1
|
Lkhagvasuren B, Pang ZP, Jadamba T, Hiramoto T, Cheslack–Postava K, Musa GJ, Hoven CW, Sudo N. Obesity and its associations with autonomic and cognitive functions in the general population. PLoS One 2025; 20:e0322802. [PMID: 40341659 PMCID: PMC12061429 DOI: 10.1371/journal.pone.0322802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/27/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Obesity poses a significant global health burden. This study aimed to investigate the prevalence of obesity in Mongolia and its associations with autonomic and cognitive functions while considering potential psychosocial risk factors. METHODS This population-based, cross-sectional study included 382 participants who underwent physical examinations, completed health-related questionnaires, and participated in heart rate variability (HRV) testing for autonomic assessment and the mini-mental state examination for cognitive evaluation. RESULTS Obesity prevalence was 28.1% (age-sex adjusted). Individuals with obesity were more likely to be older, married, have lower education, and engage in less physical activity. They exhibited autonomic imbalance, decreased autonomic nervous system activity, lower cognitive function, and sleep disturbances compared to the individuals without obesity. Body mass index, and waist circumference inversely correlated with HRV indices. Female sex, lower education, apartment living, alcohol consumption, sleep disturbances, and autonomic dysfunction emerged as significant risk factors for obesity. Independent predictors of autonomic dysfunction included systolic blood pressure, physical activity, and neck circumference, while age, education, height, sleep apnea, and autonomic dysfunction predicted cognitive decline. Furthermore, generalized linear mediation models revealed a partial mediation effect of autonomic dysfunction on the association between obesity and cognitive decline. CONCLUSION This study highlights a high prevalence of obesity in the general population (28.1%) and identifies distinct characteristics associated with the condition. Furthermore, our findings suggest a potential indirect effect of obesity on cognitive function, mediated by autonomic dysfunction. Further research is needed to elucidate the causal relationships and develop targeted interventions for high-risk groups (females, individuals with lower education) and promotion initiatives of healthy lifestyles (less alcohol, exercise, and sleep hygiene) to address both obesity and its associated health complications, including autonomic dysfunction.
Collapse
Affiliation(s)
- Battuvshin Lkhagvasuren
- Brain and Mind Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Zhiping P. Pang
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Tsolmon Jadamba
- Brain and Mind Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Tetsuya Hiramoto
- Department of Psychosomatic Medicine, NHO Fukuoka National Hospital, Fukuoka, Japan
| | - Keely Cheslack–Postava
- Global Psychiatric Epidemiology Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University-New York State Psychiatric Institute, New York, United States of America
| | - George J. Musa
- Global Psychiatric Epidemiology Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University-New York State Psychiatric Institute, New York, United States of America
- Department of Epidemiology, Columbia University, Mailman School of Public Health, New York, New York, United States of America
| | - Christina W. Hoven
- Department of Epidemiology, Columbia University, Mailman School of Public Health, New York, New York, United States of America
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, New York, United States of America
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Kumar V, Bahuguna A, Kumar S, Kim M. Xylooligosaccharides mediated gut microbiome modulation: prebiotics to postbiotics. Crit Rev Biotechnol 2025:1-19. [PMID: 40098333 DOI: 10.1080/07388551.2025.2460852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
An increasing trend toward harnessing nutraceuticals as food supplements rather than pharmaceuticals as curative and preventive agents against various ailments has been observed. Owing to their health benefits, prebiotics have received notable attention from the pharmaceutical and food industries. Among the different prebiotic oligosaccharides, xylooligosaccharides (XOS) exhibited a remarkable capacity to stimulate the growth of the gut microbiota and benefit individuals with metabolic abnormalities. Additionally, XOS can be produced from various renewable agricultural wastes, which supports their economic feasibility for use as prebiotics at the industrial level. This review explains gut microbiome modulation based on in vivo, in vitro, and clinical findings. Gut microbiome modulation leads to the production of postbiotics that stimulate various beneficial health effects. The current review entails the mechanisms of different health-promoting activities mediated by XOS, including immunomodulation and anticancer effects. Additionally, the concept of converting prebiotics to synbiotics using XOS has been established for nutraceutical applications. Synbiotics based on XOS and probiotics may be good alternatives to nutraceuticals for improving human health.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Wang X, Dong Y, Huang R, Wang F, Xie J, Liu H, Wang Y, Wang Y, Luo S, Hu D. The Role of Short-Chain Fatty Acids in Myocardial Ischemia-Reperfusion Injury. Curr Nutr Rep 2024; 13:701-708. [PMID: 39110372 PMCID: PMC11489193 DOI: 10.1007/s13668-024-00564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW This study aims to review the effects of short-chain fatty acids (SCFAs) in regulating the myocardial ischemia-reperfusion injury (MIRI). RECENT FINDINGS Coronary heart disease (CHD) is a well-known leading cause of death and disability worldwide. Cardiac substrate metabolism plays the determinant role in assessing the severity of heart injury due to the abruptly shifted energy production during the MIRI. Fatty acids are the main energy fuels for the heart, which are classified into long-, medium- and short chain fatty acids by the length of carbon chain. SCFAs are the main metabolites derived from the anaerobic bacterial fermentation of fiber-rich diets, which are shown to play a protective role in cerebrovascular disease previously. Meanwhile, accumulating evidences suggest that SCFAs can also play a crucial role in cardiac energy metabolism. Results of various studies revealed the cardioprotective effects of SCFAs by displaying anti-inflammatory and anti-ferroptotic function, connecting gut-brain neural circuit and regulating the intestinal flora.
Collapse
Affiliation(s)
- Xunxun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Jingshan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Jingshan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Jingshan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Liu J, Zhang S, Weng H. Effects of Clostridium butyricum and inulin supplementation on intestinal microbial composition in high-fat diet fed mice. Food Funct 2024; 15:10870-10884. [PMID: 39415545 DOI: 10.1039/d4fo02963a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Obesity has become a serious epidemic problem in the world, and probiotics and prebiotics have been used to treat obesity. The effectiveness of diet therapy such as Clostridium butyricum (CB) and inulin supplementation in obesity and whether they can cooperate to produce better effects are still unclear. And during this process, intestinal flora play an important role, while the bacteria involved and the metabolic mechanism need to be explored. In this study, we successfully established a mouse obesity model with a high-fat diet (HFD) and divided it into three experimental groups: 7% CB (CB7), 7% CB + 1% inulin (C7G1), and 10% CB + 1% inulin (C10G). Dietary supplementation with CB and inulin could improve the glucose tolerance and intestinal microbial composition of obese mice, among which the simultaneous supplementation with 7% CB and 1% inulin (C7G1) has the most significant effect on obese mice fed with a HFD. It could significantly reduce the amount of total cholesterol, triglyceride, and low-density lipoprotein, improve abnormal glucose tolerance, and reduce abnormal blood glucose in obese mice. The intestinal flora of obese mice changed significantly, among which Lachnospiraceae_unclassified, Porphyromonaceae_unclassified, Olsenella, Bacteria_unclassified and Clostridiales_unclassified decreased due to the HFD, while Megamonas and Clostridium XIVa increased. After the supplementation with CB and inulin, the enrichment of three kinds of beneficial bacteria, Parabacteroides, Bacteroides, and Ruminococcaceae unclassified increased. The high-fat diet could upregulate the expression of FGF21, and the Clostridium butyricum and inulin supplemented diet could decrease the upregulation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Research, Shanghai University of Medicine and Health Sciences Affliated Zhoupu Hospital, The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Suhua Zhang
- Department of Research, Shanghai University of Medicine and Health Sciences Affliated Zhoupu Hospital, The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Huachun Weng
- Department of Research, Shanghai University of Medicine and Health Sciences Affliated Zhoupu Hospital, The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
5
|
Choneva M, Delchev S, Hrischev P, Dimov I, Boyanov K, Dimitrov I, Gerginska F, Georgieva K, Bacelova M, Bivolarska A. Modulation of the Cardiovascular Risk in Type 1 Diabetic Rats by Endurance Training in Combination with the Prebiotic Xylooligosaccharide. Int J Mol Sci 2024; 25:10027. [PMID: 39337515 PMCID: PMC11432573 DOI: 10.3390/ijms251810027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic cardiomyopathy is a major etiological factor in heart failure in diabetic patients, characterized by mitochondrial oxidative metabolism dysfunction, myocardial fibrosis, and marked glycogen elevation. The aim of the present study is to evaluate the effect of endurance training and prebiotic xylooligosaccharide (XOS) on the activity of key oxidative enzymes, myocardial collagen, and glycogen distribution as well as some serum biochemical risk markers in streptozotocin-induced type 1 diabetic rats. Male Wistar rats (n = 36) were divided into four diabetic groups (n = 9): sedentary diabetic rats on a normal diet (SDN), trained diabetic rats on a normal diet (TDN), trained diabetic rats on a normal diet with an XOS supplement (TD-XOS), and sedentary diabetic rats with an XOS supplement (SD-XOS). The results show that aerobic training managed to increase the enzyme activity of respiratory Complex I and II and the lactate dehydrogenase in the cardiomyocytes of the diabetic rats. Furthermore, the combination of exercise and XOS significantly decreased the collagen and glycogen content. No significant effects on blood pressure, heart rate or markers of inflammation were detected. These results demonstrate the beneficial effects of exercise, alone or in combination with XOS, on the cardiac mitochondrial enzymology and histopathology of diabetic rats.
Collapse
Affiliation(s)
- Mariya Choneva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.D.); (F.G.)
| | - Petar Hrischev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Krasimir Boyanov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Iliyan Dimitrov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Fanka Gerginska
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.D.); (F.G.)
| | - Katerina Georgieva
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Mariana Bacelova
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| |
Collapse
|
6
|
Park J, Nam KH, Nam BY, Kim G, Kim H, Lee KU, Song SC, Nam TW, Kim WK, Park JT, Yoo TH, Kang SW, Ko G, Han SH. Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function with chronic kidney disease. Eur J Nutr 2024; 63:2121-2135. [PMID: 38705901 DOI: 10.1007/s00394-024-03408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Recent advances have led to greater recognition of the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD). There has been evidence that CKD is also associated with dysbiosis. Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury via improving mitochondrial function. METHODS An animal model of CKD was induced by feeding C57BL/6 mice a diet containing 0.2% adenine. KBL409, a strain of Lactobacillus acidophilus, was administered via oral gavage at a dose of 1 × 109 CFU daily. To clarify the underlying mechanisms by which probiotics exert protective effects on mitochondria in CKD, primary mouse tubular epithelial cells stimulated with TGF-β and p-cresyl sulfate were administered with butyrate. RESULTS In CKD mice, PGC-1α and AMPK, key mitochondrial energy metabolism regulators, were down-regulated. In addition, mitochondrial dynamics shifted toward fission, the number of fragmented cristae increased, and mitochondrial mass decreased. These alterations were restored by KBL409 administration. KBL409 supplementation also improved defects in fatty acid oxidation and glycolysis and restored the suppressed enzyme levels involved in TCA cycle. Accordingly, there was a concomitant improvement in mitochondrial respiration and ATP production assessed by mitochondrial function assay. These favorable effects of KBL409 on mitochondria ultimately decreased kidney fibrosis in CKD mice. In vitro analyses with butyrate recapitulated the findings of animal study. CONCLUSIONS This study demonstrates that administration of the probiotic Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function.
Collapse
Affiliation(s)
- Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ki Heon Nam
- Division of Integrated Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Gyuri Kim
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | | | | | | | - Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - GwangPyo Ko
- KoBiolabs, Inc., Seoul, Korea
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea.
| |
Collapse
|
7
|
Inchingolo F, Inchingolo AM, Piras F, Ferrante L, Mancini A, Palermo A, Inchingolo AD, Dipalma G. The interaction between gut microbiome and bone health. Curr Opin Endocrinol Diabetes Obes 2024; 31:122-130. [PMID: 38587099 PMCID: PMC11062616 DOI: 10.1097/med.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW This review critically examines interconnected health domains like gut microbiome, bone health, interleukins, chronic periodontitis, and coronavirus disease 2019 (COVID-19), offering insights into fundamental mechanisms and clinical implications, contributing significantly to healthcare and biomedical research. RECENT FINDINGS This review explores the relationship between gut microbiome and bone health, a growing area of study. It provides insights into skeletal integrity and potential therapeutic avenues. The review also examines interleukins, chronic periodontitis, and COVID-19, highlighting the complexity of viral susceptibility and immune responses. It highlights the importance of understanding genetic predispositions and immune dynamics in the context of disease outcomes. The review emphasizes experimental evidence and therapeutic strategies, aligning with evidence-based medicine and personalized interventions. This approach offers actionable insights for healthcare practitioners and researchers, paving the way for targeted therapeutic approaches and improved patient outcomes. SUMMARY The implications of these findings for clinical practice and research underscore the importance of a multidisciplinary approach to healthcare that considers the complex interactions between genetics, immune responses, oral health, and systemic diseases. By leveraging advances in biomedical research, clinicians can optimize patient care and improve health outcomes across diverse patient populations.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | | | | | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
8
|
Peña-Cearra A, Song D, Castelo J, Palacios A, Lavín JL, Azkargorta M, Elortza F, Fuertes M, Pascual-Itoiz MA, Barriales D, Martín-Ruiz I, Fullaondo A, Aransay AM, Rodríguez H, Palm NW, Anguita J, Abecia L. Mitochondrial dysfunction promotes microbial composition that negatively impacts on ulcerative colitis development and progression. NPJ Biofilms Microbiomes 2023; 9:74. [PMID: 37805634 PMCID: PMC10560208 DOI: 10.1038/s41522-023-00443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023] Open
Abstract
Recent evidence demonstrates potential links between mitochondrial dysfunction and inflammatory bowel diseases (IBD). In addition, bidirectional interactions between the intestinal microbiota and host mitochondria may modulate intestinal inflammation. We observed previously that mice deficient in the mitochondrial protein MCJ (Methylation-controlled J protein) exhibit increased susceptibility to DSS colitis. However, it is unclear whether this phenotype is primarily driven by MCJ-/- associated gut microbiota dysbiosis or by direct effects of MCJ-deficiency. Here, we demonstrate that fecal microbiota transplantation (FMT) from MCJ-deficient into germ-free mice was sufficient to confer increased susceptibility to colitis. Therefore, an FMT experiment by cohousing was designed to alter MCJ-deficient microbiota. The phenotype resulting from complex I deficiency was reverted by FMT. In addition, we determined the protein expression pathways impacted by MCJ deficiency, providing insight into the pathophysiology of IBD. Further, we used magnetic activated cell sorting (MACS) and 16S rRNA gene sequencing to characterize taxa-specific coating of the intestinal microbiota with Immunoglobulin A (IgA-SEQ) in MCJ-deficient mice. We show that high IgA coating of fecal bacteria observed in MCJ-deficient mice play a potential role in disease progression. This study allowed us to identify potential microbial signatures in feces associated with complex I deficiency and disease progression. This research highlights the importance of finding microbial biomarkers, which might serve as predictors, permitting the stratification of ulcerative colitis (UC) patients into distinct clinical entities of the UC spectrum.
Collapse
Affiliation(s)
- Ainize Peña-Cearra
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06519 CT, USA
| | - Janire Castelo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Ainhoa Palacios
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Jose Luis Lavín
- Applied Mathematics Department - Bioinformatics Unit, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Mikel Azkargorta
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- CIBERehd, ISCIII, 28029, Madrid, Spain
- ProteoRed-ISCIII, 28029, Madrid, Spain
| | - Felix Elortza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- CIBERehd, ISCIII, 28029, Madrid, Spain
- ProteoRed-ISCIII, 28029, Madrid, Spain
| | - Miguel Fuertes
- Applied Mathematics Department - Bioinformatics Unit, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Miguel Angel Pascual-Itoiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Diego Barriales
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Itziar Martín-Ruiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- CIBERehd, ISCIII, 28029, Madrid, Spain
| | - Hector Rodríguez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06519 CT, USA
| | - Juan Anguita
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| | - Leticia Abecia
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain.
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain.
| |
Collapse
|
9
|
Barouei J, Martinic A, Bendiks Z, Mishchuk D, Heeney D, Slupsky CM, Marco ML. Type 2-resistant starch and Lactiplantibacillus plantarum NCIMB 8826 result in additive and interactive effects in diet-induced obese mice. Nutr Res 2023; 118:12-28. [PMID: 37536013 DOI: 10.1016/j.nutres.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.
Collapse
Affiliation(s)
- Javad Barouei
- Integrated Food Security Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX; Department of Food Science & Technology, University of California, Davis, CA
| | - Alice Martinic
- Department of Nutrition, University of California, Davis, CA
| | - Zach Bendiks
- Department of Food Science & Technology, University of California, Davis, CA
| | - Darya Mishchuk
- Department of Food Science & Technology, University of California, Davis, CA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, CA
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California, Davis, CA; Department of Nutrition, University of California, Davis, CA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA.
| |
Collapse
|
10
|
Boeing T, Reis Lívero FAD, de Souza P, de Almeida DAT, Donadel G, Lourenço ELB, Gasparotto Junior A. Natural Products as Modulators of Mitochondrial Dysfunctions Associated with Cardiovascular Diseases: Advances and Opportunities. J Med Food 2023; 26:279-298. [PMID: 37186894 DOI: 10.1089/jmf.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The mitochondria have an important role in modulating cell cycle progression, cell survival, and apoptosis. In the adult heart, the cardiac mitochondria have a unique spatial arrangement and occupy nearly one-third the volume of a cardiomyocyte, being highly efficient for converting the products of glucose or fatty acid metabolism into adenosine triphosphate (ATP). In cardiomyocytes, the decline of mitochondrial function reduces ATP generation and increases the production of reactive oxygen species, which generates impaired heart function. This is because mitochondria play a key role in maintaining cytosolic calcium concentration and modulation of muscle contraction, as ATP is required to dissociate actin from myosin. Beyond that, mitochondria have a significant role in cardiomyocyte apoptosis because it is evident that patients who have cardiovascular diseases (CVDs) have increased mitochondrial DNA damage to the heart and aorta. Many studies have shown that natural products have mitochondria-modulating effects in cardiac diseases, determining them as potential candidates for new medicines. This review outlines the leading plant secondary metabolites and natural compounds derived from microorganisms as modulators of mitochondrial dysfunctions associated with CVDs.
Collapse
Affiliation(s)
- Thaise Boeing
- Graduate Program in Pharmaceutical Sciences, Chemical-Pharmaceutical Research Nucleus, University of Vale do Itajaí, Itajaí, Brazil
| | - Francislaine Aparecida Dos Reis Lívero
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Priscila de Souza
- Graduate Program in Pharmaceutical Sciences, Chemical-Pharmaceutical Research Nucleus, University of Vale do Itajaí, Itajaí, Brazil
| | - Danielle Ayr Tavares de Almeida
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Guilherme Donadel
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
11
|
Maneechote C, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. Chronic Pharmacological Modulation of Mitochondrial Dynamics Alleviates Prediabetes-Induced Myocardial Ischemia-Reperfusion Injury by Preventing Mitochondrial Dysfunction and Programmed Apoptosis. Cardiovasc Drugs Ther 2023; 37:89-105. [PMID: 34515894 DOI: 10.1007/s10557-021-07250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE There is an increasing body of evidence to show that impairment in mitochondrial dynamics including excessive fission and insufficient fusion has been observed in the pre-diabetic condition. In pre-diabetic rats with cardiac ischemia-reperfusion (I/R) injury, acute treatment with a mitochondria fission inhibitor (Mdivi-1) and a fusion promoter (M1) showed cardioprotection. However, the potential preventive effects of chronic Mdivi-1 and M1 treatment in a pre-diabetic model of cardiac I/R have never been elucidated. METHODS Male Wistar rats (n = 40) were fed with a high-fat diet (HFD) for 12 weeks to induce prediabetes. Then, all pre-diabetic rats received the following treatments daily via intraperitoneal injection for 2 weeks: (1) HFDV (Vehicle, 0.1% DMSO); (2) HFMdivi1 (Mdivi-1 1.2 mg/kg); (3) HFM1 (M1 2 mg/kg); and (4) HFCom (Mdivi-1 + M1). At the end of treatment protocols, all rats underwent 30 min of coronary artery ligation followed by reperfusion for 120 min. RESULTS Chronic Mdivi-1, M1, and the combined treatment showed markedly improved cardiac mitochondrial function and dynamic control, leading to a decrease in cardiac arrhythmias, myocardial cell death, and infarct size (49%, 42%, and 51% reduction for HFMdivi1, HFM1, and HFCom, respectively vs HFDV). All of these treatments improved cardiac function following cardiac I/R injury in pre-diabetic rats. CONCLUSION Chronic inhibition of mitochondrial fission and promotion of fusion exerted cardioprevention in prediabetes with cardiac I/R injury through the relief of cardiac mitochondrial dysfunction and dynamic alterations, and reduction in myocardial infarction, thus improving cardiac function.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
12
|
Musazadeh V, Faghfouri AH, Kavyani Z, Dehghan P. Synbiotic as an adjunctive agent can be useful in the management of hyperglycemia in adults: An umbrella review and meta-research of meta-analysis studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
13
|
Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. Chem Biol Interact 2022; 368:110223. [DOI: 10.1016/j.cbi.2022.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
|
14
|
Han D, Zulewska J, Xiong K, Yang Z. Synergy between oligosaccharides and probiotics: From metabolic properties to beneficial effects. Crit Rev Food Sci Nutr 2022; 64:4078-4100. [PMID: 36315042 DOI: 10.1080/10408398.2022.2139218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synbiotic is defined as the dietary mixture that comprises both probiotic microorganisms and prebiotic substrates. The concept has been steadily gaining attention owing to the rising recognition of probiotic, prebiotics, and gut health. Among prebiotic substances, oligosaccharides demonstrated considerable health beneficial effects in varieties of food products and their combination with probiotics have been subjected to full range of evaluations. This review delineated the landscape of studies using microbial cultures, cell lines, animal model, and human subjects to explore the functional properties and host impacts of these combinations. Overall, the results suggested that these combinations possess respective metabolic properties that could facilitate beneficial activities therefore could be employed as dietary interventions for human health improvement and therapeutic purposes. However, uncertainties, such as applicational practicalities, underutilized analytical tools, contradictory results in studies, unclear mechanisms, and legislation hurdles, still challenges the broad utilization of these combinations. Future studies to address these issues may not only advance current knowledge on probiotic-prebiotic-host interrelationship but also promote respective applications in food and nutrition.
Collapse
Affiliation(s)
- Dong Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ke Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
15
|
Association of Gut Microbial Genera with Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Metabolites 2022; 12:metabo12080730. [PMID: 36005602 PMCID: PMC9414323 DOI: 10.3390/metabo12080730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota has become a significant factor associated with health and disease. Although many studies have reported the implications of changes in the gut microbiota on cardiovascular diseases, there are no reports on the relationship between heart rate variability (HRV) and the gut microbiota. Therefore, we investigated the association between gut microbiota abundance and HRV parameters in this cross-sectional study of the general Japanese population. This study included 950 participants of the Iwaki Health Promotion Project who underwent a medical examination in 2019 that included HRV and gut microbiota measurements. At the genus level, multivariate regression analysis showed that higher gut microbial diversity was associated with a higher standard deviation of RR intervals (SDNN). Moreover, a higher SDNN was associated with a higher relative count of Lachnospiraceae incertae sedis. L. incertae sedis abundance was associated with higher HRV parameters such as SDNN, coefficient of variation of RR intervals, low-frequency component power (LF)/high-frequency component power, and LF. In the general Japanese population, higher gut microbial diversity and L. incertae sedis abundance were associated with higher HRV parameters.
Collapse
|
16
|
The Activity of Prebiotics and Probiotics in Hepatogastrointestinal Disorders and Diseases Associated with Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23137229. [PMID: 35806234 PMCID: PMC9266451 DOI: 10.3390/ijms23137229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
The components of metabolic syndrome (MetS) and hepatogastrointestinal diseases are widespread worldwide, since many factors associated with lifestyle and diet influence their development and correlation. Due to these growing health problems, it is necessary to search for effective alternatives for prevention or adjuvants in treating them. The positive impact of regulated microbiota on health is known; however, states of dysbiosis are closely related to the development of the conditions mentioned above. Therefore, the role of prebiotics, probiotics, or symbiotic complexes has been extensively evaluated; the results are favorable, showing that they play a crucial role in the regulation of the immune system, the metabolism of carbohydrates and lipids, and the biotransformation of bile acids, as well as the modulation of their central receptors FXR and TGR-5, which also have essential immunomodulatory and metabolic activities. It has also been observed that they can benefit the host by displacing pathogenic species, improving the dysbiosis state in MetS. Current studies have reported that paraprobiotics (dead or inactive probiotics) or postbiotics (metabolites generated by active probiotics) also benefit hepatogastrointestinal health.
Collapse
|
17
|
D-galactose-induced aging aggravates obesity-induced bone dyshomeostasis. Sci Rep 2022; 12:8580. [PMID: 35595806 PMCID: PMC9123171 DOI: 10.1038/s41598-022-12206-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
We aimed to compare the time-course effect of D-galactose (D-gal)-induced aging, obesity, and their combined effects on bone homeostasis. Male Wistar rats were fed with either a normal diet (ND; n = 24) or a high-fat diet (HFD; n = 24) for 12 weeks. All rats were then injected with either vehicle or 150 mg/kg/day of D-gal for 4 or 8 weeks. Blood was collected to measure metabolic, aging, oxidative stress, and bone turnover parameters. Bone oxidative stress and inflammatory markers, as well as bone histomorphometry were also evaluated. Additionally, RAW 264.7 cells were incubated with either D-gal, insulin, or D-gal plus insulin to identify osteoclast differentiation capacity under the stimulation of receptor activator of nuclear factor κB ligand. At week 4, D-gal-induced aging significantly elevated serum malondialdehyde level and decreased trabecular thickness in ND- and HFD-fed rats, when compared to the control group. At week 8, D-gal-induced aging further elevated advanced glycation end products, increased bone inflammation and resorption, and significantly impaired bone microarchitecture in HFD-fed rats. The osteoclast number in vitro were increased in the D-gal, insulin, and combined groups to a similar extent. These findings suggest that aging aggravates bone dyshomeostasis in the obese condition in a time-dependent manner.
Collapse
|
18
|
Maneechote C, Chunchai T, Apaijai N, Chattipakorn N, Chattipakorn SC. Pharmacological Targeting of Mitochondrial Fission and Fusion Alleviates Cognitive Impairment and Brain Pathologies in Pre-diabetic Rats. Mol Neurobiol 2022; 59:3690-3702. [PMID: 35364801 DOI: 10.1007/s12035-022-02813-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
It has recently been accepted that long-term high-fat diet (HFD) intake is a significant possible cause for prediabetes and cognitive and brain dysfunction through the disruption of brain mitochondrial function and dynamic balance. Although modulation of mitochondrial dynamics by inhibiting fission and promoting fusion has been shown to reduce the morbidity and mortality associated with a variety of chronic diseases, the impact of either pharmacological inhibition of mitochondrial fission (Mdivi-1) or stimulation of fusion (M1) on brain function in HFD-induced prediabetic models has never been studied. Thirty-two male Wistar rats were separated into 2 groups and fed either a normal diet (ND, n = 8) or HFD (n = 24) for 14 weeks. At week 12, HFD-fed rats were divided into 3 subgroups (n = 8/subgroup) and given an intraperitoneal injection of either saline, Mdivi-1 (1.2 mg/kg/day), or M1 (2 mg/kg/day) for 2 weeks. Cognitive function and metabolic parameters were determined toward the end of the protocol. The rats then were euthanized, and the brain was immediately removed in order to evaluate brain mitochondrial function and mitochondrial dynamics. HFD-fed rats experienced prediabetes, evidenced by elevated plasma insulin and the HOMA index, impaired mitochondrial function in the brain, altered dynamic regulation, and cognitive impairment were also found. Mdivi-1 and M1 treatment exerted neuroprotection to a similar extent by improving metabolic parameters, balancing mitochondrial dynamics, and reducing mitochondrial dysfunction, resulting in a gradual increase in cognitive function. Therefore, pharmacological targeting of mitochondrial fission and fusion protected the brain against chronic HFD-induced prediabetes.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
19
|
Sriwichaiin S, Kittichotirat W, Chunchai T, Chattipakorn N, Chattipakorn SC. Profiles of gut microbiota in obese-insulin-resistant rats treated with biotics. Eur J Nutr 2022; 61:2493-2505. [PMID: 35199196 DOI: 10.1007/s00394-022-02839-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Our previous studies demonstrated the beneficial effects of the probiotic Lactobacillus paracasei HII01, prebiotic xylooligosaccharide (XOS), and synbiotics on several parameters in high-fat diet (HFD)-induced obese rats. However, the gut microbiota composition in these rats has not been investigated. Therefore, this study aimed to investigate the impact of biotic therapies on gut microbiota in HFD-induced obese-insulin-resistant rats. METHODS Male Wistar rats were fed with a normal diet (ND, n = 5) and a HFD (n = 20) for 24 weeks. At week 13, HFD-fed rats were given either a probiotic (L. paracasei, HF-Pro, n = 5), prebiotic (XOS, HF-Pre, n = 5), synbiotic (XOS + L. paracasei, HF-Syn, n = 5), or vehicle (HF-V, n = 5) for 12 weeks. ND-fed rats received vehicle (ND-V, n = 5). At week 24, all rats were decapitated, and metabolic parameters and gut microbiota were analyzed. RESULTS HF-V rats developed an obese-insulin-resistant condition as indicated by impaired metabolic parameters. The prebiotic and synbiotic restored those metabolic parameters to the same level of ND-V rats. The gut microbiota composition of ND-V and HF-V rats differed as indicated by beta diversity. Verrucomicrobia in ND-V rats and Firmicutes and Proteobacteria in HF-V rats were dominant. Interestingly, Verrucomicrobia was also prominent in the HF-Syn rats. HF-Pre rats showed a distinct gut microbiota the predominant family being Ruminococcaceae. CONCLUSION The changes in gut microbiota after HFD consumption included increased Firmicutes and Proteobacteria. The treatment with the prebiotic and synbiotic showed an association with the increase in Ruminococcaceae and Verrucomicrobia, respectively. These changes in gut microbiota due to biotics may mediate the beneficial effects on metabolic parameters.
Collapse
Affiliation(s)
- Sirawit Sriwichaiin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Weerayuth Kittichotirat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.,Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
20
|
Wichaiyo S, Saengklub N. Alterations of sodium-hydrogen exchanger 1 function in response to SGLT2 inhibitors: what is the evidence? Heart Fail Rev 2022; 27:1973-1990. [PMID: 35179683 DOI: 10.1007/s10741-022-10220-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
This review summarizes and describes the current evidence addressing how sodium-glucose cotransporter 2 (SGLT2) inhibitors alter the function of sodium-hydrogen exchanger 1 (NHE-1), in association with their protective effects against adverse cardiovascular events. In the heart, SGLT2 inhibitors modulate the function of NHE-1 (either by direct inhibition or indirect attenuation of protein expression), which promotes cardiac contraction and an enhanced energy supply, in association with improved mitochondrial function, reduced inflammation/oxidative/endoplasmic reticulum stress, and attenuated fibrosis and apoptotic/autophagic cell death. The vasodilating effect of SGLT2 inhibitors has also been proposed due to NHE-1 inhibition. Moreover, platelet-expressed NHE-1 might serve as a target for SGLT2 inhibitors, since these drugs and selective NHE-1 inhibitors produce comparable activity against adenosine diphosphate-stimulated platelet activation. Overall, it is promising that the modulation of the functions of NHE-1 on the heart, blood vessels, and platelets may act as a contributing pathway for the cardiovascular benefits of SGLT2 inhibitors in diabetes and heart failure.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand. .,Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Nakkawee Saengklub
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Potentially Probiotic Limosilactobacillus fermentum Fruit-Derived Strains Alleviate Cardiometabolic Disorders and Gut Microbiota Impairment in Male Rats Fed a High-Fat Diet. Probiotics Antimicrob Proteins 2022; 14:349-359. [PMID: 35066820 DOI: 10.1007/s12602-021-09889-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
High-fat diet (HFD) consumption is a risk factor for dyslipidemias, insulin resistance, and arterial hypertension linked with gut dysbiosis. Probiotic administration has been suggested as a safe therapeutic strategy for gut microbiota modulation and treatment and/or prevention of cardiometabolic disorders. Here, we assessed the effects of a potentially probiotic formulation containing strains of the Limosilactobacillus (L.) fermentum 139, 263, and 296 on the cardiometabolic disorders and gut microbiota derangements provoked by the HFD consumption. Male Wistar rats were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6) groups for 4 weeks. L. fermentum formulation (109 colony-forming unit (CFU)/ml of each strain) was daily administered by oral gavage. After 4-week follow-up, biochemical measurements, blood pressure (BP), heart rate (HR), sympathetic tone, and gut microbiota composition were evaluated. HFD consumption for 4 weeks increased lipid profile, insulin resistance, sympathetic tone, and blood pressure and impaired gut microbiota composition in male rats. Administration of L. fermentum formulation improved the gut microbiota composition, lipid profile, insulin resistance, autonomic dysfunction, and BP in rats fed with a HFD. Administration of a potentially fruit-derived probiotic formulation of L. fermentum strains improved gut microbiota composition and alleviated hyperlipidemia, insulin resistance, and sympathetic hyperactivity and increased BP in rats fed a HFD. Our findings may encourage the development of randomized controlled trials to assess the effects of L. fermentum treatment in subjects with cardiometabolic disorders.
Collapse
|
22
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
23
|
Yu D, Meng X, de Vos WM, Wu H, Fang X, Maiti AK. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci 2021; 22:12661. [PMID: 34884466 PMCID: PMC8657718 DOI: 10.3390/ijms222312661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.
Collapse
Affiliation(s)
- Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Xin Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, 2645 Somerset Boulevard, Troy, MI 48084, USA
| |
Collapse
|
24
|
Yang M, Zheng J, Zong X, Yang X, Zhang Y, Man C, Jiang Y. Preventive Effect and Molecular Mechanism of Lactobacillus rhamnosus JL1 on Food-Borne Obesity in Mice. Nutrients 2021; 13:3989. [PMID: 34836242 PMCID: PMC8621931 DOI: 10.3390/nu13113989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Probiotics can prevent obesity and related metabolic complications. In our study, the protective effect and molecular mechanism of Lactobacillus rhamnosus JL1 (separated from the feces of healthy infants) on high-fat diet mice were investigated. After 10 weeks of dietary intervention with L. rhamnosus JL1 intervention, the body weight of the JL1 group (23.78 g) was significantly lower than that of the HFD group (26.59 g, p < 0.05) and the liver index was reduced. Serum biochemical analysis showed that the TC, TG and LDL-C contents of JL1 group mice were significantly decreased (p < 0.05). Histological images of the mice livers showed that the degree of lipid action and damage of hepatic cells were improved. L. rhamnosus JL1 activated the AMPK pathway, and reduced the gene expression of PPAR-γ, LXR-α and SREBP-1C. In addition, the protein expression of PPAR-γ and LXR-α were reduced. After dietary intervention with L. rhamnosus JL1, the concentration of acetic acid, propionic acid, and butyric acid were increased significantly, especially the concentration of butyric acid, which was 63.16% higher than that of the HFD group (p < 0.05). In conclusion, this study provided a theoretical reference for the development and application of probiotics derived from healthy infant feces in health products and functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (J.Z.); (X.Z.); (X.Y.); (Y.Z.); (C.M.)
| |
Collapse
|
25
|
Inhibition of myeloid differentiation factor 2 attenuates cardiometabolic impairments via reducing cardiac mitochondrial dysfunction, inflammation, apoptosis and ferroptosis in prediabetic rats. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166301. [PMID: 34748903 DOI: 10.1016/j.bbadis.2021.166301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Systemic inflammation is a key mediator of left ventricular dysfunction (LV) in prediabetes via the activation of myeloid differentiation factor 2 (MD2)/toll-like receptor 4 complex. The MD2 inhibitor L6H21 effectively reduced systemic and cardiac inflammation in obese mice. However, its effects on cardiac function and regulated cell death pathways in the heart in prediabetes are still unknown. The prediabetic rats were divided into 3 subgroups to receive vehicle, L6H21 (10, 20, 40 mg/kg) or metformin (300 mg/kg) for 1, 2 and 4 weeks. Then, metabolic parameters, cardiac sympathovagal balance, LV function, cardiac mitochondrial function, oxidative stress, inflammation, apoptosis, necroptosis, and ferroptosis were determined. All prediabetic rats exhibited cardiac sympathovagal imbalance, LV dysfunction, and cardiac mitochondrial dysfunction. All doses of L6H21 treatment for 2- and 4-weeks attenuated insulin resistance. L6H21 at 40 mg/kg attenuated cardiac autonomic imbalance and LV dysfunction after 1 week of treatment. Both 10 and 20 mg/kg of L6H21 required longer treatment duration to show these benefits. Mechanistically, all doses of L6H21 reduced cardiac mitochondrial dysfunction after 1 week of treatment, resulting in alleviated oxidative stress and inflammation. L6H21 also effectively suppressed cardiac apoptosis and ferroptosis, but it did not affect necroptosis in prediabetic rats. L6H21 provided the cardioprotective efficacy in dose- and time-dependent manners in prediabetic rats via reduction in apoptosis and ferroptosis.
Collapse
|
26
|
Naghizadeh M, Karajibani M, Fanaei H, Montazerifar F, Dashipour A. Effect of synbiotic supplementation on asprosin level in high fat diet-induced metabolic disorder in pregnant rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-210595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Synbiotic supplementation can improve metabolic disorders. The aim of this study was to assess the impact of synbiotic supplementation on the levels of asprosin, lipid profile, glucose, and insulin resistance in pregnant rats fed a high-fat diet (HFD). Rats were divided into three groups: control group (fed base chow), HFD group, and HFD + synbiotic group. Levels of blood glucose, total cholesterol, triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), insulin, and asprosin levels were measured. Birth weight of offspring in the HFD + synbiotic group was significantly lower than in the HFD group. Similarly, serum asprosin, insulin, insulin resistance, TG and total cholesterol levels in the HFD + symbiotic group were significantly lower than in the HFD group. Asprosin levels had a significant and positive correlation between food intake in the first ten days of the experiment and gestation period, fasting blood sugar (FBS), TG, and homeostatic model assessment (HOMA) index. Moreover, asprosin levels had a significant and negative correlation with HDL and insulin levels. Results showed, synbiotic supplementation has beneficial effects on obese animals and improves weight gain during pregnancy, pup birth weight, FBS, insulin resistance and lipid profile. These advantages of synbiotic supplementation could be mediated by reducing serum asprosin levels.
Collapse
Affiliation(s)
- Mehrdad Naghizadeh
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Karajibani
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Health Promotion Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farzaneh Montazerifar
- Health Promotion Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Dashipour
- Department of Food Science, School of medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
27
|
Núñez-Sánchez MA, Herisson FM, Cluzel GL, Caplice NM. Metabolic syndrome and synbiotic targeting of the gut microbiome. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Perilla Seed Oil Alleviates Gut Dysbiosis, Intestinal Inflammation and Metabolic Disturbance in Obese-Insulin-Resistant Rats. Nutrients 2021; 13:nu13093141. [PMID: 34579018 PMCID: PMC8467704 DOI: 10.3390/nu13093141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background: High-fat diet (HFD) consumption induced gut dysbiosis, inflammation, obese-insulin resistance. Perilla seed oil (PSO) is a rich source of omega-3 polyunsaturated fatty acids with health promotional effects. However, the effects of PSO on gut microbiota/inflammation and metabolic disturbance in HFD-induced obesity have not been investigated. Therefore, we aimed to compare the effects of different doses of PSO and metformin on gut microbiota/inflammation, and metabolic parameters in HFD-fed rats. Methods: Thirty-six male Wistar rats were fed either a normal diet or an HFD for 24 weeks. At week 13, HFD-fed rats received either 50, 100, and 500 mg/kg/day of PSO or 300 mg/kg/day metformin for 12 weeks. After 24 weeks, the metabolic parameters, gut microbiota, gut barrier, inflammation, and oxidative stress were determined. Results: HFD-fed rats showed gut dysbiosis, gut barrier disruption with inflammation, increased oxidative stress, metabolic endotoxemia, and insulin resistance. Treatment with PSO and metformin not only effectively attenuated gut dysbiosis, but also improved gut barrier integrity and decreased gut inflammation. PSO also decreased oxidative stress, metabolic endotoxemia, and insulin resistance in HFD-fed rats. Metformin had greater benefits than PSO. Conclusion: PSO and metformin had the beneficial effect on attenuating gut inflammation and metabolic disturbance in obese-insulin resistance.
Collapse
|
29
|
Maternal Probiotic or Synbiotic Supplementation Modulates Jejunal and Colonic Antioxidant Capacity, Mitochondrial Function, and Microbial Abundance in Bama Mini-piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6618874. [PMID: 34035877 PMCID: PMC8116152 DOI: 10.1155/2021/6618874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/06/2021] [Accepted: 03/25/2021] [Indexed: 01/26/2023]
Abstract
The present study was conducted to investigate the effects of maternal probiotic or synbiotic supplementation during gestation and lactation on antioxidant capacity, mitochondrial function, and intestinal microbiota abundance in offspring weaned piglets. A total of 64 pregnant Bama mini-sows were randomly allocated into the control group (basal diet), antibiotic group (basal diet + 50 g/t virginiamycin), probiotic group (basal diet + 200 mL/d probiotics per pig), or synbiotic group (basal diet + 200 mL/d probiotics per pig + 500 g/t xylo-oligosaccharides). On day 30 of post-weaning, eight piglets per group with average body weight were selected for sample collection. The results showed that maternal probiotic supplementation increased the catalase (CAT) activity in plasma and glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities in plasma, jejunum, and colon of piglets while decreased the malondialdehyde (MDA) and H2O2 concentrations in plasma compared with the control group (P < 0.05). Moreover, maternal synbiotic supplementation increased the plasma CAT activity, jejunal glutathione and GSH-Px activities, jejunal and colonic total antioxidant capacity activity, and plasma and colonic SOD activity while decreased the colonic MDA concentration of offspring piglets compared with the control group (P < 0.05). The mRNA levels of antioxidant enzyme-related genes (copper- and zinc-containing superoxide dismutase, nuclear factor erythroid 2-related factor 1, and nuclear factor erythroid 2-related factor 2) and mitochondrial-related genes (adenosine triphosphate synthase alpha subunit, adenosine triphosphate synthase β, and mitochondrial transcription factor A) in the jejunal mucosa were significantly upregulated, while the level of colonic peroxisome proliferator-activated receptor γ coactivator-1α was downregulated by maternal synbiotic supplementation (P < 0.05). Maternal probiotic supplementation increased (P < 0.05) the Bacteroidetes abundance in the jejunum and Bifidobacterium abundance in the jejunum and colon, and synbiotic supplementation increased (P < 0.05) the abundances of Firmicutes, Bacteroidetes, Bifidobacterium, and Lactobacillus in the jejunum of piglets. Furthermore, correlation analysis revealed that intestinal microbiota abundances were significantly correlated with antioxidant enzyme activities and mitochondrial-related indexes. These findings indicated that maternal probiotic or synbiotic supplementation might be a promising strategy to improve the antioxidant capacity and mitochondrial function of offspring weaned piglets by altering the intestinal microbiota.
Collapse
|
30
|
de Oliveira Y, Cavalcante RGS, Cavalcanti Neto MP, Magnani M, Braga VDA, de Souza EL, de Brito Alves JL. Oral administration of Lactobacillus fermentum post-weaning improves the lipid profile and autonomic dysfunction in rat offspring exposed to maternal dyslipidemia. Food Funct 2021; 11:5581-5594. [PMID: 32524104 DOI: 10.1039/d0fo00514b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Maternal dyslipidemia alters the gut microbiota composition and contributes to the development of arterial hypertension (AH) in offspring. Here, we evaluated the effects of a new Lactobacillus fermentum probiotic formulation given post-weaning on cardiometabolic parameters and gut microbiota in male and female rat offspring from dams exposed to maternal dyslipidemia during pregnancy and lactation. METHODS Wistar rats (n = 14) were fed with a control diet (CTL = 7) or a dyslipidemic diet (DLP = 7) during pregnancy and lactation. After weaning, male and female offspring received a standard diet up to 90 days of life. Rats were allocated into three groups: CTL group + saline solution (n = 14); DLP group + saline solution (n = 14) and DLP group receiving a probiotic cocktail (n = 14). A vehicle or probiotic formulation containing L. fermentum 139, L. fermentum 263 and L. fermentum 296 (ratio 1 : 1 : 1, 1 × 109 CFU mL-1) was administered daily by oral gavage for 8 weeks. RESULTS The intervention with the probiotic formulation of L. fermentum in male and female offspring reduced total cholesterol (TC) and increased HDL-c, but did not affect the insulin resistance induced by maternal dyslipidemia. Additionally, the male and female rats that received the probiotic formulation of L. fermentum demonstrated improvement in fecal Lactobacillus sp. counts, blood pressure and sympathetic tone, without affecting baroreflex modulation. CONCLUSION The probiotic formulation containing L. fermentum improved the lipid profile and autonomic dysfunction in male and female offspring exposed to maternal dyslipidemia.
Collapse
Affiliation(s)
- Yohanna de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| | | | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraíba, Joao Pessoa, Brazil
| | - Valdir de Andrade Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil and Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
31
|
Romão da Silva LDF, de Oliveira Y, de Souza EL, de Luna Freire MO, Braga VDA, Magnani M, de Brito Alves JL. Effects of probiotic therapy on cardio-metabolic parameters and autonomic modulation in hypertensive women: a randomized, triple-blind, placebo-controlled trial. Food Funct 2021; 11:7152-7163. [PMID: 32756643 DOI: 10.1039/d0fo01661f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS We assessed the effects of probiotic therapy for 8 weeks on cardiometabolic variables and autonomic function in women medically diagnosed with arterial hypertension. METHODS AND RESULTS Forty women with arterial hypertension, 20-50 years, were assigned to two groups in this randomized, triple-blind, placebo-controlled clinical trial. Patients in the probiotic group received a daily sachet containing Lactobacillus para casei LPC-37, Lactobacillus rhamnosus HN001, Lactobacillus acidophilus NCFM, and Bifidobacterium lactis HN019 (109 CFU of each strain) for 8 weeks. Patients in the placebo group received identical sachets with polydextrose (1 g day-1, for 8 weeks). Anthropometric, BP, electrocardiogram, biochemical measurements, fecal microbiota composition, and glucose hydrogen breath test were assessed at baseline and after 8 weeks intervention. Anthropometric variables (weight, BMI, and waist circumference) were similar between the two groups (p > 0.05). Probiotic supplementation significantly reduced fasting glucose (change -10.3 mg dL-1, p < 0.05) and cholesterol levels (change -23.6 mg dL-1, p < 0.05), and increased the HDL-cholesterol (change 6.5 mg dL-1, p < 0.05) compared with the baseline condition. Probiotic supplementation lowered, although without statistical significance, systolic BP by about 5 mmHg and diastolic BP by about 2 mmHg in hypertensive women. Lastly, probiotic administration reduced the low frequency (LF) oscillation and LF/high frequency (HF) ratio (p < 0.05) in the frequency domain of heart rate variability, suggesting an improvement in autonomic modulation. CONCLUSION Probiotic therapy for 8 weeks reduced fasting glucose levels, and improved the lipid profile and autonomic modulation in hypertensive women.
Collapse
Affiliation(s)
| | - Yohanna de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil.
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil.
| | | | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraíba, Joao Pessoa, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
32
|
Zhuang T, Liu X, Wang W, Song J, Zhao L, Ding L, Yang L, Zhou M. Dose-Related Urinary Metabolic Alterations of a Combination of Quercetin and Resveratrol-Treated High-Fat Diet Fed Rats. Front Pharmacol 2021; 12:655563. [PMID: 33935771 PMCID: PMC8085560 DOI: 10.3389/fphar.2021.655563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Most herbal polyphenols and flavonoids reveals multiple ameliorative benefits for obesity caused by chronic metabolic disorders. Accumulated studies have revealed that preferable therapeutic effects can be obtained through clinical combination of these two kinds of natural compounds for obesity improvement. The typical representative research was the combination of quercetin and resveratrol (CQR), in which the ratio of quercetin and resveratrol is 2:1, demonstrating a synergistic effect in anti-obesity process. Although there exists reports clarifying the mechanism of the combination of two to improve obesity from the perspective of improving adipose tissue inflammation or modulating the composition of intestinal flora, there are few further studies on the mechanism of drug action from the perspective of metabolites transformation. In this research, we mainly focused on the alterations of endogenous metabolites in rats, and analyzed the urine metabolites of obese and intervention model. Therefore, a gas chromatography-mass spectrometry (GC-MS) based metabolomics approach was applied to assess the potential effects and mechanisms of CQR at different dosages (45, 90, and 180 mg/kg) in high fat diet (HFD)-induced obesity rats. Body weight gain and visceral fat weight were reduced by CQR, as well as blood lipid and inflammatory factor levels were increased by CQR in a dose-related manner. Urinary metabolomics revealed 22 differential metabolites related to the HFD-induced obesity, which were reversed in a dose-dependent manner by CQR, of which 8 were reversed in the 45 mg/kg CQR group, 15 were reversed in the 90 mg/kg CQR group, and 18 were reversed in the 180 mg/kg CQR group. Combined with bioinformatics and pattern recognition, the results demonstrated that the key differential metabolites were basically involved in amino acid metabolism, galactose metabolism, pantothenate and CoA biosynthesis, pyruvate metabolism and lysine degradation. In summary, our results showed significant therapeutic action by CQR administration and remarkable metabolomic changes after HFD feeding and CQR intervention. Urinary metabolomic analysis was highlighted on account of providing holistic and comprehensive insights into the pathophysiological mechanisms of the HFD-induced obesity, which also supplied clues for the future mechanism studies of CQR's anti-obesity effects.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhua Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Song
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Le Zhao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ding
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Zhang Y, Yan T, Xu C, Yang H, Zhang T, Liu Y. Probiotics Can Further Reduce Waist Circumference in Adults with Morbid Obesity after Bariatric Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5542626. [PMID: 33859706 PMCID: PMC8032506 DOI: 10.1155/2021/5542626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023]
Abstract
Whether probiotics could be used as an adjunct to bariatric surgery is controversial. This meta-analysis aimed to evaluate the effects of probiotics on body weight, body mass index (BMI), percentage of the excess weight loss (%EWL), waist circumference (WC), and C-reactive protein (CRP) in adults with obesity after bariatric surgery (BS). PUBMED, EMBASE, and the Cochrane Central Registry of Controlled Trials were searched from the earliest record to March 2020. All randomized controlled trials (RCTs) on the effects of probiotics in adults with obesity after bariatric surgery were analyzed according to the eligibility criteria. Four RCTs, including 172 participants, were analyzed. There was a statistically significant difference in probiotics in the reduction of waist circumference at 12 months after bariatric surgery. However, probiotics were not effective in weight, BMI, %EWL, WC, and CRP both within 3 months and at 12 months postoperation. Probiotics aid adults with morbid obesity in achieving further waist circumference improvement after BS, with no significant effect on weight, BMI, %EWL, and CRP. More quality clinical studies are needed to confirm the efficacy and safety of probiotics, and address a number of practical issues before the routine clinical use of probiotics in adults with obesity undergoing BS.
Collapse
Affiliation(s)
- Yu Zhang
- The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Tong Yan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Chenxin Xu
- The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Huawu Yang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Tongtong Zhang
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
34
|
Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radic Biol Med 2021; 166:33-52. [PMID: 33588049 DOI: 10.1016/j.freeradbiomed.2021.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The morbidity and mortality from cardiovascular diseases (CVD) remain high. Metabolic diseases such as obesity, hyperlipidemia, diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) as well as hypertension are the most common comorbidities in patients with CVD. These comorbidities result in increased myocardial oxidative stress, mainly from increased activity of nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, mitochondria as well as downregulation of antioxidant defense systems. Oxidative and nitrosative stress play an important role in ischemia/reperfusion injury and may account for increased susceptibility of the myocardium to infarction and myocardial dysfunction in the presence of the comorbidities. Thus, while early reperfusion represents the most favorable therapeutic strategy to prevent ischemia/reperfusion injury, redox therapeutic strategies may provide additive benefits, especially in patients with heart failure. While oxidative and nitrosative stress are harmful, controlled release of reactive oxygen species is however important for cardioprotective signaling. In this review we summarize the current data on the effect of hypertension and major cardiometabolic comorbidities such as obesity, hyperlipidemia, DM, NAFLD/NASH on cardiac redox homeostasis as well as on ischemia/reperfusion injury and cardioprotection. We also review and discuss the therapeutic interventions that may restore the redox imbalance in the diseased myocardium in the presence of these comorbidities.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr, Germany.
| | - Gary F Baxter
- Division of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, United Kingdom
| | | | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
35
|
Abstract
Gut dysbiosis in diabetes mellitus is associated with decreased short-chain fatty acids and epithelial barrier disruption. Microbial-derived toxins move across the "leaky gut" and incur systemic inflammation and insulin resistance. In children, gut dysbiosis has been associated with risk of developing type 1 diabetes mellitus. In animal models, the obesity phenotype is transferable via microbiota transplantation. Plant-based low protein diets and certain anti-diabetic drugs have been associated with positive microbiome effects. Clinical trials with prebiotics and probiotics have yielded mixed results. Further investigations are needed to evaluate the gut microbiome as a potential therapeutic target for diabetes prevention and management.
Collapse
Affiliation(s)
- Wei Ling Lau
- Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA.
| | - Tiffany Tran
- Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| | - Connie M Rhee
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| | - Nosratola D Vaziri
- Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| |
Collapse
|
36
|
Rodrigues RR, Gurung M, Li Z, García-Jaramillo M, Greer R, Gaulke C, Bauchinger F, You H, Pederson JW, Vasquez-Perez S, White KD, Frink B, Philmus B, Jump DB, Trinchieri G, Berry D, Sharpton TJ, Dzutsev A, Morgun A, Shulzhenko N. Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nat Commun 2021; 12:101. [PMID: 33397942 PMCID: PMC7782853 DOI: 10.1038/s41467-020-20313-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host's metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.
Collapse
Affiliation(s)
| | - Manoj Gurung
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Zhipeng Li
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | - Renee Greer
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | - Franziska Bauchinger
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Hyekyoung You
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Jacob W Pederson
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | - Kimberly D White
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Briana Frink
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Benjamin Philmus
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Donald B Jump
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Berry
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| | | |
Collapse
|
37
|
Dewi L, Rosidi A, Noer ER, Ayuningtyas A. The Prospect for Type 2 Diabetes Mellitus Combined with Exercise and Synbiotics: A Perspective. Curr Diabetes Rev 2021; 17:e012821190875. [PMID: 33511948 DOI: 10.2174/1573399817666210129102956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
Change in gut microbiome diversity (the so-called dysbiosis) is correlated with insulin resistance conditions. Exercise is typically the first management for people with type 2 diabetes mellitus (T2DM), which is generally well-known for improving glucose regulation. The new prebiotics and probiotics, like synbiotics, designed to target specific diseases, require additional studies. While the effectiveness of exercise combined with synbiotics seems promising, this review discusses these agents' possibility of increasing the gut microbiota's diversity. Therefore, they could enhance short-chain fatty acids (SCFA). In particular, the synbiotic interaction on gut microbiota, the exercise mechanism in improving gut microbiota, and the prospect of the synergistic effect of the combination of synbiotic and exercise to improve insulin sensitivity are addressed.
Collapse
Affiliation(s)
- Luthfia Dewi
- Nutrition Department, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang 50273, Semarang, Indonesia
| | - Ali Rosidi
- Nutrition Department, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang 50273, Semarang, Indonesia
| | - Etika Ratna Noer
- Nutrition Department, Faculty of Medicine, Diponegoro University 50275, Semarang, Indonesia
| | - Annisa Ayuningtyas
- Nutrition Department, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang 50273, Semarang, Indonesia
| |
Collapse
|
38
|
Verma A, Zhu P, Xu K, Du T, Liao S, Liang Z, Raizada MK, Li Q. Angiotensin-(1-7) Expressed From Lactobacillus Bacteria Protect Diabetic Retina in Mice. Transl Vis Sci Technol 2020; 9:20. [PMID: 33344064 PMCID: PMC7735952 DOI: 10.1167/tvst.9.13.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose A multitude of animal studies substantiates the beneficial effects of Ang-(1-7), a peptide hormone in the protective axis of the renin angiotensin system, in diabetes and its associated complications including diabetic retinopathy (DR). However, the clinical application of Ang-(1-7) is limited due to unfavorable pharmacological properties. As emerging evidence implicates gut dysbiosis in pathogenesis of diabetes and supports beneficial effects of probiotics, we sought to develop probiotics-based expression and delivery system to enhance Ang-(1-7) and evaluate the efficacy of engineered probiotics expressing Ang-(1-7) in attenuation of DR in animal models. Methods Ang-(1-7) was expressed in the Lactobacillus species as a secreted fusion protein with a trans-epithelial carrier to allow uptake into circulation. To evaluate the effects of Ang-(1-7) expressed from Lactobacillus paracasei (LP), adult diabetic eNOS-/- and Akita mice were orally gavaged with either 1 × 109 CFU of LP secreting Ang-(1-7) (LP-A), LP alone or vehicle, 3 times/week, for 8 and 12 weeks, respectively. Results Ang-(1-7) is efficiently expressed from different Lactobacillus species and secreted into circulation in mice fed with LP-A. Oral administration of LP-A significantly reduced diabetes-induced loss of retinal vascular capillaries. LP-A treatment also prevented loss of retinal ganglion cells, and significantly decreased retinal inflammatory cytokine expression in both diabetic eNOS-/- and Akita mice. Conclusions These results provide proof-of-concept for feasibility and efficacy of using engineered probiotic species as live vector for delivery of Ang-(1-7) with enhanced bioavailability. Translational Relevance Probiotics-based delivery of Ang-(1-7) may hold important therapeutic potential for the treatment of DR and other diabetic complications.
Collapse
Affiliation(s)
- Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kang Xu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Tao Du
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shengquan Liao
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhibing Liang
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mohan K. Raizada
- Physiology & Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Chunchai T, Keawtep P, Arinno A, Saiyasit N, Prus D, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. A combination of an antioxidant with a prebiotic exerts greater efficacy than either as a monotherapy on cognitive improvement in castrated-obese male rats. Metab Brain Dis 2020; 35:1263-1278. [PMID: 32676884 DOI: 10.1007/s11011-020-00603-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
Previous studies by ourselves and others have demonstrated that both obesity and testosterone deprivation have been related to cognitive decline. We have also shown that a prebiotic and n-acetyl cysteine (NAC) improved cognitive dysfunction in obese rats and castrated-male rats. However, the effects of NAC, a prebiotic (inulin), and a combination of the two on cognition in castrated-obese rats has never been investigated. The hypothesis was that NAC and inulin attenuated cognitive decline in castrated-obese rats by improving gut dysbiosis, and decreasing oxidative stress, glial activation and apoptosis. Male Wistar rats (n = 36) were fed with either a normal diet (ND: n = 6) or a high-fat diet (HFD: n = 30) for twenty-eight weeks. The resultant obese rats had a bilateral orchiectomy (ORX) and were randomly divided into five subgroups (n = 6/ subgroup). Each subgroup was treated with one of five therapies: a vehicle; testosterone replacement (2 mg/kg/day); NAC (100 mg/kg); inulin (10%, w/w), or a combination of the NAC and inulin for four weeks. The results demonstrated that castrated-obese rats developed gut dysbiosis, metabolic disturbance, brain pathologies, and cognitive decline. All of the pathological conditions in the brain were ameliorated to an equal extent by testosterone replacement, NAC, and inulin supplementation. Interestingly, a combination of NAC and inulin had the greatest beneficial effect on cognitive function by synergistically reducing hippocampal inflammation and ameliorating glial dysmorphology. These findings suggest that a combination of NAC and inulin may confer the greatest benefits in improving cognitive function in castrated-obese male rats.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puntarik Keawtep
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Napatsorn Saiyasit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dillon Prus
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
40
|
Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer's disease, Parkinson's disease, Huntington's disease. Mitochondrion 2020; 55:14-47. [PMID: 32828969 DOI: 10.1016/j.mito.2020.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial abnormalities in the brain are considered early pathological changes in neurogenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). The mitochondrial dysfunction in the brain can be induced by toxic proteins, including amyloid-beta (Aβ), phosphorylated tau, alpha-synuclein (α-syn) and mutant huntingtin (mtHTT). These proteins cause mitochondrial genome damage, increased oxidative stress, decreased mitochondrial membrane permeability, and diminished ATP production. Consequently, synaptic dysfunction, synaptic loss, neuronal apoptosis, and ultimately cognitive impairment are exhibited. Therefore, the restoration of mitochondrial abnormalities in the brain is an alternative intervention to delay the progression of neurodegenerative diseases in addition to reducing the level of toxic proteins, especially Aβ, and restored synaptic dysfunction by interventions. Here we comprehensively review mitochondrial alterations in the brain of neurodegenerative models, specifically AD, PD and HD, from both in vitro and in vivo studies. Additionally, the correlation between mitochondrial changes, cognitive function, and disease progression from in vivo studies is described. This review also summarizes interventions that possibly attenuate mitochondrial abnormalities in AD, PD and HD models from both in vitro and in vivo studies. This may lead to the introduction of novel therapies that target on brain mitochondria to delay the progression of AD, PD and HD.
Collapse
|
41
|
Chunchai T, Keawtep P, Arinno A, Saiyasit N, Prus D, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. N-acetyl cysteine, inulin and the two as a combined therapy ameliorate cognitive decline in testosterone-deprived rats. Aging (Albany NY) 2020; 11:3445-3462. [PMID: 31160542 PMCID: PMC6594791 DOI: 10.18632/aging.101989] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
Abstract
Our previous studies reported that testosterone-deprived rats developed cognitive decline as a result of increased brain oxidative stress, microglia hyperactivity, and hippocampal dysplasticity. In addition, gut dysbiosis occurred in these rats. Previous studies demonstrated that n-acetyl cysteine (NAC) and a prebiotic (inulin) improved cognition in several pathological conditions. However, its effects on cognition in the testosterone-deprived condition have never been investigated. This study hypothesized that the administration of NAC, inulin, and a combined therapy improved cognition in castrated rats. Here we report that metabolic disturbance was not observed in the ORX rats, but gut dysbiosis was found in these rats. ORX rats developed blood-brain-barrier (BBB) breakdown, and increased brain oxidative stress as indicated by increased hippocampal production of reactive oxygen species (ROS) and an increase in brain malondialdehyde level. ORX rats also demonstrated glia hyperactivation, resulting in hippocampal apoptosis, hippocampal dysplasticity, and cognitive decline. All treatments equally ameliorated cognitive decline by improving gut dysbiosis, alleviating BBB dysfunction, decreasing hippocampal ROS production, decreasing hippocampal apoptosis, and reducing microglia and astrocyte activity. These findings suggest that NAC, inulin, and the combined therapy ameliorated the deleterious effects on the brain in castrated male rats similar to those treated with testosterone.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puntarik Keawtep
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Napatsorn Saiyasit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dillon Prus
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
42
|
Amput P, Palee S, Arunsak B, Pratchayasakul W, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. PCSK9 inhibitor effectively attenuates cardiometabolic impairment in obese-insulin resistant rats. Eur J Pharmacol 2020; 883:173347. [PMID: 32650007 DOI: 10.1016/j.ejphar.2020.173347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022]
Abstract
Long-term high-fat diet consumption causes obese-insulin resistance and cardiac mitochondrial dysfunction, leading to impaired left ventricular (LV) function. Atorvastatin effectively improved lipid profiles in obese patients. However, inadequate reduction in low density lipoprotein cholesterol (LDL-C) level was found. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor effectively reduced LDL-C levels. We hypothesized that this PCSK9 inhibitor has a greater efficacy in attenuating cardiometabolic impairments than atorvastatin in obese-insulin resistant rats. Female rats were fed with either a high fat or normal diet for 12 weeks. High fat diet fed rats (HFD) were then divided into 3 groups and were given vehicle, atorvastatin (40 mg/kg/day; s.c.), or PCSK9 inhibitor (4 mg/kg/day; s.c.) for additional 3 weeks. The metabolic parameters, cardiac and mitochondrial function and [Ca2+]i transients were determined. HFD rats developed obese-insulin resistance as indicated by increased plasma insulin and HOMA index. Although high-fat diet fed rats treated with vehicle (HFV) rats had markedly impaired LV function as indicated by reduced %LVFS, impaired cardiac mitochondrial function, and [Ca2+]i transient regulation, these impairments were attenuated in high-fat diet fed rats treated with atorvastatin (HFA) and high-fat diet fed rats treated with PCSK9 inhibitor (HFP) rats. However, these improvements were greater in HFP rats than HFA rats. Our findings indicated that the PCSK9 inhibitor exerted greater cardioprotection than atorvastatin through improved mitochondrial function in obese-insulin resistant rats.
Collapse
Affiliation(s)
- Patchareeya Amput
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Physical Therapy, Faculty of Allied Health Science, University of Phayao, Phayao, 56000, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
43
|
Amput P, Palee S, Arunsak B, Pratchayasakul W, Thonusin C, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. PCSK9 inhibitor and atorvastatin reduce cardiac impairment in ovariectomized prediabetic rats via improved mitochondrial function and Ca 2+ regulation. J Cell Mol Med 2020; 24:9189-9203. [PMID: 32628813 PMCID: PMC7417720 DOI: 10.1111/jcmm.15556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Post‐menopausal women have a higher risk of developing cardiometabolic dysfunction. Atorvastatin attenuates dyslipidaemia and cardiac dysfunction but it can have undesirable effects including increased risk of diabetes and myalgia. Currently, the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor efficiently reduces low‐density lipoprotein cholesterol (LDL‐C) levels more effectively than atorvastatin. We have been suggested that PCSK9 inhibitor attenuated cardiometabolic impairment more effectively than atorvastatin in ovariectomized prediabetic rats. Female Wistar rats (n = 48) were fed a normal diet (ND) or high‐fat diet (HFD) for 12 weeks. Then, HFD rats were assigned to a sham‐operated (Sham) or ovariectomized (OVX) group. Six weeks after surgery, the OVX group was subdivided into 4 treatment groups: vehicle (HFOV), atorvastatin (HFOA) (40 mg/kg/day; s.c.), PCSK9 inhibitor (HFOP) (4 mg/kg/day; s.c.) and oestrogen (HFOE2) (50 µg/kg/day; s.c.) for an additional 3 weeks. Metabolic parameters, cardiac and mitochondrial function, and [Ca2+]i transients were evaluated. All HFD rats became obese‐insulin resistant. HFS rats had significantly impaired left ventricular (LV) function, cardiac mitochondrial function and [Ca2+]i transient dysregulation. Oestrogen deprivation (HFOV) aggravated all of these impairments. Our findings indicated that the atorvastatin, PCSK9 inhibitor and oestrogen shared similar efficacy in the attenuation in cardiometabolic impairment in ovariectomized prediabetic rats.
Collapse
Affiliation(s)
- Patchareeya Amput
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Physical Therapy, Faculty of Allied Health Science, University of Phayao, Phayao, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
44
|
Palee S, Jaiwongkam T, Kerdphoo S, Pratchayasakul W, Chattipakorn SC, Chattipakorn N. Exercise with calorie restriction improves cardiac function via attenuating mitochondrial dysfunction in ovariectomized prediabetic rats. Exp Gerontol 2020; 135:110940. [DOI: 10.1016/j.exger.2020.110940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022]
|
45
|
Mitochondrial dynamic modulation exerts cardiometabolic protection in obese insulin-resistant rats. Clin Sci (Lond) 2020; 133:2431-2447. [PMID: 31808509 DOI: 10.1042/cs20190960] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
Obese insulin resistance impairs cardiac mitochondrial dynamics by increasing mitochondrial fission and decreasing mitochondrial fusion, leading to mitochondrial damage, myocardial cell death and cardiac dysfunction. Therefore, inhibiting fission and promoting fusion could provide cardioprotection in this pre-diabetic condition. We investigated the combined effects of the mitochondrial fission inhibitor (Mdivi1) and fusion promoter (M1) on cardiac function in obese insulin-resistant rats. We hypothesized that Mdivi1 and M1 protect heart against obese insulin-resistant condition, but also there will be greater improvement using Mdivi1 and M1 as a combined treatment. Wistar rats (n=56, male) were randomly assigned to a high-fat diet (HFD) and normal diet (ND) fed groups. After feeding with either ND or HFD for 12 weeks, rats in each dietary group were divided into groups to receive either the vehicle, Mdivi1 (1.2 mg/kg, i.p.), M1 (2 mg/kg, i.p.) or combined treatment for 14 days. The cardiac function, cardiac mitochondrial function, metabolic and biochemical parameters were monitored before and after the treatment. HFD rats developed obese insulin resistance which led to impaired dynamics balance and function of mitochondria, increased cardiac cell apoptosis and dysfunction. Although Mdivi1, M1 and combined treatment exerted similar cardiometabolic benefits in HFD rats, the combined therapy showed a greater reduction in mitochondrial reactive oxygen species (ROS). Mitochondrial fission inhibitor and fusion promoter exerted similar levels of cardioprotection in a pre-diabetic condition.
Collapse
|
46
|
Altered circadian clock as a novel therapeutic target for constant darkness-induced insulin resistance and hyperandrogenism of polycystic ovary syndrome. Transl Res 2020; 219:13-29. [PMID: 32119846 DOI: 10.1016/j.trsl.2020.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying metabolic and reproductive dysfunction caused by arrhythmic circadian clock and their involvement in polycystic ovary syndrome (PCOS) are not understood. Here, we addressed this issue using rats with constant light or darkness exposure for 8 weeks and human leukocytes and serum of PCOS and non-PCOS patients. Additionally, we utilized HepG2 cells and KGN cells to verify the molecular mechanisms. The arrhythmic expressions of circadian clock genes due to constant darkness induced the metabolic and reproductive hallmarks of PCOS in rats. After exposure to constant darkness, decreased brain and muscle ARNT-like protein 1 (BMAL1) promoted insulin resistance via glucose transporter 4 (GLUT4), and decreased period (PER) 1 and PER2 promoted androgen excess via insulin-like growth factor-binding protein 4 (IGFBP4) and sex hormone binding globulin (SHBG) in the liver. Hyperinsulinemia and hyperandrogenism shared a bidirectional link promoting aberrant expression of circadian genes and inducing apoptosis of ovarian granulosa cells. Notably, the altered expressions of circadian clock genes in darkness-treated rats matched those of PCOS patients. Furthermore, melatonin treatment relieved the hyperinsulinemia and hyperandrogenism of darkness-treated rats via BMAL1, PER1, and PER2. Restoring normal light/dark exposure for 2 weeks reversed these conditions via BMAL1. In conclusion, our findings elucidated the critical function of circadian clock genes, especially BMAL1, PER1, and PER2 in PCOS, which might aid the development of feasible preventive and therapeutic strategies for PCOS in women with biorhythm disorder.
Collapse
|
47
|
Lopresti AL. Association between Micronutrients and Heart Rate Variability: A Review of Human Studies. Adv Nutr 2020; 11:559-575. [PMID: 31942924 PMCID: PMC7231600 DOI: 10.1093/advances/nmz136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Heart rate variability (HRV) is a measure of the variation between consecutive heartbeats. It provides a marker of the interplay between the parasympathetic and sympathetic nervous systems, and there is an increasing body of evidence confirming an increased HRV is associated with better mental and physical health. HRV may be a useful marker of stress as it represents the ability of the heart to respond to a variety of physiological and environmental stimuli. HRV tends to decrease as we age and is positively associated with physical activity, fitness, and healthier lifestyles. The relation between HRV and micronutrients (vitamins and minerals) has also received some attention in the research literature. In this review, cross-sectional and interventional studies on human populations examining the relation between HRV and micronutrients are appraised. Micronutrients identified and examined in this review include vitamins D, B-12, C, and E; the minerals magnesium, iron, zinc, and coenzyme Q10; and a multivitamin-mineral formula. Due to the paucity of research and significant heterogeneity in studies, definitive conclusions about the effects of these micronutrients on HRV cannot be made at this time. However, there is accumulating evidence suggesting deficiencies in vitamins D and B-12 are associated with reduced HRV, and zinc supplementation during pregnancy can have positive effects on HRV in offspring up until the age of 5 y. To further elucidate the relation between micronutrients and HRV, additional robustly designed and adequately powered studies are required.
Collapse
Affiliation(s)
- Adrian L Lopresti
- College of Science, Health, Engineering, and Education, Murdoch University, Perth, Western Australia, Australia,Clinical Research Australia, Perth, Western Australia, Australia,Address correspondence to ALL (e-mail: )
| |
Collapse
|
48
|
Nie Q, Chen H, Hu J, Tan H, Nie S, Xie M. Effects of Nondigestible Oligosaccharides on Obesity. Annu Rev Food Sci Technol 2020; 11:205-233. [DOI: 10.1146/annurev-food-032519-051743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity is a major public health concern that has almost reached the level of pandemic and is rapidly progressing. The gut microbiota has emerged as a crucial regulator involved in the etiology of obesity, and the manipulation of it by dietary intervention has been widely used for reducing the risk of obesity. Nondigestible oligosaccharides (NDOs) are attracting increasing interests as prebiotics, as the indigestible ingredients can induce compositional or metabolic improvement to the gut microbiota, thereby improving gut health and giving rise to the production of short-chain fatty acids (SCFAs) to elicit metabolic effects on obesity. In this review, the role NDOs play in obesity intervention via modification of the gut microecology, as well as the physicochemical and physiological properties and industrial manufacture of NDOs, is discussed. Our goal is to provide a critical assessment of and stimulate comprehensive research into NDO use in obesity.
Collapse
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Haihong Chen
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| |
Collapse
|
49
|
Sefidgari-Abrasi S, Karimi P, Roshangar L, Morshedi M, Bavafa-Valenlia K, Saghafi-Asl M, Mohiti S, Rahimiyan-Heravan M. Lactobacillus plantarum And Inulin: Therapeutic Agents to Enhance Cardiac Ob Receptor Expression and Suppress Cardiac Apoptosis in Type 2 Diabetic Rats. J Diabetes Res 2020; 2020:4745389. [PMID: 32509880 PMCID: PMC7246403 DOI: 10.1155/2020/4745389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/23/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND T2DM may cause increased levels of oxidative stress and cardiac apoptosis through elevated blood glucose. The present study investigated the effects of Lactobacillus plantarum (L. plantarum) as a probiotic strain and inulin as a prebiotic supplement on cardiac oxidative stress and apoptotic markers in type 2 diabetes mellitus (T2DM) rats. METHODS A high-fat diet and a low dose of streptozotocin were used to induce type 2 diabetes. The rats were divided into six groups which were supplemented with L. plantarum, inulin, or their combination for 8 weeks. RESULTS The results showed improved activity of cardiac antioxidant parameters including total antioxidant capacity (TAC), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (P < 0.001, P < 0.01, and P < 0.01, respectively) and decreased level of cardiac malondialdehyde (MDA) concentration (P < 0.05). These changes were accompanied with increased protein expression of cardiac obesity receptor (Ob-R) (P = 0.05) and reduced apoptotic markers such as tumor necrosis factor-alpha (TNF-α), Fas ligand (FasL), and caspase proteins (P < 0.001, P = 0.003, and P < 0.01, respectively) in T2DM rats after concurrent L. plantarum and inulin supplementation. Moreover, a remarkable correlation of cardiac Ob-R and oxidative stress parameters with cardiac apoptotic markers was observed (P < 0.01). CONCLUSION The concurrent use of L. plantarum and inulin seems to be beneficial, as they can lead to decreased heart complications of T2DM via reducing cardiac apoptotic markers.
Collapse
Affiliation(s)
- Safa Sefidgari-Abrasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Morshedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Bavafa-Valenlia
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Mohiti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Rahimiyan-Heravan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Bo-Htay C, Shwe T, Higgins L, Palee S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Aging induced by D-galactose aggravates cardiac dysfunction via exacerbating mitochondrial dysfunction in obese insulin-resistant rats. GeroScience 2019; 42:233-249. [PMID: 31768765 DOI: 10.1007/s11357-019-00132-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
The prevalence of obesity and an aging population are increasing worldwide. Both obesity and aging are independently known to be associated with cardiac dysfunction. However, in obese insulin-resistant subjects, the effects of aging on metabolic status and cardiac and mitochondrial functions are not completely understood. We hypothesized that in the obese insulin-resistant condition, aging induced by D-galactose increases cardiac senescence markers and aggravates the impairment of metabolic parameters, cardiac and mitochondrial function, and increases oxidative stress, inflammation, apoptosis, and autophagy. Sixty-four male Wistar rats were fed with either normal diet (ND) or high-fat diet (HFD) for 12 weeks. Then, rats were divided into vehicle groups (0.9% NSS, subcutaneous injection (SC)) or D-galactose groups (150 mg/kg/day, SC). After 0.9%NSS or D-galactose treatment for 4 weeks and 8 weeks, metabolic and cardiac functions were determined. The heart was then removed to determine mitochondrial functions and enable biochemical studies. After 4 weeks of D-galactose injection, ND rats treated with D-galactose (NDD4), HFD rats treated with vehicle (HFV4), and HFD rats treated with D-galactose (HFD4) had reduced cardiac function, impaired cardiac mitochondrial function and autophagy, and increased oxidative stress, inflammation, and apoptosis. Interestingly, after 8 weeks, HFD rats treated with D-galactose (HFD8) had the worst impairment of cardiac and mitochondrial function, autophagy, and apoptosis in comparison to the other groups. Aging induced by D-galactose aggravated cardiac dysfunction in obese insulin-resistant rats through the worsening of cardiac mitochondrial function, autophagy, and increased apoptosis in a time-dependent manner.
Collapse
Affiliation(s)
- Cherry Bo-Htay
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thazin Shwe
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Louis Higgins
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|