1
|
Yang J, Lee YH, Ko JH, Huh K, Cho SY, Chung DR, Peck KR, Lee WJ, Kang CI. A case report of disseminated aspergillosis in an immunocompetent patient proven by choroid plexus biopsy. Diagn Microbiol Infect Dis 2025; 113:116887. [PMID: 40349442 DOI: 10.1016/j.diagmicrobio.2025.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
We present a case of disseminated aspergillosis diagnosed by choroid plexus biopsy in an immunocompeten 69-year-old male with decreased consciousness and a fever for more than three months. Brain magnetic resonance imaging showed ventriculitis and phlegmon in the paravertebral space. Chest computerized tomography revealed an air-crescent lesion in the upper lobe of the left lung. No microorganism was identified from the blood or CSF cultures. A choroid plexus biopsy was performed and the pathology findings were consistent with fungal abscess caused by invasive aspergillosis. Since disseminated aspergillosis in the immunocompetent patient is very rare, it was difficult to diagnose this invasive fungal infection in this case. Because the choroid plexus has many blood vessels, there is a high risk of bleeding during biopsy. This was a case in which adequate suspicion and an aggressive diagnostic approach were helpful in the management of a patient with an invasive fungal infection.
Collapse
Affiliation(s)
- Jinyoung Yang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Ho Lee
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Young Cho
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doo Ryeon Chung
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Jae Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-In Kang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Shintaku M. Non-Neoplastic Lesions of the Ependyma: A Neuropathological Overview. Neuropathology 2025:e70014. [PMID: 40448387 DOI: 10.1111/neup.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2025] [Revised: 05/09/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025]
Abstract
Non-neoplastic lesions of the ependyma have been neglected to date in comparison with neoplastic lesions derived from the ependyma, that is, ependymoma. The ependyma has a simple structure: mono-layered cuboidal cells covering the surface of the cerebral ventricles and the central canal of the spinal cord. In this review, the histopathological appearances of various non-neoplastic ependymal lesions are shown based on the author's personal experience, along with a review of the relevant literature. Following the introductory remarks about the normal histology and functions of ependymal cells including tanycytes, non-neoplastic lesions are then presented including, obliteration of the spinal central canal; the "ventriculus terminalis"; shedding of ependymal cells and "granular ependymitis"; "ependymal incorporation"; ependymal cells in hydrocephalus; ependymal reactions to various noxious stimuli; ependymal changes in cerebral dysgenesis; infections involving ependymal cells; glio-ependymal cyst; and finally, various intracellular inclusions in ependymal cells. Non-neoplastic ependymal lesions are intriguing and merit further investigations, which may provide deeper understanding of various brain lesions and of ependymal neoplasms.
Collapse
Affiliation(s)
- Masayuki Shintaku
- Department of Pathology, Kansai Medical University Hospital, Osaka, Japan
| |
Collapse
|
3
|
Ozsahin I, Wang X, Zhou L, Xi K, Hojjati SH, Tanzi E, Maloney T, Fung EK, Dyke JP, Chen K, Pahlajani S, McIntire LB, Costa AP, Dartora WJ, Razlighi QR, Glodzik L, Li Y, Chiang GC, Rusinek H, de Leon MJ, Butler TA. Divergent neurodegeneration associations with choroid plexus volume and degree of calcification in cognitively normal APOE ε4 carriers and non-carriers. Sci Rep 2025; 15:12818. [PMID: 40229453 PMCID: PMC11997051 DOI: 10.1038/s41598-025-97409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
Choroid plexus (CP), best known for producing CSF, also regulate inflammation and clear metabolic waste to maintain brain homeostasis. CP dysfunction is implicated in Alzheimer's Disease (AD), with MRI studies showing CP enlargement in AD. The basis for CP enlargement is unknown. We hypothesized that calcium deposition within CP, which increases with aging and in certain neurodegenerative conditions, might underlie pathologic CP enlargement and be linked to neurodegeneration. In 166 cognitively normal participants, we used multimodal imaging to examine CP structure (MRI-measured overall volume, CT-measured calcium volume), PET-measured Aβ, age, and APOE genotype as predictors of neurodegeneration, indexed as hippocampal volume. CP enlargement was associated with reduced hippocampal volume, particularly in APOE4 carriers. CP calcium was not independently associated with hippocampal volume. However, a significant interaction revealed APOE4 genotype-specific associations between CP calcium and neurodegeneration, with APOE4 carriers showing greater hippocampal volumes in association with greater CP calcium-opposite to our hypothesis. Results suggest that a factor other than calcium drives pathologic CP enlargement associated with neurodegeneration, with this factor especially important in APOE4 carriers. Candidate factors include lipids and inflammatory cells, which are known to accumulate in CP and be regulated by APOE. Our findings highlight CP as a critical locus for studying AD pathogenesis and the mechanisms by which APOE4 promotes AD.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
- Operational Research Center in Healthcare, Near East University, Near East Boulevard, Nicosia/TRNC, 99138, Mersin 10, Turkey.
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Kewei Chen
- Banner Alzheimer Institute, Arizona State University, 901 E Willetta St, Phoenix, AZ, 85006, USA
| | - Silky Pahlajani
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Laura Beth McIntire
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ana Paula Costa
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William Jones Dartora
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Henry Rusinek
- Department of Radiology, New York University, 660 1st Avenue, New York, NY, 10016, USA
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Anghileri E, Gaviani P, Amato A, Pollo B, Paterra R, Marchetti M, Doniselli FM, Restelli F, Eoli M, de Oliveira Muniz Koch L, Redaelli V, Botturi AG, DiMeco F, Ferroli P, Farinotti M, Silvani A. Choroid plexus tumors in adults: a retrospective mono-institutional study. Neurol Sci 2025; 46:1859-1866. [PMID: 39621171 PMCID: PMC11920377 DOI: 10.1007/s10072-024-07894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/18/2024] [Indexed: 03/19/2025]
Abstract
PURPOSE Choroid plexus tumors (CPT) are rare entities, and even rarer in adulthood. METHODS A retrospective consecutive series of 24 adult CPT patients was reviewed. RESULTS We described 24 adult CPTs. Clinical onset included cerebellar signs (n = 11, 45.8%), intracranial hypertension signs (n = 8, 33.4%), cranial nerves impairment (n = 5, 20.8%), incidental findings (n = 4, 16.6%), seizures (n = 1, 4.2%), spinal signs (n = 1, 4.2%). At first diagnosis, CPT was mostly located in the ventricular system, but other locations can occur, including the spine (one case); meningeal involvement was present in one, pre-surgical hydrocephalus in one case only. CPT histological grade ranged from grade 1 (n = 17), grade 2 (n = 6), and grade 3 (n = 1). TERTp mutation was detected in 17.6% (n = 3/17). TP53 mutation in 5.9% (n = 1/17). Gross Total, Subtotal, Partial resection and Biopsy were achieved in 17 (70.8%), 3 (12.5%), 3 (12.5%) and 1 (4.2%) of patients, respectively. 76% of cases (n = 16/21) experienced clinical worsening suddenly after surgery for different reasons, and mostly gradually recovered. For three cases no data was available. Adjuvant therapy was performed only for grades 2 and 3. At recurrence, surgery, radiosurgery, radiotherapy and chemotherapy were considered. The median Overall Survival from surgery was 219.25 months (95% CI, 188.83-249.67). CONCLUSIONS We confirm that CPT can occur in adults and are mostly grade 1 tumors located in the ventricular system. The surgical approach is the gold standard, although 76% of clinical worsening occurred, often transient. Adjuvant treatment was limited to higher grade CPT; however, no consensus has already been achieved about adjuvant therapy.
Collapse
Affiliation(s)
- Elena Anghileri
- Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Paola Gaviani
- Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Amato
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosina Paterra
- Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marcello Marchetti
- Neuroradiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio M Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Restelli
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marica Eoli
- Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Veronica Redaelli
- Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Francesco DiMeco
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mariangela Farinotti
- Cancer Registry, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Silvani
- Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
5
|
Chung KJ, Abdelhafez YG, Spencer BA, Jones T, Tran Q, Nardo L, Chen MS, Sarkar S, Medici V, Lyo V, Badawi RD, Cherry SR, Wang G. Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. Nat Commun 2025; 16:3076. [PMID: 40159510 PMCID: PMC11955546 DOI: 10.1038/s41467-025-58356-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Neuroimaging of blood-brain barrier permeability has been instrumental in identifying its broad involvement in neurological and systemic diseases. However, current methods evaluate the blood-brain barrier mainly as a structural barrier. Here we developed a non-invasive positron emission tomography method in humans to measure the blood-brain barrier permeability of molecular radiotracers that cross the blood-brain barrier through its molecule-specific transport mechanism. Our method uses high-temporal resolution dynamic imaging and kinetic modeling for multiparametric imaging and quantification of the blood-brain barrier permeability-surface area product of molecular radiotracers. We show, in humans, our method can resolve blood-brain barrier permeability across three radiotracers and demonstrate its utility in studying brain aging and brain-body interactions in metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to effectively study the molecular permeability of the human blood-brain barrier in vivo using the large catalogue of available molecular positron emission tomography tracers.
Collapse
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Quyen Tran
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Moon S Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Souvik Sarkar
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA, USA
| | - Valentina Medici
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA, USA
| | - Victoria Lyo
- Department of Surgery, University of California Davis Health, Sacramento, CA, USA
- Center for Alimentary and Metabolic Sciences, University of California Davis Health, Sacramento, CA, USA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA
| | - Simon R Cherry
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA.
| |
Collapse
|
6
|
Denzer L, Muranyi W, Herold R, Stump-Guthier C, Ishikawa H, Sticht C, Schroten H, Schwerk C, Weichert S. Transcriptome and Functional Comparison of Primary and Immortalized Endothelial Cells of the Human Choroid Plexus at the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2025; 26:1779. [PMID: 40004242 PMCID: PMC11856769 DOI: 10.3390/ijms26041779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The human choroid plexus (CP) is the location of the blood-cerebrospinal fluid (CSF) barrier (BCSFB). Whereas the epithelial cells of the CP mainly contribute to the formation of the BCSFB, the vessels of the CP are built by fenestrated endothelial cells. Still, the CP endothelium can contribute to barrier function. By ectopic expression of human telomerase reverse transcriptase (hTERT) in primary human CP endothelial cells (HCPEnCs), we recently generated and characterized immortalized HCPEnCs (iHCPEnCs). Here, we compared primary cells of the sixth passage (HCPEnCs p6) with a lower (p20) and a higher passage (p50) of iHCPEnCs by transcriptome analysis. A high concordance of HCPEnCs and both passages of iHCPEnCs was observed, as only small proportions of the transcripts examined were significantly altered. Differentially expressed genes (DEGs) were identified and assigned to potentially affected biological processes by gene set enrichment analysis (GSEA). Various components of the endothelial barrier-relevant Wnt signaling were detected in HCPEnCs and iHCPEnCs. Functional analysis of HCPEnCs and iHCPEnCs showed equal marginal activation of Wnt signaling, supporting the downregulation of β-catenin (CTNNB) signaling in CP endothelial cells, and a contribution to the barrier function by the CP endothelium was retained until passage 100 (p100) of iHCPEnCs. Overall, our data support the suitability of iHCPEnCs as an in vitro model of the CP endothelium over extended passages.
Collapse
Affiliation(s)
- Lea Denzer
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Walter Muranyi
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rosanna Herold
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| | - Carsten Sticht
- Core Facility Next Generation Sequencing, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefan Weichert
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Denver P, Tortorelli L, Hov K, Berg JP, Giil LM, Nazmi A, Lopez-Rodriguez A, Healy D, Murray C, Barry R, Watne LO, Cunningham C. Chemokine associations with blood cerebrospinal fluid (CSF) barrier permeability and delirium. Brain Behav Immun Health 2025; 43:100920. [PMID: 39839987 PMCID: PMC11750293 DOI: 10.1016/j.bbih.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 01/23/2025] Open
Abstract
Delirium is a highly prevalent neuropsychiatric syndrome characterised by acute and fluctuating impairments in attention and cognition. Mechanisms driving delirium are poorly understood but it has been suggested that blood cytokines and chemokines cross the blood brain barrier during delirium, directly impairing brain function. It is not known whether these molecules reach higher brain levels when the blood cerebrospinal fluid barrier (BCSFB) is impaired. Here, in human hip-fracture patients, we tested the influence of BCSFB integrity on CSF levels of chemokines and assessed their association with delirium. CSF levels of IP-10, eotaxin, eotaxin 3 and TARC showed weak to moderate correlations with BCSFB permeability, as measured by the Qalbumin ratio, while MCP1, IL-8, MIP1α and MIP1β showed no significant correlation. Chemokines were not associated with delirium in univariate analysis or when stratified on dementia status, but exploratory analyses showed that elevated Eotaxin (CCL11) and MIP1α (CCL3) were associated with prevalent delirium. Modelling acute systemic inflammation, we used bacterial LPS (250 μg/kg) or sterile laparotomy surgery in mice to demonstrate de novo synthesis of chemokines at the choroid plexus (CP) and microvasculature. Gene expression data showed CP-enriched expression of Il1b, Tnfa, Cxcl1 and Ccl3 in both models and immunohistochemistry showed cytokine and chemokine synthesis in CP stromal (IL-1β, CCL2/MCP1) or epithelial cells (CXCL10/IP-10) cells and at the microvasculature. Larger studies are required to confirm these human findings on chemokine associations with BCSFB permeability and prevalent delirium. Preclinical studies are warranted to determine whether chemokines might play a role in the pathophysiology of delirium.
Collapse
Affiliation(s)
- Paul Denver
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Lucas Tortorelli
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Karen Hov
- Oslo Delirium Research Group, Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| | | | - Lasse M. Giil
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
| | - Arshed Nazmi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Ana Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Daire Healy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Carol Murray
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Robyn Barry
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| |
Collapse
|
8
|
Solár P, Brázda V, Bareš M, Zamani A, EmamiAref P, Joukal A, Kubíčková L, Kročka E, Hašanová K, Joukal M. Inflammatory changes in the choroid plexus following subarachnoid hemorrhage: the role of innate immune receptors and inflammatory molecules. Front Cell Neurosci 2025; 18:1525415. [PMID: 39839349 PMCID: PMC11747387 DOI: 10.3389/fncel.2024.1525415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid. Subarachnoid hemorrhage due to aneurysm rupture is a devastating type of hemorrhagic stroke. Following subarachnoid hemorrhage, blood and the blood degradation products that disperse into the cerebrospinal fluid come in direct contact with choroid plexus epithelial cells. The aim of the current study was to elucidate the pathophysiological cascades responsible for the inflammatory reaction that is seen in the choroid plexus following subarachnoid hemorrhage. Methods Subarachnoid hemorrhage was induced in rats by injecting non-heparinized autologous blood to the cisterna magna. Increased intracranial pressure following subarachnoid hemorrhage was modeled by using artificial cerebrospinal fluid instead of blood. Subarachnoid hemorrhage and artificial cerebrospinal fluid animals were left to survive for 1, 3, 7 and 14 days. Immunohistochemical staining of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β, CCR2 and CX3CR1 was performed on the cryostat sections of choroid plexus tissue. The level of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β was detected by measuring immunofluorescence intensity in randomly selected epithelial cells. The number of CCR2 and CX3CR1 positive cells per choroid plexus area was manually counted. Immunohistochemical changes were confirmed by Western blot analyses. Results Immunohistochemical methods and Western blot showed increased levels of TLR9 and a slight increase in TLR4 and FRP2 following both subarachnoid hemorrhage as well as the application of artificial cerebrospinal fluid over time, although the individual periods were different. The levels of TNFα and IL-1β increased, while CCL2 level decreased slightly. Accumulation of macrophages positive for CCR2 and CX3CR1 was found in all periods after subarachnoid hemorrhage as well as after the application of artificial cerebrospinal fluid. Discussion Our results suggest that the inflammation develops in the choroid plexus and blood-cerebrospinal fluid barrier in response to blood components as well as acutely increased intracranial pressure following subarachnoid hemorrhage. These pro-inflammatory changes include accumulation in the choroid plexus of pro-inflammatory cytokines, innate immune receptors, and monocyte-derived macrophages.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Václav Brázda
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Martin Bareš
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alemeh Zamani
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Parisa EmamiAref
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Andrea Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Kubíčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Erik Kročka
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Klaudia Hašanová
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
9
|
Johnsen LØ, Friis KA, Møller‐Madsen MK, Damkier HH. Mechanisms of cerebrospinal fluid secretion by the choroid plexus epithelium: Application to various intracranial pathologies. Clin Anat 2025; 38:63-74. [PMID: 38894645 PMCID: PMC11652798 DOI: 10.1002/ca.24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The choroid plexus (CP) is a small yet highly active epithelial tissue located in the ventricles of the brain. It secretes most of the CSF that envelops the brain and spinal cord. The epithelial cells of the CP have a high fluid secretion rate and differ from many other secretory epithelia in the organization of several key ion transporters. One striking difference is the luminal location of, for example, the vital Na+-K+-ATPase. In recent years, there has been a renewed focus on the role of ion transporters in CP secretion. Several studies have indicated that increased membrane transport activity is implicated in disorders such as hydrocephalus, idiopathic intracranial hypertension, and posthemorrhagic sequelae. The importance of the CP membrane transporters in regulating the composition of the CSF has also been a focus in research in recent years, particularly as a regulator of breathing and hemodynamic parameters such as blood pressure. This review focuses on the role of the fundamental ion transporters involved in CSF secretion and its ion composition. It gives a brief overview of the established factors and controversies concerning ion transporters, and finally discusses future perspectives related to the role of these transporters in the CP epithelium.
Collapse
|
10
|
Kursancew ACS, Faller CJ, Bortoluzzi DP, Niero LB, Brandão B, Danielski LG, Petronilho F, Generoso JS. Neuroinflammatory Response in the Traumatic Brain Injury: An Update. Neurochem Res 2024; 50:64. [PMID: 39718667 DOI: 10.1007/s11064-024-04316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
The central nervous system (CNS) comprises membranes and barriers that are vital to brain homeostasis. Membranes form a robust shield around neural structures, ensuring protection and structural integrity. At the same time, barriers selectively regulate the exchange of substances between blood and brain tissue, which is essential for maintaining homeostasis. Another highlight is the glymphatic system, which cleans metabolites and waste from the brain. Traumatic brain injury (TBI) represents a significant cause of disability and mortality worldwide, resulting from the application of direct mechanical force to the head that results in a primary injury. Therefore, this review aims to elucidate the mechanisms associated with the secondary injury cascade, in which there is intense activation of glial cells, dysfunction of the glymphatic system, glutamatergic neurotoxicity, additional molecular and biochemical changes that lead to a neuroinflammatory process, and oxidative stress and in which way they can be associated with cognitive damage that is capable of lasting for an extended period.
Collapse
Affiliation(s)
- Amanda C S Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Daniel Paulo Bortoluzzi
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana Budny Niero
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Beatriz Brandão
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
11
|
Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis 2024; 199:106550. [PMID: 38849103 PMCID: PMC11495523 DOI: 10.1016/j.nbd.2024.106550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
Bioenergetics describe the biochemical processes responsible for energy supply in organisms. When these changes become dysregulated in brain development, multiple neurodevelopmental diseases can occur, implicating bioenergetics as key regulators of neural development. Historically, the discovery of disease processes affecting individual stages of brain development has revealed critical roles that bioenergetics play in generating the nervous system. Bioenergetic-dependent neurodevelopmental disorders include neural tube closure defects, microcephaly, intellectual disability, autism spectrum disorders, epilepsy, mTORopathies, and oncogenic processes. Developmental timing and cell-type specificity of these changes determine the long-term effects of bioenergetic disease mechanisms on brain form and function. Here, we discuss key metabolic regulators of neural progenitor specification, neuronal differentiation (neurogenesis), and gliogenesis. In general, transitions between glycolysis and oxidative phosphorylation are regulated in early brain development and in oncogenesis, and reactive oxygen species (ROS) and mitochondrial maturity play key roles later in differentiation. We also discuss how bioenergetics interface with the developmental regulation of other key neural elements, including the cerebrospinal fluid brain environment. While questions remain about the interplay between bioenergetics and brain development, this review integrates the current state of known key intersections between these processes in health and disease.
Collapse
Affiliation(s)
- Arjun Rajan
- Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Schwerk C, Schroten H. In vitro models of the choroid plexus and the blood-cerebrospinal fluid barrier: advances, applications, and perspectives. Hum Cell 2024; 37:1235-1242. [PMID: 39103559 PMCID: PMC11341628 DOI: 10.1007/s13577-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The choroid plexus (CP), a highly vascularized endothelial-epithelial convolute, is placed in the ventricular system of the brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood-CSF barrier (BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the development of treatment options. In this review, we provide an overview on the available models and the advances that have been made toward more sophisticated and "in vivo near" systems as organoids and microfluidic lab-on-a-chip approaches. We go into the applications and research objectives for which the various modeling systems can be used and discuss the possible future prospects and perspectives.
Collapse
Affiliation(s)
- Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
13
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
14
|
Chung KJ, Abdelhafez YG, Spencer BA, Jones T, Tran Q, Nardo L, Chen MS, Sarkar S, Medici V, Lyo V, Badawi RD, Cherry SR, Wang G. Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.26.24311027. [PMID: 39108503 PMCID: PMC11302722 DOI: 10.1101/2024.07.26.24311027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Blood-brain barrier (BBB) disruption is involved in the pathogenesis and progression of many neurological and systemic diseases. Non-invasive assessment of BBB permeability in humans has mainly been performed with dynamic contrast-enhanced magnetic resonance imaging, evaluating the BBB as a structural barrier. Here, we developed a novel non-invasive positron emission tomography (PET) method in humans to measure the BBB permeability of molecular radiotracers that cross the BBB through different transport mechanisms. Our method uses high-temporal resolution dynamic imaging and kinetic modeling to jointly estimate cerebral blood flow and tracer-specific BBB transport rate from a single dynamic PET scan and measure the molecular permeability-surface area (PS) product of the radiotracer. We show our method can resolve BBB PS across three PET radiotracers with greatly differing permeabilities, measure reductions in BBB PS of 18F-fluorodeoxyglucose (FDG) in healthy aging, and demonstrate a possible brain-body association between decreased FDG BBB PS in patients with metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to efficiently study the molecular permeability of the human BBB in vivo using the large catalogue of available molecular PET tracers.
Collapse
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Quyen Tran
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Moon S Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
| | - Souvik Sarkar
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
| | - Valentina Medici
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA
| | - Victoria Lyo
- Department of Surgery, University of California Davis Health, Sacramento, CA
- Center for Alimentary and Metabolic Sciences, University of California Davis Health, Sacramento, CA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Health, Sacramento, CA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA
| |
Collapse
|
15
|
Mack AF, Bihlmaier R, Deffner F. Shifting from ependyma to choroid plexus epithelium and the changing expressions of aquaporin-1 and aquaporin-4. J Physiol 2024; 602:3097-3110. [PMID: 37975746 DOI: 10.1113/jp284196] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
The cells of the choroid plexus (CP) epithelium are specialized ependymal cells (ECs) but have distinct properties. The CP cells and ECs form single-cell sheets contiguous to each other at a transitional zone. The CP is underlined by a basal lamina and has barrier properties, whereas the ECs do not. The basal lamina of the CP is continuous with the glia limitans superficialis and, consequently, the CP stroma is continuous with the meninges along entering blood vessels. The CP has previously been reported to express aquaporin-1 (AQP1) mostly apically, and ECs show mostly basolateral aquaporin-4 (AQP4) expression. Recent evidence in various systems has shown that in changing conditions the expression and distribution of AQP4 can be modified, involving phosphorylation and calmodulin-triggered translocation. Studies on the human CP revealed that AQP4 is also expressed in some CP cells, which is likely to be increased during ageing based on mouse data. Moreover, subependymal astrocytic processes in the ependyma-CP transition, forming a glial plate around blood vessels and facing the CP stroma, were strongly positive for AQP4. We propose that the increased AQP4 expression might be a compensatory mechanism for the observed reduction in CSF production in the ageing human brain. The high AQP4 density in the transition zone might facilitate the transport of water into and out of the CP stroma and serve as a drainage and clearing pathway for metabolites in the CNS.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Ronja Bihlmaier
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Felix Deffner
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Xu L, Ren C, Jing C, Wang G, Wei H, Kong M, Ba M. Predicting amyloid-PET and clinical conversion in apolipoprotein E ε3/ε3 non-demented individuals with multidimensional factors. Eur J Neurosci 2024; 60:3742-3758. [PMID: 38698692 DOI: 10.1111/ejn.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
The apolipoprotein E (APOE) ε4 is a well-established risk factor of amyloid-β (Aβ) in Alzheimer's disease (AD). However, because of the high prevalence of APOE ε3, there may be a large number of people with APOE ε3/ε3 who are non-demented and have Aβ pathology. There are limited studies on assessing Aβ status and clinical conversion in the APOE ε3/ε3 non-demented population. Two hundred and ninety-three non-demented individuals with APOE ε3/ε3 from ADNI database were divided into Aβ-positron emission tomography (Aβ-PET) positivity (+) and Aβ-PET negativity (-) groups using cut-off value of >1.11. Stepwise regression searched for a single or multidimensional clinical variables for predicting Aβ-PET (+), and the receiver operating characteristic curve (ROC) assessed the accuracy of the predictive models. The Cox regression model explored the risk factors associated with clinical conversion to mild cognitive impairment (MCI) or AD. The results showed that the combination of sex, education, ventricle and white matter hyperintensity (WMH) volume can accurately predict Aβ-PET status in cognitively normal (CN), and the combination of everyday cognition study partner total (EcogSPTotal) score, age, plasma p-tau 181 and WMH can accurately predict Aβ-PET status in MCI individuals. EcogSPTotal score were independent predictors of clinical conversion to MCI or AD. The findings may provide a non-invasive and effective tool to improve the efficiency of screening Aβ-PET (+), accelerate and reduce costs of AD trial recruitment in future secondary prevention trials or help to select patients at high risk of disease progression in clinical trials.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Chao Ren
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Chenxi Jing
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Gang Wang
- School of Ulsan Ship and Ocean College, Ludong University, Yantai, China
| | - Hongchun Wei
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong, China
| | - Maowen Ba
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
- Yantai Regional Sub Center of National Center for Clinical Medical Research of Neurological Diseases, Shandong, China
| |
Collapse
|
17
|
Song Y, Wang Z, Zhang J, Cui X, Wu Z, Zhao Z, Chen Y, Zhang S, Zhu X, Wang Z, Zhang H, Gao C, Yang S, Zhao Y, Yang X. Resection of the tumor in the trigone of the lateral ventricle via the contralateral posterior interhemispheric transfalcine transprecuneus approach with multi-modern neurosurgery technology: a case report. Front Surg 2024; 11:1371983. [PMID: 38978989 PMCID: PMC11228274 DOI: 10.3389/fsurg.2024.1371983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Choroid plexus papilloma (CPP) is a rare benign intracranial tumor origin that predominantly manifests in the lateral ventricle in children, accounting for 0.3%-0.6% of all primary intracranial tumors. It is extremely rare to have the CPP in the trigone of the lateral ventricle through the contralateral posterior interhemispheric transfalcine transprecuneus approach (PITTA). Herein, we report this rare case. A 7-year-old girl presented with headache. Magnetic resonance imaging of the brain showed periatrial lesions, and histopathological examination confirmed CPP (WHO grade I). The contralateral PITTA is a safe, effective, reasonable, and appropriate for some lesions in the trigone of the lateral ventricle. It provides a wider surgical angle (especially for the lateral extension) and reduces the risk of disturbance of the optic radiation compared with the conventional approaches. The use of multiple modern neurosurgical techniques, including interventional embolization, intraoperative navigation, microscope, and electrophysiological monitoring, make the procedure much easier and more accurate, and the neuroendoscope adds to the visualization of the microscope and can reduce surgical complications.
Collapse
Affiliation(s)
- Yunfei Song
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaopeng Cui
- Department of Neurosurgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhuolin Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zilin Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Suqin Zhang
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Tianjin, Shanxi, China
| | - Xiaowei Zhu
- Department of Neurosurgery, Yangquan First People's Hospital, Yangquan, Shanxi, China
| | - Zhitao Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Huijie Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Gao
- Department of Neurosurgery, Xi'an No 9 Hospital, Xi'an, Shaanxi, China
| | - Shuyuan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
18
|
Andour H, Ben El Hend S, Mandour C, Allaoui M, Fikri A. Atypical choroid plexus papilloma: Diagnosis and differentials: A case report. SAGE Open Med Case Rep 2024; 12:2050313X241254000. [PMID: 38764919 PMCID: PMC11102693 DOI: 10.1177/2050313x241254000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
Atypical choroid plexus papilloma is a rare World Health Organization grade 2 intraventricular tumor arising from the epithelium of the plexus choroid with intermediate clinical-pathological features between the benign choroid plexus papilloma and the malignant choroid plexus carcinoma. The main criteria for differentiation are histopathologic, with difficulties in distinguishing it from choroid plexus papilloma based on imaging features. We report the case of a 4-year-old female presenting with headaches and altered mental status. Brain magnetic resonance imaging revealed a right lateral ventricular mass with some atypical characteristics, which were confirmed on pathological examination as an atypical choroid plexus papilloma.
Collapse
Affiliation(s)
- H. Andour
- Radiology Department, Military Hospital Mohammed V-Rabat, Rabat, Morocco
| | - S. Ben El Hend
- Radiology Department, Military Hospital Avicennes, Marrakech, Morocco
| | - C. Mandour
- Neurosurgery Department, Military Hospital Mohammed V-Rabat, Rabat, Morocco
| | - M. Allaoui
- Anatomopathology Department, Military Hospital Mohammed V-Rabat, Rabat, Morocco
| | - A. Fikri
- Radiology Department, Military Hospital Avicennes, Marrakech, Morocco
| |
Collapse
|
19
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
20
|
Gonçalves FG, Mahecha-Carvajal ME, Desa A, Yildiz H, Talbeya JK, Moreno LA, Viaene AN, Vossough A. Imaging of supratentorial intraventricular masses in children:a pictorial review- part 1. Neuroradiology 2024; 66:677-698. [PMID: 38466393 PMCID: PMC11031501 DOI: 10.1007/s00234-024-03314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE This article is the first in a two-part series designed to provide a comprehensive overview of the range of supratentorial intraventricular masses observed in children. Our primary objective is to discuss the diverse types of intraventricular masses that originate not only from cells within the choroid plexus but also from other sources. METHODS In this article, we review relevant epidemiological data, the current genetics/molecular classification as outlined in the fifth edition of the World Health Organization's Classification of tumours of the Central Nervous System and noteworthy imaging findings. We conduct an exhaustive analysis of primary choroid plexus tumours as well as other conditions such as choroid plexus hyperplasia, choroid plexus cyst, choroid plexus xanthogranuloma, atypical teratoid rhabdoid tumour, meningioma, arteriovenous malformation and metastasis. RESULTS We comprehensively evaluated each supratentorial intraventricular mass, providing an in-depth analysis of their unique clinical and histological characteristics. The fifth edition of the World Health Organization Classification of Tumours of the Central Nervous System introduces major modifications. These important changes could potentially have a profound impact on the management strategies and subsequent outcomes of these tumours. CONCLUSION Intraventricular masses in children can arise from various sources. Surgical intervention is key for certain supratentorial intraventricular masses in paediatric patients, with preoperative neuroimaging essential to decide the best treatment approach, surgical or otherwise, as some cases may not require surgery.
Collapse
Affiliation(s)
| | | | - Aishwary Desa
- Drexel University College of Medicine Philadelphia, Philadelphia, PA, USA
| | - Harun Yildiz
- Department of Radiology, Dortcelik Children's Hospital, Bursa, Turkey
| | | | - Luz Angela Moreno
- Pediatric Imaging, Department of Radiology, Fundación Hospital La Misericordia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Angela N Viaene
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Pathology Department, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Arastoo Vossough
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
21
|
Kang R, Kim K, Jung Y, Choi SH, Lee C, Im GH, Shin M, Ryu K, Choi S, Yang E, Shin W, Lee S, Lee S, Papadopoulos Z, Ahn JH, Koh GY, Kipnis J, Kang H, Kim H, Cho WK, Park S, Kim SG, Kim E. Loss of Katnal2 leads to ependymal ciliary hyperfunction and autism-related phenotypes in mice. PLoS Biol 2024; 22:e3002596. [PMID: 38718086 PMCID: PMC11104772 DOI: 10.1371/journal.pbio.3002596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/20/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.
Collapse
Affiliation(s)
- Ryeonghwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Kyungdeok Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yewon Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sang-Han Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Kwangmin Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Subin Choi
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Esther Yang
- Department of Anatomy, Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Zachary Papadopoulos
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Jonathan Kipnis
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea
| | - Hyun Kim
- Department of Anatomy, Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| |
Collapse
|
22
|
Dai T, Lou J, Kong D, Li J, Ren Q, Chen Y, Sun S, Yun Y, Sun X, Yang Y, Shao K, Li W, Zhao Y, Meng X, Yan C, Lin P, Liu S. Choroid plexus enlargement in amyotrophic lateral sclerosis patients and its correlation with clinical disability and blood-CSF barrier permeability. Fluids Barriers CNS 2024; 21:36. [PMID: 38632611 PMCID: PMC11025206 DOI: 10.1186/s12987-024-00536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Using in vivo neuroimaging techniques, growing evidence has demonstrated that the choroid plexus (CP) volume is enlarged in patients with several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. However, although animal and postmortem findings suggest that CP abnormalities are likely important pathological mechanisms underlying amyotrophic lateral sclerosis (ALS), the third most common neurodegenerative disease, no available study has been conducted to thoroughly assess CP abnormalities and their clinical relevance in vivo in ALS patients to date. Thus, we aimed to determine whether in vivo CP enlargement may occur in ALS patients. We also aimed to identify the relationships of CP volume with clinical disabilities and blood-CSF barrier (BCSFB) permeability in ALS patients. METHODS In this retrospective study, based on structural MRI data, CP volume was assessed using a Gaussian mixture model and underwent further manual correction in 155 ALS patients and 105 age- and sex-matched HCs from October 2021 to April 2023. The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to assess clinical disability. The CSF/serum albumin quotient (Qalb) was used to assess BCSFB permeability. Moreover, all the ALS patients completed genetic testing, and according to genetic testing, the ALS patients were further divided into genetic ALS subgroup and sporadic ALS subgroup. RESULTS We found that compared with HCs, ALS patients had a significantly higher CP volume (p < 0.001). Moreover, compared with HCs, CP volume was significantly increased in both ALS patients with and without known genetic mutations after family-wise error correction (p = 0.006 and p < 0.001, respectively), while there were no significant differences between the two ALS groups. Furthermore, the CP volume was significantly correlated with the ALSFRS-r score (r = -0.226; p = 0.005) and the Qalb (r = 0.479; p < 0.001) in ALS patients. CONCLUSION Our study first demonstrates CP enlargement in vivo in ALS patients, and continues to suggest an important pathogenetic role for CP abnormalities in ALS. Moreover, assessing CP volume is likely a noninvasive and easy-to-implement approach for screening BCSFB dysfunction in ALS patients.
Collapse
Affiliation(s)
- Tingjun Dai
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Jianwei Lou
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Deyuan Kong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jinyu Li
- Department of Neurology, Xiamen Branch, Zhongshan Hospital, Fudan University, 361015, Xiamen, China
| | - Qingguo Ren
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Yujing Chen
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Sujuan Sun
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Yan Yun
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaohan Sun
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Yiru Yang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kai Shao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Xiangshui Meng
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China.
| | - Shuangwu Liu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China.
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
23
|
Burke Schinkel SC, Barros PO, Berthoud T, Byrareddy SN, McGuinty M, Cameron DW, Angel JB. Comparative analysis of human gut- and blood-derived mononuclear cells: contrasts in function and phenotype. Front Immunol 2024; 15:1336480. [PMID: 38444848 PMCID: PMC10912472 DOI: 10.3389/fimmu.2024.1336480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Alterations in the gut immune system have been implicated in various diseases.The challenge of obtaining gut tissues from healthy individuals, commonly performed via surgical explants, has limited the number of studies describing the phenotype and function of gut-derived immune cells in health. Methods Here, by means of recto-sigmoid colon biopsies obtained during routine care (colon cancer screening in healthy adults), the phenotype and function of immune cells present in the gut were described and compared to those found in blood. Results The proportion of CD4+, CD8+, MAIT, γδ+ T, and NK cells phenotype, expression of integrins, and ability to produce cytokine in response to stimulation with PMA and ionomycin. T cells in the gut were found to predominantly have a memory phenotype as compared to T cells in blood where a naïve phenotype predominates. Recto-sigmoid mononuclear cells also had higher PD-1 and Ki67 expression. Furthermore, integrin expression and cytokine production varied by cell type and location in blood vs. gut. Discussion These findings demonstrate the differences in functionality of these cells when compared to their blood counterparts and validate previous studies on phenotype within gut-derived immune cells in humans (where cells have been obtained through surgical means). This study suggests that recto-sigmoid biopsies collected during colonoscopy can be a reliable yet more accessible sampling method for follow up of alterations of gut derived immune cells in clinical settings.
Collapse
Affiliation(s)
| | - Priscila O Barros
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Tamara Berthoud
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michaeline McGuinty
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - D William Cameron
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan B Angel
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Raghib MF, Bao F, Elkhooly M, Bernitsas E. Choroid plexus volume as a marker of retinal atrophy in relapsing remitting multiple sclerosis. J Neurol Sci 2024; 457:122884. [PMID: 38237367 DOI: 10.1016/j.jns.2024.122884] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To evaluate choroid plexus (CP) volume as a biomarker for predicting clinical disability and retinal layer atrophy in relapsing remitting multiple sclerosis (RRMS). METHODS Ninety-five RRMS patients and 26 healthy controls (HCs) underwent 3 T whole brain MRI, expanded disability status scale (EDSS) and optical coherence tomography (OCT). Fully automated intra-retinal segmentation was performed to obtain the volumes of the retinal nerve fiber layer (RNFL), combined ganglion cell layer -inner plexiform layer (GCIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigment epithelium (RPE), total macular volume (TMV) and papillomacular bundle (PMB). Automated segmentation of the CP within the lateral ventricles was performed and the choroid plexus volume (CPV) was normalized by total intracranial volume (TIV). Linear regression analysis and generalized estimating equation (GEE) models were applied to evaluate relationships between nCPV and EDSS, T2 lesion volume, disease duration, and retinal layer volumes, followed by Bonferroni correction analysis for multiple comparisons. RESULTS RRMS patients had larger tChPV compared to HCs (p < 0.001). After Bonferroni correction, there was a significant positive correlation between tChPV and EDSS (r2 = 0.25, p = 0.0002), disease duration (r2 = 0.30, p = 0.01), and T2 lesion volume (r2 = 0.39, p = 0.0000). A robust negative correlation was found between tChPV and RNFL (p < 0.001), GCIPL (p = 0.003), TMV (p = 0.0185), PMB (p < 0.0001), G (p = 0.04), T(p = 0.0001). CONCLUSIONS Our findings support the association of tChPV with disability and altered retinal integrity in RRMS.
Collapse
Affiliation(s)
- Muhammad F Raghib
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Fen Bao
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Mahmoud Elkhooly
- Department of Neurology, Wayne State University School of Medicine, United States of America; Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, United States of America; Department of Neurology and Psychiatry, Minia University, Minia, Egypt
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, United States of America; Detroit Medical Center, Detroit, MI, United States of America.
| |
Collapse
|
25
|
Bhutada AS, Adhikari S, Cuoco JA, In A, Rogers CM, Jane JA, Marvin EA. Prognostic Factors and Nomogram for Choroid Plexus Tumors: A Population-Based Retrospective Surveillance, Epidemiology, and End Results Database Analysis. Cancers (Basel) 2024; 16:610. [PMID: 38339361 PMCID: PMC10854689 DOI: 10.3390/cancers16030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Choroid plexus tumors (CPTs) are rare neoplasms found in the central nervous system, comprising 1% of all brain tumors. These tumors include choroid plexus papilloma (CPP), atypical choroid plexus papilloma (aCPP), and choroid plexus carcinoma (CPC). Although gross total resection for choroid plexus papillomas (CPPs) is associated with long-term survival, there is a scarcity of prospective data concerning the role and sequence of neoadjuvant therapy in treating aCPP and CPC. Methods: From the years 2000 to 2019, 679 patients with CPT were identified from the Surveillance, Epidemiology, and End Result (SEER) database. Among these patients, 456 patients had CPP, 75 patients had aCPP, and 142 patients had CPC. Univariate and multivariable Cox proportional hazard models were run to identify variables that had a significant impact on the primary endpoint of overall survival (OS). A predictive nomogram was built for patients with CPC to predict 5-year and 10-year survival probability. Results: Histology was a significant predictor of OS, with 5-year OS rates of 90, 79, and 61% for CPP, aCPP, and CPC, respectively. Older age and African American race were prognostic for worse OS for patients with CPP. Older age was also associated with reduced OS for patients with aCPP. American Indian/Alaskan Native race was linked to poorer OS for patients with CPC. Overall, treatment with gross total resection or subtotal resection had no difference in OS in patients with CPP or aCPP. Meanwhile, in patients with CPC, gross total resection (GTR) was associated with significantly better OS than subtotal resection (STR) only. However, there is no difference in OS between patients that receive GTR and patients that receive STR with adjuvant therapy. The nomogram for CPC considers types of treatments received. It demonstrates acceptable accuracy in estimating survival probability at 5-year and 10-year intervals, with a C-index of 0.608 (95% CI of 0.446 to 0.77). Conclusions: This is the largest study on CPT to date and highlights the optimal treatment strategies for these rare tumors. Overall, there is no difference in OS with GTR vs. STR in CPP or aCPP. Furthermore, OS is equivalent for CPC with GTR and STR plus adjuvant therapy.
Collapse
Affiliation(s)
- Abhishek S. Bhutada
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.A.); (J.A.C.); (A.I.); (C.M.R.); (J.A.J.J.); (E.A.M.)
| | - Srijan Adhikari
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.A.); (J.A.C.); (A.I.); (C.M.R.); (J.A.J.J.); (E.A.M.)
- Department of Neurosurgery, Carilion Clinic, 1906 Belleview Avenue, Roanoke, VA 24014, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua A. Cuoco
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.A.); (J.A.C.); (A.I.); (C.M.R.); (J.A.J.J.); (E.A.M.)
- Department of Neurosurgery, Carilion Clinic, 1906 Belleview Avenue, Roanoke, VA 24014, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alexander In
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.A.); (J.A.C.); (A.I.); (C.M.R.); (J.A.J.J.); (E.A.M.)
| | - Cara M. Rogers
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.A.); (J.A.C.); (A.I.); (C.M.R.); (J.A.J.J.); (E.A.M.)
- Department of Neurosurgery, Carilion Clinic, 1906 Belleview Avenue, Roanoke, VA 24014, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - John A. Jane
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.A.); (J.A.C.); (A.I.); (C.M.R.); (J.A.J.J.); (E.A.M.)
- Department of Neurosurgery, Carilion Clinic, 1906 Belleview Avenue, Roanoke, VA 24014, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Eric A. Marvin
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA; (S.A.); (J.A.C.); (A.I.); (C.M.R.); (J.A.J.J.); (E.A.M.)
- Department of Neurosurgery, Carilion Clinic, 1906 Belleview Avenue, Roanoke, VA 24014, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
26
|
Tuncel H, Visser D, Timmers T, Wolters EE, Ossenkoppele R, van der Flier WM, van Berckel BNM, Boellaard R, Golla SSV. Head-to-head comparison of relative cerebral blood flow derived from dynamic [ 18F]florbetapir and [ 18F]flortaucipir PET in subjects with subjective cognitive decline. EJNMMI Res 2023; 13:93. [PMID: 37889456 PMCID: PMC10611685 DOI: 10.1186/s13550-023-01041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Dynamic PET imaging studies provide accurate estimates of specific binding, but also measure the relative tracer delivery (R1), which is a proxy for relative cerebral blood flow (rCBF). Recently, studies suggested that R1 obtained from different tracers could be used interchangeably and is irrespective of target tissue. However, the similarities or differences of R1 obtained from different PET tracers still require validation. Therefore, the goal of the current study was to compare R1 estimates, derived from dynamic [18F]florbetapir (amyloid) and [18F]flortaucipir (tau) PET, in the same subjects with subjective cognitive decline (SCD). RESULTS Voxel-wise analysis presented a small cluster (1.6% of the whole brain) with higher R1 values for [18F]flortaucipir compared to [18F]florbetapir in the Aβ-negative group. These voxels were part of the hippocampus and the left middle occipital gyrus. In part of the thalamus, midbrain and cerebellum, voxels (2.5% of the whole brain) with higher R1 values for [18F]florbetapir were observed. In the Aβ-positive group, a cluster (0.2% of the whole brain) of higher R1 values was observed in part of the hippocampus, right parahippocampal gyrus and in the left sagittal stratum for [18F]flortaucipir compared to [18F]florbetapir. Furthermore, in part of the thalamus, left amygdala, midbrain and right parahippocampal gyrus voxels (0.4% of the whole brain) with higher R1 values for [18F]florbetapir were observed. Despite these differences, [18F]florbetapir R1 had high correspondence with [18F]flortaucipir R1 across all regions of interest (ROIs) and subjects (Aβ-:r2 = 0.79, slope = 0.85, ICC = 0.76; Aβ+: r2 = 0.87, slope = 0.93, ICC = 0.77). CONCLUSION [18F]flortaucipir and [18F]florbetapir showed similar R1 estimates in cortical regions. This finding, put together with previous studies, indicates that R1 could be considered a surrogate for relative cerebral blood flow (rCBF) in the cortex and may be used interchangeably, but with caution, regardless of the choice of these two tracers.
Collapse
Affiliation(s)
- Hayel Tuncel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Denise Visser
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tessa Timmers
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma E Wolters
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Department of Neurology, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Refaie MMM, El-Hussieny M, Shehata S, Welson NN, Abdelzaher WY. Exploring the role of ATP-sensitive potassium channel, eNOS, and P-glycoprotein in mediating the hepatoprotective activity of nicorandil in methotrexate-induced liver injury in rats. Immunopharmacol Immunotoxicol 2023; 45:607-615. [PMID: 37078892 DOI: 10.1080/08923973.2023.2201659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Methotrexate (MTX) is a commonly used chemotherapeutic agent; however, its clinical use is challenged by various types of injuries, including hepatotoxic side effects. Therefore, finding new protective drugs against MTX-induced toxicities is a critical need. Moreover, the different mechanisms mediating such effects are still not clear. The current study aimed to evaluate the possible ameliorative action of nicorandil (NIC) in MTX-induced hepatotoxicity and examine the roles of the ATP-sensitive potassium channel (KATP), endothelial nitric oxide synthase (eNOS), and P-glycoprotein (P-gp). MATERIALS AND METHODS Thirty-six male Wistar albino rats were used. NIC (3 mg/kg/day) was given orally for 2 weeks, and hepatotoxicity was induced by a single intraperitoneal injection of MTX (20 mg/kg) on the 11th day of the experiment. We confirmed the role of KATP by co-administering glimepiride (GP) (10 mg/kg/day) 30 min before NIC. The measured serum biomarkers were [alanine transaminase (ALT) and aspartate transaminase (AST)], total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NOx), tumor necrosis factor-alpha (TNFα), superoxide dismutase (SOD), and P-gp. Histopathology, eNOS, and caspase-3 immunoexpression were evaluated. RESULTS The MTX group displayed hepatotoxicity in the form of elevations of ALT, AST, MDA, NOx, and caspase-3 immunoexpression. Furthermore, the histopathological examination showed marked liver injury. TAC, SOD, P-gp, and eNOS immunoexpression showed significant inhibition. In the protective group, all parameters improved (P value < 0.05). CONCLUSION NIC has an ameliorative action against MTX-induced hepatotoxicity, most probably via its antioxidant, anti-inflammatory, and anti-apoptotic functions together with the modulation of the KATP channel, eNOS, and P-glycoprotein.
Collapse
Affiliation(s)
| | | | - Sayed Shehata
- Department of Cardiology, Minia University, El-Minia, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
28
|
O'Brown NM, Patel NB, Hartmann U, Klein AM, Gu C, Megason SG. The secreted neuronal signal Spock1 promotes blood-brain barrier development. Dev Cell 2023; 58:1534-1547.e6. [PMID: 37437574 PMCID: PMC10525910 DOI: 10.1016/j.devcel.2023.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/07/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
The blood-brain barrier (BBB) is a unique set of properties of the brain vasculature which severely restrict its permeability to proteins and small molecules. Classic chick-quail chimera studies have shown that these properties are not intrinsic to the brain vasculature but rather are induced by surrounding neural tissue. Here, we identify Spock1 as a candidate neuronal signal for regulating BBB permeability in zebrafish and mice. Mosaic genetic analysis shows that neuronally expressed Spock1 is cell non-autonomously required for a functional BBB. Leakage in spock1 mutants is associated with altered extracellular matrix (ECM), increased endothelial transcytosis, and altered pericyte-endothelial interactions. Furthermore, a single dose of recombinant SPOCK1 partially restores BBB function in spock1 mutants by quenching gelatinase activity and restoring vascular expression of BBB genes including mcamb. These analyses support a model in which neuronally secreted Spock1 initiates BBB properties by altering the ECM, thereby regulating pericyte-endothelial interactions and downstream vascular gene expression.
Collapse
Affiliation(s)
- Natasha M O'Brown
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| | - Nikit B Patel
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Chenghua Gu
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Junemann O, Ivanova AG, Bukreeva I, Zolotov DA, Fratini M, Cedola A, Wilde F, Dyachkova IG, Krivonosov YS, Otlyga DA, Saveliev SV. Comparative study of calcification in human choroid plexus, pineal gland, and habenula. Cell Tissue Res 2023; 393:537-545. [PMID: 37354235 DOI: 10.1007/s00441-023-03800-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Choroid plexus, pineal gland, and habenula tend to accumulate physiologic calcifications (concrements) over a lifetime. However, until now the composition and causes of the intracranial calcifications remain unclear. The detailed analysis of concrements has been done by us using X-ray diffraction analysis (XRD), X-ray diffraction topography (XRDT), micro-CT, X-ray phase-contrast tomography (XPCT), as well as histology and immunohistochemistry (IHC). By combining physical (XRD) and biochemical (IHC) methods, we identified inorganic (hydroxyapatite) and organic (vimentin) components of the concrements. Via XPCT, XRDT, histological, and IHC methods, we assessed the structure of concrements within their appropriate tissue environment in both two and three dimensions. The study found that hydroxyapatite was a major component of all calcified depositions. It should be noted, however, that the concrements displayed distinctive characteristics corresponding to each specific structure of the brain. As a result, our study provides a basis for assessing the pathological and physiological changes that occur in brain structure containing calcifications.
Collapse
Affiliation(s)
- O Junemann
- Institute of Nanotechnology-CNR (Rome unit), c/o Department of Physics, La Sapienza University, Piazzale Aldo Moro 5, Rome, Italy.
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsyurupy Street, 3, Moscow, Russian Federation.
| | - A G Ivanova
- Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospekt 59, Moscow, Russian Federation
| | - I Bukreeva
- Institute of Nanotechnology-CNR (Rome unit), c/o Department of Physics, La Sapienza University, Piazzale Aldo Moro 5, Rome, Italy.
| | - D A Zolotov
- Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospekt 59, Moscow, Russian Federation
| | - M Fratini
- Institute of Nanotechnology-CNR (Rome unit), c/o Department of Physics, La Sapienza University, Piazzale Aldo Moro 5, Rome, Italy
- IRCCS Santa Lucia Foundation, Via Ardeatina 352, Rome, Italy
| | - A Cedola
- Institute of Nanotechnology-CNR (Rome unit), c/o Department of Physics, La Sapienza University, Piazzale Aldo Moro 5, Rome, Italy
| | - F Wilde
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - I G Dyachkova
- Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospekt 59, Moscow, Russian Federation
| | - Yu S Krivonosov
- Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskiy Prospekt 59, Moscow, Russian Federation
| | - D A Otlyga
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsyurupy Street, 3, Moscow, Russian Federation
| | - S V Saveliev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsyurupy Street, 3, Moscow, Russian Federation
| |
Collapse
|
30
|
Ota M, Sato N, Nakaya M, Shigemoto Y, Kimura Y, Chiba E, Yokoi Y, Tsukamoto T, Matsuda H. Relationship between the tau protein and choroid plexus volume in Alzheimer's disease. Neuroreport 2023; 34:546-550. [PMID: 37384934 DOI: 10.1097/wnr.0000000000001923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Tau protein accumulation in the brain is thought to be one of the causes of Alzheimer's disease (AD). Recent studies found that the choroid plexus (CP) has a role in β-amyloid and tau protein clearance in the brain. We evaluated the relationships between CP volume and the ß-amyloid and tau protein depositions. Participants were 20 patients with AD and 35 healthy subjects who underwent MRI and PET scanning using the ß-amyloid tracer 11C-PiB and the tau/inflammatory tracer 18F-THK5351. We computed the volume of the CP and estimated the relationships between the CP volume and ß-amyloid and tau protein/inflammatory deposition by Spearman's correlation test. The CP volume was significantly positively correlated with both the standardized uptake value ratio (SUVR) of 11C-PiB and the SUVR of 18F-THK5351 in all participants. The CP volume was also significantly positively correlated with the SUVR of 18F-THK5351in patients with AD. Our data suggested that the volume of the CP was a good biomarker for the evaluation of tau deposition and neuroinflammation.
Collapse
Affiliation(s)
- Miho Ota
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
- Department of Neuropsychiatry, University of Tsukuba, Tsukuba, Ibaraki
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Moto Nakaya
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Emiko Chiba
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Yuma Yokoi
- Department of Psychiatry, National Center of Neurology and Psychiatry
- Department of Educational Promotion, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry
| | - Tadashi Tsukamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo and
| | - Hiroshi Matsuda
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima City, Fukushima, Japan
| |
Collapse
|
31
|
Mineiro R, Albuquerque T, Neves AR, Santos CRA, Costa D, Quintela T. The Role of Biological Rhythms in New Drug Formulations to Cross the Brain Barriers. Int J Mol Sci 2023; 24:12541. [PMID: 37628722 PMCID: PMC10454916 DOI: 10.3390/ijms241612541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
For brain protection, the blood-brain barrier and blood-cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood-brain barrier and in the blood-cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Raquel Neves
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília R. A. Santos
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- UDI-IPG—Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
32
|
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 2023; 24:11902. [PMID: 37569277 PMCID: PMC10419139 DOI: 10.3390/ijms241511902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023] Open
Abstract
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Collapse
Affiliation(s)
- Mara Verónica Millán Solano
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - Citlaltepetl Salinas Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Carlos Sánchez-Garibay
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Luis O. Soto-Rojas
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Itzel Escobedo-Ávila
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Martha Lilia Tena-Suck
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Rocío Ortíz-Butrón
- Laboratorio de Neurobiología, Departamento de Fisiología de ENCB, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - José Pablo Romero-López
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Estela Meléndez Camargo
- Laboratorio de Farmacología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Manuel Luis Stampa S/N, U.P. Adolfo López Mateos, Mexico City 07738, Mexico;
| |
Collapse
|
33
|
Butler T, Wang XH, Chiang GC, Li Y, Zhou L, Xi K, Wickramasuriya N, Tanzi E, Spector E, Ozsahin I, Mao X, Razlighi QR, Fung EK, Dyke JP, Maloney T, Gupta A, Raj A, Shungu DC, Mozley PD, Rusinek H, Glodzik L. Choroid Plexus Calcification Correlates with Cortical Microglial Activation in Humans: A Multimodal PET, CT, MRI Study. AJNR Am J Neuroradiol 2023; 44:776-782. [PMID: 37321857 PMCID: PMC10337614 DOI: 10.3174/ajnr.a7903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND PURPOSE The choroid plexus (CP) within the brain ventricles is well-known to produce cerebrospinal fluid (CSF). Recently, the CP has been recognized as critical in modulating inflammation. MRI-measured CP enlargement has been reported in neuroinflammatory disorders like MS as well as with aging and neurodegeneration. The basis of MRI-measured CP enlargement is unknown. On the basis of tissue studies demonstrating CP calcification as a common pathology associated with aging and disease, we hypothesized that previously unmeasured CP calcification contributes to MRI-measured CP volume and may be more specifically associated with neuroinflammation. MATERIALS AND METHODS We analyzed 60 subjects (43 healthy controls and 17 subjects with Parkinson's disease) who underwent PET/CT using 11C-PK11195, a radiotracer sensitive to the translocator protein expressed by activated microglia. Cortical inflammation was quantified as nondisplaceable binding potential. Choroid plexus calcium was measured via manual tracing on low-dose CT acquired with PET and automatically using a new CT/MRI method. Linear regression assessed the contribution of choroid plexus calcium, age, diagnosis, sex, overall volume of the choroid plexus, and ventricle volume to cortical inflammation. RESULTS Fully automated choroid plexus calcium quantification was accurate (intraclass correlation coefficient with manual tracing = .98). Subject age and choroid plexus calcium were the only significant predictors of neuroinflammation. CONCLUSIONS Choroid plexus calcification can be accurately and automatically quantified using low-dose CT and MRI. Choroid plexus calcification-but not choroid plexus volume-predicted cortical inflammation. Previously unmeasured choroid plexus calcium may explain recent reports of choroid plexus enlargement in human inflammatory and other diseases. Choroid plexus calcification may be a specific and relatively easily acquired biomarker for neuroinflammation and choroid plexus pathology in humans.
Collapse
Affiliation(s)
- T Butler
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - X H Wang
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - G C Chiang
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - Y Li
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - L Zhou
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - K Xi
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - N Wickramasuriya
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - E Tanzi
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - E Spector
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - I Ozsahin
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - X Mao
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - Q R Razlighi
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - E K Fung
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - J P Dyke
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - T Maloney
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - A Gupta
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - A Raj
- Department of Radiology (A.R.), University of California, San Francisco, San Francisco, California
| | - D C Shungu
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - P D Mozley
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - H Rusinek
- Department of Radiology (H.R.), New York University, New York, New York
| | - L Glodzik
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| |
Collapse
|
34
|
Lazarevic I, Soldati S, Mapunda JA, Rudolph H, Rosito M, de Oliveira AC, Enzmann G, Nishihara H, Ishikawa H, Tenenbaum T, Schroten H, Engelhardt B. The choroid plexus acts as an immune cell reservoir and brain entry site in experimental autoimmune encephalomyelitis. Fluids Barriers CNS 2023; 20:39. [PMID: 37264368 DOI: 10.1186/s12987-023-00441-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
The choroid plexus (ChP) has been suggested as an alternative central nervous system (CNS) entry site for CCR6+ Th17 cells during the initiation of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). To advance our understanding of the importance of the ChP in orchestrating CNS immune cell entry during neuroinflammation, we here directly compared the accumulation of CD45+ immune cell subsets in the ChP, the brain and spinal cord at different stages of EAE by flow cytometry. We found that the ChP harbors high numbers of CD45int resident innate but also of CD45hi adaptive immune cell subsets including CCR6+ Th17 cells. With the exception to tissue-resident myeloid cells and B cells, numbers of CD45+ immune cells and specifically of CD4+ T cells increased in the ChP prior to EAE onset and remained elevated while declining in brain and spinal cord during chronic disease. Increased numbers of ChP immune cells preceded their increase in the cerebrospinal fluid (CSF). Th17 but also other CD4+ effector T-cell subsets could migrate from the basolateral to the apical side of the blood-cerebrospinal fluid barrier (BCSFB) in vitro, however, diapedesis of effector Th cells including that of Th17 cells did not require interaction of CCR6 with BCSFB derived CCL20. Our data underscore the important role of the ChP as CNS immune cell entry site in the context of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Josephine A Mapunda
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Henriette Rudolph
- Klinik für Kinder - und Jugendmedizin, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Present address: Clinic for Pediatrics and Adolescent Medicine, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Maria Rosito
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
- Present address: Department of Physiology and Pharmacology, Sapienza University, Rome, 00185, Italy
| | | | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
- Present address: Department of Neurotherapeutics, Yamaguchi University, Yamaguchi, 755-8505, Japan
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tobias Tenenbaum
- Klinik für Kinder - und Jugendmedizin, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Present address: Clinic for Pediatrics and Adolescent Medicine, Sana Clinic Lichtenberg, Charité, Berlin, Germany
| | - Horst Schroten
- Klinik für Kinder - und Jugendmedizin, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
35
|
Furtado A, Esgalhado AJ, Duarte AC, Costa AR, Costa-Brito AR, Carro E, Ishikawa H, Schroten H, Schwerk C, Gonçalves I, Arosa FA, Santos CRA, Quintela T. Circadian rhythmicity of amyloid-beta-related molecules is disrupted in the choroid plexus of a female Alzheimer's disease mouse model. J Neurosci Res 2023; 101:524-540. [PMID: 36583371 DOI: 10.1002/jnr.25164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-β (Aβ) transport/degradation, contributing to Aβ homeostasis. Inadequate Aβ metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aβ scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aβ uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aβ-488 and uptake was evaluated at different time points using flow cytometry. Aβ uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aβ scavengers rhythmicity and that Aβ clearance is a rhythmic process possibly regulated by the rhythmic expression of Aβ scavengers.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa-Brito
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Eva Carro
- Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| |
Collapse
|
36
|
Aquaporin-1 and Aquaporin-4 Expression in Ependyma, Choroid Plexus and Surrounding Transition Zones in the Human Brain. Biomolecules 2023; 13:biom13020212. [PMID: 36830582 PMCID: PMC9953559 DOI: 10.3390/biom13020212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The choroid plexus (CP) is a structure in the brain ventricles that produces the main part of the cerebrospinal fluid (CSF). It is covered with specialized cells which show epithelial characteristics and are the site of the blood-CSF barrier. These cells form a contiguous cell sheet with ventricle-lining ependymal cells which are known to express aquaporin-4 (AQP4). In contrast, CP epithelial cells express aquaporin-1 (AQP1) apically. We investigated the expression patterns of aquaporins in the CP-ependyma transition from human body donors using immunofluorescence and electron microscopy. Ependymal cells and subependymal astrocytes at the base of the CP showed a particularly high AQP4 immunoreactivity. Astrocytic processes formed a dense meshwork or glial plate around the blood vessels entering the CP. Interestingly, some of these astrocytic processes were in direct contact with the CP stroma, which contains fenestrated blood vessels, separated only by a basal lamina. Electron microscopy confirmed the continuity of the subastrocytic basal lamina with the CP epithelium. We also probed for components of the AQP4 anchoring dystrophin-dystroglycan complex. Immunolabeling for dystrophin and AQP4 showed an overlapping staining pattern in the glial plate but not in previously reported AQP4-positive CP epithelial cells. In contrast, dystroglycan expression was associated with laminin staining in the glial plate and the CP epithelium. This suggests different mechanisms for AQP4 anchoring in the cell membrane. The high AQP4 density in the connecting glial plate might facilitate the transport of water in and out of the CP stroma and could possibly serve as a drainage and clearing pathway for metabolites.
Collapse
|
37
|
Spennato P, De Martino L, Russo C, Errico ME, Imperato A, Mazio F, Miccoli G, Quaglietta L, Abate M, Covelli E, Donofrio V, Cinalli G. Tumors of Choroid Plexus and Other Ventricular Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:175-223. [PMID: 37452939 DOI: 10.1007/978-3-031-23705-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Tumors arising inside the ventricular system are rare but represent a difficult diagnostic and therapeutic challenge. They usually are diagnosed when reaching a big volume and tend to affect young children. There is a wide broad of differential diagnoses with significant variability in anatomical aspects and tumor type. Differential diagnosis in tumor type includes choroid plexus tumors (papillomas and carcinomas), ependymomas, subependymomas, subependymal giant cell astrocytomas (SEGAs), central neurocytomas, meningiomas, and metastases. Choroid plexus tumors, ependymomas of the posterior fossa, and SEGAs are more likely to appear in childhood, whereas subependymomas, central neurocytomas, intraventricular meningiomas, and metastases are more frequent in adults. This chapter is predominantly focused on choroid plexus tumors and radiological and histological differential diagnosis. Treatment is discussed in the light of the modern acquisition in genetics and epigenetics of brain tumors.
Collapse
Affiliation(s)
- Pietro Spennato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy.
| | - Lucia De Martino
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Carmela Russo
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Maria Elena Errico
- Department of Pathology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Alessia Imperato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Federica Mazio
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Giovanni Miccoli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Lucia Quaglietta
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Massimo Abate
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Eugenio Covelli
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Vittoria Donofrio
- Department of Pathology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Giuseppe Cinalli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| |
Collapse
|
38
|
Ahmad I, Wergeland S, Oveland E, Bø L. An Association of Chitinase-3 Like-Protein-1 With Neuronal Deterioration in Multiple Sclerosis. ASN Neuro 2023; 15:17590914231198980. [PMID: 38062768 PMCID: PMC10710113 DOI: 10.1177/17590914231198980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 12/18/2023] Open
Abstract
Elevated levels of Chitinase-3-like protein-1 (CHI3L1) in cerebrospinal fluid have previously been linked to inflammatory activity and disease progression in multiple sclerosis (MS) patients. This study aimed to investigate the presence of CHI3L1 in the brains of MS patients and in the cuprizone model in mice (CPZ), a model of toxic/metabolic demyelination and remyelination in different brain areas. In MS gray matter (GM), CHI3L1 was detected primarily in astrocytes and in a subset of pyramidal neurons. In neurons, CHI3L1 immunopositivity was associated with lipofuscin-like substance accumulation, a sign of cellular aging that can lead to cell death. The density of CHI3L1-positive neurons was found to be significantly higher in normal-appearing MS GM tissue compared to that of control subjects (p = .014). In MS white matter (WM), CHI3L1 was detected in astrocytes located within lesion areas, as well as in perivascular normal-appearing areas and in phagocytic cells from the initial phases of lesion development. In the CPZ model, the density of CHI3L1-positive cells was strongly associated with microglial activation in the WM and choroid plexus inflammation. Compared to controls, CHI3L1 immunopositivity in WM was increased from an early phase of CPZ exposure. In the GM, CHI3L1 immunopositivity increased later in the CPZ exposure phase, particularly in the deep GM region. These results indicate that CHI3L1 is associated with neuronal deterioration, pre-lesion pathology, along with inflammation in MS.
Collapse
Affiliation(s)
- Intakhar Ahmad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian MS-registry and biobank, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Neuro-SysMed, Haukeland University Hospital, Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit at the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
- Institute of Marine Research, IMR, Bergen, Norway
| | - Lars Bø
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
39
|
Angelini G, Bani A, Constantin G, Rossi B. The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front Cell Neurosci 2023; 17:1101379. [PMID: 36874213 PMCID: PMC9975172 DOI: 10.3389/fncel.2023.1101379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) represent two complex structures protecting the central nervous system (CNS) against potentially harmful agents and circulating immune cells. The immunosurveillance of the CNS is governed by immune cells that constantly patrol the BCSFB, whereas during neuroinflammatory disorders, both BBB and BCSFB undergo morphological and functional alterations, promoting leukocyte intravascular adhesion and transmigration from the blood circulation into the CNS. Multiple sclerosis (MS) is the prototype of neuroinflammatory disorders in which peripheral T helper (Th) lymphocytes, particularly Th1 and Th17 cells, infiltrate the CNS and contribute to demyelination and neurodegeneration. Th1 and Th17 cells are considered key players in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis. They can actively interact with CNS borders by complex adhesion mechanisms and secretion of a variety of molecules contributing to barrier dysfunction. In this review, we describe the molecular basis involved in the interactions between Th cells and CNS barriers and discuss the emerging roles of dura mater and arachnoid layer as neuroimmune interfaces contributing to the development of CNS inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele Angelini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Alessandro Bani
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
40
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
41
|
Ineichen BV, Okar SV, Proulx ST, Engelhardt B, Lassmann H, Reich DS. Perivascular spaces and their role in neuroinflammation. Neuron 2022; 110:3566-3581. [PMID: 36327898 PMCID: PMC9905791 DOI: 10.1016/j.neuron.2022.10.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
It is uncontested that perivascular spaces play critical roles in maintaining homeostasis and priming neuroinflammation. However, despite more than a century of intense research on perivascular spaces, many open questions remain about the anatomical compartment surrounding blood vessels within the CNS. The goal of this comprehensive review is to summarize the literature on perivascular spaces in human neuroinflammation and associated animal disease models. We describe the cell types taking part in the morphological and functional aspects of perivascular spaces and how those spaces can be visualized. Based on this, we propose a model of the cascade of events occurring during neuroinflammatory pathology. We also discuss current knowledge gaps and limitations of the available evidence. An improved understanding of perivascular spaces could advance our comprehension of the pathophysiology of neuroinflammation and open a new therapeutic window for neuroinflammatory diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Center for Reproducible Science, University of Zurich, Zurich, Switzerland.
| | - Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Partridge B, Eardley A, Morales BE, Campelo SN, Lorenzo MF, Mehta JN, Kani Y, Mora JKG, Campbell EOY, Arena CB, Platt S, Mintz A, Shinn RL, Rylander CG, Debinski W, Davalos RV, Rossmeisl JH. Advancements in drug delivery methods for the treatment of brain disease. Front Vet Sci 2022; 9:1039745. [PMID: 36330152 PMCID: PMC9623817 DOI: 10.3389/fvets.2022.1039745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
The blood-brain barrier (BBB) presents a formidable obstacle to the effective delivery of systemically administered pharmacological agents to the brain, with ~5% of candidate drugs capable of effectively penetrating the BBB. A variety of biomaterials and therapeutic delivery devices have recently been developed that facilitate drug delivery to the brain. These technologies have addressed many of the limitations imposed by the BBB by: (1) designing or modifying the physiochemical properties of therapeutic compounds to allow for transport across the BBB; (2) bypassing the BBB by administration of drugs via alternative routes; and (3) transiently disrupting the BBB (BBBD) using biophysical therapies. Here we specifically review colloidal drug carrier delivery systems, intranasal, intrathecal, and direct interstitial drug delivery methods, focused ultrasound BBBD, and pulsed electrical field induced BBBD, as well as the key features of BBB structure and function that are the mechanistic targets of these approaches. Each of these drug delivery technologies are illustrated in the context of their potential clinical applications and limitations in companion animals with naturally occurring intracranial diseases.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Allison Eardley
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Brianna E. Morales
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jason N. Mehta
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Yukitaka Kani
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Josefa K. Garcia Mora
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Etse-Oghena Y. Campbell
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Christopher B. Arena
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Richard L. Shinn
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Christopher G. Rylander
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - John H. Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| |
Collapse
|
43
|
Promoted CD4 + T cell-derived IFN-γ/IL-10 by photobiomodulation therapy modulates neurogenesis to ameliorate cognitive deficits in APP/PS1 and 3xTg-AD mice. J Neuroinflammation 2022; 19:253. [PMID: 36217178 PMCID: PMC9549637 DOI: 10.1186/s12974-022-02617-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background The immune system has been implicated in synaptic plasticity, inflammation, and the progression of Alzheimer's disease (AD). However, there were few studies on improving the niche microenvironment of neural stem cells (NSCs) in the brain of AD to promote adult hippocampal neurogenesis (AHN) by regulating the function of non-parenchymal immune cells. Methods The lymph nodes of amyloid precursor protein/presenilin 1 (APP/PS1) and 3xTg (APP/PS1/tau) mouse models of AD were treated with photobiomodulation therapy (PBMT) for 10 J/cm2 per day for 1 month (10 min for each day), T lymphocytes isolated from these two AD models were treated with PBMT for 2 J/cm2 (5 min for each time). The NSCs isolated from hippocampus of these two AD models at E14, and the cells were co-cultivated with PBMT-treated T lymphocyte conditioned medium for NSCs differentiation. Results Our results showed that PBMT treatment could promote AHN and reverse cognitive deficits in AD mouse model. The expression of interferon-γ (IFN-γ) and interleukin-10 (IL-10) was upregulated in the brain of these two AD models after PBMT treated, which was induced by the activation of Janus kinase 2 (JAK2)-mediated signal transducer and activator of transcription 4 (STAT4)/STAT5 signaling pathway in CD4+ T cells. In addition, elevated CD4+ T cell levels and upregulated transforming growth factor-β1 (TGFβ1)/insulin-like growth factors-1 (IGF-1)/brain-derived neurotrophic factor (BDNF) protein expression levels were also detected in the brain. More importantly, co-cultivated the PBMT-treated T lymphocyte conditioned medium with NSCs derived from these two AD models was shown to promote NSCs differentiation, which was reflected in the upregulation of both neuronal class-III β-tubulin (Tuj1) and postsynaptic density protein 95 (PSD95), but the effects of PBMT was blocked by reactive oxygen species (ROS) scavenger or JAK2 inhibitor. Conclusion Our research suggests that PBMT exerts a beneficial neurogenesis modulatory effect through activating the JAK2/STAT4/STAT5 signaling pathway to promote the expression of IFN-γ/IL-10 in non-parenchymal CD4+ T cells, induction of improvement of brain microenvironmental conditions and alleviation of cognitive deficits in APP/PS1 and 3xTg-AD mouse models. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02617-5.
Collapse
|
44
|
Chiang GC. The Blood-Cerebrospinal Fluid Barrier May Play a Role in Alzheimer Disease Pathogenesis. Radiology 2022; 304:646-647. [PMID: 35579527 PMCID: PMC9434809 DOI: 10.1148/radiol.220740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Gloria C. Chiang
- From the Division of Neuroradiology, Department of Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, 525 E 68th St, Starr Pavilion, Box 141, New York, NY 10065
| |
Collapse
|
45
|
Shen D, Ye X, Li J, Hao X, Jin L, Jin Y, Tong L, Gao F. Metformin Preserves VE–Cadherin in Choroid Plexus and Attenuates Hydrocephalus via VEGF/VEGFR2/p-Src in an Intraventricular Hemorrhage Rat Model. Int J Mol Sci 2022; 23:ijms23158552. [PMID: 35955686 PMCID: PMC9369137 DOI: 10.3390/ijms23158552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrocephalus induced by intraventricular hemorrhage (IVH) is associated with unfavorable prognosis. The increased permeability of choroid plexus and breakdown of the blood–brain barrier (BBB) was reported as a prominent mechanism of IVH-induced hydrocephalus, and vascular endothelial–cadherin (VE–cadherin) was demonstrated to be relevant. Metformin was reported to protect endothelial junction and preserve permeability widely; however, its role in hydrocephalus remains unclear. In this study, the decreased expression of VE–cadherin in the choroid plexus, accompanied with ventricle dilation, was investigated in an IVH rat model induced by intraventricular injection of autologous blood. Metformin treatment ameliorated hydrocephalus and upregulated VE–cadherin expression in choroid plexus meanwhile. We then observed that the internalization of VE–cadherin caused by the activation of vascular endothelial growth factor (VEGF) signaling after IVH was related to the occurrence of hydrocephalus, whereas it can be reversed by metformin treatment. Restraining VEGF signaling by antagonizing VEGFR2 or inhibiting Src phosphorylation increased the expression of VE–cadherin and decreased the severity of hydrocephalus after IVH. Our study demonstrated that the internalization of VE–cadherin via the activation of VEGF signaling may contribute to IVH-induced hydrocephalus, and metformin may be a potential protector via suppressing this pathway.
Collapse
Affiliation(s)
- Dan Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Xianghua Ye
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Jiawen Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Xiaodi Hao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Department of Neurology, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Luhang Jin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Yujia Jin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Lusha Tong
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Correspondence: (L.T.); (F.G.)
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Correspondence: (L.T.); (F.G.)
| |
Collapse
|
46
|
Targeting choroid plexus epithelium as a novel therapeutic strategy for hydrocephalus. J Neuroinflammation 2022; 19:156. [PMID: 35715859 PMCID: PMC9205094 DOI: 10.1186/s12974-022-02500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
The choroid plexus is a tissue located in the lateral ventricles of the brain and is composed mainly of choroid plexus epithelium cells. The main function is currently thought to be the secretion of cerebrospinal fluid and the regulation of its pH, and more functions are gradually being demonstrated. Assistance in the removal of metabolic waste and participation in the apoptotic pathway are also the functions of choroid plexus. Besides, it helps to repair the brain by regulating the secretion of neuropeptides and the delivery of drugs. It is involved in the immune response to assist in the clearance of infections in the central nervous system. It is now believed that the choroid plexus is in an inflammatory state after damage to the brain. This state, along with changes in the cilia, is thought to be an abnormal physiological state of the choroid plexus, which in turn leads to abnormal conditions in cerebrospinal fluid and triggers hydrocephalus. This review describes the pathophysiological mechanism of hydrocephalus following choroid plexus epithelium cell abnormalities based on the normal physiological functions of choroid plexus epithelium cells, and analyzes the attempts and future developments of using choroid plexus epithelium cells as a therapeutic target for hydrocephalus.
Collapse
|
47
|
Choi JD, Moon Y, Kim HJ, Yim Y, Lee S, Moon WJ. Choroid Plexus Volume and Permeability at Brain MRI within the Alzheimer Disease Clinical Spectrum. Radiology 2022; 304:635-645. [PMID: 35579521 DOI: 10.1148/radiol.212400] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Mounting evidence suggests that the choroid plexus (CP) plays an important role in the pathophysiology of Alzheimer disease (AD), but its imaging profile in cognitive impairment remains unclear. Purpose To evaluate CP volume, permeability, and susceptibility by using MRI in patients at various stages of cognitive impairment. Materials and Methods This retrospective study evaluated patients with cognitive symptoms who underwent 3.0-T MRI of the brain, including dynamic contrast-enhanced (DCE) imaging and quantitative susceptibility mapping (QSM), between January 2013 and May 2020. CP volume was automatically segmented using three-dimensional T1-weighted sequences; the volume transfer constant (ie, Ktrans) and fractional plasma volume (ie, Vp) were determined using DCE MRI, and susceptibility was assessed using QSM. The effects of CP volume, expressed as the ratio to intracranial volume, on cognition were evaluated using multivariable linear regression adjusted for age, sex, education, apolipoprotein E ε4 allele status, and volumetric measures. Results A total of 532 patients with cognitive symptoms (mean age, 72 years ± 9 [SD]; 388 women) were included: 78 with subjective cognitive impairment (SCI), 158 with early mild cognitive impairment (MCI), 149 with late MCI, and 147 with AD. Among these, 132 patients underwent DCE MRI and QSM. CP volume was greater in patients at more severe stages (ratio of intracranial volume × 103: 0.9 ± 0.3 for SCI, 1.0 ± 0.3 for early MCI, 1.1 ± 0.3 for late MCI, and 1.3 ± 0.4 for AD; P < .001). Lower Ktrans (r = -0.19; P = .03) and Vp (r = -0.20; P = .02) were negatively associated with CP volume; susceptibility was not (r = 0.15; P = .10). CP volume was negatively associated with memory (B = -0.67; standard error of the mean [SEM], 0.21; P = .01), executive function (B = -0.90; SEM, 0.31; P = .01), and global cognition (B = -0.82; SEM, 0.32; P = .01). Conclusion Among patients with cognitive symptoms, larger choroid plexus volume was associated with severity of cognitive impairment in the Alzheimer disease spectrum. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Chiang in this issue.
Collapse
Affiliation(s)
- Jong Duck Choi
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Yeonsil Moon
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Hee-Jin Kim
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Younghee Yim
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Subin Lee
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Won-Jin Moon
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| |
Collapse
|
48
|
Müller J, Sinnecker T, Wendebourg MJ, Schläger R, Kuhle J, Schädelin S, Benkert P, Derfuss T, Cattin P, Jud C, Spiess F, Amann M, Lincke T, Barakovic M, Cagol A, Tsagkas C, Parmar K, Pröbstel AK, Reimann S, Asseyer S, Duchow A, Brandt A, Ruprecht K, Hadjikhani N, Fukumoto S, Watanabe M, Masaki K, Matsushita T, Isobe N, Kira JI, Kappos L, Würfel J, Granziera C, Paul F, Yaldizli Ö. Choroid Plexus Volume in Multiple Sclerosis vs Neuromyelitis Optica Spectrum Disorder. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/3/e1147. [PMID: 35217580 PMCID: PMC8883575 DOI: 10.1212/nxi.0000000000001147] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Objectives The choroid plexus has been shown to play a crucial role in CNS inflammation. Previous studies found larger choroid plexus in multiple sclerosis (MS) compared with healthy controls. However, it is not clear whether the choroid plexus is similarly involved in MS and in neuromyelitis optica spectrum disorder (NMOSD). Thus, the aim of this study was to compare the choroid plexus volume in MS and NMOSD. Methods In this retrospective, cross-sectional study, patients were included by convenience sampling from 4 international MS centers. The choroid plexus of the lateral ventricles was segmented fully automatically on T1-weighted MRI sequences using a deep learning algorithm (Multi-Dimensional Gated Recurrent Units). Uni- and multivariable linear models were applied to investigate associations between the choroid plexus volume, clinically meaningful disease characteristics, and MRI parameters. Results We studied 180 patients with MS and 98 patients with NMOSD. In total, 94 healthy individuals and 47 patients with migraine served as controls. The choroid plexus volume was larger in MS (median 1,690 µL, interquartile range [IQR] 648 µL) than in NMOSD (median 1,403 µL, IQR 510 µL), healthy individuals (median 1,533 µL, IQR 570 µL), and patients with migraine (median 1,404 µL, IQR 524 µL; all p < 0.001), whereas there was no difference between NMOSD, migraine, and healthy controls. This was also true when adjusted for age, sex, and the intracranial volume. In contrast to NMOSD, the choroid plexus volume in MS was associated with the number of T2-weighted lesions in a linear model adjusted for age, sex, total intracranial volume, disease duration, relapses in the year before MRI, disease course, Expanded Disability Status Scale score, disease-modifying treatment, and treatment duration (beta 4.4; 95% CI 0.78–8.1; p = 0.018). Discussion This study supports an involvement of the choroid plexus in MS in contrast to NMOSD and provides clues to better understand the respective pathogenesis.
Collapse
|
49
|
Muranyi W, Schwerk C, Herold R, Stump-Guthier C, Lampe M, Fallier-Becker P, Weiß C, Sticht C, Ishikawa H, Schroten H. Immortalized human choroid plexus endothelial cells enable an advanced endothelial-epithelial two-cell type in vitro model of the choroid plexus. iScience 2022; 25:104383. [PMID: 35633941 PMCID: PMC9133638 DOI: 10.1016/j.isci.2022.104383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/31/2021] [Accepted: 05/05/2022] [Indexed: 12/01/2022] Open
Abstract
The choroid plexus (CP) is a highly vascularized structure containing endothelial and epithelial cells located in the ventricular system of the central nervous system (CNS). The role of the fenestrated CP endothelium is under-researched and requires the generation of an immortalized CP endothelial cell line with preserved features. Transduction of primary human CP endothelial cells (HCPEnC) with the human telomerase reverse transcriptase (hTERT) resulted in immortalized HCPEnC (iHCPEnC), which grew as monolayer with contact inhibition, formed capillary-like tubes in Matrigel, and showed no colony growth in soft agar. iHCPEnC expressed pan-endothelial markers and presented characteristic plasmalemma vesicle-associated protein-containing structures. Cultivation of iHCPEnC and human epithelial CP papilloma (HIBCPP) cells on opposite sides of cell culture filter inserts generated an in vitro model with a consistently enhanced barrier function specifically by iHCPEnC. Overall, iHCPEnC present a tool that will contribute to the understanding of CP organ functions, especially endothelial-epithelial interplay. Generation of an immortalized human choroid plexus endothelial cell line (iHCPEnC) iHCPEnC immortalized by telomerase maintain essential endothelial properties The mRNA expression profile distinguishes iHCPEnC from other endothelial cell types iHCPEnC enhance the barrier function of a choroid plexus epithelium in coculture
Collapse
Affiliation(s)
- Walter Muranyi
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Corresponding author
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rosanna Herold
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Core Facility Next Generation Sequencing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
50
|
Abstract
Neonatal bacterial meningitis is a devastating disease, associated with high mortality and neurological disability, in both developed and developing countries. Streptococcus agalactiae, commonly referred to as group B Streptococcus (GBS), remains the most common bacterial cause of meningitis among infants younger than 90 days. Maternal colonization with GBS in the gastrointestinal and/or genitourinary tracts is the primary risk factor for neonatal invasive disease. Despite prophylactic intrapartum antibiotic administration to colonized women and improved neonatal intensive care, the incidence and morbidity associated with GBS meningitis have not declined since the 1970s. Among meningitis survivors, a significant number suffer from complex neurological or neuropsychiatric sequelae, implying that the pathophysiology and pathogenic mechanisms leading to brain injury and devastating outcomes are not yet fully understood. It is imperative to develop new therapeutic and neuroprotective approaches aiming at protecting the developing brain. In this review, we provide updated clinical information regarding the understanding of neonatal GBS meningitis, including epidemiology, diagnosis, management, and human evidence of the disease's underlying mechanisms. Finally, we explore the experimental models used to study GBS meningitis and discuss their clinical and physiologic relevance to the complexities of human disease.
Collapse
Affiliation(s)
- Teresa Tavares
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Pinho
- Centro Hospitalar Universitário do Porto, Centro Materno Infantil do Norte, Porto, Portugal
| | - Elva Bonifácio Andrade
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|