1
|
Dawson KLD, Seuberlich T, Pesavento PA. Neurotropic enteric viruses in animals: Comparative research, knowledge gaps, and the role of pathology. Vet Pathol 2025:3009858251334347. [PMID: 40259779 DOI: 10.1177/03009858251334347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Enteric viruses are commonly associated with gastrointestinal diseases but have the capacity, with mostly unknown triggers, to invade the central nervous system (CNS). Neuropathogenic enteric viruses (NEV) that are able to cross or bypass the blood-brain barrier cause debilitating neurological inflammation and disease. The most notorious example of an enteric virus with potential neurotropism is poliovirus, a member of the Picornaviridae family. While poliovirus has been largely eradicated due to extensive vaccination programs, other nonpolio picornaviruses, as well as enteric viruses of other families, are increasingly recognized as causative agents in cases of encephalitis of unknown origin. In the past decade, cutting-edge high-throughput sequencing and bioinformatics strategies have revealed an increasing number of NEV associated with neurological diseases in various animal species. Information, especially pathogenesis studies, on animal enteric viruses with neurotropism is relatively scarce. This review provides an overview of known enteric viruses that invade the CNS, which should support our awareness of the potential etiologic agents and encourage a diagnostic plan that includes NEV. The many knowledge gaps in host susceptibility and viral pathogenesis along the gut-brain axis would benefit from increased discovery efforts and a deeper understanding of the pathogenesis and potential of enteric viruses affecting the nervous system of animals. Crossing of species barriers is common among enteric viruses, so a one-health approach to increase awareness of animal and human NEV would contribute to effective strategies to monitor, manage, and contain emerging zoonotic outbreaks.
Collapse
|
2
|
Jungbäck N, Vollmuth Y, Mögele T, Grochowski P, Schlegel J, Schaller T, Märkl B, Herden C, Matiasek K, Tappe D, Liesche-Starnecker F. Neuropathology, pathomechanism, and transmission in zoonotic Borna disease virus 1 infection: a systematic review. THE LANCET. INFECTIOUS DISEASES 2025; 25:e212-e222. [PMID: 39793593 DOI: 10.1016/s1473-3099(24)00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 01/13/2025]
Abstract
Borna disease, which is a severe encephalitis that primarily affects horses and sheep, has been recognised for over two centuries. Borna disease virus 1 (BoDV-1) has been identified as a cause of a predominantly fatal encephalitis in humans. Little scientific data exist regarding the virus' transmission, entry portal, and excretion routes. Lesional patterns, immunological responses, and pathogenetic mechanisms remain largely unexplored in both reservoir and dead-end hosts. This systematic review compiles current knowledge on these aspects and provides guidance for future research. PubMed, ScienceDirect, and EBSCO were searched for publications from Jan 1, 2000, to April 30, 2024. 823 records were found, of which 41 studies were included. This systematic review discusses BoDV-1 transmission, pathogenesis, histopathological changes, and immunology in both reservoir and dead-end hosts, with special regard for humans. The exact propagation mechanisms, entry portal, and viral spread within the CNS are not entirely clear in humans. Although more data exist in animals, much remains hypothetical. Future research should focus on identifying potential entry sites and viral spread in dead-end hosts, which could help to clarify the pathogenesis and lesion distribution in the CNS, thereby contributing to a better understanding of BoDV-1 infection in humans and parallels with animal infections.
Collapse
Affiliation(s)
- Nicola Jungbäck
- Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Yannik Vollmuth
- Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tatiana Mögele
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | - Jürgen Schlegel
- Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Department of Exercise Physiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tina Schaller
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany; Center of Mind, Brain and Behavior, Justus Liebig University, Giessen, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dennis Tappe
- National Reference Laboratory for Bornaviruses, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
3
|
Singh VR, O'Donnell LA. Age-Stratified Treg Responses During Viral Infections of the Central Nervous System: A Literature Review. J Med Virol 2025; 97:e70315. [PMID: 40178106 PMCID: PMC11967158 DOI: 10.1002/jmv.70315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Regulatory T cells (Tregs) play a vital role in limiting inflammation and resolving the immune response after a viral infection. Within the central nervous system (CNS), Tregs are especially important for the protection of neurons, which have limited regenerative capacity, and the preservation of myelin sheaths, which support neuronal function and survival. Nevertheless, viral infections of the CNS often result in enduring neurological dysfunction, especially in more vulnerable age groups such as newborns and the elderly. Although it is appreciated that Treg activity changes with age, it is unclear how these age-dependent changes impact viral CNS infections. In this review, we explore Treg development over the life of the host and discuss evidence for age-dependent Treg responses to peripheral viral infections. We also discuss the CNS-specific roles of Tregs, where both immunomodulatory and neuroprotective functions can contribute to preservation of brain cells. Finally, we examine the current evidence for Treg activity in neurotropic infections in the context of age, and highlight gaps in our understanding of Treg function in younger and older hosts. Overall, a better understanding of age-dependent Treg activity in the CNS may reveal opportunities for therapeutic interventions tailored to the most vulnerable ages.
Collapse
Affiliation(s)
- Vivek R. Singh
- School of Pharmacy and the Graduate School of Pharmaceutical SciencesDuquesne UniversityPittsburghPennsylvaniaUSA
| | - Lauren A. O'Donnell
- School of Pharmacy and the Graduate School of Pharmaceutical SciencesDuquesne UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Negatu SG, Vazquez C, Bannerman C, Amses KR, Ming GL, Jurado KA. Bystander neuronal progenitors in forebrain organoids promote protective antiviral responses. J Neuroinflammation 2025; 22:65. [PMID: 40045355 PMCID: PMC11881317 DOI: 10.1186/s12974-025-03381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/15/2025] [Indexed: 03/09/2025] Open
Abstract
Neurotropic viruses are the most common cause of infectious encephalitis and highly target neurons for infection. Our understanding of the intrinsic capacity of neuronal innate immune responses to mediate protective antiviral responses remains incomplete. Here, we evaluated the role of intercellular crosstalk in mediating intrinsic neuronal immunity and its contribution to limiting viral infection. We found that in the absence of viral antagonism, neurons transcriptionally induce robust interferon signaling and can effectively signal to uninfected bystander neurons. Yet, in two-dimensional cultures, this dynamic response did not restrict viral spread. Interestingly, this differed in the context of viral infection in three-dimensional forebrain organoids with complex neuronal subtypes and cellular organization, where we observed protective capacity. We showed antiviral crosstalk between infected neurons and bystander neural progenitors is mediated by type I interferon signaling. Using spatial transcriptomics, we then uncovered regions containing bystander neural progenitors that expressed distinct antiviral genes, revealing critical underpinnings of protective antiviral responses among neuronal subtypes. These findings underscore the importance of interneuronal communication in protective antiviral immunity in the brain and implicate key contributions to protective antiviral signaling.
Collapse
Affiliation(s)
- Seble G Negatu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christine Vazquez
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carl Bannerman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin R Amses
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kellie A Jurado
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Ciruela P, Soldevila N, Torner N, Basile L, Mosquera MDM, Marcos MA, Martínez A, Jané M, Rius C, Domínguez A. Acute Influenza Virus-Associated Encephalitis and Other Neurological Complications in Severe Hospitalized Laboratory-Confirmed Influenza Cases-Catalonia 2010-2020. Pathogens 2025; 14:237. [PMID: 40137722 PMCID: PMC11944371 DOI: 10.3390/pathogens14030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Neurological complications associated with influenza (NCIs) are rare events in adults. Influenza-associated encephalopathy is one of the most severe and frequently reported NCIs. The aim of this study is to describe the frequency and characteristics of NCIs in adults during 10 post-2009 pandemic influenza seasons. Data were obtained from the registry of influenza cases admitted to hospitals of the PIDIRAC network for the surveillance of severe hospitalized laboratory-confirmed influenza (SHLCI) cases in Catalonia from October 2010 to March 2020. The variables analyzed were NCI, age, antiviral treatment, vaccination status, and outcome at discharge. During the study period, 9 (1.5‱) of 5931 SHLCI cases presented NCI. Five (55.6%) had influenza A and four (44.4%) had influenza B. Median age was 62 (17-67) years. One case had been vaccinated, all had received antiviral treatment, and five required ICU admission. The mean length of stay was 25.6 days (SD 25.8). Encephalitis was the most frequent complication, occurring in six cases (66.7%). Of these, three cases (50%) were caused by influenza A (two AH1N1pdm09 strains and one AH3N2). The high frequency of influenza-associated encephalitis caused by both type A and B influenza viruses suggests that both should be considered as potential etiologic factors for encephalopathy and other neurological diseases in adults. This recommendation would allow for the prompt antiviral treatment and prevention of severe outcomes.
Collapse
Affiliation(s)
- Pilar Ciruela
- CIBER Epidemiology and Public Health CIBERESP, Instituto de Salud Carlos III, 28029 Madrid, Spain; (P.C.); (A.M.); (M.J.); (C.R.); (A.D.)
- Public Health Agency of Catalonia, 08005 Barcelona, Spain;
| | - Nuria Soldevila
- CIBER Epidemiology and Public Health CIBERESP, Instituto de Salud Carlos III, 28029 Madrid, Spain; (P.C.); (A.M.); (M.J.); (C.R.); (A.D.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain;
| | - Nuria Torner
- CIBER Epidemiology and Public Health CIBERESP, Instituto de Salud Carlos III, 28029 Madrid, Spain; (P.C.); (A.M.); (M.J.); (C.R.); (A.D.)
| | - Luca Basile
- Public Health Agency of Catalonia, 08005 Barcelona, Spain;
| | - Maria del Mar Mosquera
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain;
- Department of Microbiology, Hospital Clínic of Barcelona-ISGLOBAL, 08036 Barcelona, Spain;
| | - M. Angeles Marcos
- Department of Microbiology, Hospital Clínic of Barcelona-ISGLOBAL, 08036 Barcelona, Spain;
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Anna Martínez
- CIBER Epidemiology and Public Health CIBERESP, Instituto de Salud Carlos III, 28029 Madrid, Spain; (P.C.); (A.M.); (M.J.); (C.R.); (A.D.)
- Public Health Agency of Catalonia, 08005 Barcelona, Spain;
| | - Mireia Jané
- CIBER Epidemiology and Public Health CIBERESP, Instituto de Salud Carlos III, 28029 Madrid, Spain; (P.C.); (A.M.); (M.J.); (C.R.); (A.D.)
- Public Health Agency of Catalonia, 08005 Barcelona, Spain;
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain;
| | - Cristina Rius
- CIBER Epidemiology and Public Health CIBERESP, Instituto de Salud Carlos III, 28029 Madrid, Spain; (P.C.); (A.M.); (M.J.); (C.R.); (A.D.)
- Public Health Agency of Barcelona, 08023 Barcelona, Spain
| | - Angela Domínguez
- CIBER Epidemiology and Public Health CIBERESP, Instituto de Salud Carlos III, 28029 Madrid, Spain; (P.C.); (A.M.); (M.J.); (C.R.); (A.D.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain;
| | | |
Collapse
|
6
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
7
|
Woodson CM, Carney SK, Kehn-Hall K. Neuropathogenesis of Encephalitic Alphaviruses in Non-Human Primate and Mouse Models of Infection. Pathogens 2025; 14:193. [PMID: 40005568 PMCID: PMC11858634 DOI: 10.3390/pathogens14020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Encephalitic alphaviruses, including eastern, Venezuelan, and western equine encephalitis virus (EEEV, VEEV, and WEEV, respectively) are New World alphaviruses primarily transmitted by mosquitos that cause debilitating and lethal central nervous system (CNS) disease in both humans and horses. Despite over one hundred years of research on these viruses, the underpinnings of the molecular mechanisms driving virally induced damage to the CNS remain unresolved. Moreover, virally induced encephalitis following exposure to these viruses causes catastrophic damage to the CNS, and survivors of infection often suffer from permanent neurological sequelae as a result of sustained neuroinflammation and neurological insults encountered. Animal models are undoubtedly invaluable tools in biomedical research, where physiologically relevant models are required to study pathogenesis and host-pathogen interactions. Here, we review the literature to examine nonhuman primate (NHP) and mouse models of infection for EEEV, VEEV, and WEEV. We provide a brief overview of relevant background information for each virus, including geography, epidemiology, and clinical disease. The primary focus of this review is to describe neuropathological features associated with CNS disease in NHP and mouse models of infection and compare CNS invasion and neuropathogenesis for aerosol, intranasal, and subcutaneous routes of exposure to EEEV, VEEV, and WEEV.
Collapse
Affiliation(s)
- Caitlin M. Woodson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.M.W.); (S.K.C.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shannon K. Carney
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.M.W.); (S.K.C.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.M.W.); (S.K.C.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Brindle HE, Choisy M, Christley R, French N, Griffiths M, Thai PQ, van Doorn HR, Nadjm B. Review of the aetiologies of central nervous system infections in Vietnam. Front Public Health 2025; 12:1396915. [PMID: 39959908 PMCID: PMC11825750 DOI: 10.3389/fpubh.2024.1396915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025] Open
Abstract
Central nervous system (CNS) infections are an important cause of morbidity and mortality in Vietnam, with many studies conducted to determine the aetiology. However, the cause remains unknown in a large proportion of cases. Although a systematic review of the aetiologies of CNS infections was conducted in the Mekong region, there are no known published reviews of the studies specifically in Vietnam. Here, we review the cause of CNS infections in Vietnam while also considering the potential aetiologies where a cause was not identified, based on the literature from the region. In particular, we focus on the most common pathogens in adults and children including Streptococcus suis which is associated with the consumption of raw pig products, and Japanese encephalitis virus, a mosquito-borne pathogen. We also discuss pathogens less commonly known to cause CNS infections in Vietnam but have been detected in neighbouring countries such as Orientia tsutsugamushi, Rickettsia typhi and Leptospira species and how these may contribute to the unknown causes in Vietnam. We anticipate that this review may help guide future public health measures to reduce the burden of known pathogens and broaden testing to help identify additional aetiologies.
Collapse
Affiliation(s)
- Hannah E. Brindle
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert Christley
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Behzad Nadjm
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- The Medical Research Council, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
| |
Collapse
|
9
|
Guedj E, Cionca A, Péron JA, Ayubcha C, Assal F, Horowitz T, Alavi A. Long Coronavirus Disease and the Brain: Molecular Neuroimaging Insights into Neurologic and Psychiatric Sequelae. PET Clin 2025; 20:39-55. [PMID: 39482218 DOI: 10.1016/j.cpet.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to a variety of health challenges, with "long COVID" emerging as a widespread and debilitating post-acute syndrome among a considerable number of infected patients. This PET review synthesizes current evidence of the neurologic and psychiatric sequelae of COVID. This review also explores the pathophysiological mechanisms of these results, including astrocyte dysfunction and glutamate dysregulation, as well as the multimodal comparison to MR imaging findings. The findings underscore the potential for long-term brain injury. Additionally, the authors discuss the role of advanced imaging multimodal techniques in diagnosing, monitoring, and guiding treatment strategies for long COVID.
Collapse
Affiliation(s)
- Eric Guedj
- Biophysics and Nuclear Medicine, Aix Marseille University, Marseille, France; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Marseille, France; Nuclear Medicine Department, CERIMED, Marseille, France.
| | - Alexandre Cionca
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julie A Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Geneva, Switzerland; Neurology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frédéric Assal
- Neurology Division, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tatiana Horowitz
- Biophysics and Nuclear Medicine, Aix Marseille University, Marseille, France; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Marseille, France; Nuclear Medicine Department, CERIMED, Marseille, France
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
12
|
Briscoe L, Hodge MA, Porter M, Burrell R, Fairbairn N, Fang A, Britton P. Early life parechovirus infection neuropsychological outcomes at 8 years: a cohort study. Child Neuropsychol 2024; 30:1135-1156. [PMID: 38258280 DOI: 10.1080/09297049.2024.2307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Human parechovirus (HPeV) is a leading cause of Central Nervous System (CNS) infection in infancy. Despite this, little is known regarding the long-term neuropsychological impacts from HPeV infection. The aim of the present study was to explore the long-term neuropsychological impacts eight-year post-HPeV infection contracted during infancy. This study also aimed to investigate the differential impacts of HPeV itself compared to the effects of secondary meningitis (n = 23) or encephalitis (n = 3) associated with HPeV infection. Thirty-nine HPeV children participated in the study. Children completed performance-based measures of neuropsychological and language functioning (the Wechsler Abbreviated Scale of Intelligence, the Clinical Evaluation of Language Fundamentals - Fourth Edition, and the Test of Everyday Attention for Children). Parents completed questionnaire-based measures of emotional, behavioral, and pragmatic language functioning (the Behaviour Rating Inventory of Executive Functioning, the Child Behavior Checklist, and the Social Communication Questionnaire). Results revealed that, overall, children with HPeV were significantly more impaired on measures of selective, sustained, and divided attention compared to normative test populations. The current study incidentally found at least double the prevalence of Attention-Deficit/Hyperactivity Disorder (ADHD) in the HPeV sample than what is typical in the normal population, suggesting that HPeV infection during infancy may be a risk factor for the later development of ADHD. Additionally, the presence of secondary meningitis or encephalitis did not relate to poorer neuropsychological outcomes in the current sample. The findings of this study have important implications regarding clinical management for children following HPeV infection in infancy.
Collapse
Affiliation(s)
- Lauren Briscoe
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | | | - Melanie Porter
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Rebecca Burrell
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Paediatric and Perinatal Infection Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Natalie Fairbairn
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Amanda Fang
- Discipline of Occupational Therapy, School of Health Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Philip Britton
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
13
|
Keskek Turk Y, Ergunay K, Kohl A, Hughes J, McKimmie CS. Toscana virus - an emerging Mediterranean arbovirus transmitted by sand flies. J Gen Virol 2024; 105:002045. [PMID: 39508743 PMCID: PMC11542635 DOI: 10.1099/jgv.0.002045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Toscana virus (TOSV) is an emerging arthropod-borne virus (arbovirus) of medical importance that is increasing its range across much of the Mediterranean Basin, Europe and the Middle East. Transmitted by Phlebotomus spp. sand flies, it is the most clinically relevant sand fly-borne phlebovirus. Initially isolated in the Tuscany region of Central Italy, it has now been detected in multiple countries that surround this geographical area. Infection of the vertebrate host can cause fever and neurological disease, following the dissemination of the virus to the brain. The prevalence is high in some regions, with a notable percentage of individuals showing seroconversion. TOSV can be a leading cause of acute meningitis and encephalitis (AME) during the summer months. In this comprehensive review, we will focus on several key topics. We discuss how TOSV has spread to establish outbreaks of infection in both humans and animals around the Mediterranean and the wider region. Clinical aspects of TOSV infection in humans are described, along with the best standards in diagnosis. Finally, we focus our discussion on the role of the sand fly vector, describing their biology, vector competency, implications for putative vertebrate reservoirs, the effect of the climate emergency on sand fly distribution and the putative role that sand fly-derived salivary factors may have on modulating host susceptibility to TOSV infection.
Collapse
Affiliation(s)
| | - Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, USA
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Alain Kohl
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Clive S. McKimmie
- Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| |
Collapse
|
14
|
Zhang Q, Liu X, Ma Q, Zhang J. Melanin concentrating hormone regulates the JNK/ERK signaling pathway to alleviate influenza A virus infection-induced neuroinflammation. J Neuroinflammation 2024; 21:259. [PMID: 39390522 PMCID: PMC11468281 DOI: 10.1186/s12974-024-03251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Melanin concentrating hormone (MCH) controls many brain functions, such as sleep/wake cycle and memory, and modulates the inflammation response. Previous studies have shown that influenza A virus (IAV) infection-induced neuroinflammation leads to central nervous damage. This study investigated the potential effects of MCH against neuroinflammation induced by IAV infection and its mechanism. MCH (1 and 2 mg/ml) was administrated for 5 consecutive days before IAV infection. Pentobarbital-induced sleep tests, an open-field test, and a Morris water maze were performed to measure sleep quality, spatial learning and memory ability. Neuronal loss and microglial activation were observed with Nissl staining and immunofluorescence assay. The levels of inflammatory cytokines and the expression of the JNK/ERK signaling pathway were examined by ELISA and western blot. IAV infection led to poor sleep quality, impaired the ability of spatial learning and memory, caused neuronal loss and microglial activation in mice's hippocampus and cortex. Meanwhile the level of inflammatory cytokines increased, and the JNK/ERK signaling pathway was activated after IAV infection. MCH administration significantly alleviated IAV-induced neuroinflammation, cognitive impairment, and sleep disorder, decreased the levels of inflammatory cytokines, and inhibited neuronal loss and microglial activation in the hippocampus and cortex by regulating the JNK/ERK signaling pathway. Therefore, MCH alleviated the neuroinflammation, spatial learning and memory impairment, and sleep disorder in IAV-infected mice by regulating the JNK/ERK signaling pathway.
Collapse
Affiliation(s)
- Qianlin Zhang
- Neurology Department, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan Province, 450003, China
| | - Xiaoyang Liu
- Neurology Department, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan Province, 450003, China
| | - Qiankun Ma
- Neurology Department, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan Province, 450003, China
| | - Jiewen Zhang
- Neurology Department, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7 Weiwu Road, Zhengzhou, Henan Province, 450003, China.
| |
Collapse
|
15
|
Wu J, Mao K, Zhang R, Fu Y. Extracellular vesicles in the pathogenesis of neurotropic viruses. Microb Pathog 2024; 195:106901. [PMID: 39218378 DOI: 10.1016/j.micpath.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Neurotropic viruses, characterized by their capacity to invade the central nervous system, present a considerable challenge to public health and are responsible for a diverse range of neurological disorders. This group includes a diverse array of viruses, such as herpes simplex virus, varicella zoster virus, poliovirus, enterovirus and Japanese encephalitis virus, among others. Some of these viruses exhibit high neuroinvasiveness and neurovirulence, while others demonstrate weaker neuroinvasive and neurovirulent properties. The clinical manifestations of infections caused by neurotropic viruses can vary significantly, ranging from mild symptoms to severe life-threatening conditions. Extracellular vesicles (EVs) have garnered considerable attention due to their pivotal role in intracellular communication, which modulates the biological activity of target cells via the transport of biomolecules in both health and disease. Investigating EVs in the context of virus infection is crucial for elucidating their potential role contribution to viral pathogenesis. This is because EVs derived from virus-infected cells frequently transfer viral components to uninfected cells. Importantly, EVs released by virus-infected cells have the capacity to traverse the blood-brain barrier (BBB), thereby impacting neuronal activity and inducing neuroinflammation. In this review, we explore the roles of EVs during neurotropic virus infections in either enhancing or inhibiting viral pathogenesis. We will delve into our current comprehension of the molecular mechanisms that underpin these roles, the potential implications for the infected host, and the prospective diagnostic applications that could arise from this understanding.
Collapse
Affiliation(s)
- Junyi Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Kedan Mao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
16
|
Saenkham-Huntsinger P, Drelich AK, Huang P, Peng BH, Tseng CTK. BALB/c mice challenged with SARS-CoV-2 B.1.351 β variant cause pathophysiological and neurological changes within the lungs and brains. J Gen Virol 2024; 105:002039. [PMID: 39475775 PMCID: PMC11524415 DOI: 10.1099/jgv.0.002039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Up to one-third of individuals suffering from acute SARS-CoV-2 infection with the onset of severe-to-mild diseases could develop several symptoms of neurological disorders, which could last long after resolving the infection, known as neuro-COVID. Effective therapeutic treatments for neuro-COVID remain unavailable, in part, due to the absence of animal models for studying its underlying mechanisms and developing medical countermeasures against it. Here, we explored the impact of SARS-CoV-2 infection on the well-being of respiratory and neurological functions of BALB/c mice by using a clinical isolate of β-variant, i.e. B.1.351. We found that this β-variant of SARS-CoV-2 primarily infected the lungs, causing tissue damage, profound inflammatory responses, altered respiratory functions and transient but significant hypoxia. Although live progeny viruses could not be isolated, viral RNAs were detected across many anatomical regions of the brains in most challenged mice and triggered activation of genes encoding for NF-kB, IL-6, IP-10 and RANTES and microglial cells. We noted that the significantly activated IL-6-encoded gene persisted at 4 weeks after infection. Together, these results suggest that this B.1.351/BALB/c model of SARS-CoV-2 infection warrants further studies to establish it as a desirable model for studies of neuropathogenesis and the development of effective therapeutics of neuro-COVID.
Collapse
Affiliation(s)
| | - Aleksandra K. Drelich
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pinghan Huang
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bi-Hung Peng
- Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chien-Te K. Tseng
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
17
|
Yu X, Zhu Y, Yin G, Wang Y, Shi X, Cheng G. Exploiting hosts and vectors: viral strategies for facilitating transmission. EMBO Rep 2024; 25:3187-3201. [PMID: 39048750 PMCID: PMC11315993 DOI: 10.1038/s44319-024-00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Viruses have developed various strategies to ensure their survival and transmission. One intriguing strategy involves manipulating the behavior of infected arthropod vectors and hosts. Through intricate interactions, viruses can modify vector behavior, aiding in crossing barriers and improving transmission to new hosts. This manipulation may include altering vector feeding preferences, thus promoting virus transmission to susceptible individuals. In addition, viruses employ diverse dissemination methods, including cell-to-cell and intercellular transmission via extracellular vesicles. These strategies allow viruses to establish themselves in favorable environments, optimize replication, and increase the likelihood of spreading to other individuals. Understanding these complex viral strategies offers valuable insights into their biology, transmission dynamics, and potential interventions for controlling infections. Unraveling interactions between viruses, hosts, and vectors enables the development of targeted approaches to effectively mitigate viral diseases and prevent transmission.
Collapse
Affiliation(s)
- Xi Yu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gang Yin
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
18
|
da Costa VG, Saivish MV, Sinhorini PF, Nogueira ML, Rahal P. A meta-analysis of Chikungunya virus in neurological disorders. Infect Dis Now 2024; 54:104938. [PMID: 38885813 DOI: 10.1016/j.idnow.2024.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Chikungunya disease typically presents with the fever-arthralgia-rash symptom triad. However, an increase in the number of atypical clinical manifestations, particularly neurological disorders, has occurred. The current evidence regarding the pooled prevalence of Chikungunya virus (CHIKV)-associated neurological cases (CANCs) suspected of having an arboviral aetiology is not well-understood. Therefore, this meta-analysis included 19 studies (n = 7319 patients) and aimed to determine the pooled rate of exposure to CANC. The pooled positivity rate of CANC was 12 % (95 % CI: 6-19), and Brazil was overrepresented (11/19). These estimations varied between 3 and 14 % based on the diagnostic method (real-time PCR vs. ELISA-IgM) and biological samples (cerebrospinal fluid or blood specimens) used for detection of CHIKV. Regarding the frequency of CHIKV in neurological clinical subgroups, the rates were higher among patients with myelitis (27 %), acute disseminated encephalomyelitis (27 %), Guillain-Barré syndrome (15 %), encephalitis (12 %), and meningoencephalitis (7 %). Our analysis highlights the significant burden of CANC. However, the data must be interpreted with caution due to the heterogeneity of the results, which may be related to the location of the studies covering endemic periods and/or outbreaks of CHIKV. Current surveillance resources should also focus on better characterizing the epidemiology of CHIKV infection in neurological disorders. Additionally, future studies should investigate the interactions between CHIKV and neurological diseases with the aim of gaining deeper insight into the mechanisms underlying the cause-and-effect relationship between these two phenomena.
Collapse
Affiliation(s)
- Vivaldo G da Costa
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil.
| | - Marielena V Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090‑000, SP, Brazil; Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083‑100, SP, Brazil
| | - Paola F Sinhorini
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Maurício L Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090‑000, SP, Brazil; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil.
| |
Collapse
|
19
|
Zheng S, Verjans GMGM, Evers A, van den Wittenboer E, Tjhie JHT, Snoeck R, Wiertz EJHJ, Andrei G, van Kampen JJA, Lebbink RJ. CRISPR/Cas9-mediated genome editing of the thymidine kinase gene in a clinical HSV-1 isolate identifies F289S as novel acyclovir-resistant mutation. Antiviral Res 2024; 228:105950. [PMID: 38944159 DOI: 10.1016/j.antiviral.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that establishes a lifelong infection in sensory neurons of infected individuals, accompanied with intermittent reactivation of latent virus causing (a)symptomatic virus shedding. Whereas acyclovir (ACV) is a safe and highly effective antiviral to treat HSV-1 infections, long-term usage can lead to emergence of ACV resistant (ACVR) HSV-1 and subsequently ACV refractory disease. Here, we isolated an HSV-1 strain from a patient with reactivated herpetic eye disease that did not respond to ACV treatment. The isolate carried a novel non-synonymous F289S mutation in the viral UL23 gene encoding the thymidine kinase (TK) protein. Because ACV needs conversion by viral TK and subsequently cellular kinases to inhibit HSV-1 replication, the UL23 gene is commonly mutated in ACVR HSV-1 strains. The potential role of the F289S mutation causing ACVR was investigated using CRISPR/Cas9-mediated HSV-1 genome editing. Reverting the F289S mutation in the original clinical isolate to the wild-type sequence S289F resulted in an ACV-sensitive (ACVS) phenotype, and introduction of the F289S substitution in an ACVS HSV-1 reference strain led to an ACVR phenotype. In summary, we identified a new HSV-1 TK mutation in the eye of a patient with ACV refractory herpetic eye disease, which was identified as the causative ACVR mutation with the aid of CRISPR/Cas9-mediated genome engineering technology. Direct editing of clinical HSV-1 isolates by CRISPR/Cas9 is a powerful strategy to assess whether single residue substitutions are causative to a clinical ACVR phenotype.
Collapse
Affiliation(s)
- Shuxuan Zheng
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Anouk Evers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Jeroen H T Tjhie
- Department of Medical Microbiology and Immunology, Microvida, Tilburg, the Netherlands
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
20
|
Ahmad F, Ahmad S, Husain A, Pandey N, Khubaib M, Sharma R. Role of inflammatory cytokine burst in neuro-invasion of Japanese Encephalitis virus infection: an immunotherapeutic approaches. J Neurovirol 2024; 30:251-265. [PMID: 38842651 DOI: 10.1007/s13365-024-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Japanese Encephalitis remains a significant global health concern, contributing to millions of deaths annually worldwide. Microglial cells, as key innate immune cells within the central nervous system (CNS), exhibit intricate cellular structures and possess molecular phenotypic plasticity, playing pivotal roles in immune responses during CNS viral infections. Particularly under viral inflammatory conditions, microglial cells orchestrate innate and adaptive immune responses to mitigate viral invasion and dampen inflammatory reactions. This review article comprehensively summarizes the pathophysiology of viral invasion into the CNS and the cellular interactions involved, elucidating the roles of various immune mediators, including pro-inflammatory cytokines, in neuroinflammation. Leveraging this knowledge, strategies for modulating inflammatory responses and attenuating hyperactivation of glial cells to mitigate viral replication within the brain are discussed. Furthermore, current chemotherapeutic and antiviral drugs are examined, elucidating their mechanisms of action against viral replication. This review aims to provide insights into therapeutic interventions for Japanese Encephalitis and related viral infections, ultimately contributing to improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, 224001 Uttar Pradesh, India., 224001, Faizabad, Uttar Pradesh, India
| | - Adil Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226016, Uttar Pradesh, India
| | - Niharika Pandey
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rolee Sharma
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India.
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur, 228024, Uttar Pradesh, India.
| |
Collapse
|
21
|
James LM, Tsilibary EP, Wanberg EJ, Georgopoulos AP. Negative Association of Cognitive Performance With Blood Serum Neurotoxicity and Its Modulation by Human Herpes Virus 5 (HHV5) Seropositivity in Healthy Women. Neurosci Insights 2024; 19:26331055241258436. [PMID: 38827247 PMCID: PMC11143810 DOI: 10.1177/26331055241258436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Identification of early influences on cognitive decline is of paramount importance in order to stem the impacts of decrements in cognitive functioning and to potentially intervene. Thus, here we focused on 132 healthy adult women (age range 26-98 years) to (a) determine whether factors circulating in serum may exert neurotoxic effects in vitro, (b) evaluate associations between serum neurotoxicity and cognitive performance, and (c) assess the influence of human herpes virus (HHV) seroprevalence and other factors on apoptosis and cognitive performance. The results documented that the addition of serum from healthy adult women to neural cell cultures resulted in apoptosis, indicating the presence of circulating neurotoxic factors in the serum. Furthermore, apoptosis increased with age, and was associated with decreased cognitive performance. Stepwise regression evaluating the influence of 6 HHVs on apoptosis and cognitive function revealed that only HHV5 (cytomegalovirus; CMV) seropositivity was significantly associated with apoptosis and cognitive decline, controlling for age. These findings document neurotoxic effects of serum from healthy women across the adult lifespan and suggest a unique detrimental influence associated with CMV seropositivity.
Collapse
Affiliation(s)
- Lisa M James
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Effie-Photini Tsilibary
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik J Wanberg
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
22
|
Castillo F, Turón-Viñas E, Armendariz L, Carbonell E, Rabella N, Del Cuerpo M, Moliner E. Characteristics of enterovirus infection associated neurologic disease associated in a pediatric population in Spain. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:242-250. [PMID: 37230840 DOI: 10.1016/j.eimce.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Enteroviruses are a type of RNA-strained virus with more than 100 different genotypes. Infection can be asymptomatic, and, if any, symptoms can range from mild to severe. Some patients can develop neurological involvement, such as aseptic meningitis, encephalitis, or even cardiorespiratory failure. However, in children, the risk factors for developing severe neurological involvement are not well understood. The aim of this retrospective study was to analyze some characteristics associated with severe neurological involvement in children hospitalized for neurological disease after enterovirus infection. METHODS retrospective observational study analyzing clinical, microbiological and radiological data of 174 children hospitalized from 2009 to 2019 in our hospital. Patients were classified according to the World Health Organization case definition for neurological complications in hand, foot and mouth disease. RESULTS Our findings showed that, in children between 6 months old and 2 years of age, the appearance of neurological symptoms within the first 12h from infection onset-especially if associated with skin rash-was a significant risk factor for severe neurological involvement. Detection of enterovirus in cerebrospinal fluid was more likely in patients with aseptic meningitis. By contrast, other biological samples (e.g., feces or nasopharyngeal fluids) were necessary to detect enterovirus in patients with encephalitis. The genotype most commonly associated with the most severe neurological conditions was EV-A71. E-30 was mostly associated with aseptic meningitis. CONCLUSIONS Awareness of the risk factors associated with worse neurological outcomes could help clinicians to better manage these patients to avoid unnecessary admissions and/or ancillary tests.
Collapse
Affiliation(s)
- Fátima Castillo
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Eulàlia Turón-Viñas
- Department of Pediatrics, Child Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain.
| | - Laura Armendariz
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Emma Carbonell
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Nuria Rabella
- Departent of Microbiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Margarita Del Cuerpo
- Departent of Microbiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| | - Elisenda Moliner
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute - IIB Sant Pau, Barcelona, Spain
| |
Collapse
|
23
|
Sun M, Manson ML, Guo T, de Lange ECM. CNS Viral Infections-What to Consider for Improving Drug Treatment: A Plea for Using Mathematical Modeling Approaches. CNS Drugs 2024; 38:349-373. [PMID: 38580795 PMCID: PMC11026214 DOI: 10.1007/s40263-024-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.
Collapse
Affiliation(s)
- Ming Sun
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tingjie Guo
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
24
|
Dell’Aquila M, Cafiero C, Micera A, Stigliano E, Ottaiano MP, Benincasa G, Schiavone B, Guidobaldi L, Santacroce L, Pisconti S, Arena V, Palmirotta R. SARS-CoV-2-Related Olfactory Dysfunction: Autopsy Findings, Histopathology, and Evaluation of Viral RNA and ACE2 Expression in Olfactory Bulbs. Biomedicines 2024; 12:830. [PMID: 38672185 PMCID: PMC11048640 DOI: 10.3390/biomedicines12040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has been a health emergency with a significant impact on the world due to its high infectiousness. The disease, primarily identified in the lower respiratory tract, develops with numerous clinical symptoms affecting multiple organs and displays a clinical finding of anosmia. Several authors have investigated the pathogenetic mechanisms of the olfactory disturbances caused by SARS-CoV-2 infection, proposing different hypotheses and showing contradictory results. Since uncertainties remain about possible virus neurotropism and direct damage to the olfactory bulb, we investigated the expression of SARS-CoV-2 as well as ACE2 receptor transcripts in autoptic lung and olfactory bulb tissues, with respect to the histopathological features. METHODS Twenty-five COVID-19 olfactory bulbs and lung tissues were randomly collected from 200 initial autopsies performed during the COVID-19 pandemic. Routine diagnosis was based on clinical and radiological findings and were confirmed with post-mortem swabs. Real-time RT-PCR for SARS-CoV-2 and ACE2 receptor RNA was carried out on autoptic FFPE lung and olfactory bulb tissues. Histological staining was performed on tissue specimens and compared with the molecular data. RESULTS While real-time RT-PCR for SARS-CoV-2 was positive in 23 out of 25 lung samples, the viral RNA expression was absent in olfactory bulbs. ACE2-receptor RNA was present in all tissues examined, being highly expressed in lung samples than olfactory bulbs. CONCLUSIONS Our finding suggests that COVID-19 anosmia is not only due to neurotropism and the direct action of SARS-CoV-2 entering the olfactory bulb. The mechanism of SARS-CoV-2 neuropathogenesis in the olfactory bulb requires a better elucidation and further research studies to mitigate the olfactory bulb damage associated with virus action.
Collapse
Affiliation(s)
- Marco Dell’Aquila
- Anatomic Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.D.); (E.S.); (V.A.)
- Pathology Unit, Belcolle Hospital, ASL Viterbo, 01100 Viterbo, Italy
| | - Concetta Cafiero
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy;
- Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS–Fondazione Bietti, 00184 Rome, Italy
| | - Egidio Stigliano
- Anatomic Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.D.); (E.S.); (V.A.)
| | - Maria Pia Ottaiano
- Department of Clinical Pathology and Molecular Biology, Pineta Grande Hospital, 81030 Castel Volturno, Italy; (M.P.O.); (G.B.); (B.S.)
| | - Giulio Benincasa
- Department of Clinical Pathology and Molecular Biology, Pineta Grande Hospital, 81030 Castel Volturno, Italy; (M.P.O.); (G.B.); (B.S.)
| | - Beniamino Schiavone
- Department of Clinical Pathology and Molecular Biology, Pineta Grande Hospital, 81030 Castel Volturno, Italy; (M.P.O.); (G.B.); (B.S.)
| | - Leo Guidobaldi
- Cytodiagnostic Unit, Section of Pathology Sandro Pertini Hospital, ASL Rm2, 00157 Rome, Italy;
| | - Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | | - Vincenzo Arena
- Anatomic Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.D.); (E.S.); (V.A.)
| | - Raffaele Palmirotta
- Section of Sciences and Technologies of Laboratory Medicine, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
25
|
Kang Y, Hepojoki J, Maldonado RS, Mito T, Terzioglu M, Manninen T, Kant R, Singh S, Othman A, Verma R, Uusimaa J, Wartiovaara K, Kareinen L, Zamboni N, Nyman TA, Paetau A, Kipar A, Vapalahti O, Suomalainen A. Ancestral allele of DNA polymerase gamma modifies antiviral tolerance. Nature 2024; 628:844-853. [PMID: 38570685 PMCID: PMC11041766 DOI: 10.1038/s41586-024-07260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Age of Onset
- Alleles
- COVID-19/immunology
- COVID-19/virology
- COVID-19/genetics
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/immunology
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/immunology
- DNA, Mitochondrial/metabolism
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Founder Effect
- Gene Knock-In Techniques
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon Type I/immunology
- Mitochondrial Diseases/enzymology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/immunology
- Mutation
- RNA, Mitochondrial/immunology
- RNA, Mitochondrial/metabolism
- SARS-CoV-2/immunology
Collapse
Affiliation(s)
- Yilin Kang
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Rocio Sartori Maldonado
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takayuki Mito
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Manninen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sachin Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Alaa Othman
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Rohit Verma
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Unit of Child Neurology, Oulu University Hospital, Oulu, Finland
| | - Kirmo Wartiovaara
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Lauri Kareinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Safety Authority, Helsinki, Finland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Tuula Anneli Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Anders Paetau
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Dos Santos AS, da Costa MG, Faustino AM, de Almeida W, Danilevicz CK, Peres AM, de Castro Saturnino BC, Varela APM, Teixeira TF, Roehe PM, Krolow R, Dalmaz C, Pereira LO. Neuroinflammation, blood-brain barrier dysfunction, hippocampal atrophy and delayed neurodevelopment: Contributions for a rat model of congenital Zika syndrome. Exp Neurol 2024; 374:114699. [PMID: 38301864 DOI: 10.1016/j.expneurol.2024.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
The congenital Zika syndrome (CZS) has been characterized as a set of several brain changes, such as reduced brain volume and subcortical calcifications, in addition to cognitive deficits. Microcephaly is one of the possible complications found in newborns exposed to Zika virus (ZIKV) during pregnancy, although it is an impacting clinical sign. This study aimed to investigate the consequences of a model of congenital ZIKV infection by evaluating the histopathology, blood-brain barrier, and neuroinflammation in pup rats 24 h after birth, and neurodevelopment of the offspring. Pregnant rats were inoculated subcutaneously with ZIKV-BR at the dose 1 × 107 plaque-forming unit (PFU mL-1) of ZIKV isolated in Brazil (ZIKV-BR) on gestational day 18 (G18). A set of pups, 24 h after birth, was euthanized. The brain was collected and later evaluated for the histopathology of brain structures through histological analysis. Additionally, analyses of the blood-brain barrier were conducted using western blotting, and neuroinflammation was assessed using ELISA. Another set of animals was evaluated on postnatal days 3, 6, 9, and 12 for neurodevelopment by observing the developmental milestones. Our results revealed hippocampal atrophy in ZIKV animals, in addition to changes in the blood-brain barrier structure and pro-inflammatory cytokines expression increase. Regarding neurodevelopment, a delay in important reflexes during the neonatal period in ZIKV animals was observed. These findings advance the understanding of the pathophysiology of CZS and contribute to enhancing the rat model of CZS.
Collapse
Affiliation(s)
- Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Meirylanne Gomes da Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Martins Faustino
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Chris Krebs Danilevicz
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ariadni Mesquita Peres
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Carolina de Castro Saturnino
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thais Fumaco Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rachel Krolow
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Swedberg C, Bote K, Gamble L, Fénelon N, King A, Wallace RM. Eliminating invisible deaths: the woeful state of global rabies data and its impact on progress towards 2030 sustainable development goals for neglected tropical diseases. FRONTIERS IN TROPICAL DISEASES 2024; 5:10.3389/fitd.2024.1303359. [PMID: 39811393 PMCID: PMC11730431 DOI: 10.3389/fitd.2024.1303359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Like other neglected diseases, surveillance data for rabies is insufficient and incompatible with the need to accurately describe the burden of disease. Multiple modeling studies central to estimating global human rabies deaths have been conducted in the last two decades, with results ranging from 14,000 to 74,000 deaths annually. Yet, uncertainty in model parameters, inconsistency in modeling approaches, and discrepancies in data quality per country included in global burden studies have led to recent skepticism about the magnitude of rabies mortality. Lack of data not only limits the efficiency and monitoring of rabies elimination strategies but also severely diminishes abilities to advocate for support from international funding agencies. Meanwhile, the most vulnerable communities continue to suffer from deaths that could have been prevented through more robust reporting. The Zero by 30 global strategy to eliminate dog-mediated human rabies by 2030 recommends endemic countries adopt the intersectoral approach, Integrated Bite Case Management (IBCM), as a cost-effective method to enhance surveillance. However, effective implementation of IBCM is impeded by challenges such as limited capacity, resources, knowledge, skills, and attitudes toward compliance. To address this, the World Health Organization and United Against Rabies Forum have developed several open-access tools to guide national control programs in strong data collection practices, and online data repositories to pragmatically streamline reporting and encourage data sharing. Here, we discuss how current and future initiatives can be best employed to improve the implementation of existing surveillance tools and prioritization of effective data reporting/sharing to optimize progress toward 2030 elimination.
Collapse
Affiliation(s)
- Catherine Swedberg
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Katrin Bote
- Department for Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | | | - Natael Fénelon
- Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization, Port au Prince, Haiti
| | - Alasdair King
- International Veterinary Health, Merck Animal Health, Madison, NJ, United States
| | - Ryan M. Wallace
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
28
|
Donátová K, Mladá M, Lopušná K, Baran F, Betáková T. Changes in the Expression of Proteins Associated with Neurodegeneration in the Brains of Mice after Infection with Influenza A Virus with Wild Type and Truncated NS1. Int J Mol Sci 2024; 25:2460. [PMID: 38473707 DOI: 10.3390/ijms25052460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Influenza type A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Recently, a specific link between IAV infection and neurodegenerative disease progression has been established. The non-structural NS1 protein of IAV regulates viral replication during infection and antagonizes host antiviral responses, contributing to influenza virulence. In the present study, we have prepared a mouse lung-to-lung adapted to the NS1-truncated virus (NS80ad). Transcriptome analysis of the gene expression in the lungs revealed that infection with wild-type A/WSN/33 (WSN), NS80, and NS80ad viruses resulted in different regulation of genes involved in signaling pathways associated with the cell proliferation, inflammatory response, and development of neurodegenerative diseases. NS1 protein did not influence the genes involved in the RIG-I-like receptor signaling pathway in the brains. Lethal infection with IAVs dysregulated expression of proteins associated with the development of neurodegenerative diseases (CX3CL1/Fractalkine, Coagulation factor III, and CD105/Endoglin, CD54/ICAM-1, insulin-like growth factor-binding protein (IGFBP)-2, IGFBP-5, IGFBP-6, chitinase 3-like 1 (CHI3L1), Myeloperoxidase (MPO), Osteopontin (OPN), cystatin C, and LDL R). Transcription of GATA3 mRNA was decreased, and expression of MPO was inhibited in the brain infected with NS80 and NS80ad viruses. In addition, the truncation of NS1 protein led to reduced expression of IGFBP-2, CHI3L1, MPO, and LDL-R proteins in the brains. Our results indicate that the influenza virus influences the expression of proteins involved in brain function, and this might occur mostly through the NS1 protein. These findings suggest that the abovementioned proteins represent a promising target for the development of potentially effective immunotherapy against neurodegeneration.
Collapse
Affiliation(s)
- Karin Donátová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Miriam Mladá
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Katarína Lopušná
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Filip Baran
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Tatiana Betáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
29
|
Rieder AS, Wyse ATS. Regulation of Inflammation by IRAK-M Pathway Can Be Associated with nAchRalpha7 Activation and COVID-19. Mol Neurobiol 2024; 61:581-592. [PMID: 37640915 DOI: 10.1007/s12035-023-03567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
In spite of the vaccine development and its importance, the SARS-CoV-2 pandemic is still impacting the world. It is known that the COVID-19 severity is related to the cytokine storm phenomenon, being inflammation a common disease feature. The nicotinic cholinergic system has been widely associated with COVID-19 since it plays a protective role in inflammation via nicotinic receptor alpha 7 (nAchRalpha7). In addition, SARS-CoV-2 spike protein (Spro) subunits can interact with nAchRalpha7. Moreover, Spro causes toll-like receptor (TLR) activation, leading to pro- and anti-inflammatory pathways. The increase and maturation of the IL-1 receptor-associated kinase (IRAK) family are mediated by activation of membrane receptors, such as TLRs. IRAK-M, a member of this family, is responsible for negatively regulating the activity of other active IRAKs. In addition, IRAK-M can regulate microglia phenotype by specific protein expression. Furthermore, there exists an antagonist influence of SARS-CoV-2 Spro and the cholinergic system action on the IRAK-M pathway and microglia phenotype. We discuss the overexpression and suppression of IRAK-M in inflammatory cell response to inflammation in SARS-CoV-2 infection when the cholinergic system is constantly activated via nAchRalpha7.
Collapse
Affiliation(s)
- Alessanda S Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases (Wyse's Lab), Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases (Wyse's Lab), Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre RS, 90035-003, Brazil.
| |
Collapse
|
30
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
31
|
Marazziti D, Massa L, Carbone MG, Palermo S, Arone A, D’Angelo G, Schulz Bizzozzero Crivelli N, Gurrieri R, Perrone P, Palagini L, Dell’Osso L. Silent Infections are not So Silent: The Emerging Role of Combined Infections, Inflammation, and Vitamin Levels in OCD. CLINICAL NEUROPSYCHIATRY 2024; 21:7-21. [PMID: 38559435 PMCID: PMC10979795 DOI: 10.36131/cnfioritieditore20240101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Objective Recent evidence highlights that different agents may trigger immune-mediated processes involved in the pathophysiology of different neuropsychiatric conditions. Given the limited information on obsessive-compulsive disorder (OCD), the present study aimed at assessing current/past infections and plasma levels of vitamin D, vitamin B12, folic acid, homocysteine and common peripheral inflammatory markers in a group of OCD outpatients. Method The sample included 217 adult outpatients with an OCD diagnosis according to the DSM-5 criteria. The Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) was used to assess the clinical phenotype and symptom severity. Laboratory blood tests measured levels of vitamin D, vitamin B12, folic acid, homocysteine, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), blood count and antibodies titers for cytomegalovirus (CMV), Epstein Barr virus (EBV), Toxoplasma gondii and antistreptolysin titer. Results Sixty-one patients had a previous EBV infection, 46 were seropositive for CMV IgG, 24 showed positive antistreptolysin titer, 14 were seropositive for Toxoplasma gondii IgG, and four for CMV IgM. More than a half of patients showed vitamin D insufficiency. Compared to seronegative patients, patients with a past EBV infection displayed significantly higher scores on the Y-BOCS total score and compulsion subscale, and other symptoms. Vitamin D was negatively correlated with both the Y-BOCS total score and the subscales scores. Folic acid was negatively correlated with the Y-BOCS total and obsessions subscale score. Conclusions The findings of our study show an association between Epstein-Barr infection and hypovitaminosis D and the overall severity and specific symptom patterns of OCD. The laboratory measures used in this study are useful, cheap and easy parameters that should be routinely assessed in patients with OCD. Further studies are needed to clarify their role in OCD pathophysiology and outcomes, as well as the potential therapeutic impact of vitamins and antibiotics/immunomodulatory agents in OCD and other psychiatric conditions.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Lucia Massa
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Giorgia D’Angelo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | | | - Riccardo Gurrieri
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Paola Perrone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
33
|
Gadhave DG, Sugandhi VV, Kokare CR. Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis. Brain Res 2024; 1822:148674. [PMID: 37952871 DOI: 10.1016/j.brainres.2023.148674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The tight junction of endothelial cells in the central nervous system (CNS) has an ideal characteristic, acting as a biological barrier that can securely regulate the movement of molecules in the brain. Tightly closed astrocyte cell junctions on blood capillaries are the blood-brain barrier (BBB). This biological barrier prohibits the entry of polar drugs, cells, and ions, which protect the brain from harmful toxins. However, delivering any therapeutic agent to the brain in neurodegenerative disorders (i.e., schizophrenia, multiple sclerosis, etc.) is extremely difficult. Active immune responses such as microglia, astrocytes, and lymphocytes cross the BBB and attack the nerve cells, which causes the demyelination of neurons. Therefore, there is a hindrance in transmitting electrical signals properly, resulting in blindness, paralysis, and neuropsychiatric problems. The main objective of this article is to shed light on the performance of biomaterials, which will help researchers to create nanocarriers that can cross the blood-brain barrier and achieve a therapeutic concentration of drugs in the CNS of patients with multiple sclerosis (MS). The present review focuses on the importance of biomaterials with diagnostic and therapeutic efficacy that can help enhance multiple sclerosis therapeutic potential. Currently, the development of MS in animal models is limited by immune responses, which prevent MS induction in healthy animals. Therefore, this article also showcases animal models currently used for treating MS. A future advance in developing a novel effective strategy for treating MS is now a potential area of research.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune 413130, Maharashtra, India.
| | - Vrashabh V Sugandhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Chandrakant R Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
34
|
Meinhardt J, Streit S, Dittmayer C, Manitius RV, Radbruch H, Heppner FL. The neurobiology of SARS-CoV-2 infection. Nat Rev Neurosci 2024; 25:30-42. [PMID: 38049610 DOI: 10.1038/s41583-023-00769-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Worldwide, over 694 million people have been infected with SARS-CoV-2, with an estimated 55-60% of those infected developing COVID-19. Since the beginning of the pandemic in December 2019, different variants of concern have appeared and continue to occur. With the emergence of different variants, an increasing rate of vaccination and previous infections, the acute neurological symptomatology of COVID-19 changed. Moreover, 10-45% of individuals with a history of SARS-CoV-2 infection experience symptoms even 3 months after disease onset, a condition that has been defined as 'post-COVID-19' by the World Health Organization and that occurs independently of the virus variant. The pathomechanisms of COVID-19-related neurological complaints have become clearer during the past 3 years. To date, there is no overt - that is, truly convincing - evidence for SARS-CoV-2 particles in the brain. In this Review, we put special emphasis on discussing the methodological difficulties of viral detection in CNS tissue and discuss immune-based (systemic and central) effects contributing to COVID-19-related CNS affection. We sequentially review the reported changes to CNS cells in COVID-19, starting with the blood-brain barrier and blood-cerebrospinal fluid barrier - as systemic factors from the periphery appear to primarily influence barriers and conduits - before we describe changes in brain parenchymal cells, including microglia, astrocytes, neurons and oligodendrocytes as well as cerebral lymphocytes. These findings are critical to understanding CNS affection in acute COVID-19 and post-COVID-19 in order to translate these findings into treatment options, which are still very limited.
Collapse
Affiliation(s)
- Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Regina V Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Choudhary OP. One health and bat-borne henipaviruses. New Microbes New Infect 2024; 56:101195. [PMID: 38035121 PMCID: PMC10684794 DOI: 10.1016/j.nmni.2023.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, 151103, Punjab, India
| |
Collapse
|
36
|
Dos Reis VP, Cirksena K, Rybak-Wolf A, Seeger B, Herker E, Gerold G. 3D Spheroid and Organoid Models to Study Neuroinfection of RNA Viruses. Methods Mol Biol 2024; 2824:409-424. [PMID: 39039427 DOI: 10.1007/978-1-0716-3926-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Three-dimensional culture models of the brain enable the study of neuroinfection in the context of a complex interconnected cell matrix. Depending on the differentiation status of the neural cells, two models exist: 3D spheroids also called neurospheres and cerebral organoids. Here, we describe the preparation of 3D spheroids and cerebral organoids and give an outlook on their usage to study Rift Valley fever virus and other neurotropic viruses.
Collapse
Affiliation(s)
| | - Karsten Cirksena
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Agnieszka Rybak-Wolf
- Organoid Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
| | - Bettina Seeger
- Institute for Food Quality and Safety, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|
37
|
Liu BM, Mulkey SB, Campos JM, DeBiasi RL. Laboratory diagnosis of CNS infections in children due to emerging and re-emerging neurotropic viruses. Pediatr Res 2024; 95:543-550. [PMID: 38042947 DOI: 10.1038/s41390-023-02930-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 11/05/2023] [Indexed: 12/04/2023]
Abstract
Recent decades have witnessed the emergence and re-emergence of numerous medically important viruses that cause central nervous system (CNS) infections in children, e.g., Zika, West Nile, and enterovirus/parechovirus. Children with immature immune defenses and blood-brain barrier are more vulnerable to viral CNS infections and meningitis than adults. Viral invasion into the CNS causes meningitis, encephalitis, brain imaging abnormalities, and long-term neurodevelopmental sequelae. Rapid and accurate detection of neurotropic viral infections is essential for diagnosing CNS diseases and setting up an appropriate patient management plan. The addition of new molecular assays and next-generation sequencing has broadened diagnostic capabilities for identifying infectious meningitis/encephalitis. However, the expansion of test menu has led to new challenges in selecting appropriate tests and making accurate interpretation of test results. There are unmet gaps in development of rapid, sensitive and specific molecular assays for a growing list of emerging and re-emerging neurotropic viruses. Herein we will discuss the advances and challenges in the laboratory diagnosis of viral CNS infections in children. This review not only sheds light on selection and interpretation of a suitable diagnostic test for emerging/re-emerging neurotropic viruses, but also calls for more research on development and clinical utility study of novel molecular assays. IMPACT: Children with immature immune defenses and blood-brain barrier, especially neonates and infants, are more vulnerable to viral central nervous system infections and meningitis than adults. The addition of new molecular assays and next-generation sequencing has broadened diagnostic capabilities for identifying infectious meningitis and encephalitis. There are unmet gaps in the development of rapid, sensitive and specific molecular assays for a growing list of emerging and re-emerging neurotropic viruses.
Collapse
Affiliation(s)
- Benjamin M Liu
- Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Children's National Research Institute, Washington, DC, USA.
- The District of Columbia Center for AIDS Research, Washington, DC, USA.
| | - Sarah B Mulkey
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Children's National Research Institute, Washington, DC, USA
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Joseph M Campos
- Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Roberta L DeBiasi
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Children's National Research Institute, Washington, DC, USA.
- Division of Pediatric Infectious Diseases, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
38
|
Silva TL, Corbiceiro WCH, Corrêa DG. Rhombencephalitis Caused by Cytomegalovirus. Can J Neurol Sci 2023; 50:905-906. [PMID: 36522675 DOI: 10.1017/cjn.2022.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Thallys Leal Silva
- Department of Radiology, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Diogo Goulart Corrêa
- Department of Radiology, Federal Fluminense University, Niterói, RJ, Brazil
- Department of Radiology, Clínica de Diagnóstico por Imagem (CDPI)/DASA, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
Bai Y, Yu EY, Liu Y, Jin H, Liu X, Wu X, Zhang M, Feng N, Huang P, Zhang H, Kwok RTK, Xia X, Li Y, Tang BZ, Wang H. Molecular Engineering of AIE Photosensitizers for Inactivation of Rabies Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303542. [PMID: 37431212 DOI: 10.1002/smll.202303542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Rabies is a zoonotic neurological disease caused by the rabies virus (RABV) that is fatal to humans and animals. While several post-infection treatment have been suggested, developing more efficient and innovative antiviral methods are necessary due to the limitations of current therapeutic approaches. To address this challenge, a strategy combining photodynamic therapy and immunotherapy, using a photosensitizer (TPA-Py-PhMe) with high type I and type II reactive oxygen species (ROS) generation ability is proposed. This approach can inactivate the RABV by killing the virus directly and activating the immune response. At the cellular level, TPA-Py-PhMe can reduce the virus titer under preinfection prophylaxis and postinfection treatment, with its antiviral effect mainly dependent on ROS and pro-inflammatory factors. Intriguingly, when mice are injected with TPA-Py-PhMe and exposed to white light irradiation at three days post-infection, the onset of disease is delayed, and survival rates improved to some extent. Overall, this study shows that photodynamic therapy and immunotherapy open new avenues for future antiviral research.
Collapse
Affiliation(s)
- Yujie Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Eric Y Yu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yongsai Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hongli Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xingqi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mengyao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Pei Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Haili Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ben Zhong Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Hualei Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| |
Collapse
|
40
|
Capendale PE, Wolthers KC, Pajkrt D. What is a neurotropic virus: Discrepancies in terminology between clinical and basic science. MED 2023; 4:660-663. [PMID: 37837961 DOI: 10.1016/j.medj.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 10/16/2023]
Abstract
Technological advancements allow for the use of more physiologically relevant models to study viral neuropathology. This results in closure of the gap between clinical and basic research. We discuss the current discrepancy in the use of terminology around viral CNS infections, which impedes interdisciplinary communication and translation of findings.
Collapse
Affiliation(s)
- Pamela E Capendale
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Locatie Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100 AZ Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Locatie Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100 AZ Amsterdam, the Netherlands.
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Locatie Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100 AZ Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Locatie Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100 AZ Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Locatie Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100 AZ Amsterdam, the Netherlands
| |
Collapse
|
41
|
Mastraccio KE, Huaman C, Coggins SA, Clouse C, Rader M, Yan L, Mandal P, Hussain I, Ahmed AE, Ho T, Feasley A, Vu BK, Smith IL, Markotter W, Weir DL, Laing ED, Broder CC, Schaefer BC. mAb therapy controls CNS-resident lyssavirus infection via a CD4 T cell-dependent mechanism. EMBO Mol Med 2023; 15:e16394. [PMID: 37767784 PMCID: PMC10565638 DOI: 10.15252/emmm.202216394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Infections with rabies virus (RABV) and related lyssaviruses are uniformly fatal once virus accesses the central nervous system (CNS) and causes disease signs. Current immunotherapies are thus focused on the early, pre-symptomatic stage of disease, with the goal of peripheral neutralization of virus to prevent CNS infection. Here, we evaluated the therapeutic efficacy of F11, an anti-lyssavirus human monoclonal antibody (mAb), on established lyssavirus infections. We show that a single dose of F11 limits viral load in the brain and reverses disease signs following infection with a lethal dose of lyssavirus, even when administered after initiation of robust virus replication in the CNS. Importantly, we found that F11-dependent neutralization is not sufficient to protect animals from mortality, and a CD4 T cell-dependent adaptive immune response is required for successful control of infection. F11 significantly changes the spectrum of leukocyte populations in the brain, and the FcRγ-binding function of F11 contributes to therapeutic efficacy. Thus, mAb therapy can drive potent neutralization-independent T cell-mediated effects, even against an established CNS infection by a lethal neurotropic virus.
Collapse
Affiliation(s)
- Kate E Mastraccio
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
- Present address:
Wadsworth CenterNew York State Department of HealthAlbanyNYUSA
| | - Celeste Huaman
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Si'Ana A Coggins
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Caitlyn Clouse
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Madeline Rader
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Lianying Yan
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Pratyusha Mandal
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Imran Hussain
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Anwar E Ahmed
- Department of Preventive Medicine and BiostatisticsUniformed Services UniversityBethesdaMDUSA
| | - Trung Ho
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Austin Feasley
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Bang K Vu
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
Lentigen Technology, Inc.GaithersburgMDUSA
| | - Ina L Smith
- Risk Evaluation and Preparedness Program, Health and BiosecurityCSIROBlack MountainACTAustralia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Emerging Zoonotic and Parasitic DiseasesNational Institute for Communicable Diseases, National Health Laboratory ServicePretoriaSouth Africa
| | - Dawn L Weir
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
The Center for Bio/Molecular Science and EngineeringU.S. Naval Research LaboratoryWashingtonDCUSA
| | - Eric D Laing
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Christopher C Broder
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Brian C Schaefer
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| |
Collapse
|
42
|
Suma R, Netravathi M, Gururaj G, Thomas PT, Singh B, Solomon T, Desai A, Vasanthapuram R, Banandur PS. Profile of Acute Encephalitis Syndrome Patients from South India. J Glob Infect Dis 2023; 15:156-165. [PMID: 38292694 PMCID: PMC10824229 DOI: 10.4103/jgid.jgid_19_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Encephalitis is a major public health problem worldwide that causes huge emotional and economic loss to humanity. Encephalitis, being a serious illness, affects people of all ages. The aim is to describe the sociodemographic, clinical, etiological, and neuroimaging profile among 101 acute encephalitis syndrome (AES) patients visiting a tertiary neuro-specialty care hospital in India. Methods Record review of medical records of all patients attending neurology emergency and outpatient services at NIMHANS Hospital, diagnosed with AES in 2019, was conducted. Data were collected using standardized data collection forms for all cases in the study. Descriptive analyses (mean and standard deviation for continuous variables and proportions for categorical variables) were conducted. The Chi-square test/Fisher's exact test was used for the comparison of independent groups for categorical variables, and t-test for comparing means for continuous variables. Results About 42.6% of AES patients had viral etiology, while in 57.4%, etiology was not ascertained. Common presenting symptoms were fever (96%), altered sensorium (64.4%), seizures (70.3%), headache (42.6%), and vomiting (27.7%). Herpes simplex was the most common (21.8%) identified viral encephalitis, followed by chikungunya (5%), arboviruses (chikungunya and dengue) (4%), Japanese encephalitis (4%), rabies (3%), dengue (1%), and varicella virus (1%). About 40% of AES patients showed cerebrospinal fluid pleocytosis (44%), increased protein (39.6%), abnormal computed tomography brain (44.6%), and magnetic resonance imaging abnormalities (41.6%). Conclusion The study highlights the need to ascertain etiology and importance of evidence-based management of AES patients. A better understanding of opportunities and limitations in the management and implementation of standard laboratory and diagnostic algorithms can favor better diagnosis and management of AES.
Collapse
Affiliation(s)
- Rache Suma
- Department of Epidemiology NIMHANS, Bengaluru, Karnataka, India
| | - M. Netravathi
- Department of Neurology NIMHANS, Bengaluru, Karnataka, India
| | | | | | - Bhagteshwar Singh
- Clinical Research Fellow, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Health Protection Research Unit in Emerging and Zoonotic Infections, National Institute of Health Research, University of Liverpool, Liverpool, UK
- The Walton Centre, Liverpool, UK
| | - Anita Desai
- Department of Neurovirology NIMHANS, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
43
|
Potokar M, Zorec R, Jorgačevski J. Astrocytes Are a Key Target for Neurotropic Viral Infection. Cells 2023; 12:2307. [PMID: 37759529 PMCID: PMC10528686 DOI: 10.3390/cells12182307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
44
|
Zhang Z, Tan J, Li Y, Zhou X, Niu J, Chen J, Sheng H, Wu X, Yuan Y. Bibliometric analysis of publication trends and topics of influenza-related encephalopathy from 2000 to 2022. Immun Inflamm Dis 2023; 11:e1013. [PMID: 37773718 PMCID: PMC10510462 DOI: 10.1002/iid3.1013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Influenza-related encephalopathy is a rapidly progressive encephalopathy that usually presents during the early phase of influenza infection and primarily manifests as central nervous system dysfunction. This study aimed to analyze the current research status and hotspots of influenza-related encephalopathy since 2000 through bibliometrics analysis. METHODS The Web of Science Core Collection (WOSCC) was used to extract global papers on influenza-related encephalopathy from 2000 to 2022. Meanwhile, the VOSviewer and CiteSpace software were used for data processing and result visualization. RESULTS A total of 561 published articles were included in the study. Japan was the country that published the most articles, with 205 articles, followed by the United States and China. Okayama University and Tokyo Medical University published the most articles, followed by Nagoya University, Tokyo University, and Juntendo University. Based on the analysis of keywords, four clusters with different research directions were identified: "Prevalence of H1N1 virus and the occurrence of neurological complications in different age groups," "mechanism of brain and central nervous system response after influenza virus infection," "various acute encephalopathy" and "diagnostic indicators of influenza-related encephalopathy." CONCLUSIONS The research progress, hotspots, and frontiers on influenza-related encephalopathy after 2000 were described through the visualization of bibliometrics. The findings will lay the groundwork for future studies and provide a reference for influenza-related encephalopathy. Research on influenza-related encephalopathy is basically at a stable stage, and the number of research results is related to outbreaks of the influenza virus.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Medical Records Department, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Juntao Tan
- Operation Management OfficeAffiliated Banan Hospital of Chongqing Medical UniversityChongqingChina
| | - Ying Li
- Department of Medical Administration, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiumei Zhou
- Department of Infectious DiseasesPeople's Hospital of Pujiang CountyZhejiangChina
- PuJiang branch of the First Affiliated HospitalZhejiang University School of MedicineJinhuaChina
| | - Jianhua Niu
- Intensive Care Department, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jun Chen
- Lung Transplant Department, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongfeng Sheng
- Department of OrthopedicsTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Centre for Infectious DiseasesHangzhouZhejiangChina
| | - Yuan Yuan
- Medical Records DepartmentWomen and Children's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
45
|
Schwarz MM, Ganaie SS, Feng A, Brown G, Yangdon T, White JM, Hoehl RM, McMillen CM, Rush RE, Connors KA, Cui X, Leung DW, Egawa T, Amarasinghe GK, Hartman AL. Lrp1 is essential for lethal Rift Valley fever hepatic disease in mice. SCIENCE ADVANCES 2023; 9:eadh2264. [PMID: 37450601 PMCID: PMC10348670 DOI: 10.1126/sciadv.adh2264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.
Collapse
Affiliation(s)
- Madeline M. Schwarz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Safder S. Ganaie
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Annie Feng
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Griffin Brown
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Tenzin Yangdon
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - J. Michael White
- Transgenic, Knockout and Micro-Injection Core, Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachael E. Rush
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaleigh A. Connors
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W. Leung
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Takeshi Egawa
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Gaya K. Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Brindle HE, Bastos LS, Christley R, Contamin L, Dang LH, Anh DD, French N, Griffiths M, Nadjm B, van Doorn HR, Thai PQ, Duong TN, Choisy M. The spatio-temporal distribution of acute encephalitis syndrome and its association with climate and landcover in Vietnam. BMC Infect Dis 2023; 23:403. [PMID: 37312047 PMCID: PMC10262680 DOI: 10.1186/s12879-023-08300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/03/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Acute encephalitis syndrome (AES) differs in its spatio-temporal distribution in Vietnam with the highest incidence seen during the summer months in the northern provinces. AES has multiple aetiologies, and the cause remains unknown in many cases. While vector-borne disease such as Japanese encephalitis and dengue virus and non-vector-borne diseases such as influenza and enterovirus show evidence of seasonality, associations with climate variables and the spatio-temporal distribution in Vietnam differs between these. The aim of this study was therefore to understand the spatio-temporal distribution of, and risk factors for AES in Vietnam to help hypothesise the aetiology. METHODS The number of monthly cases per province for AES, meningitis and diseases including dengue fever; influenza-like-illness (ILI); hand, foot, and mouth disease (HFMD); and Streptococcus suis were obtained from the General Department for Preventive Medicine (GDPM) from 1998-2016. Covariates including climate, normalized difference vegetation index (NDVI), elevation, the number of pigs, socio-demographics, JEV vaccination coverage and the number of hospitals were also collected. Spatio-temporal multivariable mixed-effects negative binomial Bayesian models with an outcome of the number of cases of AES, a combination of the covariates and harmonic terms to determine the magnitude of seasonality were developed. RESULTS The national monthly incidence of AES declined by 63.3% over the study period. However, incidence increased in some provinces, particularly in the Northwest region. In northern Vietnam, the incidence peaked in the summer months in contrast to the southern provinces where incidence remained relatively constant throughout the year. The incidence of meningitis, ILI and S. suis infection; temperature, relative humidity with no lag, NDVI at a lag of one month, and the number of pigs per 100,000 population were positively associated with the number of cases of AES in all models in which these covariates were included. CONCLUSIONS The positive correlation of AES with temperature and humidity suggest that a number of cases may be due to vector-borne diseases, suggesting a need to focus on vaccination campaigns. However, further surveillance and research are recommended to investigate other possible aetiologies such as S. suis or Orientia tsutsugamushi.
Collapse
Affiliation(s)
- Hannah E Brindle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- Oxford University Clinical Research Unit, Hanoi City, Vietnam.
| | - Leonardo S Bastos
- Scientific Computing Programme, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Robert Christley
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Lucie Contamin
- Institut de Recherche Pour Le Développement, Hanoi, Vietnam
| | - Le Hai Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Behzad Nadjm
- Oxford University Clinical Research Unit, Hanoi City, Vietnam
- MRC Unit The Gambia at the London, School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- School Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Marc Choisy
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
47
|
Yuan Y, Fang A, Wang Z, Wang Z, Sui B, Zhu Y, Zhang Y, Wang C, Zhang R, Zhou M, Chen H, Fu ZF, Zhao L. The CH24H metabolite, 24HC, blocks viral entry by disrupting intracellular cholesterol homeostasis. Redox Biol 2023; 64:102769. [PMID: 37285742 DOI: 10.1016/j.redox.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Cholesterol-24-hydroxylase (CH24H or Cyp46a1) is a reticulum-associated membrane protein that plays an irreplaceable role in cholesterol metabolism in the brain and has been well-studied in several neuro-associated diseases in recent years. In the present study, we found that CH24H expression can be induced by several neuroinvasive viruses, including vesicular stomatitis virus (VSV), rabies virus (RABV), Semliki Forest virus (SFV) and murine hepatitis virus (MHV). The CH24H metabolite, 24-hydroxycholesterol (24HC), also shows competence in inhibiting the replication of multiple viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 24HC can increase the cholesterol concentration in multivesicular body (MVB)/late endosome (LE) by disrupting the interaction between OSBP and VAPA, resulting in viral particles being trapped in MVB/LE, ultimately compromising VSV and RABV entry into host cells. These findings provide the first evidence that brain cholesterol oxidation products may play a critical role in viral infection.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunkai Zhu
- School of Basic Medical Sciences, Fudan University, Shanghai, 200433, China
| | - Yuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, 200433, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
48
|
Qi L, Li X, Zhang F, Zhu X, Zhao Q, Yang D, Hao S, Li T, Li X, Tian T, Feng J, Sun X, Wang X, Gao S, Wang H, Ye J, Cao S, He Y, Wang H, Wei B. VEGFR-3 signaling restrains the neuron-macrophage crosstalk during neurotropic viral infection. Cell Rep 2023; 42:112489. [PMID: 37167063 DOI: 10.1016/j.celrep.2023.112489] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Upon recognizing danger signals produced by virally infected neurons, macrophages in the central nervous system (CNS) secrete multiple inflammatory cytokines to accelerate neuron apoptosis. The understanding is limited about which key effectors regulate macrophage-neuron crosstalk upon infection. We have used neurotropic-virus-infected murine models to identify that vascular endothelial growth factor receptor 3 (VEGFR-3) is upregulated in the CNS macrophages and that virally infected neurons secrete the ligand VEGF-C. When cultured with VEGF-C-containing supernatants from virally infected neurons, VEGFR-3+ macrophages suppress tumor necrosis factor α (TNF-α) secretion to reduce neuron apoptosis. Vegfr-3ΔLBD/ΔLBD (deletion of ligand-binding domain in myeloid cells) mice or mice treated with the VEGFR-3 kinase inhibitor exacerbate the severity of encephalitis, TNF-α production, and neuron apoptosis post Japanese encephalitis virus (JEV) infection. Activating VEGFR-3 or blocking TNF-α can reduce encephalitis and neuronal damage upon JEV infection. Altogether, we show that the inducible VEGF-C/VEGFR-3 module generates protective crosstalk between neurons and macrophages to alleviate CNS viral infection.
Collapse
Affiliation(s)
- Linlin Qi
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaojing Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fang Zhang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China; Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xingguo Zhu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Zhao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Shujie Hao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Tong Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangyue Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Taikun Tian
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jian Feng
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaochen Sun
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xilin Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shangyan Gao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulong He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou 215123, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bin Wei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430071, China; Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350000, China.
| |
Collapse
|
49
|
Srinivasan R, Lin X, Suganthy N, Shanmuganathan B, Somanath K. Editorial: Investigating the role of biological pathways involved in brain disorder and infection. Front Pharmacol 2023; 14:1217333. [PMID: 37292148 PMCID: PMC10244752 DOI: 10.3389/fphar.2023.1217333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Ramanathan Srinivasan
- Centre for Research, Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Xiangmin Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Natarajan Suganthy
- Bionanomaterials Research Lab, Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Kundu Somanath
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
50
|
Müller L, Di Benedetto S. Aged brain and neuroimmune responses to COVID-19: post-acute sequelae and modulatory effects of behavioral and nutritional interventions. Immun Ageing 2023; 20:17. [PMID: 37046272 PMCID: PMC10090758 DOI: 10.1186/s12979-023-00341-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Advanced age is one of the significant risk determinants for coronavirus disease 2019 (COVID-19)-related mortality and for long COVID complications. The contributing factors may include the age-related dynamical remodeling of the immune system, known as immunosenescence and chronic low-grade systemic inflammation. Both of these factors may induce an inflammatory milieu in the aged brain and drive the changes in the microenvironment of neurons and microglia, which are characterized by a general condition of chronic inflammation, so-called neuroinflammation. Emerging evidence reveals that the immune privilege in the aging brain may be compromised. Resident brain cells, such as astrocytes, neurons, oligodendrocytes and microglia, but also infiltrating immune cells, such as monocytes, T cells and macrophages participate in the complex intercellular networks and multiple reciprocal interactions. Especially changes in microglia playing a regulatory role in inflammation, contribute to disturbing of the brain homeostasis and to impairments of the neuroimmune responses. Neuroinflammation may trigger structural damage, diminish regeneration, induce neuronal cell death, modulate synaptic remodeling and in this manner negatively interfere with the brain functions.In this review article, we give insights into neuroimmune interactions in the aged brain and highlight the impact of COVID-19 on the functional systems already modulated by immunosenescence and neuroinflammation. We discuss the potential ways of these interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and review proposed neuroimmune mechanisms and biological factors that may contribute to the development of persisting long COVID conditions. We summarize the potential mechanisms responsible for long COVID, including inflammation, autoimmunity, direct virus-mediated cytotoxicity, hypercoagulation, mitochondrial failure, dysbiosis, and the reactivation of other persisting viruses, such as the Cytomegalovirus (CMV). Finally, we discuss the effects of various interventional options that can decrease the propagation of biological, physiological, and psychosocial stressors that are responsible for neuroimmune activation and which may inhibit the triggering of unbalanced inflammatory responses. We highlight the modulatory effects of bioactive nutritional compounds along with the multimodal benefits of behavioral interventions and moderate exercise, which can be applied as postinfectious interventions in order to improve brain health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Svetlana Di Benedetto
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|