1
|
Shimizu N, Shimizu T, Higashi Y, Zou S, Fukuhara H, Karashima T, Inoue K, Saito M. Possible involvement of brain hydrogen sulphide in the inhibition of the rat micturition reflex induced by activation of brain alpha7 nicotinic acetylcholine receptors. Eur J Pharmacol 2023:175839. [PMID: 37301318 DOI: 10.1016/j.ejphar.2023.175839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
We previously reported that brain α7 nicotinic acetylcholine receptors inhibited the rat micturition reflex. To elucidate the mechanisms underlying this inhibition, we focused on the relationship between α7 nicotinic acetylcholine receptors and hydrogen sulphide (H2S) because we found that H2S also inhibits the rat micturition reflex in the brain. Therefore, we investigated whether H2S is involved in the inhibition of the micturition reflex induced by the activation of α7 nicotinic acetylcholine receptors in the brain. Cystometry was performed in male Wistar rats under urethane anesthesia (0.8 g/kg, ip) to examine the effects of icv pre-treated GYY4137 (H2S donor, 1 or 3 nmol/rat) or aminooxyacetic acid (AOAA; non-selective H2S synthesis inhibitor, 3 or 10 μg/rat) on PHA568487 (α7 nicotinic acetylcholine receptor agonist, icv)-induced prolongation of intercontraction intervals. PHA568487 administration at a lower dose (0.3 nmol/rat, icv) had no significant effect on intercontraction intervals, while under pre-treatment with GYY4137 (3 nmol/rat icv), PHA568487 (0.3 nmol/rat, icv) significantly prolonged intercontraction intervals. PHA568487 at a higher dose (1 nmol/rat, icv) induced intercontraction interval prolongation, and the PHA568487-induced prolongation was significantly suppressed by AOAA (10 μg/rat, icv). The AOAA-induced suppression of the PHA568487-induced intercontraction interval prolongation was negated by supplementing H2S via GYY4137 at a lower dose (1 nmol/rat, icv) in the brain. GYY4137 or AOAA alone showed no significant effect on intercontraction intervals at each dose used in this study. These findings suggest a possible involvement of brain H2S in inhibiting the rat micturition reflex induced by activation of brain alpha7 nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
2
|
Richter K, Asci N, Singh VK, Yakoob SH, Meixner M, Zakrzewicz A, Liese J, Hecker A, Wilker S, Stumpf S, Schlüter KD, Rohde M, Gödecke A, Padberg W, Manzini I, Schmalzing G, Grau V. Activation of endothelial NO synthase and P2X7 receptor modification mediates the cholinergic control of ATP-induced interleukin-1β release by mononuclear phagocytes. Front Immunol 2023; 14:1140592. [PMID: 36969210 PMCID: PMC10034071 DOI: 10.3389/fimmu.2023.1140592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
ObjectiveThe pro-inflammatory cytokine interleukin-1β (IL-1β) plays a central role in host defense against infections. High systemic IL-1β levels, however, promote the pathogenesis of inflammatory disorders. Therefore, mechanisms controlling IL-1β release are of substantial clinical interest. Recently, we identified a cholinergic mechanism inhibiting the ATP-mediated IL-1β release by human monocytes via nicotinic acetylcholine receptor (nAChR) subunits α7, α9 and/or α10. We also discovered novel nAChR agonists that trigger this inhibitory function in monocytic cells without eliciting ionotropic functions at conventional nAChRs. Here, we investigate the ion flux-independent signaling pathway that links nAChR activation to the inhibition of the ATP-sensitive P2X7 receptor (P2X7R).MethodsDifferent human and murine mononuclear phagocytes were primed with lipopolysaccharide and stimulated with the P2X7R agonist BzATP in the presence or absence of nAChR agonists, endothelial NO synthase (eNOS) inhibitors, and NO donors. IL-1β was measured in cell culture supernatants. Patch-clamp and intracellular Ca2+ imaging experiments were performed on HEK cells overexpressing human P2X7R or P2X7R with point mutations at cysteine residues in the cytoplasmic C-terminal domain.ResultsThe inhibitory effect of nAChR agonists on the BzATP-induced IL-1β release was reversed in the presence of eNOS inhibitors (L-NIO, L-NAME) as well as in U937 cells after silencing of eNOS expression. In peripheral blood mononuclear leukocytes from eNOS gene-deficient mice, the inhibitory effect of nAChR agonists was absent, suggesting that nAChRs signal via eNOS to inhibit the BzATP-induced IL-1β release. Moreover, NO donors (SNAP, S-nitroso-N-acetyl-DL-penicillamine; SIN-1) inhibited the BzATP-induced IL-1β release by mononuclear phagocytes. The BzATP-induced ionotropic activity of the P2X7R was abolished in the presence of SIN-1 in both, Xenopus laevis oocytes and HEK cells over-expressing the human P2X7R. This inhibitory effect of SIN-1 was absent in HEK cells expressing P2X7R, in which C377 was mutated to alanine, indicating the importance of C377 for the regulation of the P2X7R function by protein modification.ConclusionWe provide first evidence that ion flux-independent, metabotropic signaling of monocytic nAChRs involves eNOS activation and P2X7R modification, resulting in an inhibition of ATP signaling and ATP-mediated IL-1β release. This signaling pathway might be an interesting target for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
- *Correspondence: Katrin Richter,
| | - Nilay Asci
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
| | - Vijay K. Singh
- Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | | | - Marion Meixner
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
| | - Juliane Liese
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
| | - Sabine Stumpf
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
| | | | - Marius Rohde
- Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Centre for Lung Research (DZL), Cardio Pulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
3
|
Tae HS, Adams DJ. Nicotinic acetylcholine receptor subtype expression, function, and pharmacology: Therapeutic potential of α-conotoxins. Pharmacol Res 2023; 191:106747. [PMID: 37001708 DOI: 10.1016/j.phrs.2023.106747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.
Collapse
|
4
|
Feldman-Goriachnik R, Hanani M. How do neurons in sensory ganglia communicate with satellite glial cells? Brain Res 2021; 1760:147384. [PMID: 33631206 DOI: 10.1016/j.brainres.2021.147384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Neurons and satellite glial cells (SGCs) in sensory ganglia maintain bidirectional communications that are believed to be largely mediated by chemical messengers. Nerve injury leads to SGC activation, which was proposed to be mediated by nitric oxide (NO) released from active neurons, but evidence for this is lacking. Here we tested the idea that increased neuronal firing is a major factor in NO release. We activated neurons in isolated dorsal root and trigeminal ganglia from mice with capsaicin (5 µM), which acts on transient receptor potential vanilloid type 1 (TRPV1) channels in small neurons. We found that capsaicin induced SGC activation, as assayed by glial fibrillary acidic protein (GFAP) upregulation, and an NO-donor had a similar effect. Incubating the ganglia in capsaicin in the presence of the NO-synthase inhibitor L-NAME (100 µM) prevented the GFAP upregulation. We also found that capsaicin caused an increase in SGC-SGC coupling, which was shown previously to accompany SGC activation. To test the contribution of ATP to the actions of capsaicin, we incubated the ganglia with capsaicin in the presence of P2 purinergic receptor inhibitor suramin (100 µM), which prevented the capsaicin-induced GFAP upregulation. Size analysis indicated that although capsaicin acts mainly on small neurons, SGCs around neurons of all sizes were affected by capsaicin, suggesting a spread of signals from small neurons to neighboring cells. We conclude that neuronal excitation leads to NO release, which induces SGCs activation. It appears that ATP participates in NO's action, possibly by interaction with TRPV1 channels.
Collapse
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
5
|
Shreckengost J, Halder M, Mena-Avila E, Garcia-Ramirez DL, Quevedo J, Hochman S. Nicotinic receptor modulation of primary afferent excitability with selective regulation of Aδ-mediated spinal actions. J Neurophysiol 2020; 125:568-585. [PMID: 33326305 DOI: 10.1152/jn.00228.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatosensory input strength can be modulated by primary afferent depolarization (PAD) generated predominantly via presynaptic GABAA receptors on afferent terminals. We investigated whether ionotropic nicotinic acetylcholine receptors (nAChRs) also provide modulatory actions, focusing on myelinated afferent excitability in in vitro murine spinal cord nerve-attached models. Primary afferent stimulation-evoked synaptic transmission was recorded in the deep dorsal horn as extracellular field potentials (EFPs), whereas concurrently recorded dorsal root potentials (DRPs) were used as an indirect measure of PAD. Changes in afferent membrane excitability were simultaneously measured as direct current (DC)-shifts in membrane polarization recorded in dorsal roots or peripheral nerves. The broad nAChR antagonist d-tubocurarine (d-TC) selectively and strongly depressed Aδ-evoked synaptic EFPs (36% of control) coincident with similarly depressed A-fiber DRP (43% of control), whereas afferent electrical excitability remained unchanged. In comparison, acetylcholine (ACh) and the nAChR agonists, epibatidine and nicotine, reduced afferent excitability by generating coincident depolarizing DC-shifts in peripheral axons and intraspinally. Progressive depolarization corresponded temporally with the emergence of spontaneous axonal spiking and reductions in the DRP and all afferent-evoked synaptic actions (31%-37% of control). Loss of evoked response was long-lasting, independent of DC repolarization, and likely due to mechanisms initiated by spontaneous C-fiber activity. DC-shifts were blocked with d-TC but not GABAA receptor blockers and retained after tetrodotoxin block of voltage-gated Na+ channels. Notably, actions tested were comparable between three mouse strains, in rat, and when performed in different labs. Thus, nAChRs can regulate afferent excitability via two distinct mechanisms: by central Aδ-afferent actions, and by transient extrasynaptic axonal activation of high-threshold primary afferents.NEW & NOTEWORTHY Primary afferents express many nicotinic ACh receptor (nAChR) subtypes but whether activation is linked to presynaptic inhibition, facilitation, or more complex and selective activity modulation is unknown. Recordings of afferent-evoked responses in the lumbar spinal cord identified two nAChR-mediated modulatory actions: 1) selective control of Aδ afferent transmission and 2) robust changes in axonal excitability initiated via extrasynaptic shifts in DC polarization. This work broadens the diversity of presynaptic modulation of primary afferents by nAChRs.
Collapse
Affiliation(s)
| | - Mallika Halder
- Department of Physiology, Emory University, Atlanta, Georgia
| | - Elvia Mena-Avila
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - David Leonardo Garcia-Ramirez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Jorge Quevedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Shawn Hochman
- Department of Physiology, Emory University, Atlanta, Georgia
| |
Collapse
|
6
|
Kusuda R, Carreira EU, Ulloa L, Cunha FQ, Kanashiro A, Cunha TM. Choline attenuates inflammatory hyperalgesia activating nitric oxide/cGMP/ATP-sensitive potassium channels pathway. Brain Res 2019; 1727:146567. [PMID: 31783002 DOI: 10.1016/j.brainres.2019.146567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 12/25/2022]
Abstract
New findings on neural regulation of immunity are allowing the design of novel pharmacological strategies to control inflammation and nociception. Herein, we report that choline, a 7-nicotinic acetylcholine receptor (α7nAChRs) agonist, prevents carrageenan-induced hyperalgesia without affecting inflammatory parameters (neutrophil migration or cytokine/chemokines production) or inducing sedation or even motor impairment. Choline also attenuates prostaglandin-E2 (PGE2)-induced hyperalgesia via α7nAChR activation and this antinociceptive effect was abrogated by administration of LNMMA (a nitric oxide synthase inhibitor), ODQ (an inhibitor of soluble guanylate cyclase; cGMP), andglibenclamide(an inhibitor of ATP-sensitive potassium channels). Furthermore, choline attenuates long-lasting Complete Freund's Adjuvant and incision-induced hyperalgesia suggesting its therapeutic potential to treat pain in rheumatoid arthritis or post-operative recovery, respectively. Our results suggest that choline modulates inflammatory hyperalgesia by activating the nitric oxide/cGMP/ATP-sensitive potassium channels without interfering in inflammatory events, and could be used in persistent pain conditions.
Collapse
Affiliation(s)
- Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eleonora Uchôa Carreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
7
|
Alahmari AA, Sreekumar B, Patel V, Ashat M, Alexandre M, Uduman AK, Akinbiyi EO, Ceplenski A, Shugrue CA, Kolodecik TR, Tashkandi N, Messenger SW, Groblewski GE, Gorelick FS, Thrower EC. Cigarette toxin 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces experimental pancreatitis through α7 nicotinic acetylcholine receptors (nAChRs) in mice. PLoS One 2018; 13:e0197362. [PMID: 29870540 PMCID: PMC5988302 DOI: 10.1371/journal.pone.0197362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/01/2018] [Indexed: 01/29/2023] Open
Abstract
Clinical studies have shown that cigarette smoking is a dose-dependent and independent risk factor for acute pancreatitis. Cigarette smoke contains nicotine which can be converted to the potent receptor ligand and toxin, NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]. Previously, we have shown that NNK induces premature activation of pancreatic zymogens in rats, an initiating event in pancreatitis, and this activation is prevented by pharmacologic inhibition of nicotinic acetylcholine receptors (nAChR). In this study, we determined whether NNK mediates pancreatitis through the α7 isoform of nAChR using α7nAChR knockout mice. PCR analysis confirmed expression of non-neuronal α7nAChR in C57BL/6 (WT) mouse and human acinar cells. NNK treatment stimulated trypsinogen activation in acini from WT but not α7nAChR-/- mice. NNK also stimulated trypsinogen activation in human acini. To further confirm these findings, WT and α7nAChR-/- mice were treated with NNK in vivo and markers of pancreatitis were measured. As observed in acini NNK treatment induced trypsinogen activation in WT but not α7nAChR-/- mice. NNK also induced other markers of pancreatitis including pancreatic edema, vacuolization and pyknotic nuclei in WT but not α7nAChR-/- animals. NNK treatment led to increased neutrophil infiltration, a marker of inflammation, in WT mice and to a significantly lesser extent in α7nAChR-/- mice. We also examined downstream targets of α7nAChR activation and found that calcium and PKC activation are involved down stream of NNK stimulation of α7nAChR. In this study we used genetic deletion of the α7nAChR to confirm our previous inhibitor studies that demonstrated NNK stimulates pancreatitis by activating this receptor. Lastly, we demonstrate that NNK can also stimulate zymogen activation in human acinar cells and thus may play a role in human disease.
Collapse
Affiliation(s)
- A. A. Alahmari
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - B. Sreekumar
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - V. Patel
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - M. Ashat
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - M. Alexandre
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - A. K. Uduman
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - E. O. Akinbiyi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - A. Ceplenski
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - C. A. Shugrue
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - T. R. Kolodecik
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - N. Tashkandi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| | - S. W. Messenger
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - G. E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - F. S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States of America
| | - E. C. Thrower
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States of America
- Veterans Affairs Connecticut Healthcare, West Haven, CT, United States of America
| |
Collapse
|
8
|
Fluegge K, Fluegge K. Antecedent ADHD, dementia, and metabolic dysregulation: A U.S. based cohort analysis. Neurochem Int 2018; 112:255-258. [DOI: 10.1016/j.neuint.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
9
|
Hone AJ, McIntosh JM. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett 2017; 592:1045-1062. [PMID: 29030971 DOI: 10.1002/1873-3468.12884] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are actively being investigated as therapeutic targets for the treatment of pain and inflammation, but despite more than 30 years of research, there are currently no FDA-approved analgesics that are specific for these receptors. Much of the initial research effort focused on the α4β2 nAChR subtype, but more recently, additional subtypes have been identified as promising new leads and include α6β4, α7, and α9-containing nAChRs. This Review will focus on the distribution of these nAChRs in the cell types involved in neuropathic pain and inflammation and the activity of currently available nicotinic ligands.
Collapse
Affiliation(s)
- Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, USA.,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.,George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Fluegge K. Environmental contributors to modulation of brain estrogen signaling and male gender bias in autism: A reply to the oral contraceptive use hypothesis by Strifert (2015). Med Hypotheses 2017; 104:178-181. [PMID: 28673581 DOI: 10.1016/j.mehy.2017.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/29/2017] [Accepted: 06/20/2017] [Indexed: 11/28/2022]
Abstract
Strifert has recently put forward an interesting hypothesis regarding the role of oral contraceptive (OC) use in mothers and risk of offspring autism spectrum disorder (ASD). First, the author reports that combined oral contraceptives (COCs), containing both estrogen and progesterone, were developed in the late 1950s and early 60s, which is a time-frame distinct from Leo Kanner's documentation of infantile ASD in 1943 that Strifert just briefly mentions. While this important temporal inconsistency of ASD origin does not invalidate the potential role of OC use in contributing to the rise of ASD, it does support the likely possibility of other environmental exposures at play. Second, the epigenetic basis of the hypothesis is that the endocrine-disrupting components (i.e., ethinylestradiol) of OC perturb estrogenic signaling in the fetal brain by triggering aberrant DNA methylation of the estrogen receptor β (ERβ) gene, and such methylation patterns may be imprinted to future generations and could theoretically increase subsequent ASD offspring risk. The premise of the hypothesis is challenged, however, with the recognition that MeCP2, a "reader" of DNA methylation sites, is not only associated with age-dependent alteration in ERβ in females but is also significantly reduced in ASD brain. Furthermore, Strifert does not clearly address how the OC hypothesis accounts for the male bias in ASD. Therefore, the purpose of this correspondence is to address these inconsistencies by proposing a hypothesis that challenges these points. That is, gestational exposure to the agricultural and combustion air pollutant, nitrous oxide (N2O), may be a leading contributor to the development of an ASD phenotype. The mechanism undergirding this hypothesis suggests that compensatory estrogenic activity may mitigate the effects of fetal N2O exposure and thereby confer a protective effect against ASD development in a sex-dependent manner (i.e., male bias in ASD).
Collapse
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, Cleveland, OH 44118, USA.
| |
Collapse
|
11
|
Fluegge K. Perinatal Hypoxic-Ischemic Conditions, Attention-Deficit Hyperactivity Disorder (ADHD), and Environmental Exposure to Nitrous Oxide. J Child Neurol 2017; 32:684-685. [PMID: 28381097 DOI: 10.1177/0883073817700493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, Cleveland, OH
| |
Collapse
|
12
|
Fluegge K. Does environmental exposure to the greenhouse gas, N 2O, contribute to etiological factors in neurodevelopmental disorders? A mini-review of the evidence. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:6-18. [PMID: 27566494 DOI: 10.1016/j.etap.2016.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Neurodevelopmental disorders are increasing in prevalence worldwide. Previous work suggests that exposure to the environmental air pollutant and greenhouse gas - nitrous oxide (N2O) - may be an etiological factor in neurodevelopmental disorders through the targeting of several neural correlates. METHODOLOGY While a number of recent systematic reviews have addressed the role of general anesthesia in the surgical setting and neurodevelopmental outcomes, a narrative mini-review was conducted to first define and characterize the relevant variables (i.e., N2O, attention-deficit hyperactivity disorder [ADHD] and autism spectrum disorders [ASD]) and their potential interactions into a coherent, hypothesis-generating work. The narrative mini-review merges basic principles in environmental science, anesthesiology, and psychiatry to more fully develop the novel hypotheses that neurodevelopmental impairment found in conditions like ADHD and ASD may be due to exposure to the increasing air pollutant, N2O. RESULTS The results of the present mini-review indicate that exposure to N2O, even at non-toxic doses, may modulate central neurotransmission and target many neural substrates directly implicated in neurodevelopmental disorders, including the glutamatergic, opioidergic, cholinergic, and dopaminergic systems. Epidemiological studies also indicate that early and repeated exposure to general anesthesia, including N2O, may contribute to later adverse neurodevelopmental outcomes in children. CONCLUSIONS The current evidence and subsequent hypotheses suggest that a renewed interest be taken in the toxicological assessment of environmental N2O exposure using validated biomarkers and psychiatric endpoints. Given the relevance of N2O as a greenhouse gas, societies may also wish to engage in a more robust monitoring and reporting of N2O levels in the environment for climactic benefit as well.
Collapse
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, Cleveland, OH 44118, USA.
| |
Collapse
|
13
|
|
14
|
Fluegge K. A reply to 'Metabolic effects of sapropterin treatment in autism spectrum disorder: a preliminary study'. Transl Psychiatry 2016; 6:e793. [PMID: 27115124 PMCID: PMC4872393 DOI: 10.1038/tp.2016.24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- K Fluegge
- Institute of Health and Environmental Research, Cleveland, OH, USA
| |
Collapse
|
15
|
Role of Nicotinic Acetylcholine Receptor α3 and α7 Subunits in Detrusor Overactivity Induced by Partial Bladder Outlet Obstruction in Rats. Int Neurourol J 2015; 19:12-8. [PMID: 25833476 PMCID: PMC4386486 DOI: 10.5213/inj.2015.19.1.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 11/08/2022] Open
Abstract
Purpose: To investigate the role of α3 and α7 nicotinic acetylcholine receptor subunits (nAChRs) in the bladder, using a rat model with detrusor overactivity induced by partial bladder outlet obstruction (BOO). Methods: Forty Sprague-Dawley rats were used: 10 were sham-operated (control group) and 30 were observed for 3 weeks after partial BOO. BOO-induced rats were further divided into 3 groups: Two groups of 10 rats each received intravesicular infusions with hexamethonium (HM group; n=10) or methyllycaconitine (MLC group; n=10), which are antagonists for α3 and α7 nAChRs, respectively. The remaining BOO-induced rats received only saline infusion (BOO group; n=10). Based on the contraction interval measurements using cystometrogram, the contraction pressure and nonvoiding bladder contractions were compared between the control and the three BOO-induced groups. Immunofluorescent staining and Western blotting were used to analyze α3 and α7 nAChRs levels. Results: The contraction interval of the MLC group was higher than that of the BOO group (P<0.05). Nonvoiding bladder contraction almost disappeared in the HM and MLC groups. Contraction pressure increased in the BOO group (P<0.05) compared with the control group and decreased in the HM and MLC groups compared with the BOO group (P<0.05). Immunofluorescence staining showed that the α3 nAChR signals increased in the urothelium, and the α7 nAChR signals increased in the urothelium and detrusor muscle of the BOO group compared with the control group. Western blot analysis showed that both α3 and α7 nAChR levels increased in the BOO group (P<0.05). Conclusions: Alpha3 and α7 nAChRs are associated with detrusor overactivity induced by BOO. Furthermore, nAChR antagonists could help in clinically improving detrusor overactivity.
Collapse
|
16
|
Alexandre M, Uduman AK, Minervini S, Raoof A, Shugrue CA, Akinbiyi EO, Patel V, Shitia M, Kolodecik TR, Patton R, Gorelick FS, Thrower EC. Tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone initiates and enhances pancreatitis responses. Am J Physiol Gastrointest Liver Physiol 2012; 303:G696-704. [PMID: 22837343 PMCID: PMC3468532 DOI: 10.1152/ajpgi.00138.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/19/2012] [Indexed: 01/31/2023]
Abstract
Clinical studies indicate that cigarette smoking increases the risk for developing acute pancreatitis. The nicotine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a major cigarette smoke toxin. We hypothesized that NNK could sensitize to pancreatitis and examined its effects in isolated rat pancreatic acini and in vivo. In acini, 100 nM NNK caused three- and fivefold activation of trypsinogen and chymotrypsinogen, respectively, above control. Furthermore, NNK pretreatment in acini enhanced zymogen activation in a cerulein pancreatitis model. The long-term effects of NNK were examined in vivo after intraperitoneal injection of NNK (100 mg/kg body wt) three times weekly for 2 wk. NNK alone caused zymogen activation (6-fold for trypsinogen and 2-fold for chymotrypsinogen vs. control), vacuolization, pyknotic nuclei, and edema. This NNK pretreatment followed by treatment with cerulein (40 μg/kg) for 1 h to induce early pancreatitis responses enhanced trypsinogen and chymotrypsinogen activation, as well as other parameters of pancreatitis, compared with cerulein alone. Potential targets of NNK include nicotinic acetylcholine receptors and β-adrenergic receptors; mRNA for both receptor types was detected in acinar cell preparations. Studies with pharmacological inhibitors of these receptors indicate that NNK can mediate acinar cell responses through an nonneuronal α(7)-nicotinic acetylcholine receptor (α(7)-nAChR). These studies suggest that prolonged exposure to this tobacco toxin can cause pancreatitis and sensitize to disease. Therapies targeting NNK-mediated pathways may prove useful in treatment of smoking-related pancreatitis.
Collapse
Affiliation(s)
- M. Alexandre
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - A. K. Uduman
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - S. Minervini
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - A. Raoof
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - C. A. Shugrue
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - E. O. Akinbiyi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - V. Patel
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - M. Shitia
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - T. R. Kolodecik
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - R. Patton
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - F. S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut; and
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| | - E. C. Thrower
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare, West Haven, Connecticut
| |
Collapse
|
17
|
Senbel AM, Hashad A, Sharabi FM, Daabees TT. Activation of muscarinic receptors inhibits neurogenic nitric oxide in the corpus cavernosum. Pharmacol Res 2011; 65:303-11. [PMID: 22178337 DOI: 10.1016/j.phrs.2011.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/23/2011] [Accepted: 12/05/2011] [Indexed: 12/19/2022]
Abstract
The functional role of cholinergic transmission in erection is still far from being fully elucidated. This work aims to further elucidate the modulatory role of neostigmine on NO in the corpus cavernosum and to highlight whether cholinergic transmission in the penis modulates sildenafil action. The isolated rabbit corpus cavernosum and measurement of intracavernosal pressure in the anesthetized rat model were used. Neostigmine (0.02 mg/kg) reduced increase of intracavernosal pressure/mean arterial pressure (ICP/MAP) next to cavernous nerve stimulation. Higher doses (0.06 and 0.4 mg/kg) potentiated ICP/MAP rise and atropine (1.5 and 10 mg/kg) did the opposite. In vitro, neostigmine (10⁻⁵ and 10⁻⁴ M) potentiated neurogenic relaxations and this effect was significantly inhibited by hexamethonium (10⁻⁴ M) or N(ω)-propyl-L-arginine (3 × 10⁻⁵ M) and partially but significantly reduced in the presence of atropine. Lower dose neostigmine (10⁻⁷ M), inhibited electrically induced relaxation over the range of 1-4 Hz, atropine (10⁻⁶ M) almost abolished this inhibitory effect as well as N(G)-nitro-L-arginine (10⁻⁵ M). It was also significantly reduced by selective nNOS inhibitor N(ω)-propyl-L-arginine (3 × 10⁻⁵ M). Nicotine (10⁻⁴ M) significantly potentiated electrically induced relaxations amounting to 84.625 ± 8.06% at 1 Hz and potentiated the effect of sildenafil synergistically. Hexamthonium did the opposite. The potentiatory effect of sildenafil on neurogenic erection was significantly reduced by low dose neostigmine both in vitro and in vivo. This study provides evidence that muscarinic receptors may modulate NO synthesis in nitrergic nerves by inhibiting nNOS and high level of cholinergic stimulation may activate nicotinic receptors to promote erection probably by potentiating NO synthesis in nitrergic nerves.
Collapse
Affiliation(s)
- A M Senbel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | | | | | | |
Collapse
|
18
|
Ginzkey C, Stueber T, Friehs G, Koehler C, Hackenberg S, Richter E, Hagen R, Kleinsasser NH. Analysis of nicotine-induced DNA damage in cells of the human respiratory tract. Toxicol Lett 2011; 208:23-9. [PMID: 22001448 DOI: 10.1016/j.toxlet.2011.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/12/2011] [Accepted: 09/28/2011] [Indexed: 01/09/2023]
Abstract
Epithelium of the upper and lower airways is a common origin of tobacco-related cancer. The main tobacco alkaloid nicotine may be associated with tumor progression. The potential of nicotine in inducing DNA mutations as a step towards cancer initiation is still controversially discussed. Different subtypes of nicotinic acetylcholine receptors (nAChR) are expressed in human nasal mucosa and a human bronchial cell line representing respiratory mucosa as a possible target for receptor-mediated pathways. In the present study, both cell systems were investigated with respect to DNA damage induced by nicotine and its mechanisms. Specimens of human nasal mucosa were harvested during surgery of the nasal air passage. After enzymatic digestion over night, single cells were exposed to an increasing nicotine concentration between 0.001 mM and 4.0mM. In a second step co-incubation was performed using the antioxidant N-acetylcysteine (NAC) and the nAChR antagonist mecamylamine. DNA damage was assessed using the alkali version of the comet assay. Dose finding experiments for mecamylamine to evaluate the maximal inhibitory effect were performed in the human bronchial cell line BEAS-2B with an increasing mecamylamine concentration and a constant nicotine concentration. The influence of nicotine in the apoptotic pathway was evaluated in BEAS-2B cells with the TUNEL assay combined with flow cytometry. After 1h of nicotine exposure with 0.001, 0.01, 0.1, 1.0 and 4.0mM, significant DNA damage was determined at 1.0mM. Further co-incubation experiments with mecamylamine and NAC were performed using 1.0mM of nicotine. The strongest inhibitory effect was measured at 1.0mM mecamylamine and this concentration was used for co-incubation. Both, the antioxidant NAC at a concentration of 1.0mM, based on the literature, as well as the receptor antagonist were capable of complete inhibition of the nicotine-induced DNA migration in the comet assay. A nicotine-induced increase or decrease in apoptosis as assessed by the TUNEL assay in BEAS-2B could not be detected. These results support the hypothesis that oxidative stress is responsible for nicotine-induced DNA damage. Similar results exist for other antioxidants in different cell systems. The decrease in DNA damage after co-incubation with a nAChR antagonist indicates a receptor-dependent pathway of induction for oxidative stress. Further investigations concerning pathways of receptor-mediated DNA damage via nAChR, the role of reactive oxygen species and apoptosis in this cell system will elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Christian Ginzkey
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius-Maximilian University Wuerzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Brack KE, Coote JH, Ng GA. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovasc Res 2011; 91:437-46. [PMID: 21576131 DOI: 10.1093/cvr/cvr105] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The role of the vagus in the ventricle is controversial, although the vagus can protect against ventricular fibrillation (VF) via nitric oxide (NO). This study aims to determine whether the mechanisms involved are dependent on post-ganglionic release and muscarinic receptor activation. For this purpose, NO release and electrophysiological effects of vagus nerve stimulation (VNS) were evaluated in relation to acetylcholine and vasoactive intestinal peptide (VIP). In addition, the role of the coronary endothelium and afferent nerves was tested. METHODS AND RESULTS Using the isolated innervated rabbit heart, we measured ventricular NO release using 4,5-diaminofluorescein (DAF-2) fluorescence and ventricular fibrillation threshold (VFT) during VNS after muscarinic, ganglionic, and VIP inhibition [atropine, hexamethonium, and VIP (6-28), respectively] and after Triton-X endothelial functional dysfunction. The vagal-mediated increases in NO and VFT were not significantly affected (P> 0.05) during (i) atropine perfusion [increase in NO: 196.8 ± 35.2 mV (control) vs. 156.1 ± 20.3 mV (atropine) and VFT 3.1 ± 0.5 mA (control) vs. 2.7 ± 0.4 mA (atropine)], (ii) VIP inhibition-increase in NO: 243.0 ± 42.4 mV (control) vs. 203.9 ± 28.5 mV [VIP(6-28)] and VFT 3.3 ± 0.3 mA (control) vs. 3.9 ± 0.6 mA [VIP(6-28)], or (iii) after endothelial functional dysfunction [increase in NO: 127.7 ± 31.7 mV (control) vs. 172.1 ± 31.5 mV (Triton-X) and VFT 2.6 ± 0.4 mA (control) vs. 2.5 ± 0.5 mA (Triton-X)]. However, the vagal effects were inhibited during ganglionic blockade [increase in NO: 175.1 ± 38.1 mV (control) vs. 0.6 ± 25.3 mV (hexamethonium) and VFT 3.3 ± 0.5 mA (control) vs. -0.3 ± 0.3 mA (hexamethonium)]. CONCLUSIONS We show that the vagal anti-fibrillatory action in the rabbit ventricle occurs via post-ganglionic efferent nerve fibres, independent of muscarinic receptor activation, VIP, and the endothelium. Together with our previous publications, our data support the possibility of a novel ventricular nitrergic parasympathetic innervation and highlight potential for new therapeutic targets to treat ventricular dysrhythmias.
Collapse
Affiliation(s)
- Kieran E Brack
- Department of Cardiovascular Sciences, Cardiology Group, University of Leicester, Glenfield Hospital, Leicester, UK
| | | | | |
Collapse
|
20
|
Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway. Proc Natl Acad Sci U S A 2010; 107:4442-7. [PMID: 20147620 DOI: 10.1073/pnas.0914733107] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Morphine is one of the most prescribed and effective drugs used for the treatment of acute and chronic pain conditions. In addition to its central effects, morphine can also produce peripheral analgesia. However, the mechanisms underlying this peripheral action of morphine have not yet been fully elucidated. Here, we show that the peripheral antinociceptive effect of morphine is lost in neuronal nitric-oxide synthase null mice and that morphine induces the production of nitric oxide in primary nociceptive neurons. The activation of the nitric-oxide pathway by morphine was dependent on an initial stimulation of PI3Kgamma/AKT protein kinase B (AKT) and culminated in increased activation of K(ATP) channels. In the latter, this intracellular signaling pathway might cause a hyperpolarization of nociceptive neurons, and it is fundamental for the direct blockade of inflammatory pain by morphine. This understanding offers new targets for analgesic drug development.
Collapse
|
21
|
Rőszer T, Józsa T, Szentmiklósi AJ, Bánfalvi G. Acetylcholine inhibits nitric oxide (NO) synthesis in the gastropod nervous system. Cell Tissue Res 2009; 336:325-35. [DOI: 10.1007/s00441-009-0764-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 01/13/2009] [Indexed: 12/16/2022]
|
22
|
Gauthier M, Dacher M, Thany SH, Niggebrügge C, Déglise P, Kljucevic P, Armengaud C, Grünewald B. Involvement of α-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem 2006; 86:164-74. [PMID: 16616529 DOI: 10.1016/j.nlm.2006.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/16/2006] [Accepted: 02/22/2006] [Indexed: 11/18/2022]
Abstract
In the honeybee Apis mellifera, multiple-trial olfactory conditioning of the proboscis extension response specifically leads to long-term memory (LTM) which can be retrieved more than 24 h after learning. We studied the involvement of nicotinic acetylcholine receptors in the establishment of LTM by injecting the nicotinic antagonists mecamylamine (1 mM), alpha-bungarotoxin (alpha-BGT, 0.1 mM) or methyllycaconitine (MLA, 0.1 mM) into the brain through the median ocellus 20 min before or 20 min after multiple-trial learning. The retention tests were performed 1, 3, and 24 h after learning. Pre-training injections of mecamylamine induced a lower performance during conditioning but had no effect on LTM formation. Post-training injections of mecamylamine did not affect honeybees' performances. Pre-training injections of MLA or post-training injection of alpha-BGT specifically induced LTM impairment whereas acquisition as well as memory retrieval tested 1 or 3 h after learning was normal. This indicates that brain injections of alpha-BGT and MLA did not interfere with learning or medium-term memory. Rather, these blockers affect the LTM. To explain these results, we advance the hypothesis that honeybee alpha-BGT-sensitive acetylcholine receptors are also sensitive to MLA. These receptors could be essential for triggering intracellular mechanisms involved in LTM. By contrast, medium-term memory is not dependent upon these receptors but is affected by mecamylamine.
Collapse
Affiliation(s)
- Monique Gauthier
- Centre de Recherches sur la Cognition Animale, CNRS/Université Paul Sabatier Toulouse III, 4R3, 118 route de Narbonne, 31062 Toulouse Cedex 09, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Beckel JM, Kanai A, Lee SJ, de Groat WC, Birder LA. Expression of functional nicotinic acetylcholine receptors in rat urinary bladder epithelial cells. Am J Physiol Renal Physiol 2006; 290:F103-10. [PMID: 16144967 PMCID: PMC2760261 DOI: 10.1152/ajprenal.00098.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although nicotinic acetylcholine receptors in both the central and peripheral nervous systems play a prominent role in the control of urinary bladder function, little is known regarding expression or function of nicotinic receptors in the bladder epithelium, or urothelium. Nicotinic receptors have been described in epithelial cells lining the upper gastrointestinal tract, respiratory tract, and the skin. Thus the present study examined the expression and functionality of nicotinic receptors in the urothelium, as well as the effects of stimulation of nicotinic receptors on the micturition reflex. mRNA for the alpha3, alpha5, alpha7, beta3, and beta4 nicotinic subunits was identified in rat urothelial cells using RT-PCR. Western blotting also confirmed urothelial expression of the alpha3- and alpha7-subunits. Application of nicotine (50 nM) to cultured rat urothelial cells elicited an increase in intracellular Ca2+ concentration, indicating that at least some of the subunits form functional channels. These effects were blocked by the application of the nicotinic antagonist hexamethonium. During in vivo bladder cystometrograms in urethane-anesthetized rats, intravesical administration of nicotine, choline, or the antagonists methyllycaconitine citrate and hexamethonium elicited changes in voiding parameters. Intravesical nicotine (50 nM, 1 microM) increased the intercontraction interval. Intravesical choline (1-100 microM) also affected bladder reflexes similarly, suggesting that alpha7 nicotinic receptors mediate this effect. Intravesical administration of hexamethonium (1-100 microM) potentiated the nicotine-induced changes in bladder reflexes. Methyllycaconitine citrate, a specific alpha7-receptor antagonist, prevented nicotine-, choline-, and hexamethonium-induced bladder inhibition. These results are the first indication that stimulation of nonneuronal nicotinic receptors in the bladder can affect micturition.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Dept. of Pharmacology, Univ. of Pittsburgh School of Medicine, A1220 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Current information indicates that glial cells participate in all the normal and pathological processes of the central nervous system. Although much less is known about satellite glial cells (SGCs) in sensory ganglia, it appears that these cells share many characteristics with their central counterparts. This review presents information that has been accumulated recently on the physiology and pharmacology of SGCs. It appears that SGCs carry receptors for numerous neuroactive agents (e.g., ATP, bradykinin) and can therefore receive signals from other cells and respond to changes in their environment. Activation of SGCs might in turn influence neighboring neurons. Thus SGCs are likely to participate in signal processing and transmission in sensory ganglia. Damage to the axons of sensory ganglia is known to contribute to neuropathic pain. Such damage also affects SGCs, and it can be proposed that these cells have a role in pathological changes in the ganglia.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah University Hospital, Mount Scopus, Jerusalem 91240, Israel
| |
Collapse
|
25
|
König P, Dedio J, Oess S, Papadakis T, Fischer A, Müller-Esterl W, Kummer W. NOSIP and its interacting protein, eNOS, in the rat trachea and lung. J Histochem Cytochem 2005; 53:155-64. [PMID: 15684328 DOI: 10.1369/jhc.4a6453.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS), the major nitric oxide (NO)-generating enzyme of the vasculature, is regulated through multiple interactions with proteins, including caveolin-1, Hsp90, Ca2+-calmodulin, and the recently discovered eNOS-interacting protein, NOSIP. Previous studies indicate that NOSIP may contribute to the intricate regulation of eNOS activity and availability. Because eNOS has been shown to be abundantly expressed in the airways, we determined the expression and cellular localization of NOSIP in rat trachea and lung by RT-PCR and immunohistochemistry and examined the interaction of NOSIP with eNOS in lung by coimmunoprecipitation. In tracheal epithelium and lung, NOSIP mRNA expression was prevalent, as shown by RT-PCR, and the corresponding protein interacted with eNOS, as demonstrated by coimmunoprecipitation. Using immunohistochemistry, we found both NOSIP and eNOS immunoreactivity in ciliated epithelial cells of trachea and bronchi, while Clara cells showed immunoreactivity for NOSIP only. NOSIP and eNOS were present in vascular and bronchial smooth muscle cells of large arteries and airways, whereas endothelial cells, as well as bronchiolar and arteriolar smooth muscle cells, exclusively stained for NOSIP. Our results point to functional role(s) of NOSIP in the control of airway and vascular diameter, mucosal secretion, NO synthesis in ciliated epithelium, and, therefore, of mucociliary and bronchial function.
Collapse
Affiliation(s)
- Peter König
- Institut für Anatomie und Zellbiologie, Justus-Liebig-Universität, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Huang TY, Cherkas PS, Rosenthal DW, Hanani M. Dye coupling among satellite glial cells in mammalian dorsal root ganglia. Brain Res 2005; 1036:42-9. [PMID: 15725400 DOI: 10.1016/j.brainres.2004.12.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 11/30/2004] [Accepted: 12/04/2004] [Indexed: 11/15/2022]
Abstract
Dorsal root ganglia (DRG) are key elements in sensory signaling under physiological and pathological conditions. Little is known about electrical coupling among cells in these ganglia. In this study, we injected the fluorescent dye Lucifer yellow (LY) into single cells to examine dye coupling in DRG. We found no dye coupling between neurons or between neurons and their attendant satellite glial cells (SGCs). In mouse DRG, we observed that in 26.2% of the cases SGCs that surround a given neuron were dye coupled. In only 3.2% of the cases SGCs that make envelopes around different neurons were coupled. The data from mouse ganglia were very similar to those from rat and guinea pig DRG. The results obtained by injection of the tracer biocytin were very similar to those observed with LY. The coupling incidence within the envelopes increased 3.1-fold by high extracellular pH (8.0), but coupling between envelopes was not affected. Acidic pH (6.8) reduced the coupling. High extracellular K+ (9.4 mM) increased the coupling 2.4-fold and 4.7-fold within and between envelopes, respectively. Low extracellular Ca2+ (0.5, 1.0 mM) partly reversed the effect of high K+ on coupling. The results showed that SGCs in mammalian sensory ganglia are connected by gap junctions. This coupling is very sensitive to changes in pH, and can therefore be modulated under various physiological and pathological conditions. The dependence of the coupling on extracellular K+ and Ca2+ suggests that the permeability of gap junctions can be altered by physiological and pharmacological stimuli.
Collapse
Affiliation(s)
- Tian-Ying Huang
- Laboratory of Experimental Surgery, Hebrew University-Hadassah Medical School, Mount Scopus, Jerusalem 91240, Israel
| | | | | | | |
Collapse
|
27
|
Asan E. Innovative techniques and applications in histochemistry and cell biology. Histochem Cell Biol 2003; 120:523-48. [PMID: 14648132 DOI: 10.1007/s00418-003-0604-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
Recent studies documenting novel histochemical methods and applications in cell biology and in other areas of the life sciences have again rendered insights into structure and functions of tissues, cells, and cellular components to the level of proteins and genes. Particularly, sophisticated microscopic techniques have proved to be able to significantly advance our knowledge. Findings of recent investigations representing this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| |
Collapse
|
28
|
von Bohlen und Halbach O. Nitric oxide imaging in living neuronal tissues using fluorescent probes. Nitric Oxide 2003; 9:217-28. [PMID: 14996429 DOI: 10.1016/j.niox.2004.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 01/13/2004] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is a major modulator of neural functions. Since NO is a gaseous molecule with very short half-life, the spatial distribution of NO and its relationship to neuronal activity are difficult to resolve. Non-invasive and direct visualization of NO in neuronal tissues had been hampered by the lack of a suitable method to identify NO directly. A fluorescent indicator, which directly detects NO under physiological conditions, would be advantageous. Several indicators for direct detection of NO have been developed, which react with NO by forming a fluorescent complex. However, some of these dyes have cytotoxic properties or have been found to be rather unspecific under certain conditions. Fortunately, some of the indicators, which change their fluorescent pattern in the presence of NO, appear to be promising for the visualization of NO. Since little is known about the spatial spread and the temporal aspects of NO release after a specific stimulus, the use of the specific and non-toxic fluorescent NO indicators could provide a potentially powerful tool to study these aspects of NO release in neuronal tissues in vitro and in vivo. Such measurements, especially in combination with electrophysiological recordings, would greatly further NO research. In addition, based on their fluorescent pattern, these NO-sensitive dyes can be distinguished from the calcium-sensitive dye Fura-2, which allows NO-imaging together with calcium-imaging. This article summarizes recent advances and current trends in the visualization of NO in living neuronal tissues.
Collapse
Affiliation(s)
- Oliver von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|