among Female Nursing Workers. Nutrients 2020; 12:nu12113462. [PMID: 33187281 PMCID: PMC7696953 DOI: 10.3390/nu12113462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Omega (ω) 3 fatty acid (FA) is a polyunsaturated FA (PUFA) that can modulate some mental statuses. However, most studies have not considered the functional differences between eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We investigated associations among happiness, a sense of fulfillment and serum ω3 PUFA levels. Methods: Participants were 133 female staff from a hospital and nursing homes. Happiness was measured using the Japanese version of the subjective happiness scale (SHS); a sense of fulfillment was assessed using a visual analogue scale. Serum FA concentrations were measured. A partial correlation test and a regression model were applied. Results: The SHS scores showed significantly positive correlations with a sense of fulfillment, DHA% and EPA% (p < 0.05, < 0.05 and < 0.005, respectively), after controlling for age, BMI, menopause, snacking habits and leisure-time physical activities. A sense of fulfillment was significantly negatively correlated with α-linoleic acid%, and positively correlated with DHA% and EPA% (p < 0.05, < 0.05 and < 0.005, respectively), after controlling for the confounders. A regression model showed that a sense of fulfillment, EPA, and not stopping menstruation explained happiness (standardised beta, B = 0.18, p < 0.05; B = 0.24, p < 0.01; and B = 0.32, and p < 0.05, respectively), whereas age, BMI and snacking habits could not. Simultaneously, a regression model could not explain the association between DHA and happiness. Conclusion: Happiness was related with serum EPA%, a sense of fulfillment, and premenopause.
Collapse
Affiliation(s)
- Hirohito Tsuboi
- Institute of Medical, Pharmaceutical & Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan;
- Department of Neurology and Internal Psychosomatic Medicine, Bantane Hospital, Fujita Health University School of Medicine, Nagoya 454-8509, Japan;
- Correspondence:
| | - Hiroyuki Sakakibara
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.Y.-K.); (K.S.)
| | - Masahiro Matsunaga
- Department of Neurology and Internal Psychosomatic Medicine, Bantane Hospital, Fujita Health University School of Medicine, Nagoya 454-8509, Japan;
- Department of Health and Psychosocial Medicine, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Asami Tatsumi
- Department of Nursing, University of Human Environments, Obu 474-0035, Japan;
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.Y.-K.); (K.S.)
| | - Naoko Yoshida
- Institute of Medical, Pharmaceutical & Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Kayoko Shimoi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.Y.-K.); (K.S.)
| |
Collapse
|
42
|
Parolini C. Marine n-3 polyunsaturated fatty acids: Efficacy on inflammatory-based disorders. Life Sci 2020; 263:118591. [PMID: 33069735 DOI: 10.1016/j.lfs.2020.118591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a physiological response to injury, stimulating tissue repair and regeneration. However, the presence of peculiar individual conditions can negatively perturb the resolution phase eventually leading to a state of low-grade systemic chronic inflammation, characterized by tissue and organ damages and increased susceptibility to non-communicable disease. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are able to influence many aspects of this process. Experiments performed in various animal models of obesity, Alzheimer's disease and multiple sclerosis have demonstrated that n-3 PUFAs can modulate the basic mechanisms as well as the disease progression. This review describes the available data from experimental studies to the clinical trials.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
43
|
Chiu HF, Venkatakrishnan K, Wang CK. The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. J Tradit Complement Med 2020; 10:434-439. [PMID: 32953558 PMCID: PMC7484964 DOI: 10.1016/j.jtcme.2020.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent times, many scientists have given great attention to nutraceuticals (complementary medicine) as it widely used for promoting health status. In particular for the prevention and treatment of various neurological diseases or disorders without or less adverse effects. The current mini-review was intended to compile all popular (major) nutraceuticals against various neurodegenerative diseases (NDDs) including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) with special reference to clinical trials. Preliminary reviews indicated that nutraceuticals like curcumin, resveratrol, Epigallocatechin-3-gallate (EGCG), Coenzyme Q10, ω-3 FA (DHA/EPA/ALA), showed better neuroprotective activity against various NDDs in human setting (clinical trial). Hence this contribution will focus only on those popular nutraceuticals with proposed brief mechanisms (antioxidant, anti-inflammatory, mitochondrial homeostasis, autophagy regulation, promote neurogenesis) and its recommendation. This mini-review would aid common people to choose better nutraceuticals to combat various NDDs along with standard neuroprotective agents and modified lifestyle pattern.
Collapse
Key Words
- AD, Alzheimer’s disease
- ATP, Adenosine triphosphate
- BBB, Blood-brain barrier
- Clinical trial
- HD, Huntington’s disease
- HO-1, Heme Oxygenase-1
- JNK, c-Jun N-terminal Kinase
- MAPK, Mitogen-activated protein kinase
- NDDs, neurodegenerative diseases
- NF-κB, Nuclear factor Kappa B
- Neurodegenerative diseases
- Neuroprotective agents
- Nrf2, Nuclear factor-E2-related factor
- Nutraceutical
- PD, Parkinson’s disease
- PI3K, Phosphatidylinositol-3-kinase
- SIRT1, Sirtuin 1
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Well-being, Taichung, ROC, Taiwan
| | - Kamesh Venkatakrishnan
- School OfNutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, ROC, Taiwan
| | - Chin-Kun Wang
- School OfNutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, ROC, Taiwan
| |
Collapse
|
44
|
Lipids Nutrients in Parkinson and Alzheimer's Diseases: Cell Death and Cytoprotection. Int J Mol Sci 2020; 21:ijms21072501. [PMID: 32260305 PMCID: PMC7178281 DOI: 10.3390/ijms21072501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, particularly Parkinson’s and Alzheimer’s, have common features: protein accumulation, cell death with mitochondrial involvement and oxidative stress. Patients are treated to cure the symptoms, but the treatments do not target the causes; so, the disease is not stopped. It is interesting to look at the side of nutrition which could help prevent the first signs of the disease or slow its progression in addition to existing therapeutic strategies. Lipids, whether in the form of vegetable or animal oils or in the form of fatty acids, could be incorporated into diets with the aim of preventing neurodegenerative diseases. These different lipids can inhibit the cytotoxicity induced during the pathology, whether at the level of mitochondria, oxidative stress or apoptosis and inflammation. The conclusions of the various studies cited are oriented towards the preventive use of oils or fatty acids. The future of these lipids that can be used in therapy/prevention will undoubtedly involve a better delivery to the body and to the brain by utilizing lipid encapsulation.
Collapse
|
45
|
Desale SE, Chinnathambi S. Role of dietary fatty acids in microglial polarization in Alzheimer's disease. J Neuroinflammation 2020; 17:93. [PMID: 32209097 PMCID: PMC7093977 DOI: 10.1186/s12974-020-01742-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Microglial polarization is an utmost important phenomenon in Alzheimer’s disease that influences the brain environment. Polarization depends upon the types of responses that cells undergo, and it is characterized by receptors present on the cell surface and the secreted cytokines to the most. The expression of receptors on the surface is majorly influenced by internal and external factors such as dietary lipids. Types of fatty acids consumed through diet influence the brain environment and glial cell phenotype and types of receptors on microglia. Reports suggest that dietary habits influence microglial polarization and the switching of microglial phenotype is very important in neurodegenerative diseases. Omega-3 fatty acids have more influence on the brain, and they are found to regulate the inflammatory stage of microglia by fine-tuning the number of receptors expressed on microglia cells. In Alzheimer’s disease, one of the pathological proteins involved is Tau protein, and microtubule-associated protein upon abnormal phosphorylation detaches from the microtubule and forms insoluble aggregates. Aggregated proteins have a tendency to propagate within the neurons and also become one of the causes of neuroinflammation. We hypothesize that tuning microglia towards anti-inflammatory phenotype would reduce the propagation of Tau in Alzheimer’s disease.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
46
|
Peng Z, Zhang C, Yan L, Zhang Y, Yang Z, Wang J, Song C. EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. Int J Mol Sci 2020; 21:ijms21051769. [PMID: 32150824 PMCID: PMC7084382 DOI: 10.3390/ijms21051769] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical evidence indicated that eicosapentaenoic acid (EPA) was more effective than docosahexaenoic acid (DHA) in depression treatment. However, possible mechanisms remain unclear. Here, a chronic unpredictable mild stress (CUMS)-induced model of depression was used to compare EPA and DHA anti-depressant effects. After EPA or DHA feeding, depression-like behavior, brain n-3/n-6 PUFAs profile, serum corticosterone and cholesterol concentration, hippocampal neurotransmitters, microglial and astrocyte related function, as well as neuronal apoptosis and survival signaling pathways were studied. EPA was more effective than DHA to ameliorate CUMS-induced body weight loss, and depression-like behaviors, such as increasing sucrose preference, shortening immobility time and increasing locomotor activity. CUMS-induced corticosterone elevation was reversed by bother fatty acids, while increased cholesterol was only reduced by EPA supplement. Lower hippocampal noradrenaline and 5-hydroxytryptamine concentrations in CUMS rats were also reversed by both EPA and DHA supplement. However, even though CUMS-induced microglial activation and associated increased IL-1β were inhibited by both EPA and DHA supplement, increased IL-6 and TNF-α levels were only reduced by EPA. Compared to DHA, EPA could improve CUMS-induced suppressive astrocyte biomarkers and associated BDNF-TrkB signaling. Moreover, EPA was more effective than DHA to attenuate CUMS-induced higher hippocampal NGF, GDNF, NF-κB, p38, p75, and bax expressions, but reversed bcl-2 reduction. This study for the first time revealed the mechanisms by which EPA was more powerful than DHA in anti-inflammation, normalizing astrocyte and neurotrophin function and regulating NF-κB, p38 and apoptosis signaling. These findings reveal the different mechanisms of EPA and DHA in clinical depression treatment.
Collapse
Affiliation(s)
- Zhilan Peng
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ling Yan
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyou Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiajia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence:
| |
Collapse
|
47
|
Wen XH, Guo QL, Guo JC. Effect of 9 - PAHSA on cognitive dysfunction in diabetic mice and its possible mechanism. Biochem Biophys Res Commun 2020; 524:525-532. [PMID: 32014256 DOI: 10.1016/j.bbrc.2020.01.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus (DM) is currently a major global health problem, which is associated with the development of cognitive dysfunction. However, although numerous clinical drugs for hyperglycemia have been used at present, safer and more effective therapeutic intervention strategies for diabetic cognitive impairments are still a huge challenge. Recently, several studies have indicated that a novel class of branched palmitic acid esters of hydroxyl stearic acids (PAHSAs) may have anti-diabetes and anti-inflammatory effects in insulin-resistant mice. Herein, whether the 9-PAHSA that one of the PAHSAs can attenuates DM-associated cognitive impairment in a mouse model of type 2 diabetes has been investigated. Our results showed that 9-PAHSA mildly prevented deficits of spatial working memory in Y-maze test while reversed the preference bias toward novel mice in Social choice test. Furthermore, the effect of REST on cognitive impairment of diabetes was explored for the first time. It was found that the expression of REST in diabetic mice increased, and the expression of target protein BDNF (Brain-derived neurotrophic factor) was decreased. After administration of 9-PAHSA, the situation was reversed. In summary, we conclude that exogenous supplement of 9-PAHSA can improve DM-related cognitive impairment to some extent, and the protective effect may be associated with decreased REST/NRSF (repressor element-1 silencing transcription factor/neuron-restrictive silence factor) and upregulated BDNF expression in frontal cortex.
Collapse
Affiliation(s)
- Xiao-Hong Wen
- State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Qi-Lin Guo
- State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Tanichi M, Shimizu K, Enomoto S, Koga M, Toda H, Nagamine M, Suzuki E, Nibuya M. The effects of eicosapentaenoic acid dietary supplementation on behavioral parameters and expression of hippocampal brain-derived neurotrophic factor in an animal model of post-traumatic stress disorder. Eur J Pharmacol 2019; 865:172751. [DOI: 10.1016/j.ejphar.2019.172751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
|
49
|
Bawari S, Tewari D, Argüelles S, Sah AN, Nabavi SF, Xu S, Vacca RA, Nabavi SM, Shirooie S. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res 2019; 148:104458. [DOI: 10.1016/j.phrs.2019.104458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
50
|
Joffre C, Rey C, Layé S. N-3 Polyunsaturated Fatty Acids and the Resolution of Neuroinflammation. Front Pharmacol 2019; 10:1022. [PMID: 31607902 PMCID: PMC6755339 DOI: 10.3389/fphar.2019.01022] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
In the past few decades, as a result of their anti-inflammatory properties, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), have gained greater importance in the regulation of inflammation, especially in the central nervous system (in this case known as neuroinflammation). If sustained, neuroinflammation is a common denominator of neurological disorders, including Alzheimer’s disease and major depression, and of aging. Hence, limiting neuroinflammation is a real strategy for neuroinflammatory disease therapy and treatment. Recent data show that n-3 LC-PUFAs exert anti-inflammatory properties in part through the synthesis of specialized pro-resolving mediators (SPMs) such as resolvins, maresins and protectins. These SPMs are crucially involved in the resolution of inflammation. They could be good candidates to resolve brain inflammation and to contribute to neuroprotective functions and could lead to novel therapeutics for brain inflammatory diseases. This review presents an overview 1) of brain n-3 LC-PUFAs as precursors of SPMs with an emphasis on the effect of n-3 PUFAs on neuroinflammation, 2) of the formation and action of SPMs in the brain and their biological roles, and the possible regulation of their synthesis by environmental factors such as inflammation and nutrition and, in particular, PUFA consumption.
Collapse
Affiliation(s)
- Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| | - Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France.,ITERG, Nutrition Health and Lipid Biochemistry Department, Canéjan, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| |
Collapse
|