1
|
He B, Cong Y, Xu L, Liu Y. Expansion of three types of transposon superfamilies within 25 Mya lead to large genome size of a rice insect pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104251. [PMID: 39694421 DOI: 10.1016/j.ibmb.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The brown planthoppers (BPH, Nilaparvata lugens), white backed planthopper (WBPH, Sogatella furcifera) and small brown planthopper (SBPH, Laodelphax striatellus) are widely distributed rice insect pests, causing huge annual yield loss of rice production. Though these three planthoppers belong to the same family, Delphacidae of Hemiptera, their genome sizes (GS) are very different, ranging from 541 to 1088 Mb. To uncover the main factors driving GS changes of three planthoppers, we first estimated the GS of their ancestor Fulgoroidea, to be 794.33 Mb, indicating GS expansion in BPH but contraction in SBPH and WBPH. Next, we identified repetitive sequences and compared the TE landscapes, showed that three types of transposon superfamilies, hAT, Tc1-Mariner and Gypsy, expanded within 25 Mya in BPH. In addition, BPH kept ancient TEs of Fulgoroidea dated back to 175 Mya, while SBPH and WBPH have lost most of these ancient TEs. Here, we present evidence that the gain of recently expanded TEs driving the GS expansion and loss of ancient TEs leading to the GS contraction, providing new insights into the mechanism of GS variation.
Collapse
Affiliation(s)
- Bingbing He
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China; State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuyang Cong
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Le Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying Liu
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| |
Collapse
|
2
|
Sullivan SA, Orosco JC, Callejas-Hernández F, Blow F, Lee H, Ranallo-Benavidez T, Peters A, Raidal S, Girard YA, Johnson CK, Rogers K, Gerhold R, Mangelson H, Liachko I, Srivastava H, Chandler C, Berenberg D, Bonneau RA, Huang PJ, Yeh YM, Lee CC, Liu H, Tang P, Chen TW, Schatz MC, Carlton JM. Comparative genomics of the sexually transmitted parasite Trichomonas vaginalis reveals relaxed and convergent evolution and genes involved in spillover from birds to humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629724. [PMID: 39763951 PMCID: PMC11703204 DOI: 10.1101/2024.12.22.629724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Trichomonas vaginalis is the causative agent of the venereal disease trichomoniasis which infects men and women globally and is associated with serious outcomes during pregnancy and cancers of the human reproductive tract. Trichomonads parasitize a range of hosts in addition to humans including birds, livestock, and domesticated animals. Recent genetic analysis of trichomonads recovered from columbid birds has provided evidence that these parasite species undergo frequent host-switching, and that a current epoch spillover event from columbids likely gave rise to T. vaginalis in humans. We undertook a comparative evolutionary genomics study of seven trichomonad species, generating chromosome-scale reference genomes for T. vaginalis and its avian sister species Trichomonas stableri, and assemblies of five other species that infect birds and mammals. Human-infecting trichomonad lineages have undergone recent and convergent genome size expansions compared to their avian sister species, and the major contributor to their increased genome size is increased repeat expansions, especially multicopy gene families and transposable elements, with genetic drift likely a driver due to relaxed selection. Trichomonads have independently host-switched twice from birds to humans, and genes implicated in the transition to the human host include those associated with host tissue adherence and phagocytosis, extracellular vesicles, and CAZyme virulence factors.
Collapse
Affiliation(s)
- Steven A. Sullivan
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jordan C. Orosco
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Francisco Callejas-Hernández
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Frances Blow
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Hayan Lee
- Department of Computer Science, Johns Hopkins Whiting School of Engineering, 3400 N Charles St Malone Hall 323, Baltimore, MD 21211, USA
| | - Timothy Ranallo-Benavidez
- Department of Computer Science, Johns Hopkins Whiting School of Engineering, 3400 N Charles St Malone Hall 323, Baltimore, MD 21211, USA
| | - Andrew Peters
- Charles Sturt University, The Grange Chancellery, Panorama Avenue, Bathurst, New South Wales, Australia 2795
| | - Shane Raidal
- Charles Sturt University, The Grange Chancellery, Panorama Avenue, Bathurst, New South Wales, Australia 2795
| | - Yvette A. Girard
- One Health Institute, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Christine K. Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Krysta Rogers
- Wildlife Health Laboratory, California Department of Fish & Wildlife, 1701 Nimbus Road, Suite D Rancho Cordova, CA 95670, USA
| | - Richard Gerhold
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Ivan Liachko
- Phase Genomics, 1617 8th Ave N, Seattle, WA 98109, USA
| | - Harsh Srivastava
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chris Chandler
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Daniel Berenberg
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Richard A. Bonneau
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Po-Jung Huang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Ching Lee
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Ting-Wen Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins Whiting School of Engineering, 3400 N Charles St Malone Hall 323, Baltimore, MD 21211, USA
| | - Jane M. Carlton
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Aguilar-Rodríguez J, Jakobson CM, Jarosz DF. The Hsp90 Molecular Chaperone as a Global Modifier of the Genotype-Phenotype-Fitness Map: An Evolutionary Perspective. J Mol Biol 2024; 436:168846. [PMID: 39481633 PMCID: PMC11608137 DOI: 10.1016/j.jmb.2024.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Global modifier genes influence the mapping of genotypes onto phenotypes and fitness through their epistatic interactions with genetic variants on a massive scale. The first such factor to be identified, Hsp90, is a highly conserved molecular chaperone that plays a central role in protein homeostasis. Hsp90 is a "hub of hubs" that chaperones proteins engaged in many key cellular and developmental regulatory networks. These clients, which are enriched in kinases, transcription factors, and E3 ubiquitin ligases, drive diverse cellular functions and are themselves highly connected. By contrast to many other hub proteins, the abundance and activity of Hsp90 changes substantially in response to shifting environmental conditions. As a result, Hsp90 modifies the functional impact of many genetic variants simultaneously in a manner that depends on environmental stress. Studies in diverse organisms suggest that this coupling between Hsp90 function and challenging environments exerts a substantial impact on what parts of the genome are visible to natural selection, expanding adaptive opportunities when most needed. In this Perspective, we explore the multifaceted role of Hsp90 as global modifier of the genotype-phenotype-fitness map as well as its implications for evolution in nature and the clinic.
Collapse
Affiliation(s)
- José Aguilar-Rodríguez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Cappucci U, Proietti M, Casale AM, Schiavo S, Chiavarini S, Accardo S, Manzo S, Piacentini L. Assessing genotoxic effects of plastic leachates in Drosophila melanogaster. CHEMOSPHERE 2024; 361:142440. [PMID: 38821133 DOI: 10.1016/j.chemosphere.2024.142440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Plastic polymers were largely added with chemical substances to be utilized in the items and product manufacturing. The leachability of these substances is a matter of concern given the wide amount of plastic waste, particularly in terrestrial environments, where soil represents a sink for these novel contaminants and a possible pathway of human health risk. In this study, we integrated genetic, molecular, and behavioral approaches to comparatively evaluate toxicological effects of plastic leachates, virgin and oxodegradable polypropylene (PP) and polyethylene (PE), in Drosophila melanogaster, a novel in vivo model organism for environmental monitoring studies and (eco)toxicological research. The results of this study revealed that while conventional toxicological endpoints such as developmental times and longevity remain largely unaffected, exposure to plastic leachates induces chromosomal abnormalities and transposable element (TE) activation in neural tissues. The combined effects of DNA damage and TE mobilization contribute to genome instability and increase the likelihood of LOH events, thus potentiating tumor growth and metastatic behavior ofRasV12 clones. Collectively, these findings indicate that plastic leachates exert genotoxic effects in Drosophila thus highlighting potential risks associated with leachate-related plastic pollution and their implications for ecosystems and human health.
Collapse
Affiliation(s)
- Ugo Cappucci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Mirena Proietti
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Assunta Maria Casale
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Simona Schiavo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Salvatore Chiavarini
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Sara Accardo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Sonia Manzo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy.
| | - Lucia Piacentini
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
5
|
da Costa GS, Cerqueira AF, de Brito CR, Mielke MS, Gaiotto FA. Epigenetics Regulation in Responses to Abiotic Factors in Plant Species: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2082. [PMID: 39124200 PMCID: PMC11314046 DOI: 10.3390/plants13152082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 08/12/2024]
Abstract
Plants have several mechanisms to adapt or acclimate to environmental stress. Morphological, physiological, or genetic changes are examples of complex plant responses. In recent years, our understanding of the role of epigenetic regulation, which encompasses changes that do not alter the DNA sequence, as an adaptive mechanism in response to stressful conditions has advanced significantly. Some studies elucidated and synthesized epigenetic mechanisms and their relationships with environmental change, while others explored the interplay between epigenetic modifications and environmental shifts, aiming to deepen our understanding of these complex processes. In this study, we performed a systematic review of the literature to analyze the progression of epigenetics studies on plant species' responses to abiotic factors. We also aimed to identify the most studied species, the type of abiotic factor studied, and the epigenetic technique most used in the scientific literature. For this, a search for articles in databases was carried out, and after analyzing them using pre-established inclusion criteria, a total of 401 studies were found. The most studied species were Arabidopsis thaliana and Oryza sativa, highlighting the gap in studies of non-economic and tropical plant species. Methylome DNA sequencing is the main technique used for the detection of epigenetic interactions in published studies. Furthermore, most studies sought to understand the plant responses to abiotic changes in temperature, water, and salinity. It is worth emphasizing further research is necessary to establish a correlation between epigenetic responses and abiotic factors, such as extreme temperatures and light, associated with climate change.
Collapse
Affiliation(s)
| | | | | | | | - Fernanda Amato Gaiotto
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil; (G.S.d.C.)
| |
Collapse
|
6
|
Lin X, Yin J, Wang Y, Yao J, Li QQ, Latzel V, Bossdorf O, Zhang YY. Environment-induced heritable variations are common in Arabidopsis thaliana. Nat Commun 2024; 15:4615. [PMID: 38816460 PMCID: PMC11139905 DOI: 10.1038/s41467-024-49024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Parental or ancestral environments can induce heritable phenotypic changes, but whether such environment-induced heritable changes are a common phenomenon remains unexplored. Here, we subject 14 genotypes of Arabidopsis thaliana to 10 different environmental treatments and observe phenotypic and genome-wide gene expression changes over four successive generations. We find that all treatments caused heritable phenotypic and gene expression changes, with a substantial proportion stably transmitted over all observed generations. Intriguingly, the susceptibility of a genotype to environmental inductions could be predicted based on the transposon abundance in the genome. Our study thus challenges the classic view that the environment only participates in the selection of heritable variation and suggests that the environment can play a significant role in generating of heritable variations.
Collapse
Affiliation(s)
- Xiaohe Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Junjie Yin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yifan Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jing Yao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Vit Latzel
- Institute of Botany of the CAS, Zamek 1, 252 43, Pruhonice, Czech Republic
| | - Oliver Bossdorf
- Institute of Evolution & Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Lewis A. A hypothesis of teleological evolution, via endogenous acetylcholine, nitric oxide, and calmodulin pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:68-76. [PMID: 38552848 DOI: 10.1016/j.pbiomolbio.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
The Extended Evolutionary Synthesis (EES) addresses the issues in evolutionary biology which cannot be explained by neo-Darwinian theory. The EES paradigm recognises teleology and agency in living systems, and identifies that organisms can directly affect their evolutionary trajectory in a goal-directed manner, yet the physiological pathways via which this occurs remain unidentified. Here, I propose a physiological pathway via which organisms can alter their genotype and phenotype by making behavioural decisions with respect their activity levels, partitioning of resources either toward growth, defence against disease, or their behavioural response to stressors. Specifically, I hypothesize that agential, teleological decisions mediated by acetylcholine result in induced nitric oxide (NO) activity, which regulates metabolism, blood flow, and immune response. Nitric oxide, however, is also a key epigenetic molecule, being involved in DNA acetylation, methylation, and de-methylation. Further, NO alters the histone complexes which scaffold nuclear DNA strands, and is thus a good candidate in identifying a system which allows an organisms to make teleological genetic changes. The proposed mechanisms of inheritance of these genetic changes is via the paternal line, whereby epigenetic changes in the somatic Sertoli cells in animals are transcribed by mRNA and included in the germline cells - the male gametes. The microsporangium in plants, and the sporophore cells in fungi, meanwhile, are proposed to form similar systems in response to sensory detection of stressors. Whilst the hypothesis is presented as a simplified model for future testing, it opens new avenues for study in evolutionary biology.
Collapse
|
8
|
Shi S, Puzakov MV, Puzakova LV, Ulupova YN, Xiang K, Wang B, Gao B, Song C. Hiker, a new family of DNA transposons encoding transposases with DD35E motifs, displays a distinct phylogenetic relationship with most known DNA transposon families of IS630-Tc1-mariner (ITm). Mol Phylogenet Evol 2023; 188:107906. [PMID: 37586577 DOI: 10.1016/j.ympev.2023.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
DNA transposons play a crucial role in determining the size and structure of eukaryotic genomes. In this study, a new family of IS630-Tc1-mariner (ITm) DNA transposons, named Hiker (HK), was identified. HK is characterized by a DD35E catalytic domain and is distinct from all previously known families of the ITm group. Phylogenetic analyses showed that DD35E/Hiker forms a monophyletic clade with DD34E/Gambol, indicating that they may represent a separate superfamily of ITm. A total of 178 Hiker species were identified, with 170 found mainly in Actinopterygii, one in Chondrichthyes, six in Anura and one in Mollusca. Gambol (GM), on the other hand, are found in invertebrates, with 18 in Arthropoda and one in Platyhelminthes. Hiker transposons have a total length ranging from 2.14 to 3.67 kb and contain a single open reading frame that encodes a protein of approximately 370 amino acids (range 311-413 aa). They are flanked by short terminal inverted repeats (TIRs) of 16-30 base pairs and two base pair (TA) target-site duplications. In contrast, most transposons of the Gambol family have a total length of 1.35-5.96 kb, encode a transposase protein of approximately 350 amino acids (range 306-374 aa), and are flanked by TIRs that range from 32 to 1097 bp in length. Both Hiker and Gambol transposases have several conserved motifs, including helix-turn-helix (HTH) motifs and a DDE domain. Our study observed multiple amplification waves and repeated horizontal transfer (HT) events of HK transposons in vertebrate genomes, indicating their role in diversifying and shaping the genomes of Actinopterygii, Chondrichthyes, and Anura. Conversely, GM transposons showed few Horizontal transfer events. According to cell-based transposition assays, most HK transposons are likely inactive due to the truncated DNA binding domains of their transposases. We present an updated classification of the ITm group based on these findings, which will enhance the understanding of both the evolution of ITm transposons and that of their hosts.
Collapse
Affiliation(s)
- Shasha Shi
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mikhail V Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky ave, 38 119991, Moscow, Russia
| | - Ludmila V Puzakova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky ave, 38 119991, Moscow, Russia
| | - Yulia N Ulupova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky ave, 38 119991, Moscow, Russia
| | - Kuilin Xiang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Binqing Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
9
|
Carotti E, Carducci F, Barucca M, Canapa A, Biscotti MA. Transposable Elements: Epigenetic Silencing Mechanisms or Modulating Tools for Vertebrate Adaptations? Two Sides of the Same Coin. Int J Mol Sci 2023; 24:11591. [PMID: 37511347 PMCID: PMC10380595 DOI: 10.3390/ijms241411591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Transposable elements constitute one of the main components of eukaryotic genomes. In vertebrates, they differ in content, typology, and family diversity and played a crucial role in the evolution of this taxon. However, due to their transposition ability, TEs can be responsible for genome instability, and thus silencing mechanisms were evolved to allow the coexistence between TEs and eukaryotic host-coding genes. Several papers are highlighting in TEs the presence of regulatory elements involved in regulating nearby genes in a tissue-specific fashion. This suggests that TEs are not sequences merely to silence; rather, they can be domesticated for the regulation of host-coding gene expression, permitting species adaptation and resilience as well as ensuring human health. This review presents the main silencing mechanisms acting in vertebrates and the importance of exploiting these mechanisms for TE control to rewire gene expression networks, challenging the general view of TEs as threatening elements.
Collapse
Affiliation(s)
| | - Federica Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.C.); (M.B.); (A.C.); (M.A.B.)
| | | | | | | |
Collapse
|
10
|
Carotti E, Tittarelli E, Canapa A, Biscotti MA, Carducci F, Barucca M. LTR Retroelements and Bird Adaptation to Arid Environments. Int J Mol Sci 2023; 24:ijms24076332. [PMID: 37047324 PMCID: PMC10094322 DOI: 10.3390/ijms24076332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
TEs are known to be among the main drivers in genome evolution, leading to the generation of evolutionary advantages that favor the success of organisms. The aim of this work was to investigate the TE landscape in bird genomes to look for a possible relationship between the amount of specific TE types and environmental changes that characterized the Oligocene era in Australia. Therefore, the mobilome of 29 bird species, belonging to a total of 11 orders, was analyzed. Our results confirmed that LINE retroelements are not predominant in all species of this evolutionary lineage and highlighted an LTR retroelement dominance in species with an Australian-related evolutionary history. The bird LTR retroelement expansion might have happened in response to the Earth’s dramatic climate changes that occurred about 30 Mya, followed by a progressive aridification across most of Australian landmasses. Therefore, in birds, LTR retroelement burst might have represented an evolutionary advantage in the adaptation to arid/drought environments.
Collapse
|
11
|
Šatović-Vukšić E, Plohl M. Satellite DNAs-From Localized to Highly Dispersed Genome Components. Genes (Basel) 2023; 14:genes14030742. [PMID: 36981013 PMCID: PMC10048060 DOI: 10.3390/genes14030742] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
According to the established classical view, satellite DNAs are defined as abundant non-coding DNA sequences repeated in tandem that build long arrays located in heterochromatin. Advances in sequencing methodologies and development of specialized bioinformatics tools enabled defining a collection of all repetitive DNAs and satellite DNAs in a genome, the repeatome and the satellitome, respectively, as well as their reliable annotation on sequenced genomes. Supported by various non-model species included in recent studies, the patterns of satellite DNAs and satellitomes as a whole showed much more diversity and complexity than initially thought. Differences are not only in number and abundance of satellite DNAs but also in their distribution across the genome, array length, interspersion patterns, association with transposable elements, localization in heterochromatin and/or in euchromatin. In this review, we compare characteristic organizational features of satellite DNAs and satellitomes across different animal and plant species in order to summarize organizational forms and evolutionary processes that may lead to satellitomes' diversity and revisit some basic notions regarding repetitive DNA landscapes in genomes.
Collapse
Affiliation(s)
- Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Carotti E, Carducci F, Canapa A, Barucca M, Biscotti MA. Transposable Element Tissue-Specific Response to Temperature Stress in the Stenothermal Fish Puntius tetrazona. Animals (Basel) 2022; 13:ani13010001. [PMID: 36611611 PMCID: PMC9817673 DOI: 10.3390/ani13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Ray-finned fish represent a very interesting group of vertebrates comprising a variety of organisms living in different aquatic environments worldwide. In the case of stenothermal fish, thermal fluctuations are poorly tolerated, thus ambient temperature represents a critical factor. In this paper, we considered the tiger barb Puntius tetrazona, a freshwater fish belonging to the family Cyprinidae, living at 21-28 °C. We analyzed the available RNA-Seq data obtained from specimens exposed at 27 °C and 13 °C to investigate the transcriptional activity of transposable elements (TEs) and genes encoding for proteins involved in their silencing in the brain, gill, and liver. TEs are one of the tools generating genetic variability that underlies biological evolution, useful for organisms to adapt to environmental changes. Our findings highlighted a different response of TEs in the three analyzed tissues. While in the brain and gill, no variation in TE transcriptional activity was observed, a remarkable increase at 13 °C was recorded in the liver. Moreover, the transcriptional analysis of genes encoding proteins involved in TE silencing such as heterochromatin formation, the NuRD complex, and the RISC complex (e.g., AGO and GW182 proteins) highlighted their activity in the hepatic tissue. Overall, our findings suggested that this tissue is a target organ for this kind of stress, since TE activation might regulate the expression of stress-induced genes, leading to a better response of the organism to temperature changes. Therefore, this view corroborates once again the idea of a potential role of TEs in organism rapid adaptation, hence representing a promising molecular tool for species resilience.
Collapse
|
13
|
WiFi Related Radiofrequency Electromagnetic Fields Promote Transposable Element Dysregulation and Genomic Instability in Drosophila melanogaster. Cells 2022; 11:cells11244036. [PMID: 36552798 PMCID: PMC9776602 DOI: 10.3390/cells11244036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Exposure to artificial radio frequency electromagnetic fields (RF-EMFs) has greatly increased in recent years, thus promoting a growing scientific and social interest in deepening the biological impact of EMFs on living organisms. The current legislation governing the exposure to RF-EMFs is based exclusively on their thermal effects, without considering the possible non-thermal adverse health effects from long term exposure to EMFs. In this study we investigated the biological non-thermal effects of low-level indoor exposure to RF-EMFs produced by WiFi wireless technologies, using Drosophila melanogaster as the model system. Flies were exposed to 2.4 GHz radiofrequency in a Transverse Electromagnetic (TEM) cell device to ensure homogenous controlled fields. Signals were continuously monitored during the experiments and regulated at non thermal levels. The results of this study demonstrate that WiFi electromagnetic radiation causes extensive heterochromatin decondensation and thus a general loss of transposable elements epigenetic silencing in both germinal and neural tissues. Moreover, our findings provide evidence that WiFi related radiofrequency electromagnetic fields can induce reactive oxygen species (ROS) accumulation, genomic instability, and behavioural abnormalities. Finally, we demonstrate that WiFi radiation can synergize with RasV12 to drive tumor progression and invasion. All together, these data indicate that radiofrequency radiation emitted from WiFi devices could exert genotoxic effects in Drosophila and set the stage to further explore the biological effects of WiFi electromagnetic radiation on living organisms.
Collapse
|
14
|
Puzakov MV, Puzakova LV, Ulupova YN. Differential Activity of Genes with IS630/TC1/MARINER Transposon Fragments in the Genome of the Ctenophore Mnemiopsis leidyi. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s089141682204005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
15
|
Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells 2022; 11:cells11061048. [PMID: 35326499 PMCID: PMC8947103 DOI: 10.3390/cells11061048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous genetic elements, able to jump from one location of the genome to another, in all organisms. For this reason, on the one hand, TEs can induce deleterious mutations, causing dysfunction, disease and even lethality in individuals. On the other hand, TEs can increase genetic variability, making populations better equipped to respond adaptively to environmental change. To counteract the deleterious effects of TEs, organisms have evolved strategies to avoid their activation. However, their mobilization does occur. Usually, TEs are maintained silent through several mechanisms, but they can be reactivated during certain developmental windows. Moreover, TEs can become de-repressed because of drastic changes in the external environment. Here, we describe the ‘double life’ of TEs, being both ‘parasites’ and ‘symbionts’ of the genome. We also argue that the transposition of TEs contributes to two important evolutionary processes: the temporal dynamic of evolution and the induction of genetic variability. Finally, we discuss how the interplay between two TE-dependent phenomena, insertional mutagenesis and epigenetic plasticity, plays a role in the process of evolution.
Collapse
|
16
|
Puzakova LV, Puzakov MV. Zvezda—A New Subfamily of Tc1-Like Transposons in Asterozoa Genomes. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|
18
|
Prokaryotic and Eukaryotic Horizontal Transfer of Sailor (DD82E), a New Superfamily of IS630-Tc1-Mariner DNA Transposons. BIOLOGY 2021; 10:biology10101005. [PMID: 34681104 PMCID: PMC8533490 DOI: 10.3390/biology10101005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022]
Abstract
Simple Summary Transposable elements, including DNA transposons, play a significant role in genetic material exchanges between prokaryotes and eukaryotes. Comparative profiling of the evolution pattern of DNA transposons between prokaryotes and eukaryotes may identify potential genetic material exchanges between them and provide insights into the evolutionary history of prokaryotic and eukaryotic genomes. The members of the IS630-Tc1-mariner (ITm) group may represent the most diverse and widely distributed DNA transposons in nature, and the discovery of new members of this group is highly expected based on the increasing availability of genome sequencing data. We discovered a new superfamily (termed Sailor) belonging to the ITm hyperfamily, which differed from the known superfamilies of Tc1/mariner, DDxD/pogo and DD34E/Gambol, regarding phylogenetic position and catalytic domain. Our data revealed that Sailor was distributed in both prokaryotes and eukaryotes and suggested that horizontal transfer (HT) events of Sailor may occur from prokaryotic to eukaryotic genomes. Finally, internal transmissions of Sailor in prokaryotes and eukaryotes were also detected. Abstract Here, a new superfamily of IS630-Tc1-mariner (ITm) DNA transposons, termed Sailor, is identified, that is characterized by a DD82E catalytic domain and is distinct from all previously known superfamilies of the ITm group. Phylogenetic analyses revealed that Sailor forms a monophyletic clade with a more intimate link to the clades of Tc1/mariner and DD34E/Gambol. Sailor was detected in both prokaryotes and eukaryotes and invaded a total of 256 species across six kingdoms. Sailor is present in nine species of bacteria, two species of plantae, four species of protozoa, 23 species of Chromista, 12 species of Fungi and 206 species of animals. Moreover, Sailor is extensively distributed in invertebrates (a total of 206 species from six phyla) but is absent in vertebrates. Sailor transposons are 1.38–6.98 kb in total length and encoded transposases of ~676 aa flanked by TIRs with lengths between 18, 1362 and 4 bp (TATA) target-site duplications. Furthermore, our analysis provided strong evidence of Sailor transmissions from prokaryotes to eukaryotes and internal transmissions in both. These data update the classification of the ITm group and will contribute to the understanding of the evolution of ITm transposons and that of their hosts.
Collapse
|
19
|
Puzakov MV, Puzakova LV, Cheresiz SV, Sang Y. The IS630/Tc1/mariner transposons in three ctenophore genomes. Mol Phylogenet Evol 2021; 163:107231. [PMID: 34133948 DOI: 10.1016/j.ympev.2021.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Transposable elements (TEs) exert a significant effect on the structure and functioning of the genomes and also serve as a source of the new genes. The study of the TE diversity and evolution in different taxa is indispensable for the fundamental understanding of their roles in the genomes. IS630/Tc1/mariner (ITm) transposable elements represent the most prevalent and diverse group of DNA transposons. In this work, we studied the diversity, evolutionary dynamics and the phylogenetic relationships of the ITm transposons found in three ctenophore species: Mnemiopsis leidyi, Pleurobrachia bachei, Beroe ovata. We identified 29 ITm transposons, seven of which possess the terminal inverted repeats (TIRs) and an intact transposase, and, thus, are, presumably, active. Four other ITm transposons have the features of domesticated TEs. According to the results of the phylogenetic analysis, the ITm transposons of the ctenophores represent five groups - MLE/DD34D, TLE/DD34-38E, mosquito/DD37E, Visiror/DD41D and pogo/DDxD. Pogo/DDxD superfamily turnes out to be the most diverse and prevalent, since it accounts for more than 40% of the TEs identified. The data obtained in this research will fill the gap of knowledge of the diversity and evolution of the ITm transposons in the multicellular genomes and will lay the ground for the study of the TE effects on the evolution of the ctenophores.
Collapse
Affiliation(s)
- Mikhail V Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia.
| | - Ludmila V Puzakova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia
| | - Sergey V Cheresiz
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova st., 1, Novosibirsk 630090, Russia; State Scientific Research Institute of Physiology and Basic Medicine, P.O. Box 237, Novosibirsk 630117, Russia
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
20
|
Specchia V, Bozzetti MP. The Role of HSP90 in Preserving the Integrity of Genomes Against Transposons Is Evolutionarily Conserved. Cells 2021; 10:cells10051096. [PMID: 34064379 PMCID: PMC8147803 DOI: 10.3390/cells10051096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
The HSP90 protein is a molecular chaperone intensively studied for its role in numerous cellular processes both under physiological and stress conditions. This protein acts on a wide range of substrates with a well-established role in cancer and neurological disorders. In this review, we focused on the involvement of HSP90 in the silencing of transposable elements and in the genomic integrity maintenance. The common feature of transposable elements is the potential jumping in new genomic positions, causing chromosome structure rearrangements, gene mutations, and influencing gene expression levels. The role of HSP90 in the control of these elements is evolutionarily conserved and opens new perspectives in the HSP90-related mechanisms underlying human disorders. Here, we discuss the hypothesis that its role in the piRNA pathway regulating transposons may be implicated in the onset of neurological diseases.
Collapse
|
21
|
Parhad SS, Yu T, Zhang G, Rice NP, Weng Z, Theurkauf WE. Adaptive Evolution Targets a piRNA Precursor Transcription Network. Cell Rep 2021; 30:2672-2685.e5. [PMID: 32101744 PMCID: PMC7061269 DOI: 10.1016/j.celrep.2020.01.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
In Drosophila, transposon-silencing piRNAs are derived from heterochromatic clusters and a subset of euchromatic transposon insertions, which are bound by the Rhino-Deadlock-Cutoff complex. The HP1 homolog Rhino binds to Deadlock, which recruits TRF2 to promote non-canonical transcription from both genomic strands. Cuff function is less well understood, but this Rai1 homolog shows hallmarks of adaptive evolution, which can remodel functional interactions within host defense systems. Supporting this hypothesis, Drosophila simulans Cutoff is a dominant-negative allele when expressed in Drosophila melanogaster, in which it traps Deadlock, TRF2, and the conserved transcriptional co-repressor CtBP in stable complexes. Cutoff functions with Rhino and Deadlock to drive non-canonical transcription. In contrast, CtBP suppresses canonical transcription of transposons and promoters flanking the major germline clusters, and canonical transcription interferes with downstream non-canonical transcription and piRNA production. Adaptive evolution thus targets interactions among Cutoff, TRF2, and CtBP that balance canonical and non-canonical piRNA precursor transcription.
Collapse
Affiliation(s)
- Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Gen Zhang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas P Rice
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
22
|
Schrader L, Winter M, Errbii M, Delabie J, Oettler J, Gadau J. Inhibition of HSP90 causes morphological variation in the invasive ant
Cardiocondyla obscurior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:333-340. [DOI: 10.1002/jez.b.23035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/16/2023]
Affiliation(s)
- Lukas Schrader
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Miles Winter
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Jacques Delabie
- Laboratório de Mirmecologia Cocoa Research Center‐CEPLAC & UESC‐DCAA Itabuna Bahia Brazil
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie University of Regensburg Regensburg Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| |
Collapse
|
23
|
Feliciello I, Pezer Ž, Sermek A, Bruvo Mađarić B, Ljubić S, Ugarković Đ. Satellite DNA-Mediated Gene Expression Regulation: Physiological and Evolutionary Implication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:145-167. [PMID: 34386875 DOI: 10.1007/978-3-030-74889-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite DNAs are tandemly repeated sequences organized in large clusters within (peri)centromeric and/or subtelomeric heterochromatin. However, in many species, satellite DNAs are not restricted to heterochromatin but are also dispersed as short arrays within euchromatin. Such genomic organization together with transcriptional activity seems to be a prerequisite for the gene-modulatory effect of satellite DNAs which was first demonstrated in the beetle Tribolium castaneum upon heat stress. Namely, enrichment of a silent histone mark at euchromatic repeats of a major beetle satellite DNA results in epigenetic silencing of neighboring genes. In addition, human satellite III transcripts induced by heat shock contribute to genome-wide gene silencing, providing protection against stress-induced cell death. Gene silencing mediated by satellite RNA was also shown to be fundamental for the early embryonic development of the mosquito Aedes aegypti. Apart from a physiological role during embryogenesis and heat stress response, activation of satellite DNAs in terms of transcription and proliferation can have an evolutionary impact. Spreading of satellite repeats throughout euchromatin promotes the variation of epigenetic landscapes and gene expression diversity, contributing to the evolution of gene regulatory networks and to genome adaptation in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.,Dipartimento di Medicina Clinica e Chirurgia, Universita' degli Studi di Napoli Federico II, Naples, Italy
| | - Željka Pezer
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
24
|
Androsiuk P, Chwedorzewska KJ, Dulska J, Milarska S, Giełwanowska I. Retrotransposon-based genetic diversity of Deschampsia antarctica Desv. from King George Island (Maritime Antarctic). Ecol Evol 2021; 11:648-663. [PMID: 33437458 PMCID: PMC7790655 DOI: 10.1002/ece3.7095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Deschampsia antarctica Desv. can be found in diverse Antarctic habitats which may vary considerably in terms of environmental conditions and soil properties. As a result, the species is characterized by wide ecotypic variation in terms of both morphological and anatomical traits. The species is a unique example of an organism that can successfully colonize inhospitable regions due to its phenomenal ability to adapt to both the local mosaic of microhabitats and to general climatic fluctuations. For this reason, D. antarctica has been widely investigated in studies analyzing morphophysiological and biochemical responses to various abiotic stresses (frost, drought, salinity, increased UV radiation). However, there is little evidence to indicate whether the observed polymorphism is accompanied by the corresponding genetic variation. In the present study, retrotransposon-based iPBS markers were used to trace the genetic variation of D. antarctica collected in nine sites of the Arctowski oasis on King George Island (Western Antarctic). The genotyping of 165 individuals from nine populations with seven iPBS primers revealed 125 amplification products, 15 of which (12%) were polymorphic, with an average of 5.6% polymorphic fragments per population. Only one of the polymorphic fragments, observed in population 6, was represented as a private band. The analyzed specimens were characterized by low genetic diversity (uHe = 0.021, I = 0.030) and high population differentiation (F ST = 0.4874). An analysis of Fu's F S statistics and mismatch distribution in most populations (excluding population 2, 6 and 9) revealed demographic/spatial expansion, whereas significant traces of reduction in effective population size were found in three populations (1, 3 and 5). The iPBS markers revealed genetic polymorphism of D. antarctica, which could be attributed to the mobilization of random transposable elements, unique features of reproductive biology, and/or geographic location of the examined populations.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and BiotechnologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | | | - Justyna Dulska
- Department of Plant Physiology, Genetics and BiotechnologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Sylwia Milarska
- Department of Plant Physiology, Genetics and BiotechnologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and BiotechnologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
25
|
Zamai L. Unveiling Human Non-Random Genome Editing Mechanisms Activated in Response to Chronic Environmental Changes: I. Where Might These Mechanisms Come from and What Might They Have Led To? Cells 2020; 9:E2362. [PMID: 33121045 PMCID: PMC7693803 DOI: 10.3390/cells9112362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
This article challenges the notion of the randomness of mutations in eukaryotic cells by unveiling stress-induced human non-random genome editing mechanisms. To account for the existence of such mechanisms, I have developed molecular concepts of the cell environment and cell environmental stressors and, making use of a large quantity of published data, hypothesised the origin of some crucial biological leaps along the evolutionary path of life on Earth under the pressure of natural selection, in particular, (1) virus-cell mating as a primordial form of sexual recombination and symbiosis; (2) Lamarckian CRISPR-Cas systems; (3) eukaryotic gene development; (4) antiviral activity of retrotransposon-guided mutagenic enzymes; and finally, (5) the exaptation of antiviral mutagenic mechanisms to stress-induced genome editing mechanisms directed at "hyper-transcribed" endogenous genes. Genes transcribed at their maximum rate (hyper-transcribed), yet still unable to meet new chronic environmental demands generated by "pollution", are inadequate and generate more and more intronic retrotransposon transcripts. In this scenario, RNA-guided mutagenic enzymes (e.g., Apolipoprotein B mRNA editing catalytic polypeptide-like enzymes, APOBECs), which have been shown to bind to retrotransposon RNA-repetitive sequences, would be surgically targeted by intronic retrotransposons on opened chromatin regions of the same "hyper-transcribed" genes. RNA-guided mutagenic enzymes may therefore "Lamarkianly" generate single nucleotide polymorphisms (SNP) and gene copy number variations (CNV), as well as transposon transposition and chromosomal translocations in the restricted areas of hyper-functional and inadequate genes, leaving intact the rest of the genome. CNV and SNP of hyper-transcribed genes may allow cells to surgically explore a new fitness scenario, which increases their adaptability to stressful environmental conditions. Like the mechanisms of immunoglobulin somatic hypermutation, non-random genome editing mechanisms may generate several cell mutants, and those codifying for the most environmentally adequate proteins would have a survival advantage and would therefore be Darwinianly selected. Non-random genome editing mechanisms represent tools of evolvability leading to organismal adaptation including transgenerational non-Mendelian gene transmission or to death of environmentally inadequate genomes. They are a link between environmental changes and biological novelty and plasticity, finally providing a molecular basis to reconcile gene-centred and "ecological" views of evolution.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; ; Tel./Fax: +39-0722-304-319
- National Institute for Nuclear Physics (INFN)-Gran Sasso National Laboratory (LNGS), 67100 Assergi, L’Aquila, Italy
| |
Collapse
|
26
|
Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc Natl Acad Sci U S A 2020; 117:9973-9980. [PMID: 32303657 DOI: 10.1073/pnas.2001451117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.
Collapse
|
27
|
The Tc1-like elements with the spliceosomal introns in mollusk genomes. Mol Genet Genomics 2020; 295:621-633. [DOI: 10.1007/s00438-020-01645-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
|
28
|
Zohn IE. Hsp90 and complex birth defects: A plausible mechanism for the interaction of genes and environment. Neurosci Lett 2020; 716:134680. [PMID: 31821846 DOI: 10.1016/j.neulet.2019.134680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
How genes and environment interact to cause birth defects is not well understood, but key to developing new strategies to modify risk. The threshold model has been proposed to represent this complex interaction. This model stipulates that while environmental exposure or genetic mutation alone may not result in a defect, factors in combination increase phenotypic variability resulting in more individuals crossing the disease threshold where birth defects manifest. Many environmental factors that contribute to birth defects induce widespread cellular stress and misfolding of proteins. Yet, the impact of the stress response on the threshold model is not typically considered in discephering the etiology of birth defects. This mini-review will explore a potential mechanism for gene-environment interactions co-opted from studies of evolution. This model stipulates that heat shock proteins that mediate the stress response induced by environmental factors can influence the number of individuals that cross disease thresholds resulting in increased incidence of birth defects. Studies in the field of evolutionary biology have demonstrated that heat shock proteins and Hsp90 in particular provide a link between environmental stress, genotype and phenotype. Hsp90 is a highly expressed molecular chaperone that assists a wide variety of protein clients with folding and conformational changes needed for proper function. Hsp90 also chaperones client proteins with potentially deleterious amino acid changes to suppress variation caused by genetic mutations. However, upon exposure to stress, Hsp90 abandons its normal physiological clients and is diverted to assist with the misfolded protein response. This can impact the activity of signaling pathways that involve Hsp90 clients as well as unmask suppressed protein variation, essentially creating complex traits in a single step. In this capacity Hsp90 acts as an evolutionary capacitor allowing stored variation to accumulate and then become expressed in times of stress. This mechanism provides a substrate which natural selection can act upon at the population level allowing survival of the species with selective pressure. However, at the level of the individual, this mechanism can result in simultaneous expression of deleterious variants as well as reduced activity of a variety of Hsp90 chaperoned pathways, potentially shifting phenotypic variability over the disease threshold resulting in birth defects.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, 20010, USA.
| |
Collapse
|
29
|
Pimpinelli S, Piacentini L. Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergio Pimpinelli
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| |
Collapse
|
30
|
Sordino P, D'Aniello S, Pelletier E, Wincker P, Nittoli V, Stemmann L, Mazzocchi MG, Lombard F, Iudicone D, Caputi L. Into the bloom: Molecular response of pelagic tunicates to fluctuating food availability. Mol Ecol 2019; 29:292-307. [PMID: 31793138 DOI: 10.1111/mec.15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/07/2023]
Abstract
The planktonic tunicates appendicularians and thaliaceans are highly efficient filter feeders on a wide range of prey size including bacteria and have shorter generation times than any other marine grazers. These traits allow some tunicate species to reach high population densities and ensure their success in a favourable environment. However, there are still few studies focusing on which genes and gene pathways are associated with responses of pelagic tunicates to environmental variability. Herein, we present the effect of food availability increase on tunicate community and gene expression at the Marquesas Islands (South-East Pacific Ocean). By using data from the Tara Oceans expedition, we show that changes in phytoplankton density and composition trigger the success of a dominant larvacean species (an undescribed appendicularian). Transcriptional signature to the autotroph bloom suggests key functions in specific physiological processes, i.e., energy metabolism, muscle contraction, membrane trafficking, and proteostasis. The relative abundance of reverse transcription-related Pfams was lower at bloom conditions, suggesting a link with adaptive genetic diversity in tunicates in natural ecosystems. Downstream of the bloom, pelagic tunicates were outcompeted by copepods. Our work represents the first metaomics study of the biological effects of phytoplankton bloom on a key zooplankton taxon.
Collapse
Affiliation(s)
| | | | - Eric Pelletier
- CEA - Institut Francois Jacob, Genoscope, Evry, France.,CNRS, UMR, Evry, France.,Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Patrick Wincker
- CEA - Institut Francois Jacob, Genoscope, Evry, France.,CNRS, UMR, Evry, France.,Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | | | - Lars Stemmann
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France.,CNRS, UMR 7093, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | | | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France.,CNRS, UMR 7093, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | | | | |
Collapse
|
31
|
Ansaloni F, Scarpato M, Di Schiavi E, Gustincich S, Sanges R. Exploratory analysis of transposable elements expression in the C. elegans early embryo. BMC Bioinformatics 2019; 20:484. [PMID: 31757208 PMCID: PMC6873666 DOI: 10.1186/s12859-019-3088-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Transposable Elements (TE) are mobile sequences that make up large portions of eukaryote genomes. The functions they play within the complex cellular architecture are still not clearly understood, but it is becoming evident that TE have a role in several physiological and pathological processes. In particular, it has been shown that TE transcription is necessary for the correct development of mice embryos and that their expression is able to finely modulate transcription of coding and non-coding genes. Moreover, their activity in the central nervous system (CNS) and other tissues has been correlated with the creation of somatic mosaicisms and with pathologies such as neurodevelopmental and neurodegenerative diseases as well as cancers. RESULTS We analyzed TE expression among different cell types of the Caenorhabditis elegans (C. elegans) early embryo asking if, where and when TE are expressed and whether their expression is correlated with genes playing a role in early embryo development. To answer these questions, we took advantage of a public C. elegans embryonic single-cell RNA-seq (sc-RNAseq) dataset and developed a bioinformatics pipeline able to quantify reads mapping specifically against TE, avoiding counting reads mapping on TE fragments embedded in coding/non-coding transcripts. Our results suggest that i) canonical TE expression analysis tools, which do not discard reads mapping on TE fragments embedded in annotated transcripts, may over-estimate TE expression levels, ii) Long Terminal Repeats (LTR) elements are mostly expressed in undifferentiated cells and might play a role in pluripotency maintenance and activation of the innate immune response, iii) non-LTR are expressed in differentiated cells, in particular in neurons and nervous system-associated tissues, and iv) DNA TE are homogenously expressed throughout the C. elegans early embryo development. CONCLUSIONS TE expression appears finely modulated in the C. elegans early embryo and different TE classes are expressed in different cell types and stages, suggesting that TE might play diverse functions during early embryo development.
Collapse
Affiliation(s)
- Federico Ansaloni
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Margherita Scarpato
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Stefano Gustincich
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
32
|
Monitoring of switches in heterochromatin-induced silencing shows incomplete establishment and developmental instabilities. Proc Natl Acad Sci U S A 2019; 116:20043-20053. [PMID: 31527269 DOI: 10.1073/pnas.1909724116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Position effect variegation (PEV) in Drosophila results from new juxtapositions of euchromatic and heterochromatic chromosomal regions, and manifests as striking bimodal patterns of gene expression. The semirandom patterns of PEV, reflecting clonal relationships between cells, have been interpreted as gene-expression states that are set in development and thereafter maintained without change through subsequent cell divisions. The rate of instability of PEV is almost entirely unexplored beyond the final expression of the modified gene; thus the origin of the expressivity and patterns of PEV remain unexplained. Many properties of PEV are not predicted from currently accepted biochemical and theoretical models. In this work we investigate the time at which expressivity of silencing is set, and find that it is determined before heterochromatin exists. We employ a mathematical simulation and a corroborating experimental approach to monitor switching (i.e., gains and losses of silencing) through development. In contrast to current views, we find that gene silencing is incompletely set early in embryogenesis, but nevertheless is repeatedly lost and gained in individual cells throughout development. Our data support an alternative to locus-specific "epigenetic" silencing at variegating gene promoters that more fully accounts for the final patterns of PEV.
Collapse
|
33
|
The Hsp70 chaperone is a major player in stress-induced transposable element activation. Proc Natl Acad Sci U S A 2019; 116:17943-17950. [PMID: 31399546 DOI: 10.1073/pnas.1903936116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that heat shock stress may activate transposable elements (TEs) in Drosophila and other organisms. Such an effect depends on the disruption of a chaperone complex that is normally involved in biogenesis of Piwi-interacting RNAs (piRNAs), the largest class of germline-enriched small noncoding RNAs implicated in the epigenetic silencing of TEs. However, a satisfying picture of how chaperones could be involved in repressing TEs in germ cells is still unknown. Here we show that, in Drosophila, heat shock stress increases the expression of TEs at a posttranscriptional level by affecting piRNA biogenesis through the action of the inducible chaperone Hsp70. We found that stress-induced TE activation is triggered by an interaction of Hsp70 with the Hsc70-Hsp90 complex and other factors all involved in piRNA biogenesis in both ovaries and testes. Such interaction induces a displacement of all such factors to the lysosomes, resulting in a functional collapse of piRNA biogenesis. This mechanism has clear evolutionary implications. In the presence of drastic environmental changes, Hsp70 plays a key dual role in increasing both the survival probability of individuals and the genetic variability in their germ cells. The consequent increase of genetic variation in a population potentiates evolutionary plasticity and evolvability.
Collapse
|
34
|
Puzakov MV, Puzakova LV. leidyi Is a New Group of DD41D Transposons in Mnemiopsis leidyi Genome. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Androsiuk P, Koc J, Chwedorzewska KJ, Górecki R, Giełwanowska I. Retrotransposon-based genetic variation of Poa annua populations from contrasting climate conditions. PeerJ 2019; 7:e6888. [PMID: 31143535 PMCID: PMC6525586 DOI: 10.7717/peerj.6888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/02/2019] [Indexed: 11/29/2022] Open
Abstract
Background Poa annua L. is an example of a plant characterized by abundant, worldwide distribution from polar to equatorial regions. Due to its high plasticity and extraordinary expansiveness, P. annua is considered an invasive species capable of occupying and surviving in a wide range of habitats including pioneer zones, areas intensively transformed by human activities, remote subarctic meadows and even the Antarctic Peninsula region. Methods In the present study, we evaluated the utility of inter-primer binding site (iPBS) markers for assessing the genetic variation of P. annua populations representing contrasting environments from the worldwide range of this species. The electrophoretic patterns of polymerase chain reaction products obtained for each individual were used to estimate the genetic diversity and differentiation between populations. Results iPBS genotyping revealed a pattern of genetic variation differentiating the six studied P. annua populations characterized by their different climatic conditions. According to the analysis of molecular variance, the greatest genetic variation was recorded among populations, whereas 41.75% was observed between individuals within populations. The results of principal coordinates analysis (PCoA) and model-based clustering analysis showed a clear subdivision of analyzed populations. According to PCoA, populations from Siberia and the Kola Peninsula were the most different from each other and showed the lowest genetic variability. The application of STRUCTURE software confirmed the unique character of the population from the Kola Peninsula. Discussion The lowest variability of the Siberia population suggested that it was subjected to genetic drift. However, although demographic expansion was indicated by negative values of Fu’s FS statistic and analysis of mismatch distribution, it was not followed by significant traces of a bottleneck or a founder effect. For the Antarctic population, the observed level of genetic variation was surprisingly high, despite the observed significant traces of bottleneck/founder effect following demographic expansion, and was similar to that observed in populations from Poland and the Balkans. For the Antarctic population, the multiple introduction events from different sources are considered to be responsible for such an observation. Moreover, the results of STRUCTURE and PCoA showed that the P. annua from Antarctica has the highest genetic similarity to populations from Europe. Conclusions The observed polymorphism should be considered as a consequence of the joint influence of external abiotic stress and the selection process. Environmental changes, due to their ability to induce transposon activation, lead to the acceleration of evolutionary processes through the production of genetic variability.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Justyna Koc
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Ryszard Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
36
|
Cusumano P, Damulewicz M, Carbognin E, Caccin L, Puricella A, Specchia V, Bozzetti MP, Costa R, Mazzotta GM. The RNA Helicase BELLE Is Involved in Circadian Rhythmicity and in Transposons Regulation in Drosophila melanogaster. Front Physiol 2019; 10:133. [PMID: 30842743 PMCID: PMC6392097 DOI: 10.3389/fphys.2019.00133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Circadian clocks control and synchronize biological rhythms of several behavioral and physiological phenomena in most, if not all, organisms. Rhythm generation relies on molecular auto-regulatory oscillations of interlocked transcriptional-translational feedback loops. Rhythmic clock-gene expression is at the base of rhythmic protein accumulation, though post-transcriptional and post-translational mechanisms have evolved to adjust and consolidate the proper pace of the clock. In Drosophila, BELLE, a conserved DEAD-box RNA helicase playing important roles in reproductive capacity, is involved in the small RNA-mediated regulation associated to the piRNA pathway. Here, we report that BELLE is implicated in the circadian rhythmicity and in the regulation of endogenous transposable elements (TEs) in both nervous system and gonads. We suggest that BELLE acts as important element in the piRNA-mediated regulation of the TEs and raise the hypothesis that this specific regulation could represent another level of post-transcriptional control adopted by the clock to ensure the proper rhythmicity.
Collapse
Affiliation(s)
- Paola Cusumano
- Department of Biology, University of Padua, Padua, Italy
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | | - Laura Caccin
- Department of Biology, University of Padua, Padua, Italy
| | - Antonietta Puricella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | | |
Collapse
|
37
|
Specchia V, Puricella A, D'Attis S, Massari S, Giangrande A, Bozzetti MP. Drosophila melanogaster as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome. Front Genet 2019; 10:10. [PMID: 30815010 PMCID: PMC6381874 DOI: 10.3389/fgene.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| |
Collapse
|
38
|
Pirogov SA, Maksimenko OG, Georgiev PG. Transposable Elements in the Evolution of Gene Regulatory Networks. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Carducci F, Barucca M, Canapa A, Biscotti MA. Rex Retroelements and Teleost Genomes: An Overview. Int J Mol Sci 2018; 19:ijms19113653. [PMID: 30463278 PMCID: PMC6274825 DOI: 10.3390/ijms19113653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
Repetitive DNA is an intriguing portion of the genome still not completely discovered and shows a high variability in terms of sequence, genomic organization, and evolutionary mode. On the basis of the genomic organization, it includes satellite DNAs, which are organized as long arrays of head-to-tail linked repeats, and transposable elements, which are dispersed throughout the genome. These repeated elements represent a considerable fraction of vertebrate genomes contributing significantly in species evolution. In this review, we focus our attention on Rex1, Rex3 and Rex6, three elements specific of teleost genomes. We report an overview of data available on these retroelements highlighting their significative impact in chromatin and heterochromatin organization, in the differentiation of sex chromosomes, in the formation of supernumerary chromosomes, and in karyotype evolution in teleosts.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
40
|
Cappucci U, Torromino G, Casale AM, Camon J, Capitano F, Berloco M, Mele A, Pimpinelli S, Rinaldi A, Piacentini L. Stress-induced strain and brain region-specific activation of LINE-1 transposons in adult mice. Stress 2018; 21:575-579. [PMID: 29996702 DOI: 10.1080/10253890.2018.1485647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are conserved mobile genetic elements that are highly abundant in most eukaryotic genomes. Although the exact function of TEs is still largely unknown, it is increasingly clear that they are significantly modulated in response to stress in a wide range of organisms, either directly or indirectly through regulation of epigenetic silencing. We investigated the effect of repeated restraint stress (2 h a day, for 5 d) on transcription levels of LINE-1 (L1) retrotransposon in the brain of inbred BALB/c, DBA/2, C57BL/6N, and outbred CD1 mice. Repeated restraint stress induced strain and brain region-specific modulation of L1 activity. We observed a significant derepression of L1 transcription in the hippocampus (HIPP) of BALB/c mice and a significant downregulation in the hippocampus of C57BL/6N mice. No significant change in L1 expression was found in the other strains and brain regions. These findings indicate in mice the control of transposons expression as an additional mechanism in stress-induced pathophysiological responses, demonstrating that their regulation is highly dependent on the strain genetic background and the brain region. Lay summary Hippocampal expression of the transposon L1 is significantly altered by repeated restraint stress in mice. L1 modulation is not only region specific, but also strain dependent, suggesting that the genetic background is an important determinant of L1 response to environmental stimuli.
Collapse
Affiliation(s)
- Ugo Cappucci
- a Department of Biology and Biotechnology "C. Darwin" , Sapienza University of Rome , Rome , Italy
- b Istituto Pasteur Italia , Fondazione Cenci-Bolognetti , Rome , Italy
| | - Giulia Torromino
- a Department of Biology and Biotechnology "C. Darwin" , Sapienza University of Rome , Rome , Italy
| | - Assunta Maria Casale
- a Department of Biology and Biotechnology "C. Darwin" , Sapienza University of Rome , Rome , Italy
- b Istituto Pasteur Italia , Fondazione Cenci-Bolognetti , Rome , Italy
| | - Jeremy Camon
- a Department of Biology and Biotechnology "C. Darwin" , Sapienza University of Rome , Rome , Italy
| | - Fabrizio Capitano
- a Department of Biology and Biotechnology "C. Darwin" , Sapienza University of Rome , Rome , Italy
| | - Maria Berloco
- c Department of Biology , University of Bari "Aldo Moro" , Bari , Italy
| | - Andrea Mele
- a Department of Biology and Biotechnology "C. Darwin" , Sapienza University of Rome , Rome , Italy
- d Center for Research in Neurobiology "D. Bovet" , Sapienza University of Rome , Rome , Italy
| | - Sergio Pimpinelli
- a Department of Biology and Biotechnology "C. Darwin" , Sapienza University of Rome , Rome , Italy
- b Istituto Pasteur Italia , Fondazione Cenci-Bolognetti , Rome , Italy
| | - Arianna Rinaldi
- a Department of Biology and Biotechnology "C. Darwin" , Sapienza University of Rome , Rome , Italy
- d Center for Research in Neurobiology "D. Bovet" , Sapienza University of Rome , Rome , Italy
| | - Lucia Piacentini
- a Department of Biology and Biotechnology "C. Darwin" , Sapienza University of Rome , Rome , Italy
- b Istituto Pasteur Italia , Fondazione Cenci-Bolognetti , Rome , Italy
| |
Collapse
|
41
|
An Analysis of IS630/Tc1/mariner Transposons in the Genome of a Pacific Oyster, Crassostrea gigas. J Mol Evol 2018; 86:566-580. [PMID: 30283979 DOI: 10.1007/s00239-018-9868-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Transposable elements represent the DNA fragments capable of increasing their copy number and moving within the genome. Class II mobile elements represents the DNA transposons, which transpose via excision and the subsequent reinsertion at random genomic loci. The increase of their copy number occurs only when the transposition event is coupled with the replication. IS630/Tc1/mariner DNA transposon superfamily is one of the largest and widely distributed among the Class II elements. In this work, we provide a detailed analysis of IS630/Tc1/mariner DNA transposons from the Pacific oyster, Crassostrea gigas. IS630/Tc1/mariner transposons represented in the genome of the Pacific oyster belong to four families, Tc1 (DD34E), mariner (DD34D), pogo (DDxD), and rosa (DD41D). More than a half of IS630/Tc1/mariner elements from C. gigas belong to Tc1 family. Furthermore, Mariner-31_CGi element was shown to represent a new and previously unknown family with DD37E signature. We also discovered the full-size transcripts of eight elements from Tc1, mariner, and pogo families, three of which can, presumably, retain their transposition activity.
Collapse
|
42
|
Moreira A, Figueira E, Mestre NC, Schrama D, Soares AMVM, Freitas R, Bebianno MJ. Impacts of the combined exposure to seawater acidification and arsenic on the proteome of Crassostrea angulata and Crassostrea gigas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:117-129. [PMID: 30119036 DOI: 10.1016/j.aquatox.2018.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Proteomic analysis was performed to compare the effects of Arsenic (As), seawater acidification (Low pH) and the combination of both stressors (Low pH + As) on Crassostrea angulata and Crassostrea gigas juveniles in the context of global environmental change. This study aimed to elucidate if two closely related Crassostrea species respond similarly to these environmental stressors, considering both single and combined exposures, to infer if the simultaneous exposure to both stressors induced a differentiated response. Identification of the most important differentially expressed proteins between conditions revealed marked differences in the response of each species towards single and combined exposures, evidencing species-related differences towards each experimental condition. Moreover, protein alterations observed in the combined exposure (Low pH + As) were substantially different from those observed in single exposures. Identified proteins and their putative biological functions revealed an array of modes of action in each condition. Among the most important, those involved in cellular structure (Actin, Atlastin, Severin, Gelsolin, Coronin) and extracellular matrix modulation (Ependymin, Tight junction ZO-1, Neprilysin) were strongly regulated, although in different exposure conditions and species. Data also revealed differences regarding metabolic modulation capacity (ATP β, Enolase, Aconitate hydratase) and oxidative stress response (Aldehyde dehydrogenase, Lactoylglutathione, Retinal dehydrogenase) of each species, which also depended on single or combined exposures, illustrating a different response capacity of both oyster species to the presence of multiple stressors. Interestingly, alterations of piRNA abundance in C. angulata suggested genome reconfiguration in response to multiple stressors, likely an important mode of action related to adaptive evolution mechanisms previously unknown to oyster species, which requires further investigation. The present findings provide a deeper insight into the complexity of C. angulata and C. gigas responses to environmental stress at the proteome level, evidencing different capacities to endure abiotic changes, with relevance regarding the ecophysiological fitness of each species and competitive advantages in a changing environment.
Collapse
Affiliation(s)
- Anthony Moreira
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Nélia C Mestre
- CIMA, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Denise Schrama
- CCMAR, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | |
Collapse
|
43
|
Abstract
From bacteria to humans, ancient stress responses enable organisms to contend with damage to both the genome and the proteome. These pathways have long been viewed as fundamentally separate responses. Yet recent discoveries from multiple fields have revealed surprising links between the two. Many DNA-damaging agents also target proteins, and mutagenesis induced by DNA damage produces variant proteins that are prone to misfolding, degradation, and aggregation. Likewise, recent studies have observed pervasive engagement of a p53-mediated response, and other factors linked to maintenance of genomic integrity, in response to misfolded protein stress. Perhaps most remarkably, protein aggregation and self-assembly has now been observed in multiple proteins that regulate the DNA damage response. The importance of these connections is highlighted by disease models of both cancer and neurodegeneration, in which compromised DNA repair machinery leads to profound defects in protein quality control, and vice versa.
Collapse
|
44
|
Schrader L, Schmitz J. The impact of transposable elements in adaptive evolution. Mol Ecol 2018; 28:1537-1549. [PMID: 30003608 DOI: 10.1111/mec.14794] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022]
Abstract
The growing knowledge about the influence of transposable elements (TEs) on (a) long-term genome and transcriptome evolution; (b) genomic, transcriptomic and epigenetic variation within populations; and (c) patterns of somatic genetic differences in individuals continues to spur the interest of evolutionary biologists in the role of TEs in adaptive evolution. As TEs can trigger a broad range of molecular variation in a population with potentially severe fitness and phenotypic consequences for individuals, different mechanisms evolved to keep TE activity in check, allowing for a dynamic interplay between the host, its TEs and the environment in evolution. Here, we review evidence for adaptive phenotypic changes associated with TEs and the basic molecular mechanisms by which the underlying genetic changes arise: (a) domestication, (b) exaptation, (c) host gene regulation, (d) TE-mediated formation of intronless gene copies-so-called retrogenes and (e) overall increased genome plasticity. Furthermore, we review and discuss how the stress-dependent incapacitation of defence mechanisms against the activity of TEs might facilitate adaptive responses to environmental challenges and how such mechanisms might be particularly relevant in species frequently facing novel environments, such as invasive, pathogenic or parasitic species.
Collapse
Affiliation(s)
- Lukas Schrader
- Institute for Evolution and Biodiversity (IEB), University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| |
Collapse
|
45
|
Zabinsky RA, Mason GA, Queitsch C, Jarosz DF. It's not magic - Hsp90 and its effects on genetic and epigenetic variation. Semin Cell Dev Biol 2018; 88:21-35. [PMID: 29807130 DOI: 10.1016/j.semcdb.2018.05.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
Canalization, or phenotypic robustness in the face of environmental and genetic perturbation, is an emergent property of living systems. Although this phenomenon has long been recognized, its molecular underpinnings have remained enigmatic until recently. Here, we review the contributions of the molecular chaperone Hsp90, a protein that facilitates the folding of many key regulators of growth and development, to canalization of phenotype - and de-canalization in times of stress - drawing on studies in eukaryotes as diverse as baker's yeast, mouse ear cress, and blind Mexican cavefish. Hsp90 is a hub of hubs that interacts with many so-called 'client proteins,' which affect virtually every aspect of cell signaling and physiology. As Hsp90 facilitates client folding and stability, it can epistatically suppress or enable the expression of genetic variants in its clients and other proteins that acquire client status through mutation. Hsp90's vast interaction network explains the breadth of its phenotypic reach, including Hsp90-dependent de novo mutations and epigenetic effects on gene regulation. Intrinsic links between environmental stress and Hsp90 function thus endow living systems with phenotypic plasticity in fluctuating environments. As environmental perturbations alter Hsp90 function, they also alter Hsp90's interaction with its client proteins, thereby re-wiring networks that determine the genotype-to-phenotype map. Ensuing de-canalization of phenotype creates phenotypic diversity that is not simply stochastic, but often has an underlying genetic basis. Thus, extreme phenotypes can be selected, and assimilated so that they no longer require environmental stress to manifest. In addition to acting on standing genetic variation, Hsp90 perturbation has also been linked to increased frequency of de novo variation and several epigenetic phenomena, all with the potential to generate heritable phenotypic change. Here, we aim to clarify and discuss the multiple means by which Hsp90 can affect phenotype and possibly evolutionary change, and identify their underlying common feature: at its core, Hsp90 interacts epistatically through its chaperone function with many other genes and their gene products. Its influence on phenotypic diversification is thus not magic but rather a fundamental property of genetics.
Collapse
Affiliation(s)
- Rebecca A Zabinsky
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
46
|
Biscotti MA, Barucca M, Canapa A. New insights into the genome repetitive fraction of the Antarctic bivalve Adamussium colbecki. PLoS One 2018; 13:e0194502. [PMID: 29590185 PMCID: PMC5874043 DOI: 10.1371/journal.pone.0194502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/05/2018] [Indexed: 11/29/2022] Open
Abstract
Repetitive DNA represents the major component of the genome in both plant and animal species. It includes transposable elements (TEs), which are dispersed throughout the genome, and satellite DNAs (satDNAs), which are tandemly organized in long arrays. The study of the structure and organization of repetitive DNA contributes to our understanding of genome architecture and the mechanisms leading to its evolution. Molluscs represent one of the largest groups of invertebrates and include organisms with a wide variety of morphologies and lifestyles. To increase our knowledge of bivalves at the genome level, we analysed the Antarctic scallop Adamussium colbecki. The screening of the genomic library evidenced the presence of two novel satDNA elements and the CvA transposon. The interspecific investigation performed in this study demonstrated that one of the two satDNAs isolated in A. colbecki is widespread in polar molluscan species, indicating a possible link between repetitive DNA and abiotic factors. Moreover, the transcriptional activity of CvA and its presence in long-diverged bivalves suggests a possible role for this ancient element in shaping the genome architecture of this clade.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
47
|
Levis NA, Pfennig DW. Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Semin Cell Dev Biol 2018; 88:80-90. [PMID: 29408711 DOI: 10.1016/j.semcdb.2018.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
A growing number of biologists have begun asking whether environmentally induced phenotypic change--'phenotypic plasticity'--precedes and facilitates the origin and canalization of novel, complex phenotypes. However, such 'plasticity-first evolution' (PFE) remains controversial. Here, we summarize the PFE hypothesis and describe how it can be evaluated in natural systems. We then review the evidence for PFE from amphibians (a group in which phenotypic plasticity is especially widespread) and describe how phenotypic plasticity might have facilitated macroevolutionary change. Finally, we discuss what is known about the proximate mechanisms of PFE in amphibians. We close with suggestions for future research. As we describe, amphibians offer some of the best support for plasticity's role in the origin of evolutionary novelties.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
48
|
Šiukšta R, Vaitkūnienė V, Rančelis V. Is auxin involved in the induction of genetic instability in barley homeotic double mutants? PLANTA 2018; 247:483-498. [PMID: 29080070 DOI: 10.1007/s00425-017-2802-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.
Collapse
Affiliation(s)
- Raimondas Šiukšta
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania.
- Botanical Garden of Vilnius University, Kairėnai Str. 43, 10239, Vilnius, Lithuania.
| | - Virginija Vaitkūnienė
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania
- Botanical Garden of Vilnius University, Kairėnai Str. 43, 10239, Vilnius, Lithuania
| | - Vytautas Rančelis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania
| |
Collapse
|
49
|
Puzakova LV, Puzakov MV. The Tc1/mariner DNA transposons in the genome of mollusk Littorina saxatilis. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417120110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Auboeuf D. Genome evolution is driven by gene expression-generated biophysical constraints through RNA-directed genetic variation: A hypothesis. Bioessays 2017; 39. [DOI: 10.1002/bies.201700069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210; Laboratory of Biology and Modelling of the Cell; Site Jacques Monod; Lyon France
| |
Collapse
|