1
|
Cui J, Yu Y, Xu Y, Wu H. Effectiveness of long-term cluster training and traditional resistance training in enhancing maximum strength in young adults: a systematic review and meta-analysis. Front Physiol 2025; 16:1568247. [PMID: 40236825 PMCID: PMC11996837 DOI: 10.3389/fphys.2025.1568247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Background It is still unclear whether traditional resistance training (TRT) provides the best or optimal stimulation for increasing maximum strength compared to cluster training (CT). Objective This study assessed the long-term impact of cluster training on the augmentation of maximum strength in young adults through the implementation of meta-analysis and further investigation of the factors associated with training duration. Method Literature was searched in Web of Science, Pub Med, EBSCOhost, SPORTDiscus, and Google Scholar. After screening, 21 articles and 49 reports were included. Revman 5.4 was used for literature quality evaluation, heterogeneity testing, and data consolidation. Stata 15.1 was used for drawing forest plots, subgroup analysis, taking sensitivity analysis and meta-regression to explore the sources of heterogeneity, creating a funnel plot to evaluate publication bias, quantifying publication bias, and trimming and filling. The original protocol was prospectively registered at the PROSPERO (CRD42024547097). Result The random effects meta-analysis results showed significant heterogeneity (I2 = 70.7%), SMD = 0.10, 95% confidence interval (CI) [-0.14, 0.33], indicating no difference between CT and TRT in general. However, considering training duration, CT was more effective in 4-8 weeks (SMD = 0.24, 95%CI [0.06, 0.42]), while TRT was better in 9-12 weeks (SMD = -1.54, 95%CI [-3.03, -0.05]). Sub-group analysis found that CT had a better effect on people aged 23 and above (SMD = 0.38, 95% CI [0.11, 0.65]), and there was no significant difference in sex and participant type. Conclusion Cluster training (CT) mitigates exercise-induced fatigue more effectively than traditional resistance training (TRT) and enables more efficient maximum strength growth within the initial 8 weeks, however, the converse holds after 9 weeks. For preparation periods of 8 weeks or less, such as a microcycle or a specific stage in block periodization, trainers are advised to adopt CT for enhancing or maintaining maximum strength. This suggests that trainers, when undertaking maximum strength training, whether short-term or long-term, can not only consider CT but also precisely schedule the time-course of resistance training modalities within continuous periodization. Specifically, they can switch to TRT after 8-weeks of CT to achieve more favorable training outcomes. Systematic Review Registration PROSPERO.
Collapse
Affiliation(s)
- Jiayue Cui
- School of Sports Training, Wuhan Sports University, Wuhan, China
- Research Center for High-Quality Development of Characteristic Competitive Sports, Wuhan Sports University, Wuhan, China
| | - Yin Yu
- School of Sports Training, Wuhan Sports University, Wuhan, China
- Research Center for High-Quality Development of Characteristic Competitive Sports, Wuhan Sports University, Wuhan, China
| | - Yijun Xu
- School of Sports Training, Wuhan Sports University, Wuhan, China
| | - Hongyu Wu
- Economics and Management School, Wuhan Sports University, Wuhan, China
| |
Collapse
|
2
|
Lehmann T, Visser A, Havers T, Büchel D, Baumeister J. Dynamic modulations of effective brain connectivity associated with postural instability during multi-joint compound movement on compliant surface. Exp Brain Res 2025; 243:80. [PMID: 40029432 PMCID: PMC11876271 DOI: 10.1007/s00221-025-07039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Random fluctuations in somatosensory signals affect the ability of effectively coordinating multimodal information pertaining to the postural state during movement. Therefore, this study aimed to investigate the impact of a compliant surface on cortico-cortical causal information flow during multi-joint compound movements. Fifteen healthy adults (7 female / 8 male, 25.9 ± 4.0 years) performed 5 × 20 repetitions of bodyweight squats on firm and compliant surface. Motor behavior was quantified by center of pressure (CoP) displacements, hip movement and the root mean square of the rectus femoris activity. Using source space analysis, renormalized partial directed coherence (rPDC) computed subject-level multivariate effective brain connectivity of sensorimotor nodes. Bootstrap statistics revealed significantly decreased medio-lateral CoP displacement (p < 0.001), significantly increased velocity of medio-lateral hip motion (p < 0.001) as well as significantly lower rectus femoris activity (p < 0.01) in the compliant surface condition. On the cortical level, rPDC showed significantly modulated information flow in theta and beta frequencies for fronto-parietal edges (p < 0.01) only during the concentric phase of the movement. The compliant surface led to increased difficulties controlling hip but not center of pressure motion in the medio-lateral plane. Moreover, a decreased activation of the prime movers accompanied by modulations of effective brain connectivity among fronto-central nodes may point to altered demands on sensorimotor information processing in presence of sensory noise when performing bodyweight squats on compliant surface. Further studies are needed to evaluate a potential benefit for athletic and clinical populations.
Collapse
Affiliation(s)
- Tim Lehmann
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany.
| | - Anton Visser
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Tim Havers
- Department Fitness and Health, IST University of Applied Sciences, Duesseldorf, Germany
| | - Daniel Büchel
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Jochen Baumeister
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| |
Collapse
|
3
|
Benavente C, Feriche B. The influence of specific resistance training methodological prescription variables on strength development under hypoxic conditions: A systematic review and meta-analysis. J Sports Sci 2024:1-10. [PMID: 39551931 DOI: 10.1080/02640414.2024.2425536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
A systematic review and meta-analysis were conducted focused on the impact of specific methodological prescription variables in resistance training (RT) programming on muscle strength under hypoxic conditions. Searches of Pubmed-Medline, Web of Science, Sport Discuss and the Cochrane Library compared the effect of RT on strength development under hypoxic (RTH) vs. normoxic (RTN) conditions through the 1-repetition maximum (1RM) test. Apart from the overall meta-analysis, several RT methodological prescription variables available in the included studies (set end point, total weekly training volume, type of exercise, region of the body measured or type of routine) were analysed. Thirteen studies met the inclusion criteria. The overall analyses showed trivial differences in 1RM favouring RTH over RTN (SMD = 0.18 [CI: 0.04; 0.31]; p = 0.030). Sub-analyses revealed that a RT programme of a non-full-body routine, including 9 or more sets per exercise/week of multi-joint exercises performed to non-failure, favoured RTH for enhancing 1RM (p < 0.10). In conclusion, the evidence ratified a trivial benefit of RTH over RTN for muscle strength gains after a RT period. However, the handling of specific RT methodological prescription variables can slightly improve strength development outcomes in hypoxia.
Collapse
Affiliation(s)
- Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Ferri-Caruana A, Cardera-Porta E, Gene-Morales J, Saez-Berlanga A, Jiménez-Martínez P, Juesas A, Colado JC. Barefoot vs shod walking and jogging on the electromyographic activity of the medial and lateral gastrocnemius. J Biomech 2024; 176:112371. [PMID: 39426357 DOI: 10.1016/j.jbiomech.2024.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Gastrocnemius weakness is associated with Achilles tendinopathies and muscle strains, with the medial gastrocnemius (MG) more commonly injured than the lateral gastrocnemius (LG). Walking and jogging are common in daily activities and sports, and biomechanical differences between shod and barefoot exercise may influence MG and LG activation. Understanding these activation patterns could help optimize training programs for injury prevention and/or rehabilitation. The aim was to compare MG and LG electromyographic activity during walking and jogging, both shod and barefoot. Twenty-nine participants (25.28 ± 4.53 years, 171.31 ± 0.76 cm, 72.68 ± 6.36 kg) completed a warm-up followed by 1 min of walking (80-99 steps/min) and jogging (130-150 steps/min) in both conditions (barefoot and shod, random order). Electromyographic signals were recorded using wearable devices (mDurance Solutions S.L., Granada, Spain; 1024 Hz sampling rate). We measured the root-mean-square (RMS) amplitudes for an entire stride cycle and digitally filtered the signals. For analysis, we normalized electromyographic values to the average peak values obtained during two sprints. We analyzed differences with a repeated-measures analysis of variance. Significant effects of condition (barefoot-shod) and gastrocnemius (MG-LG) were observed (all p ≤ 0.023, ƞp2 = 0.17-0.39), with higher MG activation compared to LG in the barefoot conditions (p = 0.004-0.027, d = 0.72-0.83), and nonsignificant differences between muscles in the shod conditions (p > 0.05). Shod exercise compared to barefoot resulted in lower MG activation (p = 0.001-0.003, d = 0.62-0.63) and non-significant differences in LG activation. These results indicate that barefoot walking and jogging increase MG activation compared to shod conditions, with no differences in LG activation. Additionally, footwear reduces differences between MG and LG.
Collapse
Affiliation(s)
- Ana Ferri-Caruana
- Prevention and Health in Exercise and Sport (PHES) Research Group, Department of Physical Education and Sports, University of Valencia, Valencia, Spain.
| | - Elena Cardera-Porta
- Department of Physical Education and Sports, University of Valencia, Valencia, Spain.
| | - Javier Gene-Morales
- Prevention and Health in Exercise and Sport (PHES) Research Group, Department of Physical Education and Sports, University of Valencia, Valencia, Spain; Valoración del Rendimiento Deportivo, Actividad Física y Salud, y Lesiones Deportivas (REDAFLED), University of Valladolid, Soria, Spain.
| | - Angel Saez-Berlanga
- Prevention and Health in Exercise and Sport (PHES) Research Group, Department of Physical Education and Sports, University of Valencia, Valencia, Spain.
| | - Pablo Jiménez-Martínez
- Prevention and Health in Exercise and Sport (PHES) Research Group, Department of Physical Education and Sports, University of Valencia, Valencia, Spain; ICEN Institute, 28840 Madrid, Spain
| | - Alvaro Juesas
- Prevention and Health in Exercise and Sport (PHES) Research Group, Department of Physical Education and Sports, University of Valencia, Valencia, Spain; Department of Education, University CEU Cardenal Herrera, Castellón, Spain.
| | - Juan C Colado
- Prevention and Health in Exercise and Sport (PHES) Research Group, Department of Physical Education and Sports, University of Valencia, Valencia, Spain.
| |
Collapse
|
5
|
Robinson ZP, Pelland JC, Remmert JF, Refalo MC, Jukic I, Steele J, Zourdos MC. Exploring the Dose-Response Relationship Between Estimated Resistance Training Proximity to Failure, Strength Gain, and Muscle Hypertrophy: A Series of Meta-Regressions. Sports Med 2024; 54:2209-2231. [PMID: 38970765 DOI: 10.1007/s40279-024-02069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The proximity to failure in which sets are terminated has gained attention in the scientific literature as a potentially key resistance training variable. Multiple meta-analyses have directly (i.e., failure versus not to failure) or indirectly (e.g., velocity loss, alternative set structures) evaluated the effect of proximity to failure on strength and muscle hypertrophy outcomes categorically; however, the dose-response effects of proximity to failure have not been analyzed collectively in a continuous manner. OBJECTIVE To meta-analyze the aforementioned areas of relevant research, proximity to failure was quantified as the number of repetitions in reserve (RIR). Importantly, the RIR associated with each effect in the analysis was estimated on the basis of the available descriptions of the training interventions in each study. Data were extracted and a series of exploratory multilevel meta-regressions were performed for outcomes related to both strength and muscle hypertrophy. A range of sensitivity analyses were also performed. All models were adjusted for the effects of load, method of volume equating, duration of intervention, and training status. RESULTS The best fit models for both strength and muscle hypertrophy outcomes demonstrated modest quality of overall fit. In all of the best-fit models for strength, the confidence intervals of the marginal slopes for estimated RIR contained a null point estimate, indicating a negligible relationship with strength gains. However, in all of the best-fit models for muscle hypertrophy, the marginal slopes for estimated RIR were negative and their confidence intervals did not contain a null point estimate, indicating that changes in muscle size increased as sets were terminated closer to failure. CONCLUSIONS The dose-response relationship between proximity to failure and strength gain appears to differ from the relationship with muscle hypertrophy, with only the latter being meaningfully influenced by RIR. Strength gains were similar across a wide range of RIR, while muscle hypertrophy improves as sets are terminated closer to failure. Considering the RIR estimation procedures used, however, the exact relationship between RIR and muscle hypertrophy and strength remains unclear. Researchers and practitioners should be aware that optimal proximity to failure may differ between strength and muscle hypertrophy outcomes, but caution is warranted when interpreting the present analysis due to its exploratory nature. Future studies deliberately designed to explore the continuous nature of the dose-response effects of proximity to failure in large samples should be considered.
Collapse
Affiliation(s)
- Zac P Robinson
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Joshua C Pelland
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Jacob F Remmert
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Martin C Refalo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - James Steele
- Faculty of Sport, Health, and Social Sciences, Solent University, South Hampton, England
| | - Michael C Zourdos
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
6
|
Dello Iacono A, Watson K, Jukic I. The Autoregulation Rest-Redistribution Training Method Mitigates Sex Differences in Neuromuscular and Perceived Fatigue During Resistance Training. Int J Sports Physiol Perform 2024; 19:685-695. [PMID: 38772547 DOI: 10.1123/ijspp.2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE To examine the sex differences in performance and perceived fatigue during resistance training prescribed using traditional (TRA) and autoregulation rest-redistribution training (ARRT) approaches. METHODS Twelve resistance-trained men and 12 women completed 2 sessions including the bench-press exercise matched for load (75% of 1-repetition maximum), volume (24 repetitions), and total rest (240 s). Sessions were performed in a counterbalanced randomized design with TRA consisting of 3 sets of 8 repetitions with 120-second interset rest and ARRT employing a personalized combination of clusters, repetitions per cluster, and between-clusters rest regulated with a 20% velocity-loss threshold. The effects of TRA and ARRT on velocity loss, unilateral isometric peak force, and rating of fatigue (ROF) were compared between sexes. RESULTS The velocity loss was generally lower during ARRT compared with TRA (-0.47% [0.11%]), with velocity loss being mitigated by ARRT to a greater extent among males compared with females (-0.37% [0.15%]). A smaller unilateral isometric peak force decline was observed after ARRT than TRA among males compared with females (-38.4 [8.4] N). Lower ROF after ARRT than TRA was found among males compared to females (-1.97 [0.55] AU). Additionally, males reported greater ROF than females across both conditions (1.92 [0.53] AU), and ARRT resulted in lower ROF than TRA overall (-0.83 [0.39] AU). CONCLUSIONS The ARRT approach resulted in decreased velocity loss, peak force impairment, and ROF compared with TRA in both sexes. However, male subjects exhibited more pronounced acute within-session benefits from the ARRT method.
Collapse
Affiliation(s)
- Antonio Dello Iacono
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Hamilton, United Kingdom
| | - Kevin Watson
- Department of Strength and Conditioning, Glasgow School of Sport, Glasgow, United Kingdom
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- Division of Sport and Exercise Sciences, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| |
Collapse
|
7
|
Wang H, Liu M, Tang H, Zhang Z, Wen H, He F. Identification and functional analysis of circpdlim5a generated from pdlim5a gene splicing in the skeletal muscle of Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2024; 352:114500. [PMID: 38508470 DOI: 10.1016/j.ygcen.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with endogenous regulatory functions, including regulating skeletal muscle development. However, its role in the development of skeletal muscle in Japanese flounder (Paralichthys olivaceus) is not clear. Therefore we screened a candidate circpdlim5a, which is derived from the gene pdlim5a, from the skeletal muscle transcriptome of Japanese flounder. We characterized circpdlim5a, which was more stable compared to the linear RNA pdlim5a. Distributional characterization of circpdlim5a showed that circpdlim5a was predominantly distributed in the nucleus and was highly expressed in the skeletal muscle of adult Japanese flounder (24 months). When we further studied the circpdlim5a function, we found that it inhibited the expression of proliferation and differentiation genes according to the over-expression experiment of circpdlim5a in myoblasts. We concluded that circpdlim5a may inhibit the proliferation and differentiation of myoblasts and thereby inhibit skeletal muscle development in Japanese flounder. This experiment provides information for the study of circRNAs by identifying circpdlim5a and exploring its function, and offers clues for molecular breeding from an epigenetic perspective.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Min Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Hengtai Tang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Zhirui Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
8
|
Jia B, Lv C, Li D, Lv W. Cerebral cortex activation and functional connectivity during low-load resistance training with blood flow restriction: An fNIRS study. PLoS One 2024; 19:e0303983. [PMID: 38781264 PMCID: PMC11115316 DOI: 10.1371/journal.pone.0303983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Despite accumulating evidence that blood flow restriction (BFR) training promotes muscle hypertrophy and strength gain, the underlying neurophysiological mechanisms have rarely been explored. The primary goal of this study is to investigate characteristics of cerebral cortex activity during BFR training under different pressure intensities. 24 males participated in 30% 1RM squat exercise, changes in oxygenated hemoglobin concentration (HbO) in the primary motor cortex (M1), pre-motor cortex (PMC), supplementary motor area (SMA), and dorsolateral prefrontal cortex (DLPFC), were measured by fNIRS. The results showed that HbO increased from 0 mmHg (non-BFR) to 250 mmHg but dropped sharply under 350 mmHg pressure intensity. In addition, HbO and functional connectivity were higher in M1 and PMC-SMA than in DLPFC. Moreover, the significant interaction effect between pressure intensity and ROI for HbO revealed that the regulation of cerebral cortex during BFR training was more pronounced in M1 and PMC-SMA than in DLPFC. In conclusion, low-load resistance training with BFR triggers acute responses in the cerebral cortex, and moderate pressure intensity achieves optimal neural benefits in enhancing cortical activation. M1 and PMC-SMA play crucial roles during BFR training through activation and functional connectivity regulation.
Collapse
Affiliation(s)
- Binbin Jia
- School of Sports Training, Wuhan Sports University, Wuhan, China
- School of Physical Education, Wuhan Sports University, Wuhan, China
| | - Chennan Lv
- Center of Strength and Conditioning, Wuhan Sports University, Wuhan, China
| | - Danyang Li
- School of Sports Training, Wuhan Sports University, Wuhan, China
- School of Physical Education, Wuhan Sports University, Wuhan, China
| | - Wangang Lv
- Center of Strength and Conditioning, Wuhan Sports University, Wuhan, China
| |
Collapse
|
9
|
Janicijevic D, Saez-Berlanga A, Babiloni-Lopez C, Martin-Rivera F, Jiménez-Martínez P, Silvestre-Herrero A, Martínez-Puente J, Ferradás-Nogueira P, Juesas A, Gene-Morales J, Chulvi-Medrano I, Colado JC. Acute physiological and psychological responses during an incremental treadmill test wearing a new upper-body sports garment with elastomeric technology. Front Physiol 2024; 15:1372020. [PMID: 38711952 PMCID: PMC11070584 DOI: 10.3389/fphys.2024.1372020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
Background: The use of elastomeric technology in sports garments is increasing in popularity; however, its specific impact on physiological and psychological variables is not fully understood. Thus, we aimed to analyze the physiological (muscle activation of the pectoralis major, triceps brachii, anterior deltoid, and rectus abdominis, capillary blood lactate, systolic and diastolic blood pressure, and heart rate) and psychological (global and respiratory rating of perceived exertion [RPE]) responses during an incremental treadmill test wearing a new sports garment for the upper body that incorporates elastomeric technology or a placebo garment. Methods: Eighteen physically active young adults participated in two randomized sessions, one wearing the elastomeric garment and the other wearing a placebo. Participants performed in both sessions the same treadmill incremental test (i.e., starting at 8 km/h, an increase of 2 km/h each stage, stage duration of 3 min, and inclination of 1%; the test ended after completing the 18 km/h Stage or participant volitional exhaustion). The dependent variables were assessed before, during, and/or after the test. Nonparametric tests evaluated differences. Results: The elastomeric garment led to a greater muscle activation (p < 0.05) in the pectoralis major at 16 km/h (+33.35%, p = 0.01, d = 0.47) and 18 km/h (+32.09%, p = 0.02, d = 0.55) and in the triceps brachii at 10 km/h (+20.28%, p = 0.01, d = 0.41) and 12 km/h (+34.95%, p = 0.04, d = 0.28). Additionally, lower lactate was observed at the end of the test (-7.81%, p = 0.01, d = 0.68) and after 5 min of recovery (-13.71%, p < 0.001, d = 1.00) with the elastomeric garment. Nonsignificant differences between the garments were encountered in the time to exhaustion, cardiovascular responses, or ratings of perceived exertion. Conclusion: These findings suggest that elastomeric garments enhance physiological responses (muscle activation and blood lactate) during an incremental treadmill test without impairing physical performance or effort perception.
Collapse
Affiliation(s)
- Danica Janicijevic
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Catolica de la Santísima Concepción, Concepción, Chile
| | - Angel Saez-Berlanga
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Carlos Babiloni-Lopez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Fernando Martin-Rivera
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
- ICEN Institute, Madrid, Spain
| | - Alejandro Silvestre-Herrero
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Javier Martínez-Puente
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Pablo Ferradás-Nogueira
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Alvaro Juesas
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Javier Gene-Morales
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Iván Chulvi-Medrano
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Juan C. Colado
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| |
Collapse
|
10
|
Möck S, Del Vecchio A. Investigation of motor unit behavior in exercise and sports physiology: challenges and perspectives. Appl Physiol Nutr Metab 2024; 49:547-553. [PMID: 38100752 DOI: 10.1139/apnm-2023-0354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Several methods are in use to record and analyze neuronal activation, each with specific advantages and challenges. New developments like the decomposition of high-density surface electromyography (HDsEMG) have enabled novel insights into discharge characteristics noninvasively in laboratory settings but face certain challenges to be applied in sports physiology in a broader scope. Several challenges can be accounted for by methodological considerations, others require further technological developments to allow this technology to be used in more applied settings. This paper aims to describe the developments of surface electromyography and identify the challenges and perspectives of HDsEMG in the context of an application in sports physiology. We further discuss methodological possibilities to overcome some of the challenges to investigate specific research questions and identify areas that require further advancements.
Collapse
Affiliation(s)
- Sebastian Möck
- Department of Exercise Science, Olympic Training and Testing Center of Hessen, Frankfurt am Main, Germany
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Neuromuscular Physiology and Neural Interfacing Group, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| |
Collapse
|
11
|
Saez-Berlanga A, Babiloni-Lopez C, Ferri-Caruana A, Jiménez-Martínez P, García-Ramos A, Flandez J, Gene-Morales J, Colado JC. A new sports garment with elastomeric technology optimizes physiological, mechanical, and psychological acute responses to pushing upper-limb resistance exercises. PeerJ 2024; 12:e17008. [PMID: 38464757 PMCID: PMC10924454 DOI: 10.7717/peerj.17008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
This study aimed to compare the mechanical (lifting velocity and maximum number of repetitions), physiological (muscular activation, lactate, heart rate, and blood pressure), and psychological (rating of perceived exertion) responses to upper-body pushing exercises performed wearing a sports elastomeric garment or a placebo garment. Nineteen physically active young adults randomly completed two training sessions that differed only in the sports garment used (elastomeric technology or placebo). In each session, subjects performed one set of seated shoulder presses and another set of push-ups until muscular failure. The dependent variables were measured immediately after finishing the set of each exercise. Compared to the placebo garment, the elastomeric garment allowed participants to obtain greater muscular activation in the pectoralis major (push-ups: p = 0.04, d = 0.49; seated shoulder press: p < 0.01, d = 0.64), triceps brachialis (push-ups, p < 0.01, d = 0.77; seated shoulder press: p < 0.01, d = 0.65), and anterior deltoid (push-ups: p < 0.01, d = 0.72; seated shoulder press: p < 0.01, d = 0.83) muscles. Similarly, participants performed more repetitions (push-ups: p < 0.01; d = 0.94; seated shoulder press: p = 0.03, d = 0.23), with higher movement velocity (all p ≤ 0.04, all d ≥ 0.47), and lower perceived exertion in the first repetition (push-ups: p < 0.01, d = 0.61; seated shoulder press: p = 0.05; d = 0.76) wearing the elastomeric garment compared to placebo. There were no between-garment differences in most cardiovascular variables (all p ≥ 0.10). Higher diastolic blood pressure was only found after the seated shoulder press wearing the elastomeric garment compared to the placebo (p = 0.04; d = 0.49). Finally, significantly lower blood lactate levels were achieved in the push-ups performed wearing the elastomeric garment (p < 0.01; d = 0.91), but no significant differences were observed in the seated shoulder press (p = 0.08). Overall, the findings of this study suggest that elastomeric technology integrated into a sports garment provides an ergogenic effect on mechanical, physiological, and psychological variables during the execution of pushing upper-limb resistance exercises.
Collapse
Affiliation(s)
- Angel Saez-Berlanga
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Carlos Babiloni-Lopez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Ana Ferri-Caruana
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
- ICEN Institue, Madrid, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Jorge Flandez
- Institute of Education Sciences, Austral University of Chile, Ciudad de Valdivia, Chile
| | - Javier Gene-Morales
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Juan C. Colado
- Research Group in Prevention and Health in Exercise and Sport (PHES), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
Janicijevic D, Miras-Moreno S, Morenas-Aguilar MD, Jiménez-Martínez P, Alix-Fages C, García-Ramos A. Relationship between perceptual and mechanical markers of fatigue during bench press and bench pull exercises: impact of inter-set rest period length. PeerJ 2024; 12:e16754. [PMID: 38250725 PMCID: PMC10799610 DOI: 10.7717/peerj.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore whether the relationship between perceptual (rating of perceived exertion; RPE) and mechanical (maximal number of repetitions completed [MNR], fastest set velocity, and mean velocity decline) variables is affected by the length of inter-set rest periods during resistance training sets not leading to failure. Twenty-three physically active individuals (15 men and eight women) randomly completed 12 testing sessions resulting from the combination of two exercises (bench press and bench pull), three inter-set rest protocols (1, 3, and 5 min), and two minimal velocity thresholds (farther from muscular failure [MVT0.45 for bench press and MVT0.65 for bench pull] and closer to muscular failure [MVT0.35 for bench press and MVT0.55 for bench pull]). The duration of inter-set rest periods did not have a significant impact on RPE values (p ranged from 0.061 to 0.951). Higher proximities to failure, indicated by lower MVTs, were associated with increased RPE values (p < 0.05 in 19 out of 24 comparisons). Moreover, as the number of sets increased, an upward trend in RPE values was observed (p < 0.05 in seven out of 12 comparisons). Finally, while acknowledging some inconsistencies, it was generally observed that higher magnitudes of the mechanical variables, especially MNR (rs < -0.55 in three out of four comparisons), were associated with lower RPE values. These results, which were comparable for the bench press and bench pull exercises, suggest that post-set RPE values are affected by the fatigue experienced at both the beginning and end of the set.
Collapse
Affiliation(s)
- Danica Janicijevic
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Human Biomechanics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Sergio Miras-Moreno
- Department of Physical Education and Sport, Universidad de Granada, Granada, España
| | | | - Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- ICEN Institute, Madrid, Spain
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- ICEN Institute, Madrid, Spain
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Universidad de Granada, Granada, España
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Catolica de la Santísima Concepcion, Concepcion, Chile
| |
Collapse
|
13
|
Refalo MC, Helms ER, Robinson ZP, Hamilton DL, Fyfe JJ. Similar muscle hypertrophy following eight weeks of resistance training to momentary muscular failure or with repetitions-in-reserve in resistance-trained individuals. J Sports Sci 2024; 42:85-101. [PMID: 38393985 DOI: 10.1080/02640414.2024.2321021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
This study examined the influence of resistance training (RT) proximity-to-failure, determined by repetitions-in-reserve (RIR), on quadriceps hypertrophy and neuromuscular fatigue. Resistance-trained males (n = 12) and females (n = 6) completed an 8-week intervention involving two RT sessions per week. Lower limbs were randomised to perform the leg press and leg extension exercises either to i) momentary muscular failure (FAIL), or ii) a perceived 2-RIR and 1-RIR, respectively (RIR). Muscle thickness of the quadriceps [rectus femoris (RF) and vastus lateralis (VL)] and acute neuromuscular fatigue (i.e., repetition and lifting velocity loss) were assessed. Data was analysed with Bayesian linear mixed-effect models. Increases in quadriceps thickness (average of RF and VL) from pre- to post-intervention were similar for FAIL [0.181 cm (HDI: 0.119 to 0.243)] and RIR [0.182 cm (HDI: 0.115 to 0.247)]. Between-protocol differences in RF thickness slightly favoured RIR [-0.036 cm (HDI: -0.113 to 0.047)], but VL thickness slightly favoured FAIL [0.033 cm (HDI: -0.046 to 0.116)]. Mean volume was similar across the RT intervention between FAIL and RIR. Lifting velocity and repetition loss were consistently greater for FAIL versus RIR, with the magnitude of difference influenced by the exercise and the stage of the RT intervention.
Collapse
Affiliation(s)
- Martin C Refalo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Zac P Robinson
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - D Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jackson J Fyfe
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
14
|
Jiménez-Martínez P, Cornejo-Daza PJ, Sánchez-Valdepeñas J, Asín-Izquierdo I, Cano-Castillo C, Alix-Fages C, Pareja-Blanco F, Colado JC. Effects of different phenylcapsaicin doses on resistance training performance, muscle damage, protein breakdown, metabolic response, ratings of perceived exertion, and recovery: a randomized, triple-blinded, placebo-controlled, crossover trial. J Int Soc Sports Nutr 2023; 20:2204083. [PMID: 37086038 PMCID: PMC10124973 DOI: 10.1080/15502783.2023.2204083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The aim of this study was to explore the effects of a low dose (LD) of 0.625 mg and a high dose (HD) of 2.5 mg of phenylcapsaicin (PC) on full squat (SQ) performance, active muscle (RPE-AM) and overall body (RPE-OB) ratings of perceived exertion, muscle damage, protein breakdown, metabolic response, and 24-h recovery in comparison to placebo (PLA). METHOD Twenty-five resistance-trained males (age = 21.00 ± 2.15 years, SQ 1-repetition maximum [1RM] normalized = 1.66 ± 0.22 kg) were enrolled in this randomized, triple-blinded, placebo-controlled, crossover trial. Participants completed 2 weekly sessions per condition (LD, HD, and PLA). The first session consisted of pre-blood testing of lactate, urea, and aspartate aminotransferases (AST) and 2 SQ repetitions with 60% 1RM followed by the resistance exercise protocol, which consisted of SQ sets of 3 × 8 × 70% 1RM monitoring lifting velocity. RPE-OB and RPE-AM were assessed after each set. After the first session, 2 SQ repetitions with 60% 1RM were performed, and blood lactate and urea posttests were collected. After 24 h, AST posttest and 1 × 2 × 60% 1RM were determined as biochemical and mechanical fatigue outcomes. RESULTS HD reported significant differences for RPE-AM, AST, and SQ performance compared to LD and PLA. Post-hoc analyses revealed that HD attained faster velocities in SQ than LD (p = 0.008). HD induced a lower RPE-AM when compared with LD (p = 0.02) and PLA (p = 0.004). PLA resulted in higher AST concentrations at 24-h post than HD (p = 0.02). No significant differences were observed for the rest of the comparisons. CONCLUSIONS This study suggests that PC may favorably influence SQ performance, RPE-AM, and muscle damage compared to PLA. However, HD exhibited most of the biochemical and mechanical anti-fatigue effects instead of LD.
Collapse
Affiliation(s)
- Pablo Jiménez-Martínez
- University of Valencia, Research Group in Prevention and Health in Exercise and Sport (PHES), Valencia, Spain
- R&D Department, Life Pro Nutrition Research Center,INDIEX, Madrid, Spain
- R&D Department, ICEN institute, Madrid, Spain
| | | | | | - Iván Asín-Izquierdo
- Universidad Pablo de Olavide, Physical Performance & Sports Research Center, Sevilla, Spain
- University of Alcalá, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Madrid, Spain
| | - Clara Cano-Castillo
- Universidad Pablo de Olavide, Physical Performance & Sports Research Center, Sevilla, Spain
| | - Carlos Alix-Fages
- University of Valencia, Research Group in Prevention and Health in Exercise and Sport (PHES), Valencia, Spain
- R&D Department, Life Pro Nutrition Research Center,INDIEX, Madrid, Spain
- R&D Department, ICEN institute, Madrid, Spain
- Autonomous University of Madrid, Applied Biomechanics and Sport Technology Research Group, Madrid, Spain
| | - Fernando Pareja-Blanco
- Universidad Pablo de Olavide, Physical Performance & Sports Research Center, Sevilla, Spain
| | - Juan C. Colado
- University of Valencia, Research Group in Prevention and Health in Exercise and Sport (PHES), Valencia, Spain
| |
Collapse
|
15
|
Cruz-Montecinos C, Landro ME, Cambiaggi G, Caviglia H, Daffunchio C. How does joint impairment affect the functional capacity of the lower limb in early haemophilia-related arthropathy? Haemophilia 2023; 29:1604-1610. [PMID: 37729473 DOI: 10.1111/hae.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION The impact of joint damage on functional capacity in patients with mild haemophilia (PwMH) has yet to be well studied. The primary aim of this study was to investigate the effect of joint impairment on the functional capacity of the lower limb in PwMH. The secondary aim was to identify physical predictors of lower limb functional capacity. METHOD Forty-nine PwMH were evaluated. Dynamic balance was assessed using Time Up and Go (TUG). Thirty-second sit-to-stand (30-STS) and 60-second-STS (60-STS) were used to assess muscle power and endurance, respectively. Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US) was used to assess joint damage. PwMH were divided based on HEAD-US: with joint damage (≥3 points) and without or with very low joint damage (0-2 points). Univariate ANOVA and multiple regression analyses were performed to identify differences in functional capacity and potential physical predictors. RESULTS Only 30-STS showed significant differences between groups (p = .002). TUG and 60-STS were primarily explained by age (r2 = .21 and r2 = .44, respectively), while for 30-STS, age combined with joint damage and pain level explains 54% of the variance. CONCLUSION Our findings indicate that the 30-STS is useful for assessing functional deterioration in people with early-stage haemophilia-related arthropathy. Our results also indicate that joint damage, combined with ageing and pain, may impact 30-STS outcomes in PwMH. Furthermore, our findings show that the loss in TUG and 60-STS performance in PwMH is related to ageing.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
- Section of Research, Innovation and Development in Kinesiology, Kinesiology Unit, San José Hospital, Santiago, Chile
| | | | - Guillermo Cambiaggi
- Department of Traumatology, Juan A. Fernàndez Hospital, CABA, Argentina
- Haemophilia Foundation, CABA, Argentina
| | - Horacio Caviglia
- Department of Traumatology, Juan A. Fernàndez Hospital, CABA, Argentina
- Haemophilia Foundation, CABA, Argentina
| | - Carla Daffunchio
- Department of Traumatology, Juan A. Fernàndez Hospital, CABA, Argentina
- Haemophilia Foundation, CABA, Argentina
| |
Collapse
|
16
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
17
|
Jiménez-Martínez P, Sánchez-Valdepeñas J, Cornejo-Daza PJ, Cano-Castillo C, Asín-Izquierdo I, Alix-Fages C, Pareja-Blanco F, Colado JC. Effects of different phenylcapsaicin doses on neuromuscular activity and mechanical performance in trained male subjects: a randomized, triple-blinded, crossover, placebo-controlled trial. Front Physiol 2023; 14:1215644. [PMID: 37601635 PMCID: PMC10433207 DOI: 10.3389/fphys.2023.1215644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Objective: This study aimed to examine the effects of phenylcapsaicin (PC) supplementation on strength performance and neuromuscular activity in young trained male subjects. Materials and methods: A total of 25 trained subjects [full-squat (SQ) one repetition maximum (1RM) = 125.6 ± 21.0 kg] were enrolled in this randomized, triple-blinded, crossover, placebo-controlled trial. The subjects performed a first session and a post-24 h session for each condition. In the first session, the subjects ingested a high dose of PC (HD, 2.5 mg), a low dose (LD, 0.625 mg), or a placebo (PLA). Their performance in SQ was assessed under a 3% × 8 × 70% 1RM protocol in the first session. Their performances in countermovement jump (CMJ), SQ with 60% 1RM, and isometric squat were measured before and after the SQ protocol in both sessions. The neural activity of the vastus lateralis (VL) and vastus medialis (VM) was recorded via surface electromyography (EMG) and averaged in both sessions. Results: Significant differences between the conditions were reported for lifting velocity, velocity loss, and the 60% load in dynamic SQ (p range = 0.02-0.04). Electrical changes were not identified for any outcome, although neural activity changed across time (p range ≤0.001-0.006). A significant condition × time effect was observed in CMJ compared to PLA (p ≤0.001) and LD (p ≤0.001). Intra-set analyses revealed higher velocities in HD compared to those in LD (p = 0.01) and PLA (p range = 0.004-0.008). Conclusion: Therefore, PC may improve the strength performance and attenuate the mechanical fatigue induced by resistance training in SQ and CMJ exercises.
Collapse
Affiliation(s)
- Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- Life Pro Nutrition Research Center, INDIEX, Madrid, Spain
- ICEN Institute, Madrid, Spain
| | - Juan Sánchez-Valdepeñas
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
| | - Pedro J. Cornejo-Daza
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
| | - Clara Cano-Castillo
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
| | - Iván Asín-Izquierdo
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- Life Pro Nutrition Research Center, INDIEX, Madrid, Spain
- ICEN Institute, Madrid, Spain
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Fernando Pareja-Blanco
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan C. Colado
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
| |
Collapse
|
18
|
Alix-Fages C, Jiménez-Martínez P, de Oliveira DS, Möck S, Balsalobre-Fernández C, Del Vecchio A. Mental fatigue impairs physical performance but not the neural drive to the muscle: a preliminary analysis. Eur J Appl Physiol 2023; 123:1671-1684. [PMID: 36988671 DOI: 10.1007/s00421-023-05189-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Mental fatigue (MF) does not only affect cognitive but also physical performance. This study aimed to explore the effects of MF on muscle endurance, rate of perceived exertion (RPE), and motor units' activity. Ten healthy males participated in a randomised crossover study. The subjects attended two identical experimental sessions separated by 3 days with the only difference of a cognitive task (incongruent Stroop task [ST]) and a control condition (watching a documentary). Perceived MF and motivation were measured for each session at baseline and after each cognitive task. Four contractions at 20% of maximal voluntary contraction (MVIC) were performed at baseline, after each cognitive and after muscle endurance task while measuring motor units by high-density surface electromyography. Muscle endurance until failure at 50% of MVIC was measured after each cognitive task and the RPE was measured right after failure. ST significantly increased MF (p = 0.001) reduced the motivation (p = 0.008) for the subsequent physical task and also impaired physical performance (p = 0.044). However, estimates of common synaptic inputs and motor unit discharge rates as well as RPE were not affected by MF (p > 0.11). In conclusion, MF impairs muscle endurance and motivation for the physical task but not the neural drive to the muscle at any frequency bands. Although it is physiologically possible for mentally fatigued subjects to generate an optimal neuromuscular function, the altered motivation seems to limit physical performance. Preliminarily, our results suggest that the corticospinal pathways are not affected by MF.
Collapse
Affiliation(s)
- Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas Y Valiente 3, Cantoblanco, 28049, Madrid, Spain.
- ICEN Institute, Madrid, Spain.
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain.
| | - Pablo Jiménez-Martínez
- ICEN Institute, Madrid, Spain
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
| | - Daniela Souza de Oliveira
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany
| | - Sebastian Möck
- Department of Exercise Science, Olympic Training and Testing Center of Hessen, Frankfurt Am Main, Germany
| | - Carlos Balsalobre-Fernández
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas Y Valiente 3, Cantoblanco, 28049, Madrid, Spain
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany.
| |
Collapse
|
19
|
Zabaleta-Korta A, Fernández-Peña E, Torres-Unda J, Francés M, Zubillaga A, Santos-Concejero J. Regional Hypertrophy: The Effect of Exercises at Long and Short Muscle Lengths in Recreationally Trained Women. J Hum Kinet 2023; 87:259-270. [PMID: 37559762 PMCID: PMC10407320 DOI: 10.5114/jhk/163561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/03/2023] [Indexed: 08/11/2023] Open
Abstract
The aim of the present study was to analyse the role of exercises' resistance profile in regional hypertrophy. Thirty-eight healthy women completed a 9-week resistance training program consisting of either 4 sets of 12 repetitions to volitional failure of inclined bicep curls (INC group) or preacher curls (PREA group), three times per week. Pre- and post-intervention muscle thickness was measured using B-mode ultrasound imaging with a linear-array transducer. Scan acquisition sites were determined by measuring 50%, 60% and 70% of the distance between the posterior crest of the acromion and the olecranon. Statistical significance was set at p < 0.05. No region of the INC group grew when comparing pre- to post-intervention. The 70% region of the PREA group grew significantly (muscle thickness increased from 2.7 ± 0.43 cm to 2.94 ± 0.44 cm). We found no growth differences between regions when analysing per group (p = 0.274), region (p = 0.571) or group*region (p = 0.367). Our results show that the distal region of the arm grows in response to the preacher curl that places the highest amount of strain in the range of motion in which the arm muscles are more elongated.
Collapse
Affiliation(s)
- Aitor Zabaleta-Korta
- Sports and Education Department, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Eneko Fernández-Peña
- Sports and Education Department, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Jon Torres-Unda
- Physiotherapy Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maider Francés
- Physiotherapy Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Zubillaga
- Sports and Education Department, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Jordan Santos-Concejero
- Sports and Education Department, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
20
|
Jiménez-Martínez P, Alix-Fages C, Janicijevic D, Miras-Moreno S, Chacón-Ventura S, Martín-Olmedo JJ, De La Cruz-Márquez JC, Osuna-Prieto FJ, Jurado-Fasoli L, Amaro-Gahete FJ, García-Ramos A, Colado JC. Effects of phenylcapsaicin on aerobic capacity and physiological parameters in active young males: a randomized, triple-blinded, placebo-controlled, crossover trial. Front Physiol 2023; 14:1190345. [PMID: 37228817 PMCID: PMC10203624 DOI: 10.3389/fphys.2023.1190345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Objective: Phenylcapsaicin (PC) is a new capsaicin analog which has exhibited a higher bioavailability. This sudy assessed the effects of a low dose (LD) of 0.625 mg and a high dose (HD) of 2.5 mg of PC on aerobic capacity, substrate oxidation, energy metabolism and exercise physiological variables in young males. Materials and methods: Seventeen active males (age = 24.7 ± 6.0 years) enrolled to this randomized, triple-blinded, placebo-controlled, crossover trial. Participants attended the laboratory on 4 sessions separated by 72-96 h. A submaximal exercise test [to determine maximal fat oxidation (MFO) and the intensity at MFO (FATmax)] followed by a maximal incremental test (to determine VO2max) were performed in a preliminary session. The subsequent sessions only differed in the supplement ingested [LD, HD or placebo (PLA)] and consisted of a steady-state test (60 min at FATmax) followed by a maximal incremental test. Energy metabolism, substrate oxidation, heart rate, general (gRPE) and quadriceps (RPEquad) rate of perceived exertion, skin temperature and thermal perception were tested. Results: Clavicle thermal perception was lower in HD compared to PLA and LD (p = 0.04) across time. HD reduced maximum heart rate in comparison to PLA and LD (p = 0.03). LD reported higher general RPE (RPEg) values during the steady-state test compared to PLA and HD across time (p = 0.02). HD and LD elicited higher peak of fat oxidation during the steady-state test compared with PLA (p = 0.05). Intra-test analyses revealed significant differences for fat oxidation (FATox) in favor of HD and LD compared to PLA (p = 0.002 and 0.002, respectively), and for carbohydrate oxidation (CHOox) (p = 0.05) and respiratory exchange ratio (RER) (p = 0.03) for PLA. In the incremental test, only general RPE at 60% of the maximal intensity (W) differed favoring HD (p ≤ 0.05). Conclusion: Therefore, PC may contribute to increase aerobic capacity through the improvement of fat oxidation, maximum heart rate and perceptual responses during exercise.
Collapse
Affiliation(s)
- Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- Life Pro Nutrition Research Center, INDIEX, Madrid, Spain
- ICEN Institute, Madrid, Spain
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- Life Pro Nutrition Research Center, INDIEX, Madrid, Spain
- ICEN Institute, Madrid, Spain
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Danica Janicijevic
- Research Academy of Human Biomechanics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Sergio Miras-Moreno
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Sara Chacón-Ventura
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Juan J. Martín-Olmedo
- Life Pro Nutrition Research Center, INDIEX, Madrid, Spain
- Department of Physical and Sports Education, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | | | - Francisco J. Osuna-Prieto
- Department of Physical and Sports Education, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Research Institute in Health Pere Virgili, University Hospital of Tarragona Joan XXIII, Tarragona, Spain
| | - Lucas Jurado-Fasoli
- Department of Physical and Sports Education, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Francisco J. Amaro-Gahete
- Department of Physical and Sports Education, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Sports Sciences and Physical Conditioning, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Juan C. Colado
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
| |
Collapse
|
21
|
Benavente C, Schoenfeld BJ, Padial P, Feriche B. Efficacy of resistance training in hypoxia on muscle hypertrophy and strength development: a systematic review with meta-analysis. Sci Rep 2023; 13:3676. [PMID: 36871095 PMCID: PMC9985626 DOI: 10.1038/s41598-023-30808-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A systematic review and meta-analysis was conducted to determine the effects of resistance training under hypoxic conditions (RTH) on muscle hypertrophy and strength development. Searches of PubMed-Medline, Web of Science, Sport Discus and the Cochrane Library were conducted comparing the effect of RTH versus normoxia (RTN) on muscle hypertrophy (cross sectional area (CSA), lean mass and muscle thickness) and strength development [1-repetition maximum (1RM)]. An overall meta-analysis and subanalyses of training load (low, moderate or high), inter-set rest interval (short, moderate or long) and severity of hypoxia (moderate or high) were conducted to explore the effects on RTH outcomes. Seventeen studies met inclusion criteria. The overall analyses showed similar improvements in CSA (SMD [CIs] = 0.17 [- 0.07; 0.42]) and 1RM (SMD = 0.13 [0.0; 0.27]) between RTH and RTN. Subanalyses indicated a medium effect on CSA for longer inter-set rest intervals and a small effect for moderate hypoxia and moderate loads favoring RTH. Moreover, a moderate effect for longer inter-set rest intervals and a trivial effect for severe hypoxia and moderate loads favoring RTH was found on 1RM. Evidence suggests that RTH employed with moderate loads (60-80% 1RM) and longer inter-set rest intervals (≥ 120 s) enhances muscle hypertrophy and strength compared to normoxia. The use of moderate hypoxia (14.3-16% FiO2) seems to be somewhat beneficial to hypertrophy but not strength. Further research is required with greater standardization of protocols to draw stronger conclusions on the topic.
Collapse
Affiliation(s)
- Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Brad J Schoenfeld
- Department of Exercise Science and Recreation, CUNY Lehman College, The Bronx, NY, USA
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
22
|
Refalo MC, Helms ER, Trexler ET, Hamilton DL, Fyfe JJ. Influence of Resistance Training Proximity-to-Failure on Skeletal Muscle Hypertrophy: A Systematic Review with Meta-analysis. Sports Med 2023; 53:649-665. [PMID: 36334240 PMCID: PMC9935748 DOI: 10.1007/s40279-022-01784-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE This systematic review with meta-analysis investigated the influence of resistance training proximity-to-failure on muscle hypertrophy. METHODS Literature searches in the PubMed, SCOPUS and SPORTDiscus databases identified a total of 15 studies that measured muscle hypertrophy (in healthy adults of any age and resistance training experience) and compared resistance training performed to: (A) momentary muscular failure versus non-failure; (B) set failure (defined as anything other than momentary muscular failure) versus non-failure; or (C) different velocity loss thresholds. RESULTS There was a trivial advantage for resistance training performed to set failure versus non-failure for muscle hypertrophy in studies applying any definition of set failure [effect size=0.19 (95% confidence interval 0.00, 0.37), p=0.045], with no moderating effect of volume load (p=0.884) or relative load (p=0.525). Given the variability in set failure definitions applied across studies, sub-group analyses were conducted and found no advantage for either resistance training performed to momentary muscular failure versus non-failure for muscle hypertrophy [effect size=0.12 (95% confidence interval -0.13, 0.37), p=0.343], or for resistance training performed to high (>25%) versus moderate (20-25%) velocity loss thresholds [effect size=0.08 (95% confidence interval -0.16, 0.32), p=0.529]. CONCLUSION Overall, our main findings suggest that (i) there is no evidence to support that resistance training performed to momentary muscular failure is superior to non-failure resistance training for muscle hypertrophy and (ii) higher velocity loss thresholds, and theoretically closer proximities-to-failure do not always elicit greater muscle hypertrophy. As such, these results provide evidence for a potential non-linear relationship between proximity-to-failure and muscle hypertrophy.
Collapse
Affiliation(s)
- Martin C Refalo
- Centre for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | | | - D Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Jackson J Fyfe
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
23
|
Monserdà-Vilaró A, Balsalobre-Fernández C, Hoffman JR, Alix-Fages C, Jiménez SL. Effects of Concurrent Resistance and Endurance Training Using Continuous or Intermittent Protocols on Muscle Hypertrophy: Systematic Review With Meta-Analysis. J Strength Cond Res 2023; 37:688-709. [PMID: 36508686 DOI: 10.1519/jsc.0000000000004304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Monserdà-Vilaró, A, Balsalobre-Fernández, C, Hoffman, JR, Alix-Fages, C, and Jiménez, SL. Effects of concurrent resistance and endurance training using continuous or intermittent protocols on muscle hypertrophy: Systematic review with meta-analysis. J Strength Cond Res 37(3): 688-709, 2023-The purpose of this systematic review with meta-analysis was to explore the effects of concurrent resistance and endurance training (CT) incorporating continuous or intermittent endurance training (ET) on whole-muscle and type I and II muscle fiber hypertrophy compared with resistance training (RT) alone. Randomized and nonrandomized studies reporting changes in cross-sectional area at muscle fiber and whole-muscle levels after RT compared with CT were included. Searches for such studies were performed in Web of Science, PubMed, Scopus, SPORTDiscus, and CINAHL electronic databases. The data reported in the included studies were pooled in a random-effects meta-analysis of standardized mean differences (SMDs). Twenty-five studies were included. At the whole-muscle level, there were no significant differences for any comparison (SMD < 0.03). By contrast, RT induced greater type I and type II muscle fiber hypertrophy than CT when high-intensity interval training (HIIT) was incorporated alone (SMD > 0.33) or combined with continuous ET (SMD > 0.27), but not compared with CT incorporating only continuous ET (SMD < 0.16). The subgroup analyses of this systematic review and meta-analysis showed that RT induces greater muscle fiber hypertrophy than CT when HIIT is included. However, no CT affected whole-muscle hypertrophy compared with RT.
Collapse
Affiliation(s)
| | | | - Jay R Hoffman
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel ; and
| | - Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Sergio L Jiménez
- Centre for Sport Studies, Universidad Rey Juan Carlos, Fuenlabrada, Madrid, Spain
| |
Collapse
|
24
|
Refalo MC, Helms ER, Hamilton DL, Fyfe JJ. Influence of Resistance Training Proximity-to-Failure, Determined by Repetitions-in-Reserve, on Neuromuscular Fatigue in Resistance-Trained Males and Females. SPORTS MEDICINE - OPEN 2023; 9:10. [PMID: 36752989 PMCID: PMC9908800 DOI: 10.1186/s40798-023-00554-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND This study examined the influence of proximity-to-failure in resistance training (RT), using subjective repetitions-in-reserve (RIR) prediction, on neuromuscular fatigue and perceptual responses. METHODS Twenty-four resistance-trained males (n = 12) and females (n = 12) completed three experimental trials in a randomised order, each involving six RT sets (barbell bench press) with 75% 1-RM performed to either momentary muscular failure (FAIL), 1-RIR, or 3-RIR. Changes in lifting velocity with a fixed load were assessed from pre-exercise to post-exercise with the aim of quantifying acute neuromuscular fatigue (4 min post-exercise) and the associated time course of recovery (24 and 48 h post-exercise), and from the first to final set performed. Perceptual responses to RT were assessed at multiple time points during and following RT. RESULTS Decreases in lifting velocity at 4 min post-exercise were greater for FAIL ( - 25%) versus 1-RIR ( - 13%) and 3-RIR ( - 8%), with greater decreases for male ( - 29%) versus female ( - 21%) participants following FAIL. At 24 h post-exercise, decreases in lifting velocity were greater for FAIL ( - 3%) and 1-RIR ( - 3%) versus 3-RIR (+ 2%), with all between-protocol differences diminishing at 48 h post-exercise. Loss of lifting velocity from the first to final set was greater for FAIL ( - 22%) versus 1-RIR ( - 9%) and 3-RIR ( - 6%), with a greater lifting velocity loss from the first to final set for males ( - 15%) versus females ( - 9%). As proximity-to-failure neared, ratings of perceived discomfort, exertion, and muscle soreness increased, general feelings worsened, and perceived recovery decreased. CONCLUSION These findings support a linear relationship between RT proximity-to-failure and both acute neuromuscular fatigue and negative perceptual responses, which may influence long-term physiological adaptations and adherence to RT.
Collapse
Affiliation(s)
- Martin C. Refalo
- grid.1021.20000 0001 0526 7079Centre for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Eric R. Helms
- grid.252547.30000 0001 0705 7067Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - D. Lee Hamilton
- grid.1021.20000 0001 0526 7079Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jackson J. Fyfe
- grid.1021.20000 0001 0526 7079Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
25
|
Hortobágyi T, Vetrovsky T, Balbim GM, Sorte Silva NCB, Manca A, Deriu F, Kolmos M, Kruuse C, Liu-Ambrose T, Radák Z, Váczi M, Johansson H, Dos Santos PCR, Franzén E, Granacher U. The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Res Rev 2022; 80:101698. [PMID: 35853549 DOI: 10.1016/j.arr.2022.101698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine the effects of low- vs. high-intensity aerobic and resistance training on motor and cognitive function, brain activation, brain structure, and neurochemical markers of neuroplasticity and the association thereof in healthy young and older adults and in patients with multiple sclerosis, Parkinson's disease, and stroke. DESIGN Systematic review and robust variance estimation meta-analysis with meta-regression. DATA SOURCES Systematic search of MEDLINE, Web of Science, and CINAHL databases. RESULTS Fifty studies with 60 intervention arms and 2283 in-analyses participants were included. Due to the low number of studies, the three patient groups were combined and analyzed as a single group. Overall, low- (g=0.19, p = 0.024) and high-intensity exercise (g=0.40, p = 0.001) improved neuroplasticity. Exercise intensity scaled with neuroplasticity only in healthy young adults but not in healthy older adults or patient groups. Exercise-induced improvements in neuroplasticity were associated with changes in motor but not cognitive outcomes. CONCLUSION Exercise intensity is an important variable to dose and individualize the exercise stimulus for healthy young individuals but not necessarily for healthy older adults and neurological patients. This conclusion warrants caution because studies are needed that directly compare the effects of low- vs. high-intensity exercise on neuroplasticity to determine if such changes are mechanistically and incrementally linked to improved cognition and motor function.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Hungary; Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany; Hungarian University of Sports Science, Department of Kinesiology, Budapest, Hungary.
| | - Tomas Vetrovsky
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Guilherme Moraes Balbim
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Nárlon Cássio Boa Sorte Silva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy
| | - Mia Kolmos
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Zsolt Radák
- Research Center of Molecular Exercise Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Márk Váczi
- Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Hungary
| | - Hanna Johansson
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | | | - Erika Franzén
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
26
|
Refalo MC, Helms ER, Hamilton DL, Fyfe JJ. Towards an improved understanding of proximity-to-failure in resistance training and its influence on skeletal muscle hypertrophy, neuromuscular fatigue, muscle damage, and perceived discomfort: A scoping review. J Sports Sci 2022; 40:1369-1391. [PMID: 35658845 DOI: 10.1080/02640414.2022.2080165] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
While proximity-to-failure is considered an important resistance training (RT) prescription variable, its influence on physiological adaptations and short-term responses to RT is uncertain. Given the ambiguity in the literature, a scoping review was undertaken to summarise evidence for the influence of proximity-to-failure on muscle hypertrophy, neuromuscular fatigue, muscle damage and perceived discomfort. Literature searching was performed according to PRISMA-ScR guidelines and identified three themes of studies comparing either: i) RT performed to momentary muscular failure versus non-failure, ii) RT performed to set failure (defined as anything other than momentary muscular failure) versus non-failure, and iii) RT performed to different velocity loss thresholds. The findings highlight that no consensus definition for "failure" exists in the literature, and the proximity-to-failure achieved in "non-failure" conditions is often ambiguous and variable across studies. This poses challenges when deriving practical recommendations for manipulating proximity-to-failure in RT to achieve desired outcomes. Based on the limited available evidence, RT to set failure is likely not superior to non-failure RT for inducing muscle hypertrophy, but may exacerbate neuromuscular fatigue, muscle damage, and post-set perceived discomfort versus non-failure RT. Together, these factors may impair post-exercise recovery and subsequent performance, and may also negatively influence long-term adherence to RT.KEY POINTS This scoping review identified three broad themes of studies investigating proximity-to-failure in RT, based on the specific definition of set failure used (and therefore the research question being examined), to improve the validity of study comparisons and interpretations.There is no consensus definition for set failure in RT, and the proximity-to-failure achieved during non-failure RT is often unclear and varies both within and between studies, which together poses challenges when interpreting study findings and deriving practical recommendations regarding the influence of RT proximity-to-failure on muscle hypertrophy and other short-term responses.Based on the limited available evidence, performing RT to set failure is likely not superior to non-failure RT to maximise muscle hypertrophy, but the optimal proximity to failure in RT for muscle hypertrophy is unclear and may be moderated by other RT variables (e.g., load, volume-load). Also, RT performed to set failure likely induces greater neuromuscular fatigue, muscle damage, and perceived discomfort than non-failure RT, which may negatively influence RT performance, post-RT recovery, and long-term adherence.
Collapse
Affiliation(s)
- Martin C Refalo
- Centre for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - D Lee Hamilton
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| | - Jackson J Fyfe
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| |
Collapse
|
27
|
López-Laval I, Sitko S, Cantonero J, Corbi F, Cirer-Sastre R. The Effectiveness of Shoulder Mobility and Strength Programs in Competitive Water-Polo Players. Life (Basel) 2022; 12:life12050758. [PMID: 35629424 PMCID: PMC9145995 DOI: 10.3390/life12050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Water-polo is the water sport with the highest incidence of injuries, with shoulder pain being the most common one. The understanding of risk factors and guidance on preventive measures is essential in this sport discipline. The aim of this study was to determine the effects of a specific 6-week training plan on range of motion (ROM) and joint strength levels in a group of professional water-polo players. Methods: Quasi-experimental study with a sample of 28 participants (age: 20.1 ± 2.5 years; height: 176.9 ± 6.2 cm; body mass: 74.6 ± 8.1 kg). Three study groups, which consisted of one control group and two experimental groups, were established. Two repeated measurements, pre and post intervention, were performed. During these measurements, ROM of the glenohumeral joint was analyzed both in external (ER) and internal (IR) rotation, as well as the maximal isometric strength. Conclusions: The application of a training program improved glenohumeral joint ROM. ER and IR evolve differently in both shoulders. ER improved only in the throwing arm only in the group undergoing intervention but for the non-dominant side, improvements were observed in both ER and IR, regardless of whether or not they had followed the intervention plan. No improvements were observed in either the isometric strength or contralateral asymmetries.
Collapse
Affiliation(s)
- Isaac López-Laval
- Faculty of Health and Sport Sciences (FCSD), University of Zaragoza, 22002 Huesca, Spain; (S.S.); (J.C.)
- Correspondence:
| | - Sebastian Sitko
- Faculty of Health and Sport Sciences (FCSD), University of Zaragoza, 22002 Huesca, Spain; (S.S.); (J.C.)
| | - Jaime Cantonero
- Faculty of Health and Sport Sciences (FCSD), University of Zaragoza, 22002 Huesca, Spain; (S.S.); (J.C.)
| | - Francisco Corbi
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Lleida (UdL), 25192 Lleida, Spain; (F.C.); (R.C.-S.)
| | - Rafel Cirer-Sastre
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Lleida (UdL), 25192 Lleida, Spain; (F.C.); (R.C.-S.)
| |
Collapse
|