1
|
Serrano-Regal MP, Camacho-Toledano C, Alonso-García I, Ortega MC, Machín-Díaz I, Lebrón-Galán R, García-Arocha J, Calahorra L, Nieto-Díaz M, Clemente D. Circulating myeloid-derived suppressor cell load and disease severity are associated to an enhanced oligodendroglial production in a murine model of multiple sclerosis. Neurobiol Dis 2025; 210:106919. [PMID: 40250717 DOI: 10.1016/j.nbd.2025.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025] Open
Abstract
Multiple sclerosis (MS) is a highly heterogeneous immune-mediated demyelinating disease. Myelin restoration is essential to prevent disability progression in MS patients. However, remyelinating therapies are failing in clinical trials, in part, due to the lack of biomarkers that classify the differing endogenous regenerative capacities of enrolled patients. In the experimental autoimmune encephalomyelitis (EAE) MS model, circulating monocytic myeloid-derived suppressor cells (M-MDSCs) are associated to milder disease courses, better recovery and less degree of tissue damage. Here, we show that disease severity affects the gradient of oligodendrocyte precursor cells (OPCs) present in mixed active-inactive lesions of MS patients, along with a positive correlation between M-MDSC density and OPC abundance. EAE disease severity negatively influences the density of total and newly generated OPCs found associated to the demyelinated lesions. In addition, disease severity also impacts the abundance of newly generated oligodendrocytes throughout the EAE disease course. Interestingly, circulating M-MDSCs at EAE onset and peak of the disease are directly associated to a higher density of newly generated oligodendrocytes in the demyelinated lesions. Our results set the basis for further studies on M-MDSCs as a promising new biomarker that identify a CNS prone to new oligodendrocyte generation in response to an inflammatory insult.
Collapse
Affiliation(s)
- Mari Paz Serrano-Regal
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain
| | - Celia Camacho-Toledano
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Avd. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Inmaculada Alonso-García
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain
| | - María Cristina Ortega
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Avd. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Isabel Machín-Díaz
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Avd. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Rafael Lebrón-Galán
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Jénnifer García-Arocha
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Leticia Calahorra
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Molecular Neuroprotection Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain
| | - Diego Clemente
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Avd. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Preziosa P, Filippi M, Rocca MA. New approaches to lesion assessment in multiple sclerosis. Curr Opin Neurol 2025:00019052-990000000-00242. [PMID: 40377692 DOI: 10.1097/wco.0000000000001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
PURPOSE OF REVIEW To summarize recent advancements in artificial intelligence-driven lesion segmentation and novel neuroimaging modalities that enhance the identification and characterization of multiple sclerosis (MS) lesions, emphasizing their implications for clinical use and research. RECENT FINDINGS Artificial intelligence, particularly deep learning approaches, are revolutionizing MS lesion assessment and segmentation, improving accuracy, reproducibility, and efficiency. Artificial intelligence-based tools now enable automated detection not only of T2-hyperintense white matter lesions, but also of specific lesion subtypes, including gadolinium-enhancing, central vein sign-positive, paramagnetic rim, cortical, and spinal cord lesions, which hold diagnostic and prognostic value. Novel neuroimaging techniques such as quantitative susceptibility mapping (QSM), χ-separation imaging, and soma and neurite density imaging (SANDI), together with PET, are providing deeper insights into lesion pathology, better disentangling their heterogeneities and clinical relevance. SUMMARY Artificial intelligence-powered lesion segmentation tools hold great potential for improving fast, accurate and reproducible lesional assessment in the clinical scenario, thus improving MS diagnosis, monitoring, and treatment response assessment. Emerging neuroimaging modalities may contribute to advance the understanding MS pathophysiology, provide more specific markers of disease progression, and novel potential therapeutic targets.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute
- Neurology Unit, IRCCS San Raffaele Scientific Institute
- Vita-Salute San Raffaele University
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute
- Neurology Unit, IRCCS San Raffaele Scientific Institute
- Vita-Salute San Raffaele University
- Neurorehabilitation Unit
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute
- Neurology Unit, IRCCS San Raffaele Scientific Institute
- Vita-Salute San Raffaele University
| |
Collapse
|
3
|
Engelenburg HJ, van den Bosch AM, Chen JA, Hsiao CC, Melief MJ, Harroud A, Huitinga I, Hamann J, Smolders J. Multiple sclerosis severity variant in DYSF-ZNF638 locus associates with neuronal loss and inflammation. iScience 2025; 28:112430. [PMID: 40352730 PMCID: PMC12063138 DOI: 10.1016/j.isci.2025.112430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
The genetic variant rs10191329AA has been identified to associate with faster disability accrual in multiple sclerosis (MS). We investigated the impact of rs10191329AA carriership on MS pathology and flanking genes dysferlin (DYSF) and zinc finger protein 638 (ZNF638) in the Netherlands Brain Bank cohort (n = 290) by comparing rs10191329AA (n = 6) to matched rs10191329CC carriers (n = 12). rs10191329AA carriership associated with more acute axonal stress, reduced layer 2 neuronal density, and a higher proportion of lesions with foamy microglia. In rs10191329AA donors, normal appearing white matter was characterized by a higher proportion of ZNF638+ oligodendrocytes, and normal appearing gray matter showed more DYSF+ cells. Nuclear RNA sequencing showed an upregulation of mitochondrial genes in rs10191329AA carriers. These data suggest that MS severity associates with an increased susceptibility to neurodegeneration and chronic inflammation. Understanding the role of DYSF, ZNF638, and mitochondrial pathways may reveal new therapeutic targets to attenuate MS progression.
Collapse
Affiliation(s)
- Hendrik J. Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Aletta M.R. van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - J.Q. Alida Chen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Marie-José Melief
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, the Netherlands
| | - Adil Harroud
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 2B4, Canada
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1054 BE Amsterdam, the Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
4
|
Okutan B, Frederiksen JL, Houen G, Sellebjerg F, Kyllesbech C, Magyari M, Paunovic M, Sørensen PS, Jacobsen C, Lassmann H, Bramow S. Subcortical plaques and inflammation reflect cortical and meningeal pathologies in progressive multiple sclerosis. Brain Pathol 2025; 35:e13314. [PMID: 39460678 PMCID: PMC11961212 DOI: 10.1111/bpa.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
It remains elusive whether lesions and inflammation in the sub/juxtacortical white matter reflect cortical and/or meningeal pathologies. Elucidating this could have implications for MRI monitoring as sub/juxtacortical lesions are detectable by routine MRI, while cortical lesions and meningeal inflammation are not. By large-area microscopy, we quantified total and mixed active plaque loads along with densities and sizes of perivascular mononuclear infiltrates (infiltrates) in the sub/juxtacortical white matter ≤2 mm from the cortex, intra-cortically and in the meninges. Data were related to ante-mortem clinical parameters in a false discovery rate-corrected analysis. We compared 12 patients with primary progressive multiple sclerosis (PPMS) and 15 with secondary progressive MS to 22 controls. Fifteen patients and 11 controls contributed with hemispheric sections. Sections were stained with haematoxylin-eosin, for myelin and for microglia/macrophages. B cells and T cells were confirmed in a subset. Immunoglobulin G depositions in selected cortical plaques resembled depositions described before in "slowly expanding" plaques in the white matter. We quantified plaque activity by measuring microglia-dominated and macrophage-dominated areas. Sub/juxtacortical plaques (load and activity) reflected plaque activity in the cerebral cortex. Plaque activity and infiltrates were more pronounced in the sub/juxtacortical white matter than in the cerebral cortex while conversely, the total plaque load was highest in the cortex. Infiltrates correlated trans-cortically and sub/juxtacortical plaque activity reflected cortical and meningeal infiltrates. Sub/juxtacortical infiltrate sizes correlated with shorter survival after progression onset. Two patients with PPMS and putatively fatal brain stem lesions argue against incidental findings. Trans-cortical inflammatory flares and plaque activity may be pathogenic in progressive MS. We suggest emphasis on sub/juxtacortical MRI lesions as plausible surrogates for cortical and meningeal pathologies and, when present, as indicators for cognitive testing.
Collapse
Affiliation(s)
- Betül Okutan
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | - Jette L. Frederiksen
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Gunnar Houen
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Biochemistry and Molecular Biology, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cecilie Kyllesbech
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Biochemistry and Molecular Biology, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Neurology, Danish Multiple Sclerosis RegistryCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | - Manuela Paunovic
- Department of NeurologyErasmus Medical CentreRotterdamThe Netherlands
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Per S. Sørensen
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Jacobsen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Hans Lassmann
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Stephan Bramow
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of PathologyCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| |
Collapse
|
5
|
Klotz L, Smolders J, Lehto J, Matilainen M, Lütje L, Buchholz L, Albrecht S, Walter C, Varghese J, Wiendl H, Nylund M, Thomas C, Gardberg M, van den Bosch AMR, Airas L, Huitinga I, Kuhlmann T. Broad rim lesions are a new pathological and imaging biomarker for rapid disease progression in multiple sclerosis. Nat Med 2025:10.1038/s41591-025-03625-7. [PMID: 40301560 DOI: 10.1038/s41591-025-03625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/28/2025] [Indexed: 05/01/2025]
Abstract
Current multiple sclerosis (MS) treatments reduce relapse activity but have limited impact on disease progression. Clinical trials targeting progression often fail because of insufficient understanding of its underlying mechanisms. This study analyzed a clinically well-characterized MS autopsy cohort from the Netherland Brain Bank (186 individuals) from which we selected donors exhibiting opposite disease trajectories of slow versus rapid progression. We performed extensive unbiased histology and spatial transcriptomics, which unveiled a distinct MS lesion type marked by an extensive myeloid cell rim with cellular and transcriptional signatures of innate immune activation, inflammatory cytokine production, unfolded protein response and apoptosis. Presence of this particular lesion type was linked to rapid disease progression. An independent translocator protein 18-kDa positron emission tomography study (114 individuals) validates the association between lesions with a broad myeloid cell rim and disease progression in individuals with MS. Our findings offer crucial insights into the mechanisms behind MS progression, identifying broad rim lesions as a biomarker for rapid disease progression and potentially guiding patient selection for future therapeutic trials targeting central nervous system intrinsic inflammation.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jussi Lehto
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Lukas Lütje
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Luzia Buchholz
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Carolin Walter
- Department of Neurology, University Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University Hospital Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology and Neurophysiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Marjo Nylund
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Maria Gardberg
- Department of Pathology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Aletta M R van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Laura Airas
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
6
|
Oost W, Meilof JF, Baron W. Multiple sclerosis: what have we learned and can we still learn from electron microscopy. Cell Mol Life Sci 2025; 82:172. [PMID: 40266347 PMCID: PMC12018678 DOI: 10.1007/s00018-025-05690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease marked by the formation of demyelinated lesions in the central nervous system. MS lesions can undergo remyelination, temporarily alleviating symptoms, but as the disease advances, remyelination becomes less effective. Beyond lesions, normal-appearing brain tissue exhibits subtle alterations, potentially indicating a broader, diffuse pathology and/or increased susceptibility to lesion formation. The pathology of MS varies between grey and white matter lesions and their normal-appearing regions, which most likely relates to their distinct cellular composition. Despite insights gained from MRI studies, serum and blood analyses, and post-mortem tissue examination, the molecular mechanisms driving MS lesion formation and persistent demyelination remain poorly understood. Exploring less conventional methods, such as electron microscopy (EM), may provide valuable new insights. EM offers detailed, nanometre-scale structural analysis that may enhance findings from immunohistochemistry and 'omics' approaches on MS brain tissue. Although earlier EM studies from before the 1990's provided some foundational data, advancements in EM technology now enable more comprehensive and detailed structural analysis. In this review we outline the pathogenesis of MS, summarize current knowledge of its ultrastructural features, and highlight how cutting-edge EM techniques could uncover new insights into pathological processes, including lesion formation, remyelination failure and diffuse pathology, which may aid therapeutic development.
Collapse
Affiliation(s)
- Wendy Oost
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
| | - Jan F Meilof
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
- Department of Neurology, Martini Hospital, Groningen, The Netherlands
| | - Wia Baron
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- MS Center Noord Nederland, Groningen, The Netherlands.
| |
Collapse
|
7
|
Liu X, Wang Y, Wei N, Zhu W, Suo Y, Xu Y, Jin A, Xu Q, Qi N, Jiang Q, Wang Z, Su L, Guo A, Sun J, Duan Y, Zhang Z, Jing J, Tian DC. The characteristics and influencing factors of paramagnetic rim lesions in Chinese MS patients: A 7T MRI study. Mult Scler 2025:13524585251328902. [PMID: 40219829 DOI: 10.1177/13524585251328902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) in multiple sclerosis (MS) are a significant factor for disability progression and prognosis, but their characteristics in the Chinese population are unclear. OBJECTIVE To explore PRLs in Chinese MS patients using 7T magnetic resonance imaging (MRI), including their number, proportion, distribution, and associated factors. METHODS Patients from the 7T MRI subgroup of the China National Registry of Neuro-Inflammatory Diseases (CNRID) were prospectively included. PRLs were assessed on susceptibility-weighted imaging (SWI)-phase images. Patients were grouped by PRL count (0, 1-3, 4-10, >10). Associations between clinical characteristics and PRL count were analyzed using multivariable linear regression, while correlations with disease duration were assessed using Pearson partial correlation and regression. RESULTS Among 110 participants, 96 (87.3%) had at least one PRL. In PRL groups, proportions were 12.7%, 20.0%, 29.1%, and 38.2%. PRL count positively correlated with Expanded Disability Status Scale (EDSS), total lesion count, and volume and negatively with Symbol Digit Modality Test (SDMT; p < 0.05). Longer disease duration was associated with a lower PRL proportion after adjusting for age and sex (β = -0.006, p = 0.032). CONCLUSION A high proportion of Chinese MS patients in our 7T MRI cohort had PRLs, with many exhibiting multiple PRLs (⩾4). PRL count was influenced by EDSS, SDMT, total lesion count, and volume, while PRL proportion negatively correlated with disease duration.
Collapse
Affiliation(s)
- Xinyao Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Wei
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Suo
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuyuan Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Aoming Jin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Epidemiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Qi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianmei Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaobin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Su
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ai Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiali Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Cai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Marrodan M, Yañez P, Calandri IL, Piedrabuena MA, Zárate MA, Ysrraelit MC, Fiol M, Correale J. Impact of oral Cladribine on paramagnetic rim lesions of Multiple Sclerosis patients. Mult Scler Relat Disord 2025; 96:106339. [PMID: 40020453 DOI: 10.1016/j.msard.2025.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs), marked by chronic inflammation and iron-loaded microglia, are linked to severe disease progression in multiple sclerosis (MS). The impact of cladribine, an immune reconstitution therapy, on PRLs remains underexplored. OBJECTIVE To evaluate the effect of cladribine tablets on PRLs in relapsing-remitting MS (RRMS) patients and explore the association between PRLs dynamics and brain atrophy. METHODS We conducted a retrospective analysis of 52 RRMS patients treated with cladribine in Buenos Aires between 2018 and 2021. Brain MRIs were analyzed at baseline, 12, and 24 months post-treatment, focusing on PRLs count and brain volume measurements. Statistical analyses included Wilcoxon tests, Poisson mixed models, and linear mixed models. RESULTS The cohort included 52 patients (32 women) with a median age of 36 years (range 21-66 years). PRLs were present in 61.5% of patients at baseline. Cladribine treatment significantly reduced PRLs count (IRR=0.68, 95% CI [0.49, 0.95], p=0.02), independent of prior treatment or disease activity. While no significant relationship was found between PRLs changes and overall brain atrophy, a significant interaction between PRLs dynamics and atrophy in the right thalamus was observed (p<0.05). CONCLUSION Cladribine tablets are associated with a reduction in PRLs in RRMS patients, potentially influencing regional brain atrophy over time.
Collapse
Affiliation(s)
| | - Paulina Yañez
- Department of Neuro-Radiology, Fleni. Buenos Aires, Argentina.
| | - Ismael L Calandri
- Department of Cognitive Neurology, Fleni. Buenos Aires, Argentina; Alzheimer center, VU University, Amsterdam, the Netherlands.
| | | | - María A Zárate
- Departament of Neurology, Fleni. Buenos Aires, Argentina.
| | | | - Marcela Fiol
- Departament of Neurology, Fleni. Buenos Aires, Argentina.
| | - Jorge Correale
- Departament of Neurology, Fleni. Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET/Universidad de Buenos Aires. Buenos Aires, Argentina.
| |
Collapse
|
9
|
Vavasour I, Elliott C, Arnold DL, Gaetano L, Clayton D, Magon S, Bonati U, Bernasconi C, Traboulsee A, Kolind S. Presence of slowly expanding lesions in multiple sclerosis predicts progressive demyelination within lesions and normal-appearing tissue over time. Mult Scler 2025; 31:418-432. [PMID: 39950257 PMCID: PMC11956371 DOI: 10.1177/13524585251316519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) slowly expanding lesions (SELs) are defined on magnetic resonance imaging (MRI) as contiguous regions of pre-existing focal non-contrast-enhancing T2 lesions with constant and concentric local expansion on conventional T1-weighted and T2-weighted images. SELs are associated with an increased risk of disability progression. METHODS Myelin-related changes detected using myelin water fraction (MWF) and magnetisation transfer ratio (MTR) in SELs and T2 lesions were measured over 192 weeks in participants with relapsing MS. RESULTS In participants with SELs (SEL+), SELs (MWF: 0.12 ± 0.03, MTR: 33.1 ± 3.6 pu) showed reduced myelin measures at baseline compared to T2 lesions (MWF: 0.13 ± 0.02, MTR: 35.1 ± 2.4 pu). In participants without SELs (SEL-), T2 lesions had higher myelin measures (MWF: 0.15 ± 0.02, MTR: 36.2 ± 2.0 pu) compared to T2 lesions in SEL+. Over 4 years, only SELs showed decreases in MWF (-11.4%). The percentage of abnormal voxels within normal-appearing white matter was higher in SEL+ and increased over time (SEL+ MWF Week 0: 0.56%, Week 192: 0.98%; SEL- MWF Week 0: 0.13%, Week 192: 0.25%). CONCLUSION Our results indicate progressive focal and global demyelination in SEL+ participants and that the presence of SELs might be a biomarker for participants with ongoing diffuse or smouldering inflammation within the whole brain.
Collapse
Affiliation(s)
- Irene Vavasour
- The University of British Columbia, Vancouver, BC, Canada
| | | | - Douglas L Arnold
- NeuroRx Research, Montreal, QC, Canada; McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | - Shannon Kolind
- The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Ladopoulos T, Abbas Z, Krieger B, Bellenberg B, James JC, Bauer J, Gold R, Lukas C, Schneider R. Neurological disability and brain grey matter atrophy in primary progressive multiple sclerosis are determined by microstructural lesional changes, but not by lesion load. J Neurol 2025; 272:302. [PMID: 40167785 PMCID: PMC11961454 DOI: 10.1007/s00415-025-13043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Conventional MRI measures, such as the number and volume of MS lesions, are histologically non-specific and cannot sufficiently explain clinical disability or brain atrophy in MS. Nevertheless, demyelinating plaques exhibit distinct histopathological features in relapsing and progressive multiple sclerosis (MS) subtypes. The aim of this study was to assess microstructural characteristics of MS lesions using quantitative MRI and explore their associations with grey matter (GM) atrophy and clinical disability. METHODS 56 control subjects (CS), 121 patients with relapsing-remitting (RRMS), and 38 patients with primary progressive MS (PPMS) underwent 1.5 T MRI scans and clinical examinations. Lesion and brain segmentation based on T1-weighted and FLAIR images were performed using SAMSEG. The MDME sequence and SyMRI software were used to estimate relaxation rates and myelin volume fraction in MS lesions and normal-appearing white matter (NAWM). Associations between quantitative lesional and NAWM MRI parameters with GM atrophy and clinical disability were investigated. RESULTS Brain regional volumes and quantitative lesional and NAWM MRI parameters were significantly decreased in patients with PPMS compared to those with RRMS. Quantitative lesional MRI parameters demonstrated statistically significant associations with cortical and deep GM volumes as well as with disability scores in RRMS and especially in PPMS. In contrast to RRMS, lesion volume was not associated with either GM atrophy or clinical disability in the PPMS group. CONCLUSIONS Quantitative lesional MRI measures, but not lesion load, were strongly associated with clinical disability and GM atrophy in PPMS patients, likely reflecting differences in lesion pathology between MS subtypes.
Collapse
Affiliation(s)
- Theodoros Ladopoulos
- Department of Neurology, St Josef Hospital, Ruhr University, Gudrunstr. 56, 44791, Bochum, Germany.
- Institute of Neuroradiology, St Josef Hospital, Ruhr University, Bochum, Germany.
| | - Zainab Abbas
- Department of Neurology, St Josef Hospital, Ruhr University, Gudrunstr. 56, 44791, Bochum, Germany
| | - Britta Krieger
- Institute of Neuroradiology, St Josef Hospital, Ruhr University, Bochum, Germany
| | - Barbara Bellenberg
- Institute of Neuroradiology, St Josef Hospital, Ruhr University, Bochum, Germany
| | - Jeyanthan Charles James
- Department of Neurology, St Josef Hospital, Ruhr University, Gudrunstr. 56, 44791, Bochum, Germany
| | - Jana Bauer
- Department of Neurology, St Josef Hospital, Ruhr University, Gudrunstr. 56, 44791, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St Josef Hospital, Ruhr University, Gudrunstr. 56, 44791, Bochum, Germany
| | - Carsten Lukas
- Department of Neurology, St Josef Hospital, Ruhr University, Gudrunstr. 56, 44791, Bochum, Germany
- Institute of Neuroradiology, St Josef Hospital, Ruhr University, Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St Josef Hospital, Ruhr University, Gudrunstr. 56, 44791, Bochum, Germany
- Institute of Neuroradiology, St Josef Hospital, Ruhr University, Bochum, Germany
| |
Collapse
|
11
|
Vakrakou AG, Papadopoulos I, Brinia ME, Karathanasis D, Panaretos D, Stathopoulos P, Alexaki A, Pantoleon V, Karavasilis E, Velonakis G, Stefanis L, Evangelopoulos ME, Kilidireas C. Neurodegeneration correlates of iron-related lesions and leptomeningeal inflammation in multiple sclerosis clinical subtypes. Neuroradiology 2025:10.1007/s00234-025-03595-0. [PMID: 40131429 DOI: 10.1007/s00234-025-03595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/08/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE The aim of this study was to investigate the significant implications of different types of lesions as assessed by QSM (quantitative-susceptibility-mapping) as well as leptomeningeal contrast-enhancement in a cohort of Relapsing-Remitting (RR) and Primary Progressive (PP) MS patients and to assess their association with clinical disability and MRI-measures of brain structural damage. METHODS Different types of white-matter lesions were identified and quantified using QSM in 24 RRMS and 15 PPMS (11 patients with follow-up MRI). Leptomeningeal contrast-enhancement (LMCE; foci) was assessed on 3D-FLAIR post-gadolinium. RESULTS Both RRMS and PPMS presented PRL (paramagnetic-rim lesions) and LMCE, with PPMS showing a trend towards more LMCE (RRMS 37%, PPMS 53%). In QSM RRMS patients showed more hyperintense white-matter lesions with greater lesion volume. In RRMS PRL correlated with disease duration and lesion burden especially the volume of juxtacortical Flair-hyperintense lesions. Besides, the presence of PRL lesions in PPMS was associated with subcortical atrophy mainly thalamus and pallidum volumetry. In all MS-cohort, patients with more than 3-PRLs exhibited reduced regional cortical thickness in specific temporal areas and post/para central gyrus. Forest-analysis selected age, increased NAWM (normal appearing white-matter) QSM intensity, total lesion volume and the presence of LMCE as informative predictors of cortical thickness. After anti-CD20 treatment, no significant change was observed regarding the number of PRL and LMCE, but the percentage of PRL lesions over the total lesion types and the QSM rim intensity increased. CONCLUSION Our findings suggest that QSM-lesion types and leptomeningeal inflammation capture different aspects of progressive disease biology in both RRMS and PPMS.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece.
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece.
| | - Ioannis Papadopoulos
- Research Unit of Radiology,2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Evgenia Brinia
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Dimitrios Karathanasis
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece
| | - Dimitrios Panaretos
- Department of Statistics and Insurance Science, School of Economic Sciences, University of Western, Kozani, Macedonia
| | - Panos Stathopoulos
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece
| | - Anastasia Alexaki
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Varvara Pantoleon
- Research Unit of Radiology,2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Laboratory of Medical Physics, School of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Georgios Velonakis
- Research Unit of Radiology,2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece
| | - Constantinos Kilidireas
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
12
|
Kornberg MD, Calabresi PA. Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. Cold Spring Harb Perspect Biol 2025; 17:a041374. [PMID: 38806240 PMCID: PMC11875095 DOI: 10.1101/cshperspect.a041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
13
|
Kooistra SM, Schirmer L. Multiple Sclerosis: Glial Cell Diversity in Time and Space. Glia 2025; 73:574-590. [PMID: 39719685 PMCID: PMC11784844 DOI: 10.1002/glia.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
Collapse
Affiliation(s)
- Susanne M. Kooistra
- Department of Biomedical Sciences, Section Molecular NeurobiologyUniversity of Groningen and University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Center for Translational Neuroscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Innate Immunoscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
14
|
Kadowaki A, Wheeler MA, Li Z, Andersen BM, Lee HG, Illouz T, Lee JH, Ndayisaba A, Zandee SEJ, Basu H, Chao CC, Mahler JV, Klement W, Neel D, Bergstresser M, Rothhammer V, Lipof G, Srun L, Soleimanpour SA, Chiu I, Prat A, Khurana V, Quintana FJ. CLEC16A in astrocytes promotes mitophagy and limits pathology in a multiple sclerosis mouse model. Nat Neurosci 2025; 28:470-486. [PMID: 40033124 PMCID: PMC12039076 DOI: 10.1038/s41593-025-01875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/20/2024] [Indexed: 03/05/2025]
Abstract
Astrocytes promote neuroinflammation and neurodegeneration in multiple sclerosis (MS) through cell-intrinsic activities and their ability to recruit and activate other cell types. In a genome-wide CRISPR-based forward genetic screen investigating regulators of astrocyte proinflammatory responses, we identified the C-type lectin domain-containing 16A gene (CLEC16A), linked to MS susceptibility, as a suppressor of nuclear factor-κB (NF-κB) signaling. Gene and small-molecule perturbation studies in mouse primary and human embryonic stem cell-derived astrocytes in combination with multiomic analyses established that CLEC16A promotes mitophagy, limiting mitochondrial dysfunction and the accumulation of mitochondrial products that activate NF-κB, the NLRP3 inflammasome and gasdermin D. Astrocyte-specific Clec16a inactivation increased NF-κB, NLRP3 and gasdermin D activation in vivo, worsening experimental autoimmune encephalomyelitis, a mouse model of MS. Moreover, we detected disrupted mitophagic capacity and gasdermin D activation in astrocytes in samples from individuals with MS. These findings identify CLEC16A as a suppressor of astrocyte pathological responses and a candidate therapeutic target in MS.
Collapse
MESH Headings
- Animals
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mitophagy/physiology
- Mitophagy/genetics
- Astrocytes/metabolism
- Astrocytes/pathology
- Mice
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/genetics
- Humans
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Monosaccharide Transport Proteins/genetics
- Monosaccharide Transport Proteins/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Inflammasomes/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- NF-kappa B/metabolism
- Mitochondria/metabolism
- Female
Collapse
Affiliation(s)
- Atsushi Kadowaki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, Faculty of Medicine, The University of Osaka, Suita, Japan
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, VA Medical Center, Boston, MA, USA
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Illouz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie E J Zandee
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao V Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendy Klement
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Dylan Neel
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Lipof
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lena Srun
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
15
|
Messmer ML, Salapa HE, Popescu BF, Levin MC. RNA Binding Protein Dysfunction Links Smoldering/Slowly Expanding Lesions to Neurodegeneration in Multiple Sclerosis. Ann Neurol 2025; 97:313-328. [PMID: 39422285 DOI: 10.1002/ana.27114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Despite the advances in treatments for multiple sclerosis (MS), unremitting neurodegeneration continues to drive disability and disease progression. Smoldering/slowly expanding lesions (SELs) and dysfunction of the RNA binding protein (RBP) heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) are pathologic hallmarks of MS cortex and intricately tied to disability and neurodegeneration, respectively. We hypothesized that neuronal hnRNP A1 dysfunction contributes to neurodegeneration and is exacerbated by smoldering/SELs in progressive MS. METHODS Neuronal hnRNP A1 pathology (nucleocytoplasmic mislocalization of hnRNP A1) was examined in healthy control and MS brains using immunohistochemistry. MS cases were stratified by severity of hnRNP A1 pathology to examine the link between RBP dysfunction, demyelination, and neurodegeneration. RESULTS We found that smoldering/SELs were only present within a subset of MS tissues characterized by elevated neuronal hnRNP A1 pathology (MS-A1high) in adjacent cortical gray matter. In contrast to healthy controls and MS with low hnRNP A1 pathology (MS-A1low), MS-A1high showed elevated markers of neurodegeneration, including neuronal loss and injury, brain atrophy, axonal loss, and axon degeneration. Additionally, we discovered a subpopulation of morphologically intact neurons lacking expression of NeuN, a neuron-specific RBP, in cortical projection neurons in MS-A1high cases. INTERPRETATION hnRNP A1 dysfunction contributes to neurodegeneration and may be exacerbated by smoldering/SELs in progressive MS. The discovery of NeuN-negative neurons suggests that some cortical neurons may only be injured and not lost. By characterizing RBP pathology in MS cortex, this study has important implications for understanding the pathogenic mechanisms driving neurodegeneration, the substrate of disability and disease progression. ANN NEUROL 2025;97:313-328.
Collapse
Affiliation(s)
- Miranda L Messmer
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bogdan F Popescu
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Blok KM, Klein Kranenbarg RAM, Ananth K, Engelenburg HJ, van den Bosch A, Giannini LAA, de Beukelaar J, Seelaar H, Huitinga I, Green A, Wokke B, Abdelhak A, Smolders J. Multifaceted Biomarkers Suggest a Similar Profile of CNS Pathology in Relapsing and Progressive MS. Eur J Neurol 2025; 32:e70052. [PMID: 39907163 PMCID: PMC11795420 DOI: 10.1111/ene.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Relapsing-remitting (RR) and primary progressive (PP) multiple sclerosis (MS) have distinct clinical courses, but underlying pathophysiological differences remain unclear. We compared pathological components between RRMS, PPMS, and other inflammatory and neurodegenerative disorders, leveraging soluble biomarkers and post-mortem pathology. METHODS Serum and cerebrospinal fluid (CSF) of people diagnosed with (pw) PPMS (n = 104), RRMS (n = 38), Alzheimer's disease (AD, n = 22), neuromyelitis optica spectrum disorder (NMOSD, n = 10), and myelin oligodendrocyte glycoprotein-associated disease (MOGAD, n = 10) were collected. B-cell maturation antigen (BCMA), soluble CD27 (sCD27), osteopontin (OPN), chitinase-3-like-1 (CHI3L1), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL) and synaptosomal-associated protein-25 (SNAP25) were measured. Lymphocytes (CD20+, CD138+, CD3+) and pyramidal-tract axonal density in RR-onset (n = 86) and PPMS (n = 45) post-mortem brain tissue were quantified. RESULTS Soluble and post-mortem tissue biomarkers did not differ between pwRRMS and pwPPMS. Compared to AD, MS had higher CSF sCD27 (p < 0.001) but lower serum CHI3L1 and GFAP, and CSF OPN and SNAP25 (all p < 0.05). Serum OPN was lower in RRMS than NMOSD (p = 0.013). Principal component analyses and K-means clustering showed substantial overlap of RRMS and PPMS biomarkers, distinct from AD. In all pwMS, serum NfL and CSF BCMA correlated with clinical/radiological disease activity, CSF BCMA and sCD27 with inflammatory parameters, and serum GFAP, CSF GFAP, and CSF NfL with Expanded Disability Status Scale (EDSS) score. CONCLUSIONS Serum and CSF soluble biomarker profiles and post-mortem pathology do not differentiate RRMS from PPMS diagnoses but reflect the extent of inflammation and tissue damage. Detailed assessment of MS-associated inflammation and tissue damage may enhance classification and therapeutic strategies.
Collapse
Affiliation(s)
- Katelijn M. Blok
- Department of Neurology, MS Center ErasMSErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
- Department of NeurologyAlbert Schweitzer HospitalDordrechtThe Netherlands
| | - Romy A. M. Klein Kranenbarg
- Department of Neurology, MS Center ErasMSErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
- Department of NeurologyAlbert Schweitzer HospitalDordrechtThe Netherlands
| | - Kirtana Ananth
- Division of Neuroinflammation and Glial Biology, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Hendrik J. Engelenburg
- Neuroimmunology ResearchgroupNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Aletta van den Bosch
- Neuroimmunology ResearchgroupNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Lucia A. A. Giannini
- Department of Neurology and Alzheimer Center RotterdamErasmus MC , University Medical Center RotterdamRotterdamThe Netherlands
| | - Janet de Beukelaar
- Department of NeurologyAlbert Schweitzer HospitalDordrechtThe Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center RotterdamErasmus MC , University Medical Center RotterdamRotterdamThe Netherlands
| | - Inge Huitinga
- Neuroimmunology ResearchgroupNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Ari Green
- Division of Neuroinflammation and Glial Biology, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Beatrijs Wokke
- Department of Neurology, MS Center ErasMSErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Ahmed Abdelhak
- Division of Neuroinflammation and Glial Biology, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joost Smolders
- Department of Neurology, MS Center ErasMSErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
- Neuroimmunology ResearchgroupNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
- Department of Immunology, MS Center ErasMSErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
17
|
Filippi M, Amato MP, Avolio C, Gallo P, Gasperini C, Inglese M, Marfia GA, Patti F. Towards a biological view of multiple sclerosis from early subtle to clinical progression: an expert opinion. J Neurol 2025; 272:179. [PMID: 39891770 PMCID: PMC11787267 DOI: 10.1007/s00415-025-12917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
The classification of multiple sclerosis (MS) into the two distinct phases of relapsing-remitting and progressive, including primary progressive and secondary progressive phenotypes (PPMS and SPMS, respectively) has long been accepted; however, there are several unmet needs associated with this particular model. The observation that both inflammation and neurodegeneration are present from the onset of MS has resulted in a paradigm shift towards MS as a disease continuum driven by pathological mechanisms underlying clinical progression. Here we report the results from a meeting of Italian MS specialists, exploring the evolving perception of MS pathobiology and its implications for diagnosis and treatment. Insights garnered from the expert panel advocate for a redefined understanding of MS. This expert opinion paper reviews the disease continuum and the intertwined nature of inflammatory and neurodegenerative processes. Also, the need for changes in diagnostic criteria and treatment strategies, including the development of novel biomarkers and new therapies targeting smouldering disease, is discussed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Maria Pia Amato
- University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Azienda Ospedaliero-Universitaria Policlinico, Foggia, Italy
| | - Paolo Gallo
- University of Padua, Padua, Italy
- Azienda Ospedaliera of Padua, Padua, Italy
| | | | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico Tor Vergata, Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
- Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-S. Marco", Catania, Italy
| |
Collapse
|
18
|
Chen JQA, Wever DD, McNamara NB, Bourik M, Smolders J, Hamann J, Huitinga I. Inflammatory microglia correlate with impaired oligodendrocyte maturation in multiple sclerosis. Front Immunol 2025; 15:1522381. [PMID: 39877374 PMCID: PMC11772157 DOI: 10.3389/fimmu.2024.1522381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Remyelination of demyelinated axons can occur as an endogenous repair mechanism in multiple sclerosis (MS), but its efficacy varies between both MS individuals and lesions. The molecular and cellular mechanisms that drive remyelination remain poorly understood. Here, we studied the relation between microglia activation and remyelination activity in MS. Methods We correlated regenerative (CD163+) and inflammatory (iNOS+) microglia with BCAS1+ oligodendrocytes, subdivided into early-stage (<3 processes) and late-stage (≥3 processes) cells in brain donors with high or low remyelinating potential in remyelinated lesions and active lesions with ramified/amoeboid (non-foamy) or foamy microglia. A cohort of MS donors categorized as efficiently remyelinating donors (ERDs; n=25) or poorly remyelinating donors (PRDs; n=17) was included, based on their proportion of remyelinated lesions at autopsy. Results and discussion We hypothesized more CD163+ microglia and BCAS1+ oligodendrocytes in remyelinated and active non-foamy lesions from ERDs and more iNOS+ microglia with fewer BCAS1+ oligodendrocytes in active foamy lesions from PRDs. For CD163+ microglia, however, no differences were observed between MS lesions and MS donor groups. In line with our hypothesis, we found that INOS+ microglia were significantly increased in PRDs compared to ERDs within remyelinated lesions. MS lesions, more late-stage BCAS1+ oligodendrocytes were detected in active lesions with non-foamy or foamy microglia in comparison with remyelinated lesions. Although no differences were found for early-stage BCAS1+ oligodendrocytes between MS lesions, we did find significantly more early-stage BCAS1+ oligodendrocytes in PRDs vs ERDs in remyelinated lesions. Interestingly, a positive correlation was identified between iNOS+ microglia and the presence of early-stage BCAS1+ oligodendrocytes. These findings suggest that impaired maturation of early-stage BCAS1+ oligodendrocytes, encountering inflammatory microglia, may underlie remyelination deficits and unsuccessful lesion repair in MS.
Collapse
Affiliation(s)
- J. Q. Alida Chen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Dennis D. Wever
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Niamh B. McNamara
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Morjana Bourik
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Joost Smolders
- Departments of Neurology and Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Nesbitt C, Van Der Walt A, Butzkueven H, Cheung AS, Jokubaitis VG. Exploring the role of sex hormones and gender diversity in multiple sclerosis. Nat Rev Neurol 2025; 21:48-62. [PMID: 39658653 DOI: 10.1038/s41582-024-01042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
Sex and sex hormones are thought to influence multiple sclerosis (MS) through effects on inflammation, myelination and neurodegeneration, and exogenous hormones have been explored for their therapeutic potential. However, our understanding of how sex hormones influence MS disease processes and outcomes remains incomplete. Furthermore, our current knowledge is derived primarily from studies that focus exclusively on cisgender populations with exclusion of gender-diverse people. Gender-affirming hormone therapy comprising exogenous sex hormones or sex hormone blocking agents are commonly used by transgender and gender-diverse individuals, and it could influence MS risk and outcomes at various stages of disease. A better understanding of the impact and potential therapeutic effects of both endogenous and exogenous sex hormones in MS is needed to improve care and outcomes for cisgender individuals and, moreover, for gender-diverse populations wherein an evidence base does not exist. In this Perspective, we discuss the effects of endogenous and exogenous sex hormones in MS, including their potential therapeutic benefits, and examine both established sex-based dimorphisms and the potential for gender-diverse dimorphisms. We advocate for future research that includes gender-diverse people to enhance our knowledge of the interplay of sex and sex hormones in MS, leading to the development of more effective and inclusive treatment strategies and improvement of care for all individuals with MS.
Collapse
Affiliation(s)
- Cassie Nesbitt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia.
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Ada S Cheung
- Trans Health Research Group, Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia.
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Dal-Bianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord 2024; 17:17562864241306684. [PMID: 39711984 PMCID: PMC11660293 DOI: 10.1177/17562864241306684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Collapse
Affiliation(s)
- Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
21
|
Mirmosayyeb O, Yazdan Panah M, Moases Ghaffary E, Vaheb S, Ghoshouni H, Shaygannejad V, Pinter NK. Magnetic resonance imaging-based biomarkers of multiple sclerosis and neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. J Neurol 2024; 272:77. [PMID: 39680165 DOI: 10.1007/s00415-024-12827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND/OBJECTIVE Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are neuroinflammatory conditions with overlapping clinical and imaging features. Distinguishing between these diseases is crucial for appropriate diagnosis and management. Magnetic resonance imaging (MRI) may have the potential to differentiate these disorders. Nonetheless, studies exhibit inconsistencies regarding which MRI measurements most effectively distinguish between these disorders. Hence, this review aimed to evaluate the differences in MRI volumetry between people with MS (PwMS) and people with NMOSD (PwNMOSD). METHODS A systematic search was conducted across PubMed/MEDLINE, Embase, Scopus, and Web of Science up to May 12, 2024, to identify studies assessing conventional and volumetric MRI in PwMS and PwNMOSD. The standard mean difference (SMD) of MRI measurements and its 95% confidence interval (CI) were estimated using R version 4.4.0 with a random-effects model. RESULTS Forty-eight original studies that assessed conventional MRI measurements in 2592 PwMS and 1979 PwNMOSD were included. The meta-analysis revealed that PwMS had significantly higher T2 lesion volume (SMD = 1.51, 95% CI: 0.53 to 2.48, p = 0.002) and T1 lesion count (SMD = 1.08, 95% CI: 0.56 to 1.6, p < 0.001) than PwNMOSD. PwMS also exhibited significantly reduced thalamic volume (SMD = -1.26, 95% CI: -1.8 to -0.73, p < 0.001) and grey matter volume (GMV) (SMD = -0.65, 95% CI: -0.92 to -0.37, p < 0.001). Other MRI volumetry, such as the brain and putamen volumes, showed more pronounced atrophy in PwMS. CONCLUSION Significant differences in MRI volumetry between MS and NMOSD highlight the potential of MRI as a critical diagnostic tool. These findings emphasize the need for standardized MRI protocols and advanced imaging techniques to enhance diagnostic accuracy and clinical management of these conditions.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nandor K Pinter
- Department of Radiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
22
|
O’Day DH. The Search for a Universal Treatment for Defined and Mixed Pathology Neurodegenerative Diseases. Int J Mol Sci 2024; 25:13424. [PMID: 39769187 PMCID: PMC11678063 DOI: 10.3390/ijms252413424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention. First, they all form toxic aggregates prior to taking on their final forms as contributors to plaques, neurofibrillary tangles, Lewy bodies, and other protein deposits. Second, the primary enzyme that directs their aggregation is transglutaminase 2 (TGM2), a brain-localized enzyme involved in neurodegeneration. Third, TGM2 binds to calmodulin, a regulatory event that can increase the activity of this enzyme threefold. Fourth, the most common mixed pathology toxic biomarkers (Aβ, pTau, αSyn, nHtt) also bind calmodulin, which can affect their ability to aggregate. This review examines the potential therapeutic routes opened up by this knowledge. The end goal reveals multiple opportunities that are immediately available for universal therapeutic treatment of the most devastating neurodegenerative diseases facing humankind.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
23
|
Afify R, Lipsius K, Wyatt-Johnson SJ, Brutkiewicz RR. Myeloid antigen-presenting cells in neurodegenerative diseases: a focus on classical and non-classical MHC molecules. Front Neurosci 2024; 18:1488382. [PMID: 39720231 PMCID: PMC11667120 DOI: 10.3389/fnins.2024.1488382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
In recent years, increasing evidence has highlighted the critical role of myeloid cells, specifically those that present antigen (APCs) in health and disease. These shape the progression and development of neurodegenerative disorders, where considerable interplay between the immune system and neurons influences the course of disease pathogenesis. Antigen-presenting myeloid cells display different classes of major histocompatibility complex (MHC) and MHC-like proteins on their surface for presenting various types of antigens to a wide variety of T cells. While most studies focus on the role of myeloid MHC class I and II molecules in health and disease, there is still much that remains unknown about non-polymorphic MHC-like molecules such as CD1d and MR1. Thus, in this review, we will summarize the recent findings regarding the contributions of both classical and non-classical MHC molecules, particularly on myeloid microglial APCs, in neurodegenerative diseases. This will offer a better understanding of altered mechanisms that may pave the way for the development of novel therapeutic strategies targeting immune cell-MHC interactions, to mitigate neurodegeneration and its associated pathology.
Collapse
Affiliation(s)
| | | | | | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
24
|
Cheng X, Meng X, Chen R, Song Z, Li S, Wei S, Lv H, Zhang S, Tang H, Jiang Y, Zhang R. The molecular subtypes of autoimmune diseases. Comput Struct Biotechnol J 2024; 23:1348-1363. [PMID: 38596313 PMCID: PMC11001648 DOI: 10.1016/j.csbj.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Autoimmune diseases (ADs) are characterized by their complexity and a wide range of clinical differences. Despite patients presenting with similar symptoms and disease patterns, their reactions to treatments may vary. The current approach of personalized medicine, which relies on molecular data, is seen as an effective method to address the variability in these diseases. This review examined the pathologic classification of ADs, such as multiple sclerosis and lupus nephritis, over time. Acknowledging the limitations inherent in pathologic classification, the focus shifted to molecular classification to achieve a deeper insight into disease heterogeneity. The study outlined the established methods and findings from the molecular classification of ADs, categorizing systemic lupus erythematosus (SLE) into four subtypes, inflammatory bowel disease (IBD) into two, rheumatoid arthritis (RA) into three, and multiple sclerosis (MS) into a single subtype. It was observed that the high inflammation subtype of IBD, the RA inflammation subtype, and the MS "inflammation & EGF" subtype share similarities. These subtypes all display a consistent pattern of inflammation that is primarily driven by the activation of the JAK-STAT pathway, with the effective drugs being those that target this signaling pathway. Additionally, by identifying markers that are uniquely associated with the various subtypes within the same disease, the study was able to describe the differences between subtypes in detail. The findings are expected to contribute to the development of personalized treatment plans for patients and establish a strong basis for tailored approaches to treating autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuhao Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hao Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Alsema AM, Wijering MHC, Miedema A, Kotah JM, Koster M, Rijnsburger M, van Weering HRJ, de Vries HE, Baron W, Kooistra SM, Eggen BJL. Spatially resolved gene signatures of white matter lesion progression in multiple sclerosis. Nat Neurosci 2024; 27:2341-2353. [PMID: 39501035 DOI: 10.1038/s41593-024-01765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/14/2024] [Indexed: 11/08/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and progressive neurodegeneration. To understand MS lesion initiation and progression, we generate spatial gene expression maps of white matter (WM) and grey matter (GM) MS lesions. In different MS lesion types, we detect domains characterized by a distinct gene signature, including an identifiable rim around active WM lesions. Expression changes in astrocyte-specific, oligodendrocyte-specific and microglia-specific gene sets characterize the active lesion rims. Furthermore, we identify three WM lesion progression trajectories, predicting how normal-appearing WM can develop into WM active or mixed active-inactive lesions. Our data shed light on the dynamic progression of MS lesions.
Collapse
Affiliation(s)
- Astrid M Alsema
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Marion H C Wijering
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Anneke Miedema
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Janssen M Kotah
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Mirjam Koster
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilmar R J van Weering
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wia Baron
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Susanne M Kooistra
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- MS Centrum Noord Nederland, Groningen, The Netherlands.
| |
Collapse
|
26
|
Gaitán MI, Marquez RV, Ayerbe J, Reich DS. Imaging Outcomes for Phase 2 Trials Targeting Compartmentalized Inflammation. Mult Scler 2024; 30:48-60. [PMID: 39658905 PMCID: PMC11637223 DOI: 10.1177/13524585241301303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
This comprehensive review aims to explore imaging outcome measures targeting compartmentalized inflammation in Phase 2 clinical trials for multiple sclerosis (MS). The traditional primary imaging outcomes used in Phase 2 MS trials, new or enhancing white matter lesions on MRI, target the effects of peripheral inflammation, but the widespread inflammation behind a mostly closed blood-brain barrier is not captured. This review discusses several emerging imaging technologies that could be used as surrogate markers of compartmentalized inflammation, targeting chronic active lesions, meningeal inflammation, and innate immune activation within the normal-appearing white matter and gray matter. The integration of specific imaging outcomes into Phase 2 trials can provide a more accurate assessment of treatment efficacy, ultimately contributing to the development of more effective therapies for MS.
Collapse
Affiliation(s)
- María I Gaitán
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rocio V Marquez
- Department of Neurology, Italian Hospital of Buenos Aires, Argentina
| | - Jeremias Ayerbe
- Department of Neurology, Italian Hospital of Buenos Aires, Argentina
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Treaba CA, Herranz E, Barletta VT, Mehndiratta A, Sloane JA, Granberg T, Miscioscia A, Bomprezzi R, Loggia ML, Mainero C. Phenotyping in vivo chronic inflammation in multiple sclerosis by combined 11C-PBR28 MR-PET and 7T susceptibility-weighted imaging. Mult Scler 2024; 30:1755-1764. [PMID: 39436837 PMCID: PMC11742271 DOI: 10.1177/13524585241284157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND 11C-PBR28 positron emission tomography (PET), targeting the translocator protein, and paramagnetic rim lesions (PRL) have emerged as promising imaging markers of MS chronic inflammation. No consensus on which is the optimal marker exists. OBJECTIVES To investigate the ability of 11C-PBR28 PET and PRL assessment to identify chronic inflammation in white matter (WM) MS lesions and their relation to neurological impairment. METHODS Based on 11C-PBR28 uptake, brain WM lesions from 30 MS patients were classified as PET active or inactive. The PRL presence was assessed on 7T phase reconstructions, T1/T2 ratio was calculated to measure WM microstructural integrity. RESULTS Less than half (44%) of non-PRL WM lesions were active on 11C-PBR28 imaging either throughout the lesion (whole active) or at its periphery. PET peripherally active lesions and PRL did not differ in T1/T2 ratio and 11C-PBR28 uptake. A positive correlation was observed between PRL and active PET lesion count. Whole active PET lesion volume was the strongest predictor (β = 0.97, p < 0.001) of increased Expanded Disability Status Scale scores. CONCLUSION 11C-PBR28 imaging reveals more active WM lesions than 7T PRL assessment. Although PRL and PET active lesion counts are related, neurological disability is better explained by PET whole active lesion volume.
Collapse
Affiliation(s)
- Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandro Miscioscia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Roberto Bomprezzi
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Keegan BM, Absinta M, Cohen-Adad J, Flanagan EP, Henry RG, Klawiter EC, Kolind S, Krieger S, Laule C, Lincoln JA, Messina S, Oh J, Papinutto N, Smith SA, Traboulsee A. Spinal cord evaluation in multiple sclerosis: clinical and radiological associations, present and future. Brain Commun 2024; 6:fcae395. [PMID: 39611182 PMCID: PMC11604059 DOI: 10.1093/braincomms/fcae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Spinal cord disease is important in most people with multiple sclerosis, but assessment remains less emphasized in patient care, basic and clinical research and therapeutic trials. The North American Imaging in Multiple Sclerosis Spinal Cord Interest Group was formed to determine and present the contemporary landscape of multiple sclerosis spinal cord evaluation, further existing and advanced spinal cord imaging techniques, and foster collaborative work. Important themes arose: (i) multiple sclerosis spinal cord lesions (differential diagnosis, association with clinical course); (ii) spinal cord radiological-pathological associations; (iii) 'critical' spinal cord lesions; (iv) multiple sclerosis topographical model; (v) spinal cord atrophy; and (vi) automated and special imaging techniques. Distinguishing multiple sclerosis from other myelopathic aetiology is increasingly refined by imaging and serological studies. Post-mortem spinal cord findings and MRI pathological correlative studies demonstrate MRI's high sensitivity in detecting microstructural demyelination and axonal loss. Spinal leptomeninges include immune inflammatory infiltrates, some in B-cell lymphoid-like structures. 'Critical' demyelinating lesions along spinal cord corticospinal tracts are anatomically consistent with and may be disproportionately associated with motor progression. Multiple sclerosis topographical model implicates the spinal cord as an area where threshold impairment associates with multiple sclerosis disability. Progressive spinal cord atrophy and 'silent' multiple sclerosis progression may be emerging as an important multiple sclerosis prognostic biomarker. Manual atrophy assessment is complicated by rater bias, while automation (e.g. Spinal Cord Toolbox), and artificial intelligence may reduce this. Collaborative research by the North American Imaging in Multiple Sclerosis and similar groups with experts combining distinct strengths is key to advancing assessment and treatment of people with multiple sclerosis spinal cord disease.
Collapse
Affiliation(s)
- B Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Julien Cohen-Adad
- Institute of Biomedical Imaging, Polytechnique Montreal, Montreal, Canada H3T 1J4
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roland G Henry
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric C Klawiter
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon Kolind
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - Stephen Krieger
- Department of Neurology, Mount Sinai, New York City, NY 10029, USA
| | - Cornelia Laule
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - John A Lincoln
- McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Steven Messina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiwon Oh
- Division of Neurology, University of Toronto, Toronto, Canada M5B 1W8
| | - Nico Papinutto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Seth Aaron Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony Traboulsee
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| |
Collapse
|
29
|
Filippi M, Preziosa P, Barkhof F, Ciccarelli O, Cossarizza A, De Stefano N, Gasperini C, Geraldes R, Granziera C, Haider L, Lassmann H, Margoni M, Pontillo G, Ropele S, Rovira À, Sastre-Garriga J, Yousry TA, Rocca MA. The ageing central nervous system in multiple sclerosis: the imaging perspective. Brain 2024; 147:3665-3680. [PMID: 39045667 PMCID: PMC11531849 DOI: 10.1093/brain/awae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
The interaction between ageing and multiple sclerosis is complex and carries significant implications for patient care. Managing multiple sclerosis effectively requires an understanding of how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion accumulation. When combined with multiple sclerosis pathology, these age-related alterations may worsen clinical disability. Ageing may also influence the response of multiple sclerosis patients to therapies and/or their side effects, highlighting the importance of adjusted treatment considerations. MRI is highly sensitive to age- and multiple sclerosis-related processes. Accordingly, MRI can provide insights into the relationship between ageing and multiple sclerosis, enabling a better understanding of their pathophysiological interplay and informing treatment selection. This review summarizes current knowledge on the immunopathological and MRI aspects of ageing in the CNS in the context of multiple sclerosis. Starting from immunosenescence, ageing-related pathological mechanisms and specific features like enlarged Virchow-Robin spaces, this review then explores clinical aspects, including late-onset multiple sclerosis, the influence of age on diagnostic criteria, and comorbidity effects on imaging features. The role of MRI in understanding neurodegeneration, iron dynamics and myelin changes influenced by ageing and how MRI can contribute to defining treatment effects in ageing multiple sclerosis patients, are also discussed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, UCL, London WC1N 3BG, UK
- NIHR (National Institute for Health and Care Research) UCLH (University College London Hospitals) BRC (Biomedical Research Centre), London WC1N 3BG, UK
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Claudio Gasperini
- Department of Neurosciences, S Camillo Forlanini Hospital Rome, 00152 Rome, Italy
| | - Ruth Geraldes
- Clinical Neurology, John Radcliffe Hospital, Oxford University Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Lukas Haider
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Pontillo
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Advanced Biomedical Sciences, University “Federico II”, 80138 Naples, Italy
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, 8010 Graz, Austria
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Jaume Sastre-Garriga
- Neurology Department and Multiple Sclerosis Centre of Catalunya (Cemcat), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Tarek A Yousry
- Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, Neuroradiological Academic Unit, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
30
|
Häusler D, Weber MS. Towards Treating Multiple Sclerosis Progression. Pharmaceuticals (Basel) 2024; 17:1474. [PMID: 39598386 PMCID: PMC11597358 DOI: 10.3390/ph17111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS). In most patients, the disease starts with an acute onset followed by a remission phase, subsequent relapses and a later transition to steady chronic progression. In a minority of patients, this progressive phase develops from the beginning. MS relapses are characterized predominantly by the de novo formation of an inflammatory CNS lesion and the infiltration of immune cells, whereas the pathological features of MS progression include slowly expanding lesions, global brain atrophy and an inflammatory response predominantly mediated by macrophages/microglia. Importantly, this CNS-intrinsic pathophysiology appears to initiate early during the relapsing-remitting disease phase, while it turns into the key clinical MS feature in later stages. Currently approved disease-modifying treatments for MS are effective in modulating peripheral immunity by dampening immune cell activity or preventing the migration of immune cells into the CNS, resulting in the prevention of relapses; however, they show limited success in halting MS progression. In this manuscript, we first describe the pathological mechanisms of MS and summarize the approved therapeutics for MS progression. We also review the treatment options for progressive MS (PMS) that are currently under investigation. Finally, we discuss potential targets for novel treatment strategies in PMS.
Collapse
Affiliation(s)
- Darius Häusler
- Institute of Neuropathology, University Medical Centre, 37075 Goettingen, Germany;
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, 37075 Goettingen, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Centre, 37075 Goettingen, Germany;
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, 37075 Goettingen, Germany
- Department of Neurology, University Medical Centre, 37075 Goettingen, Germany
| |
Collapse
|
31
|
Toubasi AA, Eisma JJ, Wang J, Kazimuddin HF, Hernandez B, Vinarsky T, Gheen C, Rohm Z, Koch C, Clarke MA, Cheek R, Kramer J, Eaton J, Donahue MJ, Bagnato F. Chronic active lesions preferentially localize in watershed territories in multiple sclerosis. Ann Clin Transl Neurol 2024; 11:2912-2922. [PMID: 39447194 PMCID: PMC11572742 DOI: 10.1002/acn3.52202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVE Paramagnetic rim lesions (PRLs) are a biomarker of chronic active lesions (CALs), and an important driver of neurological disability in multiple sclerosis (MS). The reason subtending some acute lesions evolvement into CALs is not known. Here we ask whether a relatively lower oxygen content is linked to CALs. METHODS In this prospective cross-sectional study, 64 people with multiple sclerosis (PwMS), clinically isolated syndrome and radiologically isolated syndrome underwent a 7.0 Tesla (7 T) brain magnetic resonance imaging (MRI). The scanning protocol included a T2-w fluid-attenuated inversion recovery (FLAIR), and a single echo gradient echo from which susceptibility-weighted imaging (SWI) was derived. WM lesions were identified on the T2-w-FLAIR whilst PRLs were identified on the SWI sequence. T2-lesions were classified as PRLs and rimless lesions (PRLs-). We registered a universal vascular atlas to each subject's T2-w-FLAIR and classified each T2-lesions according to its location into watershed- (ws), non-watershed- (nws), and mixed-lesion (m). Ws-lesions were defined as lesions that were fully located in a region between the territories of two major arteries. RESULTS Out of 1,975 T2-lesions, 88 (4.5%) were PRLs. Ws-regions had a higher number (p = 0.005) and proportion (p < 0.001) of PRLs- compared to nws-regions. Ws-PRL- were larger compared to nws-ones (p = 0.009). The number (p = 0.043) and proportion (p < 0.001) of PRLs was higher in ws-regions compared to nws-ones. Ws-PRLs were not significantly larger than nws-ones (p = 0.195). INTERPRETATION We propose the novel concept of a link between arterial vascularization and chronic activity in MS by demonstrating a preferential localization of CALs in ws-territories.
Collapse
Affiliation(s)
- Ahmad A. Toubasi
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Jarrod J. Eisma
- Cognitive Division, Department of NeurologyVUMCNashvilleTennesseeUSA
| | - Jiacheng Wang
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- Department of Computer ScienceSchool of Engineering, Vanderbilt UniversityNashvilleTennesseeUSA
| | - Habeeb F. Kazimuddin
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH)BethesdaMarylandUSA
| | - Bryan Hernandez
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- Medical Scientist ProgramVU School of MedicineNashvilleTennesseeUSA
- Department of Biological Sciences, College of ScienceUniversity of Texas at El PasoEl PasoTexasUSA
- Department of BiochemistryVU School of MedicineNashvilleTennesseeUSA
| | - Taegan Vinarsky
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Caroline Gheen
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Zachary Rohm
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Carynn Koch
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Margareta A. Clarke
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
| | - Rachael Cheek
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- Meharry Medical CollegeSchool of MedicineNashvilleTennesseeUSA
| | - John Kramer
- Neuroimmunology Division, Department of NeurologyVUMCNashvilleTennesseeUSA
| | - James Eaton
- Cognitive Division, Department of NeurologyVUMCNashvilleTennesseeUSA
- Neuroimmunology Division, Department of NeurologyVUMCNashvilleTennesseeUSA
| | - Manus J. Donahue
- Cognitive Division, Department of NeurologyVUMCNashvilleTennesseeUSA
- Department of Psychiatry and Behavioral ScienceVUMCNashvilleTennesseeUSA
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of NeurologyVanderbilt University Medical Center (VUMC)NashvilleTennesseeUSA
- Department of NeurologyVA Medical Center, TN Valley Healthcare SystemNashvilleTennesseeUSA
| |
Collapse
|
32
|
Yokote H, Miyazaki Y, Fujimori J, Nishida Y, Toru S, Niino M, Nakashima I, Miura Y, Yokota T. Slowly expanding lesions are associated with disease activity and gray matter loss in relapse-onset multiple sclerosis. J Neuroimaging 2024; 34:758-765. [PMID: 39390692 DOI: 10.1111/jon.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Slowly expanding lesions (SELs) have been proposed as novel MRI markers of chronic active lesions in multiple sclerosis (MS). However, the mechanism through which SELs affect brain volume loss in patients with MS remains unknown. Additionally, the prevalence and significance of SELs in Asian patients with MS remain unclear. This study aimed to investigate the association between SELs and no evidence of disease activity (NEDA)-3 status as well as brain volume loss in Japanese patients. METHODS A total of 99 patients with relapse-onset MS were retrospectively evaluated. SELs were identified on brain MRI based on local deformation when consecutive scans were registered longitudinally. We developed a logistic regression model and generalized linear mixed models (GLMMs) to evaluate the association between the number of SELs and disease activity and changes in brain volume. RESULTS During the observation period (2.0 ± 0.22 years), 35 patients developed at least one SEL. Multivariable logistic regression analysis showed that ≥2 SELs were associated with 0.2 times the risk of achieving a NEDA-3 status. GLMMs revealed that the number of SELs was negatively associated with volume changes in the cortex (p = .00169) and subcortical gray matter (p = .00964) after correction for multiple comparisons. CONCLUSION SELs were identified in Japanese patients with MS during the 2-year observation period. The number of SELs is associated with disease activity and brain volume loss, suggesting that the number of SELs could be a biomarker of disease activity in MS.
Collapse
Affiliation(s)
- Hiroaki Yokote
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusei Miyazaki
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoichiro Nishida
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiharu Miura
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
33
|
Mrabet S, Sghaier I, Souissi A, Gharbi A, Abida Y, Kacem I, Gargouri-Berrechid A, Gouider R. Neurofilaments light chains as a diagnostic and predictive biomarker for Tunisian Multiple Sclerosis patients. Mult Scler Relat Disord 2024; 91:105901. [PMID: 39341199 DOI: 10.1016/j.msard.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) course was shown to be more severe among North Africans compared to Caucasians. Validation of prognostic biomarkers of disease activity and severity is a priority in our practice. OBJECTIVE We aimed to investigate the association between baseline cerebrospinal fluid (CSF) and serum NfL (sNFL) levels and disease activity and disability accrual in a cohort of Tunisian patients with MS. METHODS A cross-sectional study was conducted, in the department of Neurology of Razi Hospital, including patients diagnosed with MS. Patient's data were retrieved from our local MS database. Blood and CSF sampling were performed at the first visit. sNFL levels were measured using the Enzyme-Linked Immuno-Sorbent Assay (ELISA) sandwich technique. RESULTS Three hundred MS patients were enrolled (sex-ratio= 3.05; mean age at MS onset=28.83 years+9.55, mean MS course = 10.21 years+8.96). MS phenotype was predominately relapsing (73%). CSF NfL levels were significantly correlated to the serum ones. NfL concentrations were significantly associated with MS activity (p = 0.012), disease progression (p = 0.001), and higher Multiple Sclerosis Severity Scores (MSSS) (p = 0.0017, r = 0.28). CONCLUSIONS These results support the value of NfL as a sensitive and clinically meaningful CSF and blood biomarker to evaluate MS activity and outcomes among Tunisian MS patients.
Collapse
Affiliation(s)
- Saloua Mrabet
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Ikram Sghaier
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Amira Souissi
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Alya Gharbi
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Youssef Abida
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Imen Kacem
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Amina Gargouri-Berrechid
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Riadh Gouider
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia.
| |
Collapse
|
34
|
Scalfari A, Traboulsee A, Oh J, Airas L, Bittner S, Calabrese M, Garcia Dominguez JM, Granziera C, Greenberg B, Hellwig K, Illes Z, Lycke J, Popescu V, Bagnato F, Giovannoni G. Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions. Ann Neurol 2024; 96:826-845. [PMID: 39051525 DOI: 10.1002/ana.27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Despite therapeutic suppression of relapses, multiple sclerosis (MS) patients often experience subtle deterioration, which extends beyond the definition of "progression independent of relapsing activity." We propose the concept of smouldering-associated-worsening (SAW), encompassing physical and cognitive symptoms, resulting from smouldering pathological processes, which remain unmet therapeutic targets. We provide a consensus-based framework of possible pathological substrates and manifestations of smouldering MS, and we discuss clinical, radiological, and serum/cerebrospinal fluid biomarkers for potentially monitoring SAW. Finally, we share considerations for optimizing disease surveillance and implications for clinical trials to promote the integration of smouldering MS into routine practice and future research efforts. ANN NEUROL 2024;96:826-845.
Collapse
Affiliation(s)
- Antonio Scalfari
- Center of Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College, London, UK
| | | | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Laura Airas
- University of Turku and Turku University Hospital, Turku, Finland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (THiNK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Basel, Switzerland
| | | | | | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jan Lycke
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Popescu
- University MS Centre Pelt-Hasselt, Noorderhart Hospital, Belgium Hasselt University, Pelt, Belgium
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, VA Hospital, TN Valley Healthcare System, Nashville, TN, USA
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
35
|
Rodriguez-Mogeda C, van Gool MM, van der Mast R, Nijland R, Keasberry Z, van de Bovekamp L, van Delft MA, Picon C, Reynolds R, Killestein J, Teunissen CE, de Vries HE, van Egmond M, Witte ME. Intrathecal IgG and IgM synthesis correlates with neurodegeneration markers and corresponds to meningeal B cell presence in MS. Sci Rep 2024; 14:25540. [PMID: 39462090 PMCID: PMC11513002 DOI: 10.1038/s41598-024-76969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Intrathecal synthesis of immunoglobulins (Igs) is a key hallmark of multiple sclerosis (MS). B cells are known to accumulate in the leptomeninges of MS patients and associate with pathology in the underlying cortex and a more severe disease course. However, the role of locally produced antibodies in MS brain pathology is poorly understood. Here, we quantified the protein levels of IgA, IgM, IgG and albumin in serum and cerebrospinal fluid (CSF) samples of 80 MS patients and 28 neurological controls to calculate Ig indices. In addition, we quantified presence of meningeal IgA+, IgM+ and IgG+ B cells in post-mortem brain tissue of 20 MS patients and 6 controls using immunostainings. IgM and IgG, but not IgA, indices were increased in CSF of MS patients compared to controls, with no observed differences between MS disease types. Both IgM and IgG indices correlated significantly with neurofilament light (NfL) levels in CSF, but not with clinical or radiological parameters of disease. Similarly, IgG+ and IgM+ B cells were increased in MS meninges compared to controls, whereas IgA+ B cells were not. Neuronal loss did not differ between sections with low or high IgA+, IgM+ and IgG+ B cells, but was increased in sections with high numbers of all CD19+ meningeal B cells. Similarly, high presence of CD19+ meningeal B cells and IgG+ meningeal B cells associated with increased microglial density in the underlying cortex. Taken together, intrathecal synthesis of IgG and IgM is elevated in MS, which corresponds to an increased number of IgG+ and IgM+ B cells in MS meninges. The significant correlation between intrathecal IgG and IgM production and NfL levels, and increased microglial activation in cortical areas adjacent to meningeal infiltrates with high levels of IgG+ B cells indicate a role for intrathecal IgM- and IgG-producing B cells in neuroinflammatory and degenerative processes in MS.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
| | - Melissa Mj van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Richard van der Mast
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rutger Nijland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Zoë Keasberry
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lisanne van de Bovekamp
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Myrthe Am van Delft
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carmen Picon
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Joep Killestein
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Neurochemistry Lab, Department of Laboratory Medicine Chemistry, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Yousef H, Malagurski Tortei B, Castiglione F. Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review. J Neurol 2024; 271:6543-6572. [PMID: 39266777 PMCID: PMC11447111 DOI: 10.1007/s00415-024-12651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prognosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing personalized healthcare approaches in MS.
Collapse
Affiliation(s)
- Hibba Yousef
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates.
| | - Brigitta Malagurski Tortei
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Filippo Castiglione
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
- Institute for Applied Computing (IAC), National Research Council of Italy, Rome, Italy
| |
Collapse
|
38
|
Kråkenes T, Sandvik CE, Ytterdal M, Gavasso S, Evjenth EC, Bø L, Kvistad CE. The Therapeutic Potential of Exosomes from Mesenchymal Stem Cells in Multiple Sclerosis. Int J Mol Sci 2024; 25:10292. [PMID: 39408622 PMCID: PMC11477223 DOI: 10.3390/ijms251910292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Although treatment for multiple sclerosis (MS) has undergone a revolution in the last decades, at least two important barriers remain: alleviation of innate inflammation driving disease progression and promotion of remyelination and neural regeneration. Mesenchymal stem cells (MSCs) possess immunomodulatory properties and promote remyelination in murine MS models. The main therapeutic mechanism has, however, been attributed to their potent paracrine capacity, and not to in vivo tissue implantation. Studies have demonstrated that exosomes released as part of the cells' secretome effectively encapsulate the beneficial properties of MSCs. These membrane-enclosed nanoparticles contain a variety of proteins and nucleic acids and serve as mediators of intercellular communication. In vitro studies have demonstrated that exosomes from MSCs modulate activated microglia from an inflammatory to an anti-inflammatory phenotype and thereby dampen the innate inflammation. Rodent studies have also demonstrated potent immunomodulation and remyelination with improved outcomes following exosome administration. Thus, exosomes from MSCs may represent a potential cell-free treatment modality to prevent disease progression and promote remyelination in MS. In this narrative review, we summarize the current knowledge of exosomes from MSCs as a potential treatment for MS and discuss the remaining issues before successful translation into clinical trials.
Collapse
Affiliation(s)
- Torbjørn Kråkenes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
| | - Casper Eugen Sandvik
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Marie Ytterdal
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
| | - Sonia Gavasso
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Elisabeth Claire Evjenth
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
| | - Lars Bø
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Christopher Elnan Kvistad
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
| |
Collapse
|
39
|
Wuerch EC, Mirzaei R, Yong VW. Niacin produces an inconsistent treatment response in the EAE model of multiple sclerosis. J Neuroimmunol 2024; 394:578421. [PMID: 39088907 DOI: 10.1016/j.jneuroim.2024.578421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Niacin was found in the lysolecithin model of multiple sclerosis (MS) to promote the phagocytic clearance of debris and enhance remyelination. Lysolecithin lesions have prominent microglia/macrophages but lack lymphocytes that populate plaques of MS or its experimental autoimmune encephalomyelitis (EAE) model. Thus, the current study assessed the efficacy of niacin in EAE. We found that niacin inconsistently affects EAE clinical score, and largely does not ameliorate neuropathology. In culture, niacin enhances phagocytosis by macrophages, but does not reduce T cell proliferation. We suggest that studies of niacin for potential remyelination in MS should include a therapeutic that targets adaptive immunity.
Collapse
Affiliation(s)
- Emily C Wuerch
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Reza Mirzaei
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
40
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
41
|
Mazziotti V, Crescenzo F, Turano E, Guandalini M, Bertolazzo M, Ziccardi S, Virla F, Camera V, Marastoni D, Tamanti A, Calabrese M. The contribution of tumor necrosis factor to multiple sclerosis: a possible role in progression independent of relapse? J Neuroinflammation 2024; 21:209. [PMID: 39169320 PMCID: PMC11340196 DOI: 10.1186/s12974-024-03193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine regulating many physiological and pathological immune-mediated processes. Specifically, it has been recognized as an essential pro-inflammatory cytokine implicated in multiple sclerosis (MS) pathogenesis and progression. MS is a chronic immune-mediated disease of the central nervous system, characterized by multifocal acute and chronic inflammatory demyelination in white and grey matter, along with neuroaxonal loss. A recent concept in the field of MS research is disability resulting from Progression Independent of Relapse Activity (PIRA). PIRA recognizes that disability accumulation since the early phase of the disease can occur independently of relapse activity overcoming the traditional dualistic view of MS as either a relapsing-inflammatory or a progressive-neurodegenerative disease. Several studies have demonstrated an upregulation in TNF expression in both acute and chronic active MS brain lesions. Additionally, elevated TNF levels have been observed in the serum and cerebrospinal fluid of MS patients. TNF appears to play a significant role in maintaining chronic intrathecal inflammation, promoting axonal damage neurodegeneration, and consequently contributing to disease progression and disability accumulation. In summary, this review highlights the current understanding of TNF and its receptors in MS progression, specifically focusing on the relatively unexplored PIRA condition. Further research in this area holds promise for potential therapeutic interventions targeting TNF to mitigate disability in MS patients.
Collapse
Affiliation(s)
- Valentina Mazziotti
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Francesco Crescenzo
- Neurology Unit - Multiple Sclerosis Center, Scaligera Local Unit of Health and Social Services 9, Mater Salutis Hospital, 37045, Legnago, Verona, Italy
| | - Ermanna Turano
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maddalena Guandalini
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maddalena Bertolazzo
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Stefano Ziccardi
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Federica Virla
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Valentina Camera
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Damiano Marastoni
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Agnese Tamanti
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
42
|
van den Bosch AMR, Wever D, Schonewille P, Schuller SL, Smolders J, Hamann J, Huitinga I. Cortical CD200-CD200R and CD47-SIRPα expression is associated with multiple sclerosis pathology. Brain Commun 2024; 6:fcae264. [PMID: 39175944 PMCID: PMC11339711 DOI: 10.1093/braincomms/fcae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Control of microglia activity through CD200-CD200R and CD47-SIRPα interactions has been implicated in brain homeostasis. Here, we assessed CD200, CD47, CD200R and SIRPα expression with qPCR and immunohistochemistry in multiple sclerosis (MS) normal-appearing cortical grey matter (NAGM), normal-appearing white matter (NAWM), cortical grey matter (GM) lesions and perilesional GM, and compared this to control GM and white matter (WM), to investigate possible altered control of microglia in MS. In MS NAGM, CD200 expression is lower compared with control GM, specifically in cortical layers 1 and 2, and CD200 expression in NAGM negatively correlates with the cortical lesion rate. Interestingly, NAGM and NAWM CD200 expression is positively correlated, and NAGM CD200 expression negatively correlates with the proportion of active and mixed WM lesions. In GM lesions, CD200 and CD47 expressions are lower compared with NAGM and perilesional GM. CD200R expression is lower in MS NAGM, whereas SIRPα was increased in and around GM lesions. Taken together, our data indicate that CD200 and CD47 play a role in GM MS lesion formation and progression, respectively, and that targeting CD200 pathways may offer therapeutic avenues to mitigate MS pathology in both WM and GM.
Collapse
Affiliation(s)
- Aletta M R van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| | - Dennis Wever
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| | - Pleun Schonewille
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| | - Sabine L Schuller
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Immunology, MS Center ErasMS, Erasmus Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1054 BE, The Netherlands
| |
Collapse
|
43
|
Poon MM, Lorrain KI, Stebbins KJ, Edu GC, Broadhead AR, Lorenzana AJ, Roppe JR, Baccei JM, Baccei CS, Chen AC, Green AJ, Lorrain DS, Chan JR. Targeting the muscarinic M1 receptor with a selective, brain-penetrant antagonist to promote remyelination in multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2407974121. [PMID: 39083422 PMCID: PMC11317586 DOI: 10.1073/pnas.2407974121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic and debilitating neurological disease that results in inflammatory demyelination. While endogenous remyelination helps to recover function, this restorative process tends to become less efficient over time. Currently, intense efforts aimed at the mechanisms that promote remyelination are being considered promising therapeutic approaches. The M1 muscarinic acetylcholine receptor (M1R) was previously identified as a negative regulator of oligodendrocyte differentiation and myelination. Here, we validate M1R as a target for remyelination by characterizing expression in human and rodent oligodendroglial cells (including those in human MS tissue) using a highly selective M1R probe. As a breakthrough to conventional methodology, we conjugated a fluorophore to a highly M1R selective peptide (MT7) which targets the M1R in the subnanomolar range. This allows for exceptional detection of M1R protein expression in the human CNS. More importantly, we introduce PIPE-307, a brain-penetrant, small-molecule antagonist with favorable drug-like properties that selectively targets M1R. We evaluate PIPE-307 in a series of in vitro and in vivo studies to characterize potency and selectivity for M1R over M2-5R and confirm the sufficiency of blocking this receptor to promote differentiation and remyelination. Further, PIPE-307 displays significant efficacy in the mouse experimental autoimmune encephalomyelitis model of MS as evaluated by quantifying disability, histology, electron microscopy, and visual evoked potentials. Together, these findings support targeting M1R for remyelination and support further development of PIPE-307 for clinical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ari J. Green
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | | | - Jonah R. Chan
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| |
Collapse
|
44
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
45
|
Solsona EM, Tektonidis T, Reece JC, Simpson-Yap S, Black LJ, Rad EY, Coe S. Associations between diet and disease progression and symptomatology in multiple sclerosis: A systematic review of observational studies. Mult Scler Relat Disord 2024; 87:105636. [PMID: 38678968 DOI: 10.1016/j.msard.2024.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Although many people with MS (pwMS) modify their diet after diagnosis, there is still no consensus on dietary recommendations for pwMS. A number of observational studies have explored associations of diet and MS progression, but no studies have systematically reviewed the evidence. This systematic review aimed to provide an objective synthesis of the evidence for associations between diet and MS progression, including symptoms and clinical outcomes from observational studies. METHODS We performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Electronic database searches were performed for studies completed up to 26 July 2023 using PubMed (Medline), Web of Science, CINAHL, Embase (Ovid), and Scopus, followed by citation and reference list checking. We included studies using diet quality scores or dietary indices. Studies assessing individual foods, nutrients, or dietary supplements were excluded. We used the Newcastle-Ottawa Scale to assess the risk of bias of included studies. RESULTS Thirty-two studies met the inclusion criteria. Of these, 20 were cross-sectional and 12 prospective. The most frequent outcomes assessed were disability (n = 19), quality of life (n = 12), fatigue (n = 12), depression (n = 9), relapse (n = 8), anxiety (n = 3), and magnetic resonance imaging (MRI) outcomes (n = 4). Based on prospective studies, this review suggests that diet might be associated with quality of life and disability. There were also potential effects of higher diet quality scores on improved fatigue, disability, depression, anxiety, and MRI outcomes but more evidence is needed from prospective studies. CONCLUSIONS Observational studies show some evidence for an association between diet and MS symptoms, particularly quality of life and disability. However, the impact of diet on other MS outcomes remains inconclusive. Ultimately, our findings suggest more evidence is needed from prospective studies and well-designed tailored intervention studies to confirm associations.
Collapse
Affiliation(s)
| | | | - Jeanette C Reece
- Neuroepidemiology Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, VIC, Australia
| | - Steve Simpson-Yap
- Neuroepidemiology Unit, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, VIC, Australia
| | - Lucinda J Black
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | | | - Shelly Coe
- Oxford Brookes Centre for Nutrition and Health, Oxford, United Kingdom.
| |
Collapse
|
46
|
Huerta MM, Conway DS, Planchon SM, Thoomukuntla B, Se-Hong O, Sakaie KE, Ontaneda D, Nakamura K. Longitudinal myelin content measures of slowly expanding lesions using 7T MRI in multiple sclerosis. J Neuroimaging 2024; 34:451-458. [PMID: 38778455 DOI: 10.1111/jon.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Slowly expanding lesions (SELs) are thought to represent a subset of chronic active lesions and have been associated with clinical disability, severity, and disease progression. The purpose of this study was to characterize SELs using advanced magnetic resonance imaging (MRI) measures related to myelin and neurite density on 7 Tesla (T) MRI. METHODS The study design was retrospective, longitudinal, observational cohort with multiple sclerosis (n = 15). Magnetom 7T scanner was used to acquire magnetization-prepared 2 rapid acquisition gradient echo and advanced MRI including visualization of short transverse relaxation time component (ViSTa) for myelin, quantitative magnetization transfer (qMT) for myelin, and neurite orientation dispersion density imaging (NODDI). SELs were defined as lesions showing ≥12% of growth over 12 months on serial MRI. Comparisons of quantitative measures in SELs and non-SELs were performed at baseline and over time. Statistical analyses included two-sample t-test, analysis of variance, and mixed-effects linear model for MRI metrics between lesion types. RESULTS A total of 1075 lesions were evaluated. Two hundred twenty-four lesions (21%) were SELs, and 216 (96%) of the SELs were black holes. At baseline, compared to non-SELs, SELs showed significantly lower ViSTa (1.38 vs. 1.53, p < .001) and qMT (2.47 vs. 2.97, p < .001) but not in NODDI measures (p > .27). Longitudinally, only ViSTa showed a greater loss when comparing SEL and non-SEL (p = .03). CONCLUSIONS SELs have a lower myelin content relative to non-SELs without a difference in neurite measures. SELs showed a longitudinal decrease in apparent myelin water fraction reflecting greater tissue injury.
Collapse
Affiliation(s)
- Mina M Huerta
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Devon S Conway
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah M Planchon
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Oh Se-Hong
- Department of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| | - Ken E Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kunio Nakamura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
47
|
Nathoo N, Neyal N, Kantarci OH, Zeydan B. Imaging phenotypic differences in multiple sclerosis: at the crossroads of aging, sex, race, and ethnicity. Front Glob Womens Health 2024; 5:1412482. [PMID: 39006184 PMCID: PMC11245741 DOI: 10.3389/fgwh.2024.1412482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Clear sex differences are observed in clinical and imaging phenotypes of multiple sclerosis (MS), which evolve significantly over the age spectrum, and more specifically, during reproductive milestones such as pregnancy and menopause. With neuroimaging being an outcome measure and also a key subclinical biomarker of subsequent clinical phenotype in MS, this comprehensive review aims to provide an overview of sex and hormone differences in structural and functional imaging biomarkers of MS, including lesion burden and location, atrophy, white matter integrity, functional connectivity, and iron distribution. Furthermore, how therapies aimed at altering sex hormones can impact imaging of women and men with MS over the lifespan is discussed. This review also explores the key intersection between age, sex, and race/ethnicity in MS, and how this intersection may affect imaging biomarkers of MS.
Collapse
Affiliation(s)
- Nabeela Nathoo
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Nur Neyal
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Orhun H Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Burcu Zeydan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- Women's Health Research Center, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
48
|
Rimkus CDM, Otsuka FS, Nunes DM, Chaim KT, Otaduy MCG. Central Vein Sign and Paramagnetic Rim Lesions: Susceptibility Changes in Brain Tissues and Their Implications for the Study of Multiple Sclerosis Pathology. Diagnostics (Basel) 2024; 14:1362. [PMID: 39001252 PMCID: PMC11240827 DOI: 10.3390/diagnostics14131362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain-blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes.
Collapse
Affiliation(s)
- Carolina de Medeiros Rimkus
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands
- Instituto D'Or de Ensino e Pesquisa (IDOR), Sao Paulo 01401-002, SP, Brazil
| | - Fábio Seiji Otsuka
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Douglas Mendes Nunes
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Grupo Fleury, Sao Paulo 04701-200, SP, Brazil
| | - Khallil Taverna Chaim
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Maria Concepción Garcia Otaduy
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| |
Collapse
|
49
|
Cooze B, Neal J, Vineed A, Oliveira JC, Griffiths L, Allen KH, Hawkins K, Yadanar H, Gerhards K, Farkas I, Reynolds R, Howell O. Digital Pathology Identifies Associations between Tissue Inflammatory Biomarkers and Multiple Sclerosis Outcomes. Cells 2024; 13:1020. [PMID: 38920650 PMCID: PMC11201856 DOI: 10.3390/cells13121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a clinically heterogeneous disease underpinned by inflammatory, demyelinating and neurodegenerative processes, the extent of which varies between individuals and over the course of the disease. Recognising the clinicopathological features that most strongly associate with disease outcomes will inform future efforts at patient phenotyping. AIMS We used a digital pathology workflow, involving high-resolution image acquisition of immunostained slides and opensource software for quantification, to investigate the relationship between clinical and neuropathological features in an autopsy cohort of progressive MS. METHODS Sequential sections of frontal, cingulate and occipital cortex, thalamus, brain stem (pons) and cerebellum including dentate nucleus (n = 35 progressive MS, females = 28, males = 7; age died = 53.5 years; range 38-98 years) were immunostained for myelin (anti-MOG), neurons (anti-HuC/D) and microglia/macrophages (anti-HLA). The extent of demyelination, neurodegeneration, the presence of active and/or chronic active lesions and quantification of brain and leptomeningeal inflammation was captured by digital pathology. RESULTS Digital analysis of tissue sections revealed the variable extent of pathology that characterises progressive MS. Microglia/macrophage activation, if found at a higher level in a single block, was typically elevated across all sampled blocks. Compartmentalised (perivascular/leptomeningeal) inflammation was associated with age-related measures of disease severity and an earlier death. CONCLUSION Digital pathology identified prognostically important clinicopathological correlations in MS. This methodology can be used to prioritise the principal pathological processes that need to be captured by future MS biomarkers.
Collapse
Affiliation(s)
- Benjamin Cooze
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - James Neal
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Alka Vineed
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - J. C. Oliveira
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Lauren Griffiths
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - K. H. Allen
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Kristen Hawkins
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Htoo Yadanar
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Krisjanis Gerhards
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Ildiko Farkas
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (I.F.); (R.R.)
| | - Richard Reynolds
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (I.F.); (R.R.)
| | - Owain Howell
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| |
Collapse
|
50
|
Moser T, Foettinger F, Hitzl W, Novotna B, Berger T, Bsteh G, Di Pauli F, Hegen H, Kornek B, Langenscheidt D, Sellner J. Alemtuzumab treatment for multiple sclerosis in Austria: An observational long-term outcome study. Ann Clin Transl Neurol 2024; 11:1442-1455. [PMID: 38715245 PMCID: PMC11187963 DOI: 10.1002/acn3.52056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND/OBJECTIVE Observational real-world study to analyze the clinical effects of alemtuzumab (ALEM) and subsequent disease-modifying therapy (DMT) usage in multiple sclerosis (MS). METHODS Data retrieved from the Austrian MS treatment registry (AMSTR) included baseline (BL) characteristics (at ALEM start), annualized relapse rate (ARR), 6-month confirmed progression independent of relapse activity (PIRA; ≥ 0.5-point Expanded Disability Status Scale (EDSS) score increase), 6-month confirmed disability improvement (CDI; ≥ 0.5-point EDSS decrease), and safety outcomes until initiation of a subsequent DMT. The EDSS was re-baselined at 30 days from ALEM start (BL EDSS). RESULTS Eighty-seven ALEM-treated patients (median age: 32 years, 72% female, 14% treatment-naïve) were followed for a median of 55 (interquartile range 31-68) months. We found significant reductions in the ARR from 1.16 before ALEM to 0.15 throughout Years 1-9 (p < 0.001). Subsequent DMTs were initiated in 19 patients (22%, 74% anti-CD20 monoclonal antibodies). At Year 5 (n = 53), more patients achieved CDI (58%, 95% confidence interval (CI) 45%-71%) than had experienced PIRA (14%, CI 7.5%-24%), and 58% remained relapse-free. Shorter MS duration (p < 0.001, hazard ratio (HR) 0.86 (CI 0.80-0.93)) and no previous high-efficacy treatment (p < 0.001, HR 5.16 (CI 2.66-10.0)) were the best predictors of CDI, while PIRA was associated with a higher number of previous DMTs (p = 0.04, HR 3.06, CI 1.05-8.89). We found no new safety signals. INTERPRETATION ALEM had long-lasting beneficial effects on the ARR and disability improvement, especially when initiated early in the course of the disease. Only a subset of patients received subsequent DMTs.
Collapse
Affiliation(s)
- Tobias Moser
- Department of Neurology, Christian Doppler Medical CenterParacelsus Medical UniversitySalzburgAustria
| | - Fabian Foettinger
- Department of Neurology, Christian Doppler Medical CenterParacelsus Medical UniversitySalzburgAustria
| | - Wolfgang Hitzl
- Department of Ophthalmology and OptometryParacelsus Medical University/Salzburger Landeskliniken (SALK)SalzburgAustria
- Research Program Experimental Ophthalmology and Glaucoma ResearchParacelsus Medical UniversitySalzburgAustria
- Department of Research and Innovation, Team Biostatistics and Publication of Clinical TrialsParacelsus Medical UniversitySalzburgAustria
| | - Bianka Novotna
- Department of NeurologyLandesklinikum Mistelbach‐GänserndorfMistelbachAustria
| | - Thomas Berger
- Department of Neurology and Comprehensive Center for Clinical Neurosciences and Mental Healthboth Medical University of ViennaViennaAustria
| | - Gabriel Bsteh
- Department of Neurology and Comprehensive Center for Clinical Neurosciences and Mental Healthboth Medical University of ViennaViennaAustria
| | | | - Harald Hegen
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Barbara Kornek
- Department of Neurology and Comprehensive Center for Clinical Neurosciences and Mental Healthboth Medical University of ViennaViennaAustria
| | | | - Johann Sellner
- Department of Neurology, Christian Doppler Medical CenterParacelsus Medical UniversitySalzburgAustria
- Department of NeurologyLandesklinikum Mistelbach‐GänserndorfMistelbachAustria
| |
Collapse
|