1
|
Filis P, Papagiannopoulos CK, Markozannes G, Chalitsios CV, Zerdes I, Valachis A, Papandreou C, Christakoudi S, Tsilidis KK. Associations of sarcopenia, sarcopenia components and sarcopenic obesity with cancer incidence: A prospective cohort study of 414,094 participants in UK Biobank. Int J Cancer 2025. [PMID: 40396701 DOI: 10.1002/ijc.35480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 04/17/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
Sarcopenia is characterised by low grip strength, muscle quantity or quality, and physical performance. This study investigated the associations of sarcopenia and its components with cancer incidence. A prospective cohort study was conducted utilising data from the UK Biobank. Sarcopenia and its components were defined according to the European Working Group on Sarcopenia in Older People criteria (EWGSOP2 2019). Cox proportional hazard models adjusted for sociodemographic, lifestyle, and health-related factors were performed. Overall, 63,379 out of 414,094 study participants had an incident diagnosis of cancer during a median follow-up of 11.7 years. In total, 32,286 participants had probable sarcopenia and 934 confirmed/severe sarcopenia at recruitment. Combined probable, confirmed, and severe sarcopenia was associated with a higher risk of liver (hazard ratio [HR] = 1.65, 95% confidence interval [CI]: 1.17-2.33), haematological (HR = 1.22, 95% CI: 1.01-1.46), and colorectal cancer (HR = 1.21, 95% CI: 1.04-1.41) in males, but not in females. The components of sarcopenia were associated with a higher risk of several cancers, including low grip strength (with liver, haematological and colorectal cancer in males), low muscle mass index (oesophageal in females and oral cancer in males), and slow walking pace (liver and lung in males, lung and overall cancer in females). Compared to participants with non-sarcopenic obesity, those with sarcopenic obesity had a higher risk of colorectal cancer in males (HR = 1.31, 95% CI: 1.03-1.68). Our study suggests that sarcopenia, sarcopenia components, and sarcopenic obesity can be associated with risk for several cancers, mainly of the gastrointestinal tract and in males. Thus, early identification of sarcopenia components may benefit cancer prevention.
Collapse
Affiliation(s)
- Panagiotis Filis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Medical Oncology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Christos V Chalitsios
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Antonios Valachis
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Christopher Papandreou
- Institut d'Investigació Sanitària Pere Virgili (IISPV), NeuroÈpia Group, Hospital Universitari Sant Joan de Reus, Reus (Tarragona), Spain
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University (HMU), Siteia, Greece
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
2
|
Fernandez JA, Han Q, Rajczewski AT, Kono T, Weirath NA, Lee AS, Rahim A, Tretyakova NY. Multi-Omics Analysis of the Epigenetic Effects of Inflammation in Murine Type II Pneumocytes. Int J Mol Sci 2025; 26:4692. [PMID: 40429836 PMCID: PMC12112469 DOI: 10.3390/ijms26104692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Chronic inflammation plays a central role in the pathogenesis of lung diseases including asthma, long COVID, chronic obstructive pulmonary disease (COPD), and lung cancer. Lipopolysaccharide (LPS) is a potent inflammatory agent produced by Gram-negative bacteria and also found in cigarette smoke. Our earlier study revealed that the intranasal exposure of A/J mice to LPS for 7 days altered gene expression levels in alveolar Type II epithelial cells (AECIIs), which serve as precursors to lung adenocarcinoma and are also preferentially targeted by SARS-CoV-2. In the present work, we employed a comprehensive multi-omics approach to characterize changes in DNA methylation/hydroxymethylation, gene expression, and global protein abundances in the AECIIs of A/J mice following the sub-chronic exposure to LPS and after a 4-week recovery period. Exposure to LPS led to hypermethylation at regulatory elements within the genome such as enhancer regions and expression changes in genes known to play a role in lung cancer tumorigenesis. Changes in protein abundance were consistent with an inflammatory phenotype and also included tumor suppressor proteins. Integration of the multi-omics data resulted in a model where LPS-driven inflammation in AECIIs triggers epigenetic changes that, along with genetic mutations, may contribute to lung cancer development.
Collapse
Affiliation(s)
- Jenna A. Fernandez
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.F.); (N.A.W.); (A.R.)
| | - Qiyuan Han
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA; (Q.H.); (A.T.R.)
| | - Andrew T. Rajczewski
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA; (Q.H.); (A.T.R.)
| | - Thomas Kono
- Research Informatics Services, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas A. Weirath
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.F.); (N.A.W.); (A.R.)
| | - Alexander S. Lee
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Abdur Rahim
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.F.); (N.A.W.); (A.R.)
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, College of Pharmacy, and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Mehran YZ, Weber HM, Hoseinzade F, Harandi NT, Ayazi M, Mirzadeh S. Longevity concept by regenerative medicine methods synergy: exosome therapy, functional medicine, and advanced multi-wavelengths laser therapy. Eur J Transl Myol 2025. [PMID: 40341289 DOI: 10.4081/ejtm.2025.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 05/10/2025] Open
Abstract
Regenerative medicine is one of the most important branches of medicine today and in the future and brings together all the methods to stop or even reverse the aging process. Regenerative medicine may include cellular therapies such as stem cell therapy or extracellular vesicle therapies such as exosomes and growth factor therapy. It may also involve the use of Photobiomodulation (PBM) and functional medicine treatments targets on mitochondrial medicine, to control the aging process. In this article, we have discussed the role, importance, rationale, overlap, and synergy of the joint application of these methods. Combining these regenerative medicine approaches can achieve better results in various medical indications. For longevity, any autoimmune disease, chronic disease, especially in elderly patients, this recommended combination seems to be very critical, for a higher survival rate in cell therapy methods. It is like a plant growing process that requires good quality seeds (cell therapy), light (targeted laser therapy) and good soil (functional medicine).
Collapse
Affiliation(s)
| | - Hans Michael Weber
- Head of International Society of Medical LASER Applications, Lauenfoerde.
| | - Fateme Hoseinzade
- Physical Medicine and Rehabilitation Specialist, Isfahan University of Medical Science, Isfahan.
| | | | | | - Shila Mirzadeh
- Dermatologist, Dr Shila Mirzadeh Ghomsheh Clinic, Shariati, Tehran.
| |
Collapse
|
4
|
Hung SH, Yang TH, Lin HC, Chen CS. Associations of Head and Neck Cancer with Prior Allergic Rhinitis. Cancers (Basel) 2025; 17:1000. [PMID: 40149334 PMCID: PMC11941638 DOI: 10.3390/cancers17061000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Chronic inflammation has been implicated in cancer development, but the association between allergic rhinitis (AR) and head and neck cancer (HNC) remains unclear. This study aims to investigate this potential relationship using a population-based dataset. Methods: Utilizing the Taiwan Longitudinal Health Insurance Database 2010, we conducted a case-control study encompassing 14,913 HNC patients and 59,652 propensity-score matched controls. Multivariate logistic regression analyses were performed to quantitatively evaluate the association between HNC and prior AR, adjusting for demographic factors and medical comorbidities such as hyperlipidemia, diabetes, hypertension, tobacco use disorder, HPV infection, and alcohol-related disorders. Results: This study identified that 20.19% of the entire cohort had a prior diagnosis of AR, with a significantly higher prevalence in HNC patients relative to controls (26.2% vs. 18.70%). The adjusted odds ratio (OR) for previous AR in HNC patients was 1.559 (95% CI = 1.494-1.627). Furthermore, site-specific analysis revealed increased odds ratios for AR among patients with cancers of the larynx (OR = 1.537, 95% CI = 1.307-1.807), hypopharynx (OR = 1.220, 95% CI = 1.035-1.437), nasopharynx (OR = 2.933, 95% CI = 2.722-3.160), sinonasal (OR = 3.100, 95% CI = 2.424-3.964), salivary glands (OR = 1.470, 95% CI = 1.158-1.865), and thyroid (OR = 1.566, 95% CI = 1.447-1.693). Conclusions: The findings robustly support a significant link between AR and an elevated risk of developing HNC, notably affecting the nasopharynx, sinonasal cavities, larynx, salivary glands, and thyroid.
Collapse
Affiliation(s)
- Shih-Han Hung
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Otolaryngology, Wan Fang Hospital, Taipei 110, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzong-Hann Yang
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei 106, Taiwan;
- Department of Speech, Language and Audiology, National Taipei University of Nursing and Health, Taipei 112, Taiwan
- Department of Exercise and Health Sciences, University of Taipei, Taipei 100, Taiwan
- Department of Otorhinolaryngology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Research Center of Data Science on Healthcare Industry, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Herng-Ching Lin
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chin-Shyan Chen
- Research Center of Data Science on Healthcare Industry, College of Management, Taipei Medical University, Taipei 110, Taiwan
- Department of Economics, National Taipei University, New Taipei City 237, Taiwan
| |
Collapse
|
5
|
Shah V, Lam HY, Leong CHM, Sakaizawa R, Shah JS, Kumar AP. Epigenetic Control of Redox Pathways in Cancer Progression. Antioxid Redox Signal 2025. [PMID: 39815993 DOI: 10.1089/ars.2023.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Significance: Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. Recent Advances: We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA. Critical Issues: In cancerous cells, alterations of the gene-expression regulatory elements could be generated by the virtue of imbalance in tumor microenvironment. Various oxidizing agents and mitochondrial electron transport chain are the major pathways that generate ROS. ROS plays a key role in carcinogenesis by activating pro-inflammatory signaling pathways and DNA damage. This loss of ROS-mediated epigenetic regulation of the signaling pathways may promote tumorigenesis. We address all such aspects in this review. Future Directions: Developments in this growing field of epigenetics are expected to contribute to further our understanding of human health and diseases such as cancer and to test the clinical applications of redox-based therapy. Recent studies of the cancer-epigenetic landscape have revealed pervasive deregulation of the epigenetic factors in cancer. Thus, the study of interaction between ROS and epigenetic factors in cancer holds a great promise in the development of effective and targeted treatment modalities. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Vandit Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charlene Hoi-Mun Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reo Sakaizawa
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigna S Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Yamada Y, Furukawa K, Haruki K, Okui N, Shirai Y, Tsunematsu M, Yanagaki M, Yasuda J, Onda S, Ikegami T. Abdominal aortic calcification volume as a preoperative prognostic predictor for pancreatic cancer. Surg Today 2025; 55:70-77. [PMID: 38880804 DOI: 10.1007/s00595-024-02882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE Atherosclerosis and cancer may progress through common pathological factors. This study was performed to investigate the association between the abdominal aortic calcification (AAC) volume and outcomes following surgical treatment for pancreatic cancer. METHODS The subjects of this retrospective study were 194 patients who underwent pancreatic cancer surgery between 2007 and 2020. The AAC volume was assessed through routine preoperative computed tomography. Univariate and multivariate analyses were performed to evaluate the impact of the AAC volume on oncological outcomes. RESULTS A higher AAC volume (≥ 312 mm3) was identified in 66 (34%) patients, who were significantly older and had a higher prevalence of diabetes and sarcopenia. Univariate analysis revealed several risk factors for overall survival (OS), including male sex, an AAC volume ≥ 312 mm3, elevated carbohydrate antigen 19-9, prolonged operation time, increased intraoperative bleeding, lymph node metastasis, poor differentiation, and absence of adjuvant chemotherapy. Multivariate analysis identified an AAC volume ≥ 312 mm3, prolonged operation time, lymph node metastasis, poor differentiation, and absence of adjuvant chemotherapy as independent OS risk factors. The OS rate was significantly lower in the high AAC group than in the low AAC group. CONCLUSION The AAC volume may serve as a preoperative prognostic indicator for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yuta Yamada
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Kenei Furukawa
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Koichiro Haruki
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Norimitsu Okui
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Yoshihiro Shirai
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Masashi Tsunematsu
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Mitsuru Yanagaki
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Jungo Yasuda
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Shinji Onda
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| |
Collapse
|
7
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:417-448. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
8
|
Luo J, Gao J, Song H, Mo Z, Hong B, Zhu L, Song W, Qian G, Li C. Low temperature alleviated the adverse effects of simulated transport stress on the intestinal health in Chinese soft-shelled turtle Pelodiscus sinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109936. [PMID: 39357630 DOI: 10.1016/j.fsi.2024.109936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Transport stress always poses a threat to aquatic animals. Transportation under low temperatures was often used to relieve transport stress in practical production of Chinese soft-shelled turtle Pelodiscus sinensis, but their effect on the turtle's intestinal barrier remains unclear. In this study, P. sinensis (initial weight 200 ± 20 g) were exposed to simulated transport stress for 12 h at control (30 °C) and low (20 °C) temperature, and then recovery for 24 h, and each treatment had 4 replicates with each replicate containing 4 turtles. The results showed that transportation induced obvious morphological and histological damages in intestinal villus, with a down-regulated expression of the tight junction related genes. Besides turtles in transport group showed an oxidative stress in intestine, which stimulated a physiological detoxification response together with apoptosis. Low temperature transport plays a mitigative effect on the transport stress of turtle intestine via relieved stress response. Specifically, the intestinal villus/crypt (V/C) ratio and the expression of tight junction genes in the low-temperature group were significantly higher compared to the control temperature group, while stress response parameters such as intestinal cortisol levels and hsp expression were significantly lower in the low-temperature group. Additionally, low temperature alleviated oxidative damage and apoptosis caused by transport stress relative to the control temperature group. However, the protective effect of low temperature on P. sinensis intestine was limited, especially after the temperature recovery stage. Overall, the findings of the present study demonstrated that transport stress would induce the disruption of intestinal integrity and oxidative damage, also activated the mucosal immunity and antioxidant enzyme system response of turtles. It was also suggested that low temperature could alleviate the adverse effects of transport stress on intestinal integrity through modulation of oxidative status and apoptosis, whereas much less impact after temperature recovery.
Collapse
Affiliation(s)
- Jiaxiang Luo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jintao Gao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Haoran Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhiyin Mo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Binquan Hong
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Leyan Zhu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Caiyan Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
9
|
Althikrallah HA, Shaaban S, Elmaaty AA, Ba-Ghazal H, Almarri MN, Sharaky M, Alnajjar R, Al-Karmalawy AA. Investigating the anti-inflammatory potential of N-amidic acid organoselenium candidates: biological assessments, molecular docking, and molecular dynamics simulations. RSC Adv 2024; 14:31990-32000. [PMID: 39391620 PMCID: PMC11463133 DOI: 10.1039/d4ra04762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Inflammation is a complex process with many contributing factors, and it often causes pain. The pathophysiology of pain involves the release of inflammatory mediators that initiate pain sensation, as well as edema and other inflammation hallmarks. Selenium-containing compounds (OSe) are very promising for developing new medicines because they can treat many different diseases. In this study, we estimated the anti-inflammatory properties of maleanilic and succinanilic acids containing selenium (OSe). These molecules were designed by combining different strategies to enhance their anti-inflammatory properties. Hence, the anti-inflammatory impacts of compounds 8, 9, 10, and 11 were pursued using inflammatory markers COX-2, IL-1β, and IL-6. Notably, it was revealed that compounds 8, 9, 10, and 11 downregulated COX-2, IL-1β, and IL-6 by (2.01, 1.63, 2.26, and 2.05), (1.42, 1.64, 1.93, and 2.59), and (1.67, 2.54, 2.22, and 4.06)-fold changes, respectively. Moreover, molecular docking studies were conducted on compounds 8, 9, 10, and 11 to pursue their binding affinities for the COX-2 enzyme. Notably, very promising binding scores of compounds 8, 9, 10, and 11 towards the binding site of the COX-2 receptor were attained. Additionally, more accurate molecular dynamics simulations were performed for 200 ns for the docked complexes of compounds 8, 9, 10, and 11 to confirm the molecular docking findings, which ignore the protein's flexibility. Therefore, the exact stability of the N-amidic acids OSe compounds 8, 9, 10, and 11 towards the binding pocket of the COX-2 enzyme was examined and explained as well. Also, the MM-GBSA binding energy was calculated for equilibrated MD trajectory, and 200 snapshots were selected with a 50 ps interval for further analysis. Accordingly, the investigated compounds can be treated as prominent lead anti-inflammatory candidates for further optimization.
Collapse
Affiliation(s)
- Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Hussein Ba-Ghazal
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Mohammed N Almarri
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University Cairo Egypt
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi Libya
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
10
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
11
|
Hwang YK, Lee DH, Lee EC, Oh JS. Importance of Autophagy Regulation in Glioblastoma with Temozolomide Resistance. Cells 2024; 13:1332. [PMID: 39195222 PMCID: PMC11353125 DOI: 10.3390/cells13161332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common malignant and CNS tumor, accounting for 47.7% of total cases. Glioblastoma has an incidence rate of 3.21 cases per 100,000 people. The regulation of autophagy, a conserved cellular process involved in the degradation and recycling of cellular components, has been found to play an important role in GBM pathogenesis and response to therapy. Autophagy plays a dual role in promoting tumor survival and apoptosis, and here we discuss the complex interplay between autophagy and GBM. We summarize the mechanisms underlying autophagy dysregulation in GBM, including PI3K/AKT/mTOR signaling, which is most active in brain tumors, and EGFR and mutant EGFRvIII. We also review potential therapeutic strategies that target autophagy for the treatment of GBM, such as autophagy inhibitors used in combination with the standard of care, TMZ. We discuss our current understanding of how autophagy is involved in TMZ resistance and its role in glioblastoma development and survival.
Collapse
Affiliation(s)
- Young Keun Hwang
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.K.H.); (E.C.L.)
| | - Dong-Hun Lee
- Industry-Academic Cooperation Foundation, The Catholic University of Korea, 222, Banpo-daro, Seocho-gu, Seoul 06591, Republic of Korea;
| | - Eun Chae Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.K.H.); (E.C.L.)
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
12
|
Abdelaziz I, Bounaama A, Djerdjouri B, Amir-Tidadini ZC. Low-dose dimethylfumarate attenuates colitis-associated cancer in mice through M2 macrophage polarization and blocking oxidative stress. Toxicol Appl Pharmacol 2024; 489:117018. [PMID: 38945373 DOI: 10.1016/j.taap.2024.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Colitis-associated cancer (CAC) is an aggressive subtype of colorectal cancer that can develop in ulcerative colitis patients and is driven by chronic inflammation and oxidative stress. Current chemotherapy for CAC, based on 5-fluorouracil and oxalipltin, is not fully effective and displays severe side effects, prompting the search for alternative therapies. Dimethylfumarate (DMF), an activator of the nuclear factor erythroid 2-related factor 2 (NRF2), is a potent antioxidant and immunomodelatrory drug used in the treatment of multiple sclerosis and showed a strong anti-inflammatory effect on experimental colitis. Here, we investigated the chemotherapeutic effect of DMF on an experimental model of CAC. Male NMRI mice were given two subcutaneous injections of 1,2 Dimethylhydrazine (DMH), followed by three cycles of dextran sulfate sodium (DSS). Low-dose (DMF30) and high-dose of DMF (DMF100) or oxaliplatin (OXA) were administered from the 8th to 12th week of the experiment, and then the colon tissues were analysed histologically and biochemically. DMH/DSS induced dysplastic aberrant crypt foci (ACF), oxidative stress, and severe colonic inflammation, with a predominance of pro-inflammatory M1 macrophages. As OXA, DMF30 reduced ACF multiplicity and crypt dysplasia, but further restored redox status, and reduced colitis severity by shifting macrophages towards the anti-inflammatory M2 phenotype. Surprisingly, DMF100 exacerbated ACF multiplicity, oxidative stress, and colon inflammation, likely through NRF2 and p53 overexpression in colonic inflammatory cells. DMF had a dual effect on CAC. At low dose, DMF is chemotherapeutic and acts as an antioxidant and immunomodulator, whereas at high dose, DMF is pro-oxidant and exacerbates colitis-associated cancer.
Collapse
Affiliation(s)
- Ismahane Abdelaziz
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Abdelkader Bounaama
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.
| | - Bahia Djerdjouri
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | | |
Collapse
|
13
|
Haroun AM, El-Sayed WM, Hassan RE. Quercetin and L-Arginine Ameliorated the Deleterious Effects of Copper Oxide Nanoparticles on the Liver of Mice Through Anti-inflammatory and Anti-apoptotic Pathways. Biol Trace Elem Res 2024; 202:3128-3140. [PMID: 37775700 PMCID: PMC11074050 DOI: 10.1007/s12011-023-03884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The widespread use and applications of copper oxide nanoparticles (CuO NPs) in daily life make human exposure to these particles inevitable. This study was carried out to investigate the deteriorations in hepatic and serum biochemical parameters induced by CuO NPs in adult male mice and the potential ameliorative effect of L-arginine and quercetin, either alone or in combination. Seventy adult male mice were equally allocated into seven groups: untreated group, L-arginine, quercetin, CuO NPs, arginine + CuO NPs, quercetin + CuO NPs, and quercetin + arginine + CuO NPs. Treating mice with CuO NPs resulted in bioaccumulation of copper in the liver and consequent liver injury as typified by elevation of serum ALT activity, reduction in the synthetic ability of the liver indicated by a decrease in the hepatic arginase activity, and serum total protein content. This copper accumulation increased oxidative stress, lipid peroxidation, inflammation, and apoptosis as manifested by elevation in malondialdehyde, nitric oxide, tumor necrosis factor-α, the expression level of caspase-3 and bax quantified by qPCR, and the activity of caspase-3, in addition to the reduction of superoxide dismutase activity. It also resulted in severe DNA fragmentation as assessed by Comet assay and significant pathological changes in the liver architecture. The study proved the efficiency of quercetin and L-arginine in mitigating CuO NPs-induced sub-chronic liver toxicity due to their antioxidant, anti-inflammatory, and anti-apoptotic properties; ability to inhibit DNA damage; and the potential as good metal chelators. The results of histopathological analysis confirmed the biochemical and molecular studies.
Collapse
Affiliation(s)
- Amina M Haroun
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Rasha E Hassan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
14
|
Feng Y, Zhao X, Ruan Z, Li Z, Mo H, Lu F, Shi D. Zinc improves the developmental ability of bovine in vitro fertilization embryos through its antioxidative action. Theriogenology 2024; 221:47-58. [PMID: 38554613 DOI: 10.1016/j.theriogenology.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Zinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism. The results revealed a significant decline in zygote cleavage and blastocyst development rates when zinc deficiency was induced using zinc chelator N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) in culture medium during embryo in vitro culture. The influence of zinc-deficiency was time-dependent. Conversely, supplementing 0.8 μg/mL zinc sulfate to culture medium (CM) increased the cleavage and blastocyst formation rate significantly. Moreover, this supplementation reduced reactive oxygen species (ROS) levels, elevated the glutathione (GSH) levels in blastocysts, upregulated the mRNA expression of antioxidase-related genes, and activated the Nrf2-Keap1-ARE signaling pathways. Furthermore, 0.8 μg/mL zinc sulfate enhanced mitochondrial membrane potential, maintained DNA stability, and enhanced the quality of bovine (in vitro fertilization) IVF blastocysts. In conclusion, the addition of 0.8 μg/mL zinc sulfate to CM could enhance the antioxidant capacity, activates the Nrf2-Keap1-ARE signaling pathways, augment mitochondrial membrane potential, and stabilizes DNA, ultimately improving blastocyst quality and in vitro bovine embryo development.
Collapse
Affiliation(s)
- Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Zhengda Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Hongfang Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
15
|
Arrieche D, Olea AF, Jara-Gutiérrez C, Villena J, Pardo-Baeza J, García-Davis S, Viteri R, Taborga L, Carrasco H. Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1409. [PMID: 38794478 PMCID: PMC11125100 DOI: 10.3390/plants13101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Pintoa chilensis is a shrub with yellow flowers that reach up to two meters high, endemic of the Atacama Region in Chile. This species grows under special environmental conditions such as low altitude, arid areas, and directly sun-exposed habitats. In the present study, ethanolic extract was obtained from fruits of P. chilensis, and then partitioned in solvents of increasing polarity to obtain five fractions: hexane (HF), dichloromethane (DF), ethyl acetate (AF), and the residual water fraction (QF). The antioxidant activity of extracts was evaluated by using the DPPH, ABTS, and FRAP methods. The results show that the antioxidant capacity of P. chilensis is higher than that reported for other plants growing in similar environments. This effect is attributed to the highest content of flavonoids and total phenols found in P. chilensis. On the other hand, the cell viability of a breast cancer cell line (MCF-7) and a non-tumor cell line (MCF-10A) was assessed in the presence of different extract fractions. The results indicate that the hexane fraction (HF) exhibits the highest cytotoxicity on both cell lines (IC50 values equal to 35 and 45 µg/mL), whereas the dichloromethane fraction (DF) is the most selective one. The GC-MS analysis of the dichloromethane fraction (DF) shows the presence of fatty acids, sugars, and polyols as major components.
Collapse
Affiliation(s)
- Dioni Arrieche
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Javier Pardo-Baeza
- Programa de Conservación de Flora Nativa del Norte de Chile, Biorestauración Consultores, Copiapó 1530000, Chile;
| | - Sara García-Davis
- Instituto Universitario de Bio—Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain;
| | - Rafael Viteri
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Guayaquil 092301, Ecuador;
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Héctor Carrasco
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| |
Collapse
|
16
|
Aggarwal M, Kuo M, Zhu Z, Gould S, Zhang K, Johnson P, Beheshtian S, Kuhlman L, Zhao Z, Fang H, Kallakury B, Creswell K, Mueller S, Kroemer A, He AR, Chung FL. Detection of γ-OHPdG in Circulating Tumor Cells of Patients With Hepatocellular Carcinoma as a Potential Prognostic Biomarker of Recurrence. GASTRO HEP ADVANCES 2024; 3:809-820. [PMID: 39280920 PMCID: PMC11401592 DOI: 10.1016/j.gastha.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 09/18/2024]
Abstract
Background and Aims Blood-based biomarkers for hepatocellular carcinoma (HCC) and its recurrence are lacking. We previously showed that hepatic γ-hydroxy-1,N 2 -propano-2'-deoxyguanosine (γ-OHPdG), an endogenous DNA adduct derived from acrolein by lipid peroxidation, increased during hepatocarcinogenesis. Additionally, higher hepatic γ-OHPdG from HCC patients after surgery were strongly associated with poor survival (P < .0001) and recurrence-free survival (P = .007) (Fu et al, Hepatology, 2018). These findings suggest that γ-OHPdG is a potential prognostic biomarker for HCC and its recurrence. To attain the goal of using γ-OHPdG as a biomarker in future preventive and therapeutic trials, we developed a blood-based method to detect γ-OHPdG in circulating liver tumor cells from HCC patient blood. Methods We first established the specificity of anti-γ-OHPdG antibody by determining its dose-response in HepG2 cells treated with acrolein. Then, HepG2 cells in spiked blood of healthy volunteers and circulating tumor cells (CTCs) from 32 HCC patients were isolated using a RosetteSep CD45 Depletion Cocktail and Ficoll Paque. The HCC CTCs identified with anti-asialoglycoprotein receptor 1, a surface protein expressed solely in hepatocytes, were stained with an anti-γ-OHPdG antibody. The number of total HCC CTCs and γ-OHPdG-positive CTCs, as well as the staining intensity, were quantified using MetaMorph software. As an initial effort toward its clinical application, we also evaluated γ-OHPdG in CTCs from these patients along with certain clinical features. Results The γ-OHPdG antibody specificity was demonstrated by an acrolein concentration-dependent increase of γ-OHPdG-positive HepG2 cells and the intensity of γ-OHPdG staining. The recovery of HepG2 cells from spiked blood was ∼50-60%, and the positivity rate of CTCs in blood from 32 patients with advanced HCC was 97%. The MetaMorph analysis showed a wide variation among patients in total number of CTCs, γ-OHPdG positivity, and staining intensity. Statistical analysis revealed that γ-OHPdG in CTCs of these patients appears to be associated with multifocality and poor differentiation. Conclusion A blood-based method was developed and applied to HCC patients to evaluate the potential of γ-OHPdG in CTCs as a prognostic biomarker.
Collapse
Affiliation(s)
- Monika Aggarwal
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Mark Kuo
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Zizhao Zhu
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Sophie Gould
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Kevin Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Peter Johnson
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Samira Beheshtian
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Laura Kuhlman
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Zijun Zhao
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Hongbin Fang
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Bhaskar Kallakury
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Karen Creswell
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Susette Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Aiwu Ruth He
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| | - Fung-Lung Chung
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, District of Columbia
| |
Collapse
|
17
|
Wang J, Takyi NA, Hsiao YC, Tang Q, Chen YT, Liu CW, Ma J, Qi R, Bian K, Peng Z, Essigmann JM, Lu K, Wetmore SD, Li D. Stable Interstrand Cross-Links Generated from the Repair of 1, N6-Ethenoadenine in DNA by α-Ketoglutarate/Fe(II)-Dependent Dioxygenase ALKBH2. J Am Chem Soc 2024; 146:10381-10392. [PMID: 38573229 PMCID: PMC11060877 DOI: 10.1021/jacs.3c12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA cross-links severely challenge replication and transcription in cells, promoting senescence and cell death. In this paper, we report a novel type of DNA interstrand cross-link (ICL) produced as a side product during the attempted repair of 1,N6-ethenoadenine (εA) by human α-ketoglutarate/Fe(II)-dependent enzyme ALKBH2. This stable/nonreversible ICL was characterized by denaturing polyacrylamide gel electrophoresis analysis and quantified by high-resolution LC-MS in well-matched and mismatched DNA duplexes, yielding 5.7% as the highest level for cross-link formation. The binary lesion is proposed to be generated through covalent bond formation between the epoxide intermediate of εA repair and the exocyclic N6-amino group of adenine or the N4-amino group of cytosine residues in the complementary strand under physiological conditions. The cross-links occur in diverse sequence contexts, and molecular dynamics simulations rationalize the context specificity of cross-link formation. In addition, the cross-link generated from attempted εA repair was detected in cells by highly sensitive LC-MS techniques, giving biological relevance to the cross-link adducts. Overall, a combination of biochemical, computational, and mass spectrometric methods was used to discover and characterize this new type of stable cross-link both in vitro and in human cells, thereby uniquely demonstrating the existence of a potentially harmful ICL during DNA repair by human ALKBH2.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qi Tang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yi-Tzai Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Rui Qi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - John M Essigmann
- Departments of Biological Engineering, Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
18
|
Zhou X, Wang J, Zhou S. Poria cocos polysaccharides improve alcoholic liver disease by interfering with ferroptosis through NRF2 regulation. Aging (Albany NY) 2024; 16:6147-6162. [PMID: 38507458 PMCID: PMC11042950 DOI: 10.18632/aging.205693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
The active ingredient in Poria cocos, a parasitic plant belonging to the family Polyporaceae, is Poria cocos polysaccharide (PCP). PCP exhibits liver protection and anti-inflammatory effects, although its effect on alcoholic liver disease (ALD) remains unstudied. This study investigated the mechanism of PCP in improving ALD by regulating the Nrf2 signaling pathway. After daily intragastric administration of high-grade liquor for 4 hours, each drug group received PCPs or the ferroptosis inhibitor ferrostatin-1. The Nrf2 inhibitor ML385 (100 mg/kg/day) group was intraperitoneally injected, after which PCP (100 mg/kg/day) was administered by gavage. Samples were collected after 6 weeks for liver function and blood lipid analysis using an automatic biochemical analyzer. In the alcoholic liver injury cell model established with 150 mM alcohol, the drug group was pretreated with PCP, Fer-1, and ML385, and subsequent results were analyzed. The results revealed that PCP intervention significantly reduced liver function and blood lipid levels in alcohol-fed rats, along with decreased lipid deposition. PCP notably enhanced Nrf2 signaling expression, regulated oxidative stress levels, inhibited NF-κβ, and its downstream inflammatory signaling pathways. Furthermore, PCP upregulated FTH1 protein expression and reduced intracellular Fe2+, suggesting an improvement in ferroptosis. In vitro studies yielded similar results, indicating that PCP can reduce intracellular ferroptosis by regulating oxidative stress and improve alcoholic liver injury by inhibiting the production of inflammatory factors.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Jincheng Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Sufang Zhou
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| |
Collapse
|
19
|
Jaradat N, Dwikat M, Amer J, Ghanim M, Hawash M, Hussein F, Issa L, Ishtawe S, Salah S, Nasser S. Total phenolic contents, cytotoxic, free radicals, porcine pancreatic α-amylase, and lipase suppressant activities of Artemisia dracunculus plant from Palestine. Front Pharmacol 2024; 15:1351743. [PMID: 38515857 PMCID: PMC10955573 DOI: 10.3389/fphar.2024.1351743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Artemisia dracunculus: L. (A. dracunculus) is a popular vegetable and spice cultivated across many Middle Eastern countries. The herb's aqueous extract has significant folkloric medicinal importance for treating various disorders. Hence, the present investigation aimed to investigate A. dracunculus hydrophilic extract phytochemical constituents and pleiotropic biological potentials, as no previous studies have investigated the antilipase and anti-α-amylase effects of the A. dracunculus plant. Total phenol content and phytochemical screening assays were performed utilizing standard analytical methods. While the α-amylase inhibition, free radical-scavenging, antilipase, and cytotoxic activities were determined using dinitrosalicylic acid (DNSA), DPPH, p-nitrophenyl butyrate (PNPB), and MTS assays, respectively. The standard phytochemical analysis of A. dracunculus aqueous extract shows that this extract contains only a phenolic group. The total phenol content was 0.146 ± 0.012 mg GAE/g of the plant dry extract. The A. dracunculus aqueous extract exhibited potent DPPH free radical inhibitory (IC50 dose of 10.71 ± 0.01 μg/mL) and anti-lipase activities (IC50 dose of 60.25 ± 0.33 μg/mL) compared with Trolox (IC50 = 5.7 ± 0.92 μg/mL) and Orlistat (IC50 = 12.3 ± 0.35 μg/mL), respectively. However, it showed a weak anti-α-amylase effect (IC50 value > 1,000 μg/mL) compared with Acarbose (IC50 = 28.18 ± 1.27 μg/mL). A. dracunculus has a cytotoxic effect against the HeLa cancer cell line compared with the chemotherapeutic agent Doxorubicin. The extract has the same percent of inhibition as Doxorubicin (99.9%) at 10 mg/mL. Overall, these results pointed out for the first time the importance of considering A. dracunculus effects as a favorite candidate for preventing and treating metabolic disorders. Also, our results confirm the findings of previous reports on the role of A. dracunculus in the management of cancer and disorders resulting from the accumulation of harmful free radicals. On the contrary, the current study concluded that the antidiabetic role of A. dracunculus could be minimal. Further in-depth investigations are urgently warranted to explore the importance of A. dracunculus in pharmaceutical production.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Majdi Dwikat
- Department of Allied Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Johnny Amer
- Department of Allied Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mustafa Ghanim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Fatima Hussein
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Salsabeel Ishtawe
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Shahd Salah
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sara Nasser
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
20
|
Campagna R, Serritelli EN, Salvolini E, Schiavoni V, Cecati M, Sartini D, Pozzi V, Emanuelli M. Contribution of the Paraoxonase-2 Enzyme to Cancer Cell Metabolism and Phenotypes. Biomolecules 2024; 14:208. [PMID: 38397445 PMCID: PMC10886763 DOI: 10.3390/biom14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Paraoxonase-2 (PON2) is a ubiquitously expressed intracellular protein that is localized in the perinuclear region, the endoplasmic reticulum (ER), and mitochondria, and is also associated with the plasma membrane. PON2 functions as an antioxidant enzyme by reducing the levels of reactive oxygen species (ROS) in the mitochondria and ER through different mechanisms, thus having an anti-apoptotic effect and preventing the formation of atherosclerotic lesions. While the antiatherogenic role played by this enzyme has been extensively explored within endothelial cells in association with vascular disorders, in the last decade, great efforts have been made to clarify its potential involvement in both blood and solid tumors, where PON2 was reported to be overexpressed. This review aims to deeply and carefully examine the contribution of this enzyme to different aspects of tumor cells by promoting the initiation, progression, and spread of neoplasms.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Emma Nicol Serritelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.N.S.); (E.S.); (V.S.); (M.C.); (V.P.); (M.E.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
21
|
Zou C, Chen Q, Li J, Lin X, Xue X, Cai X, Chen Y, Sun Y, Wang S, Zhang Y, Meng J. Identification of potential anti-inflammatory components in Moutan Cortex by bio-affinity ultrafiltration coupled with ultra-performance liquid chromatography mass spectrometry. Front Pharmacol 2024; 15:1358640. [PMID: 38384290 PMCID: PMC10880116 DOI: 10.3389/fphar.2024.1358640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Moutan Cortex (MC) has been used in treating inflammation-associated diseases and conditions in China and other Southeast Asian countries. However, the active components of its anti-inflammatory effect are still unclear. The study aimed to screen and identify potential cyclooxygenase-2 (COX-2) inhibitors in MC extract. The effect of MC on COX-2 was determined in vitro by COX-2 inhibitory assays, followed by bio-affinity ultrafiltration in combination with ultra-performance liquid chromatography-mass spectrometry (BAUF-UPLC-MS). To verify the reliability of the constructed approach, celecoxib was applied as the positive control, in contrast to adenosine which served as the negative control in this study. The bioactivity of the MC components was validated in vitro by COX-2 inhibitor assay and RAW264.7 cells. Their in vivo anti-inflammatory activity was also evaluated using LPS-induced zebrafish inflammation models. Finally, molecular docking was hired to further explore the internal interactions between the components and COX-2 residues. The MC extract showed an evident COX-2-inhibitory effect in a concentration-dependent manner. A total of 11 potential COX-2 inhibitors were eventually identified in MC extract. The COX-2 inhibitory activity of five components, namely, gallic acid (GA), methyl gallate (MG), galloylpaeoniflorin (GP), 1,2,3,6-Tetra-O-galloyl-β-D-glucose (TGG), and 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose (PGG), were validated through both in vitro assays and experiments using zebrafish models. Besides, the molecular docking analysis revealed that the potential inhibitors in MC could effectively inhibit COX-2 by interacting with specific residues, similar to the mechanism of action exhibited by celecoxib. In conclusion, BAUF-UPLC-MS combining the molecular docking is an efficient approach to discover enzyme inhibitors from traditional herbs and understand the mechanism of action.
Collapse
Affiliation(s)
- Caomin Zou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Qianru Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Jiasheng Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Xiguang Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Xingyang Xue
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xinhang Cai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Yicheng Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| |
Collapse
|
22
|
Bhattacharya K, Dey R, Sen D, Paul N, Basak AK, Purkait MP, Shukla N, Chaudhuri GR, Bhattacharya A, Maiti R, Adhikary K, Chatterjee P, Karak P, Syamal AK. Polycystic ovary syndrome and its management: In view of oxidative stress. Biomol Concepts 2024; 15:bmc-2022-0038. [PMID: 38242137 DOI: 10.1515/bmc-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
In the past two decades, oxidative stress (OS) has drawn a lot of interest due to the revelation that individuals with many persistent disorders including diabetes, polycystic ovarian syndrome (PCOS), cardiovascular, and other disorders often have aberrant oxidation statuses. OS has a close interplay with PCOS features such as insulin resistance, hyperandrogenism, and chronic inflammation; there is a belief that OS might contribute to the development of PCOS. PCOS is currently recognized as not only one of the most prevalent endocrine disorders but also a significant contributor to female infertility, affecting a considerable proportion of women globally. Therefore, the understanding of the relationship between OS and PCOS is crucial to the development of therapeutic and preventive strategies for PCOS. Moreover, the mechanistic study of intracellular reactive oxygen species/ reactive nitrogen species formation and its possible interaction with women's reproductive health is required, which includes complex enzymatic and non-enzymatic antioxidant systems. Apart from that, our current review includes possible regulation of the pathogenesis of OS. A change in lifestyle, including physical activity, various supplements that boost antioxidant levels, particularly vitamins, and the usage of medicinal herbs, is thought to be the best way to combat this occurrence of OS and improve the pathophysiologic conditions associated with PCOS.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Rajen Dey
- Department of Medical Laboratory Technology, Swami Vivekananda University, Barrackpore, West Bengal, India
| | - Debanjana Sen
- Post-Graduate Department of Physiology, Hooghly Mohsin College, Chinsurah, West-Bengal, India
| | - Nimisha Paul
- Department of General Human Physiology and Biochemistry, Hitkarini Dental College and Hospital, Jabalpur, Madhya Pradesh, India
| | - Asim Kumar Basak
- School of Allied Health Sciences, Brainware University, Barasat, West-Bengal, India
| | | | - Nandini Shukla
- Department of Anatomy, Pt. J.N.M. Medical College, Raipur, Chhattisgarh, India
| | - Gargi Ray Chaudhuri
- Department of Physiotherapy, Nopany Institute of Health Care Studies, Kolkata, West-Bengal, India
| | - Aniruddha Bhattacharya
- Department of Physiology, International Medical School, Management and Science University, Selangor, Malaysia
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College, Durgapur, West Bengal, India
| | - Prithviraj Karak
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Alak Kumar Syamal
- Post-Graduate Department of Physiology, Hooghly Mohsin College, Chinsurah, West-Bengal, India
| |
Collapse
|
23
|
Kizir D, Karaman M, Ceylan H. Tannic acid may ameliorate doxorubicin-induced changes in oxidative stress parameters in rat spleen. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3605-3613. [PMID: 37272930 DOI: 10.1007/s00210-023-02563-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Doxorubicin (DOX) is a potent and broad-spectrum drug widely used in the treatment of cancer. However, the toxicity and side effects of DOX on various organs limit its clinical use. Approaches using natural antioxidants with these drugs have the potential to alleviate negative side effects. The aim of this study was to investigate the potential protective effect of tannic acid, a polyphenolic compound found naturally in plants, against DOX-induced spleen toxicity. Expression levels of Alox5, Inos, IL-6, Tnf-α, Casp-3, Bax, SOD, GST, CAT and GPx genes were determined using cDNAs obtained from spleen tissues of rats treated with DOX, tannic acid and both. In addition, SOD, CAT, GPx and GST enzyme activities, and GSH and MDA levels were measured in tissues. In the spleen tissues, DOX caused a decrease in the level of GSH and an increase in the level of MDA. In addition, it was determined that DOX had a suppressive effect on CAT, GST, SOD and GPx mRNA levels and its enzyme activities, which are antioxidant system components. The mRNA expression levels of proinflammatory cytokine markers, apoptotic genes, and some factors involved in cell metabolism showed a change compared to the control after DOX application. However, as a result of tannic acid treatment with DOX, these changes approached the values of the control group. The findings showed that tannic acid had a protective effect on the changes in the oxidative stress and inflammation system in the rat spleen as a result of the application of tannic acid together with DOX.
Collapse
Affiliation(s)
- Duygu Kizir
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Melike Karaman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
24
|
Liang J, Yang C, Li P, Zhang M, Xie X, Xie X, Chen Y, Wang Q, Zhou L, Luo X. Astragaloside IV inhibits AOM/DSS-induced colitis-associated tumorigenesis via activation of PPARγ signaling in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155116. [PMID: 37776619 DOI: 10.1016/j.phymed.2023.155116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Colitis-associated colorectal cancer (CAC) is a severe complication of inflammatory bowel disease (IBD), resulting from long-term inflammation in the intestines. The primary cause of CAC is the imbalance of oxidative metabolism in intestinal cells, triggered by excessive reactive oxygen (ROS) and nitrogen (NO) species production due to prolonged intestinal inflammation. This imbalance leads to genomic instability caused by DNA damage, eventually resulting in the development of intestinal cancer. Previous studies have demonstrated that astragaloside IV is effective in treating dextran sulfate sodium salt (DSS)-induced colitis, but there is currently no relevant research on its efficacy in treating CAC. METHODS To investigate the effect of astragaloside IV against CAC and the underlying mechanism, C57 mice were treated with (20, 40, 80 mg/kg) astragaloside IV while CAC was induced by intraperitoneal injection of 10 mg/kg azoxymethane (AOM) and ad libitum consumption of 2% dextran sulfate sodium salt (DSS). We re-verified the activating effects of astragaloside IV on PPARγ signaling in IEC-6 cells, which were reversed by GW9662 (the PPARγ inhibitor). RESULTS Our results showed that astragaloside IV significantly improved AOM/DSS-induced CAC mice by inhibiting colonic shortening, preventing intestinal mucosal damage, reducing the number of tumors and, the expression of Ki67 protein. In addition, astragaloside IV could activate PPARγ signaling, which not only promoted the expression of Nrf2 and HO-1, restored the level of SOD, CAT and GSH, but also inhibited the expression of iNOS and reduced the production of NO in the intestine and IEC-6 cells. And this effect could be reversed by GW9662 in vitro. Astragaloside IV thus decreased the level of ROS and NO in the intestinal tract of mice, as well as reduced the damage of DNA, and therefore inhibited the occurrence of CAC. CONCLUSION Astragaloside IV can activate PPARγ signaling in intestinal epithelial cells and reduces DNA damage caused by intestinal inflammation, thereby inhibiting colon tumourigenesis. The novelty of this study is to use PPARγ as the target to inhibit DNA damage to prevent the occurrence of CAC.
Collapse
Affiliation(s)
- Junjie Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China; Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital)
| | - Caiyi Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Pengcheng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Xueqian Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Xuting Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Yunliang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China.
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China.
| |
Collapse
|
25
|
Elmetwalli A, Hashish SM, Hassan MG, El-Magd MA, El-Naggar SA, Tolba AM, Salama AF. Modulation of the oxidative damage, inflammation, and apoptosis-related genes by dicinnamoyl-L-tartaric acid in liver cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3087-3099. [PMID: 37160480 PMCID: PMC10567854 DOI: 10.1007/s00210-023-02511-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Cancer cells can become resistant to existing treatments over time, so it is important to develop new treatments that target different pathways to stay ahead of this resistance. Many cancer treatments have severe side effects that can be debilitating and even life-threatening. Developing drugs that can effectively treat cancer while minimizing the risks of these side effects is essential for improving the quality of life of cancer patients. The study was designed to explore whether the combination of dicinnamoyl-L-tartaric (CLT) and sorafenib ((SOR), an anti-cancer drug)) could be used to treat hepatocellular carcinoma (HCC) in the animal model and to assess whether this combination would lead to changes in certain biomarkers associated with the tumour. In this study, 120 male mice were divided into 8 groups of 15 mice each. A number of biochemical parameters were measured, including liver functions, oxidative stress (malondialdehyde, (MDA); nitric oxide (NO)), and antioxidative activity (superoxide dismutase (SOD), and glutathione peroxidase (GPx)). Furthermore, the hepatic expressions of Bax, Beclin1, TNF-α, IL1β, and BCl-2 genes were evaluated by qRT-PCR. The combination of SOR and CLT was found to reduce the levels of liver enzymes, such as AST, ALT, ALP, and GGT, and reduce the pathological changes caused by DAB and PB. The upregulation of TNF-α, IL1β, and Bcl-2 genes suggests that the CLT was able to initiate an inflammatory response to combat the tumor, while the downregulation of the Bax and Beclin1 genes indicates that the CLT was able to reduce the risk of apoptosis in the liver. Furthermore, the combination therapy led to increased expression of cytokines, resulting in an enhanced anti-tumor effect.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Shimaa Mustafa Hashish
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mervat G Hassan
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 33516, Egypt
| | - Mohammed Abu El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Amina M Tolba
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Afrah Fatthi Salama
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
26
|
Takaya K, Asou T, Kishi K. Cistanche deserticola Polysaccharide Reduces Inflammation and Aging Phenotypes in the Dermal Fibroblasts through the Activation of the NRF2/HO-1 Pathway. Int J Mol Sci 2023; 24:15704. [PMID: 37958685 PMCID: PMC10647235 DOI: 10.3390/ijms242115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Dermal fibroblasts maintain the skin homeostasis by interacting with the epidermis and extracellular matrix. Their senescence contributes to functional defects in the skin related to aging. Therefore, there is an urgent need for novel therapeutic agents that could inhibit fibroblast senescence. In this study, we investigated the effects of Cistanche deserticola polysaccharide (CDP), a natural anti-inflammatory component, on the progression of senescence in human dermal fibroblasts. Normal human dermal fibroblasts (NHDFs) were cultured in passages, and highly senescent cells were selected as senescent cells. CDP treatment increased the cell proliferation in senescent NHDFs and decreased the proportion of senescence-associated-β-galactosidase-positive cells. The treatment suppressed the senescence-related secretory phenotype, and reactive oxygen species (ROS) production was reduced, alleviating H2O2-induced oxidative stress. CDP mitigated ROS formation via the nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway in senescent cells and was involved in the suppression of upstream p-extracellular signal-regulated kinase. These results indicate that CDP is an antioxidant that can alleviate age-related inflammation and may be a useful compound for skin anti-aging.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
27
|
Zhang S, Li X, Zheng Y, Liu J, Hu H, Zhang S, Kuang W. Single cell and bulk transcriptome analysis identified oxidative stress response-related features of Hepatocellular Carcinoma. Front Cell Dev Biol 2023; 11:1191074. [PMID: 37842089 PMCID: PMC10568628 DOI: 10.3389/fcell.2023.1191074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Background: Hepatocellular Carcinoma (HCC) is a common lethal digestive system tumor. The oxidative stress mechanism is crucial in the HCC genesis and progression. Methods: Our study analyzed single-cell and bulk sequencing data to compare the microenvironment of non-tumor liver tissues and HCC tissues. Through these analyses, we aimed to investigate the effect of oxidative stress on cells in the HCC microenvironment and identify critical oxidative stress response-related genes that impact the survival of HCC patients. Results: Our results showed increased oxidative stress in HCC tissue compared to non-tumor tissue. Immune cells in the HCC microenvironment exhibited higher oxidative detoxification capacity, and oxidative stress-induced cell death of dendritic cells was attenuated. HCC cells demonstrated enhanced communication with immune cells through the MIF pathway in a highly oxidative hepatoma microenvironment. Meanwhile, using machine learning and Cox regression screening, we identified PRDX1 as a predictor of early occurrence and prognosis in patients with HCC. The expression level of PRDX1 in HCC was related to dysregulated ribosome biogenesis and positively correlated with the expression of immunological checkpoints (PDCD1LG2, CTLA4, TIGIT, LAIR1). High PRDX1 expression in HCC patients correlated with better sensitivity to immunotherapy agents such as sorafenib, IGF-1R inhibitor, and JAK inhibitor. Conclusion: In conclusion, our study unveiled variations in oxidative stress levels between non-tumor liver and HCC tissues. And we identified oxidative stress gene markers associated with hepatocarcinogenesis development, offering novel insights into the oxidative stress response mechanism in HCC.
Collapse
Affiliation(s)
- Shuqiao Zhang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Li
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yilu Zheng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahui Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Hu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Chronic Inflammatory Diseases, School of Pharmacy, The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
28
|
Yamashita S, Miyazawa T, Higuchi O, Kinoshita M, Miyazawa T. Marine Plasmalogens: A Gift from the Sea with Benefits for Age-Associated Diseases. Molecules 2023; 28:6328. [PMID: 37687157 PMCID: PMC10488995 DOI: 10.3390/molecules28176328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Aging increases oxidative and inflammatory stress caused by a reduction in metabolism and clearance, thus leading to the development of age-associated diseases. The quality of our daily diet and exercise is important for the prevention of these diseases. Marine resources contain various valuable nutrients, and unique glycerophospholipid plasmalogens are found abundantly in some marine invertebrates, including ascidians. One of the major classes, the ethanolamine class (PlsEtn), exists in a high ratio to phospholipids in the brain and blood, while decreased levels have been reported in patients with age-associated diseases, including Alzheimer's disease. Animal studies have shown that the administration of marine PlsEtn prepared from marine invertebrates improved PlsEtn levels in the body and alleviated inflammation. Animal and human studies have reported that marine PlsEtn ameliorates cognitive impairment. In this review, we highlight the biological significance, relationships with age-associated diseases, food functions, and healthcare materials of plasmalogens based on recent knowledge and discuss the contribution of marine plasmalogens to health maintenance in aging.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.); (M.K.)
| | - Taiki Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| | - Ohki Higuchi
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.); (M.K.)
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| |
Collapse
|
29
|
Li Z, Zhang Y, Zhang B, Guo R, He M, Liu ZL, Yang L, Wang H. Bibliometric study of immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1210802. [PMID: 37600802 PMCID: PMC10436521 DOI: 10.3389/fimmu.2023.1210802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), recognized as a significant global health concern, ranks as the sixth most prevalent form of cancer and is the third leading cause of cancer-associated mortality. Over half of HCC patients are diagnosed at advanced stages, an unfortunate phenomenon primarily attributed to the liver's robust compensatory mechanisms. Given the limited availability of donor livers, existing clinical surgical approaches have yet to provide universally applicable treatment strategies offering substantial prognostic improvement for late-stage cancer. Although the past few decades have witnessed significant advancements in chemotherapy and targeted therapy for HCC, the emergence of drug resistance poses a substantial impediment to their successful execution. Furthermore, issues such as diminished quality of life post-treatment and high treatment costs warrant critical attention. Consequently, the imperative for an effective treatment strategy for advanced liver cancer is unequivocal. In recent years, notable progress in the development and application of immunotherapy has sparked a revolution in advanced liver cancer treatment. This study aims to elucidate a more comprehensive understanding of the current landscape, knowledge framework, research focal points, and nascent breakthrough trends in the domain of immunotherapy for hepatocellular carcinoma via bibliometric analysis. METHOD Our study involved conducting a comprehensive literature search spanning from 1999 through December 31, 2022, by utilizing the Science Citation Index Expanded (SCI-Expanded) database. Our aim was to amass all the papers and reviews related to immunotherapy for hepatocellular carcinoma. Our search strategy yielded a total of 4,486 papers. After exclusion of self-citations, we focused our analysis on 68,925 references. These references were cited 119,523 times (excluding 97,941 self-citations), boasting an average citation frequency of 26.64 times per paper, and achieved an h-index of 135. We employed analytical software tools like Citespace and VOSviewer to perform an intricate analysis of the amassed literature, covering various aspects, including geographical location, research institutions, publishing journals, authors, references, and keywords. Our method incorporated timeline analysis, burst detection, and co-occurrence analysis. The application of these tools facilitated a thorough evaluation of research hotspots, knowledge structure, and emerging advancements within the sphere of immunotherapy for hepatocellular carcinoma. RESULTS Our bibliometric analysis disclosed a noteworthy escalation in the number of publications in the realm of hepatocellular carcinoma immunotherapy during the years 2021-2022, surpassing the aggregate number of papers published in the preceding decade (2011-2020). This surge underscores a sharp upturn in research interest within this field. Additionally, the research hotspot in hepatocellular carcinoma immunotherapy has perceptibly deviated from the preceding decade's trends. In terms of geographical distribution, China emerged as the leading country, producing 50.08% of the total publications. This was followed by the United States, with 963 papers, and Japan, contributing 335 papers. Among research institutions, Sun Yat-sen University was the most prolific, while Tim F. Greten stood out as the most published author with 42 papers to his credit. A co-reference network examination uncovered a shift in research emphasis within the field of hepatocellular carcinoma immunotherapy, highlighting the evolving nature of this important area of study. CONCLUSION Our bibliometric study highlights the significant evolution and growth in HCC immunotherapy research over the past two decades. Looking ahead, research will focus on improving the microenvironment post-drug resistance from immune combination therapy, harnessing adoptive cellular immunity (as CAR-T), subclassify the population and developing new tumor markers. Incorporation of technologies such as nanotechnology, microbiology, and gene editing will further advance HCC treatments. This progressive trajectory in the field promises a brighter future for individuals suffering from HCC.
Collapse
Affiliation(s)
- Zhiyi Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Baipan Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Minhua He
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Zi-Ling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Kaltsas A, Zikopoulos A, Moustakli E, Zachariou A, Tsirka G, Tsiampali C, Palapela N, Sofikitis N, Dimitriadis F. The Silent Threat to Women's Fertility: Uncovering the Devastating Effects of Oxidative Stress. Antioxidants (Basel) 2023; 12:1490. [PMID: 37627485 PMCID: PMC10451552 DOI: 10.3390/antiox12081490] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress (OS), which arises through an imbalance between the formation of reactive oxygen species (ROS) and antioxidant defenses, plays a key role in the pathophysiology of female infertility, with the latter constituting just one of a number of diseases linked to OS as a potential cause. The aim of the present article is to review the literature regarding the association between OS and female infertility. Among the reproductive diseases considered are endometriosis and polycystic ovary syndrome (PCOS), while environmental pollutants, lifestyle variables, and underlying medical conditions possibly resulting in OS are additionally examined. Current evidence points to OS likely contributing to the pathophysiology of the above reproductive disorders, with the amount of damage done by OS being influenced by such variables as duration and severity of exposure and the individual's age and genetic predisposition. Also discussed are the processes via which OS may affect female fertility, these including DNA damage and mitochondrial dysfunction. Finally, the last section of the manuscript contains an evaluation of treatment options, including antioxidants and lifestyle modification, capable of minimizing OS in infertile women. The prime message underlined by this review is the importance of considering OS in the diagnosis and treatment of female infertility. Further studies are, nevertheless required to identify the best treatment regimen and its ideal duration.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Athanasios Zikopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Efthalia Moustakli
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (G.T.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Georgia Tsirka
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (G.T.)
| | | | - Natalia Palapela
- Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
31
|
Sun LM, Yu B, Luo YH, Zheng P, Huang Z, Yu J, Mao X, Yan H, Luo J, He J. Effect of small peptide chelated iron on growth performance, immunity and intestinal health in weaned pigs. Porcine Health Manag 2023; 9:32. [PMID: 37420289 DOI: 10.1186/s40813-023-00327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Small peptide chelated iron (SPCI), a novel iron supplementation in pig diets, owns growth-enhancing characteristics. Although a number of researches have been performed, there is no clear-cut evidence to show the exact relationship between the dose and effects of small peptide chelated minerals. Therefore, we investigated the effect of dietary supplementation of SPCI at different doses in the growth performance, immunity, and intestinal health in weaned pigs. METHODS Thirty weaned pigs were randomly assigned into five groups and feed with basal diet or the basal diet containing 50, 75, 100, or 125 mg/kg Fe as SPCI diets. The experiment lasted for 21 d and on day 22, blood samples were collected 1 h later. The tissue and intestinal mucosa samples were collected following. RESULTS Our results showed that the feed to gain ratio (F:G) decreased with different levels of SPCI addition (P < 0.05). The average daily gain (ADG) (P < 0.05) and digestibility of crude protein (P < 0.01) decreased with 125 mg/kg SPCI addition. With dietary different levels of SPCI addition, the serum concentrations of ferritin (quadratic, P < 0.001), transferrin (quadratic, P < 0.001), iron content in liver (quadratic, P < 0.05), gallbladder (quadratic, P < 0.01) and fecal (quadratic, P < 0.01) increased quadraticly. While the iron content in tibia (P < 0.01) increased by 100 mg/kg SPCI supplementation. Dietary 75 mg/kg SPCI addition increased the serum insulin-like growth factor I (IGF-I) (P < 0.01) and SPCI (75 ~ 100 mg/kg) addition also increased the serum content of IgA (P < 0.01). The serum concentrations of IgG (quadratic, P < 0.05) and IgM (quadratic, P < 0.01) increased quadraticly by different levels of SPCI supplementation. Moreover, different levels of SPCI supplementation decreased the serum concentration of D-lactic acid (P < 0.01). The serum glutathione peroxidase (GSH-Px) (P < 0.01) elevated but the malondialdehyde (MDA) (P < 0.05) decreased by 100 mg/kg SPCI addition. Interestingly, SPCI supplementation at 75 ~ 100 mg/kg improved the intestinal morphology and barrier function, as suggested by enhanced villus height (P < 0.01) and villus height/crypt depth (V/C) (P < 0.01) in duodenum, as well as jejunum epithelium tight-junction protein ZO-1 (P < 0.01). Moreover, SPCI supplementation at 75 ~ 100 mg/kg increased the activity of duodenal lactase (P < 0.01), jejunal sucrase (P < 0.01) and ileal maltase (P < 0.01). Importantly, the expression levels of divalent metal transporter-1(DMT1) decreased with different levels of SPCI addition (P < 0.01). In addition, dietary SPCI supplementation at 75 mg/kg elevated the expression levels of critical functional genes such as peptide transporter-1(PePT1) (P = 0.06) and zinc transporter 1 (ZnT1) (P < 0.01) in ileum. The expression levels of sodium/glucose co-transporter-1 (SGLT1) in ileum (quadratic, P < 0.05) increased quadraticly by different levels of SPCI addition and amino acid transporter-1 (CAT1) in jejunum(P < 0.05) also increased by 100 mg/kg SPCI addition. CONCLUSIONS Dietary SPCI supplementation at 75 ~ 100 mg/kg improved growth performance by elevated immunity and intestinal health.
Collapse
Affiliation(s)
- Limei M Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Yuheng H Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China.
| |
Collapse
|
32
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
33
|
Kim MJ, Kim JY, Shin JH, Kang Y, Lee JS, Son J, Jeong SK, Kim D, Kim DH, Chun E, Lee KY. FFAR2 antagonizes TLR2- and TLR3-induced lung cancer progression via the inhibition of AMPK-TAK1 signaling axis for the activation of NF-κB. Cell Biosci 2023; 13:102. [PMID: 37287005 DOI: 10.1186/s13578-023-01038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Free fatty acid receptors (FFARs) and toll-like receptors (TLRs) recognize microbial metabolites and conserved microbial products, respectively, and are functionally implicated in inflammation and cancer. However, whether the crosstalk between FFARs and TLRs affects lung cancer progression has never been addressed. METHODS We analyzed the association between FFARs and TLRs using The Cancer Genome Atlas (TCGA) lung cancer data and our cohort of non-small cell lung cancer (NSCLC) patient data (n = 42), and gene set enrichment analysis (GSEA) was performed. For the functional analysis, we generated FFAR2-knockout (FFAR2KO) A549 and FFAR2KO H1299 human lung cancer cells and performed biochemical mechanistic studies and cancer progression assays, including migration, invasion, and colony-formation assays, in response to TLR stimulation. RESULTS The clinical TCGA data showed a significant down-regulation of FFAR2, but not FFAR1, FFAR3, and FFAR4, in lung cancer, and a negative correlation with TLR2 and TLR3. Notably, GSEA showed significant enrichment in gene sets related to the cancer module, the innate signaling pathway, and the cytokine-chemokine signaling pathway in FFAR2DownTLR2UpTLR3Up lung tumor tissues (LTTs) vs. FFAR2upTLR2DownTLR3Down LTTs. Functionally, treatment with propionate (an agonist of FFAR2) significantly inhibited human A549 or H1299 lung cancer migration, invasion, and colony formation induced by TLR2 or TLR3 through the attenuation of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB. Moreover, FFAR2KO A549 and FFAR2KO H1299 human lung cancer cells showed marked increases in cell migration, invasion, and colony formation in response to TLR2 or TLR3 stimulation, accompanied by elevations in NF-κB activation, cAMP levels, and the production of C-C motif chemokine ligand (CCL)2, interleukin (IL)-6, and matrix metalloproteinase (MMP) 2 cytokines. CONCLUSION Our results suggest that FFAR2 signaling antagonized TLR2- and TLR3-induced lung cancer progression via the suppression of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB, and its agonist might be a potential therapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Young Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Hye Shin
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yeeun Kang
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Su Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Juhee Son
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Soo-Kyung Jeong
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Eunyoung Chun
- R&D Center, CHA Vaccine Institute, Seongnam-si, 13493, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
34
|
Lafranconi M, Anderson J, Budinsky R, Corey L, Forsberg N, Klapacz J, LeBaron MJ. An integrated assessment of the 1,4-dioxane cancer mode of action and threshold response in rodents. Regul Toxicol Pharmacol 2023:105428. [PMID: 37277058 DOI: 10.1016/j.yrtph.2023.105428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
1,4-Dioxane is an environmental contaminant that has been shown to cause cancer in rodents after chronic high dose exposures. We reviewed and integrated information from recently published studies to update our understanding of the cancer mode of action of 1,4-dioxane. Tumor development in rodents from exposure to high doses of 1,4-dioxane is preceded by pre-neoplastic events including increased hepatic genomic signaling activity related to mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity. These events are followed by regenerative repair and proliferation and eventual development of tumors. Importantly, these events occur at doses that exceed the metabolic clearance of absorbed 1,4-dioxane in rats and mice resulting in elevated systemic levels of parent 1,4-dioxane. Consistent with previous reviews, we found no evidence of direct mutagenicity from exposure to 1,4-dioxane. We also found no evidence of CAR/PXR, AhR or PPARα activation resulting from exposure to 1,4-dioxane. This integrated assessment supports a cancer mode of action that is dependent on exceeding the metabolic clearance of absorbed 1,4-dioxane, direct mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity followed by sustained proliferation driven by regenerative repair and progression of heritable lesions to tumor development.
Collapse
|
35
|
Hassan AK, El-Kalaawy AM, Abd El-Twab SM, Alblihed MA, Ahmed OM. Hesperetin and Capecitabine Abate 1,2 Dimethylhydrazine-Induced Colon Carcinogenesis in Wistar Rats via Suppressing Oxidative Stress and Enhancing Antioxidant, Anti-Inflammatory and Apoptotic Actions. Life (Basel) 2023; 13:984. [PMID: 37109513 PMCID: PMC10146346 DOI: 10.3390/life13040984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Colon cancer is a major cause of cancer-related death, with significantly increasing rates of incidence worldwide. The current study was designed to evaluate the anti-carcinogenic effects of hesperetin (HES) alone and in combination with capecitabine (CAP) on 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in Wistar rats. The rats were given DMH at 20 mg/kg body weight (b.w.)/week for 12 weeks and were orally treated with HES (25 mg/kg b.w.) and/or CAP (200 mg/kg b.w.) every other day for 8 weeks. The DMH-administered rats exhibited colon-mucosal hyperplastic polyps, the formation of new glandular units and cancerous epithelial cells. These histological changes were associated with the significant upregulation of colon Ki67 expression and the elevation of the tumor marker, carcinoembryonic antigen (CEA), in the sera. The treatment of the DMH-administered rats with HES and/or CAP prevented these histological cancerous changes concomitantly with the decrease in colon-Ki67 expression and serum-CEA levels. The results also indicated that the treatments with HES and/or CAP showed a significant reduction in the serum levels of lipid peroxides, an elevation in the serum levels of reduced glutathione, and the enhancement of the activities of colon-tissue superoxide dismutase, glutathione reductase and glutathione-S-transferase. Additionally, the results showed an increase in the mRNA expressions of the anti-inflammatory cytokine, IL-4, as well as the proapoptotic protein, p53, in the colon tissues of the DMH-administered rats treated with HES and/or CAP. The TGF-β1 decreased significantly in the DMH-administered rats and this effect was counteracted by the treatments with HES and/or CAP. Based on these findings, it can be suggested that both HES and CAP, singly or in combination, have the potential to exert chemopreventive effects against DMH-induced colon carcinogenesis via the suppression of oxidative stress, the stimulation of the antioxidant defense system, the attenuation of inflammatory effects, the reduction in cell proliferation and the enhancement of apoptosis.
Collapse
Affiliation(s)
- Asmaa K. Hassan
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Asmaa M. El-Kalaawy
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Sanaa M. Abd El-Twab
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed A. Alblihed
- Department of Microbiology, College of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
36
|
Perez S, Lavi-Itzkovitz A, Gidoni M, Domovitz T, Dabour R, Khurana I, Davidovich A, Tobar A, Livoff A, Solomonov E, Maman Y, El-Osta A, Tsai Y, Yu ML, Stemmer SM, Haviv I, Yaari G, Gal-Tanamy M. High-Resolution Genomic Profiling of Liver Cancer Links Etiology With Mutation and Epigenetic Signatures. Cell Mol Gastroenterol Hepatol 2023; 16:63-81. [PMID: 36965814 PMCID: PMC10212990 DOI: 10.1016/j.jcmgh.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a model of a diverse spectrum of cancers because it is induced by well-known etiologies, mainly hepatitis C virus (HCV) and hepatitis B virus. Here, we aimed to identify HCV-specific mutational signatures and explored the link between the HCV-related regional variation in mutations rates and HCV-induced alterations in genome-wide chromatin organization. METHODS To identify an HCV-specific mutational signature in HCC, we performed high-resolution targeted sequencing to detect passenger mutations on 64 HCC samples from 3 etiology groups: hepatitis B virus, HCV, or other. To explore the link between the genomic signature and genome-wide chromatin organization we performed chromatin immunoprecipitation sequencing for the transcriptionally permissive H3K4Me3, H3K9Ac, and suppressive H3K9Me3 modifications after HCV infection. RESULTS Regional variation in mutation rate analysis showed significant etiology-dependent regional mutation rates in 12 genes: LRP2, KRT84, TMEM132B, DOCK2, DMD, INADL, JAK2, DNAH6, MTMR9, ATM, SLX4, and ARSD. We found an enrichment of C->T transversion mutations in the HCV-associated HCC cases. Furthermore, these cases showed regional variation in mutation rates associated with genomic intervals in which HCV infection dictated epigenetic alterations. This signature may be related to the HCV-induced decreased expression of genes encoding key enzymes in the base excision repair pathway. CONCLUSIONS We identified novel distinct HCV etiology-dependent mutation signatures in HCC associated with HCV-induced alterations in histone modification. This study presents a link between cancer-causing mutagenesis and the increased predisposition to liver cancer in chronic HCV-infected individuals, and unveils novel etiology-specific mechanisms leading to HCC and cancer in general.
Collapse
Affiliation(s)
- Shira Perez
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Cancer Personalized Medicine, Diagnostic Genomics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Anat Lavi-Itzkovitz
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Moriah Gidoni
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Tom Domovitz
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Roba Dabour
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Ateret Davidovich
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ana Tobar
- Institute of Pathology, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Livoff
- Department of Pathology, Barzilay Medical Center, Faculty of Medicine, Ben Gurion University, Beer Sheva, Israel
| | | | - Yaakov Maman
- The Laboratory of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yishan Tsai
- Hepatobiliary Division, Department of Internal Medicine, Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Izhak Haviv
- Cancer Personalized Medicine, Diagnostic Genomics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; AID Genomics, Ltd, Rehovot, Israel.
| | - Gur Yaari
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel; Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel.
| | - Meital Gal-Tanamy
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
37
|
Suptela AJ, Marriott I. Cytosolic DNA sensors and glial responses to endogenous DNA. Front Immunol 2023; 14:1130172. [PMID: 36999037 PMCID: PMC10043442 DOI: 10.3389/fimmu.2023.1130172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Genomic instability is a key driving force for the development and progression of many neurodegenerative diseases and central nervous system (CNS) cancers. The initiation of DNA damage responses is a critical step in maintaining genomic integrity and preventing such diseases. However, the absence of these responses or their inability to repair genomic or mitochondrial DNA damage resulting from insults, including ionizing radiation or oxidative stress, can lead to an accumulation of self-DNA in the cytoplasm. Resident CNS cells, such as astrocytes and microglia, are known to produce critical immune mediators following CNS infection due to the recognition of pathogen and damage-associated molecular patterns by specialized pattern recognition receptors (PRRs). Recently, multiple intracellular PRRs, including cyclic GMP-AMP synthase, interferon gamma-inducible 16, absent in melanoma 2, and Z-DNA binding protein, have been identified as cytosolic DNA sensors and to play critical roles in glial immune responses to infectious agents. Intriguingly, these nucleic acid sensors have recently been shown to recognize endogenous DNA and trigger immune responses in peripheral cell types. In the present review, we discuss the available evidence that cytosolic DNA sensors are expressed by resident CNS cells and can mediate their responses to the presence of self-DNA. Furthermore, we discuss the potential for glial DNA sensor-mediated responses to provide protection against tumorigenesis versus the initiation of potentially detrimental neuroinflammation that could initiate or foster the development of neurodegenerative disorders. Determining the mechanisms that underlie the detection of cytosolic DNA by glia and the relative role of each pathway in the context of specific CNS disorders and their stages may prove pivotal in our understanding of the pathogenesis of such conditions and might be leveraged to develop new treatment modalities.
Collapse
Affiliation(s)
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
38
|
Laffusa A, Ciaccio A, Elvevi A, Gallo C, Ratti L, Invernizzi P, Massironi S. Impact of metformin on the incidence of human cholangiocarcinoma in diabetic patients: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2023; 35:241-247. [PMID: 36708293 DOI: 10.1097/meg.0000000000002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cholangiocarcinoma (CCA) is the second most common liver cancer. Diabetes is a well-known risk factor; however, treatment with metformin has been reported to be protective for several cancers, but data on CCA are still sparse and heterogeneous. We performed this meta-analysis to investigate the role of metformin as a potential protective factor for CCA. In this systematic review and meta-analysis, we searched PubMed/MEDLINE and EMBASE databases, from the date of inception to November 2022, for studies analyzing CCA rate in patients taking metformin. Twenty-nine articles were initially identified, of which four were eligible and included in our systematic review and meta-analysis, from which we estimated the relative risk (RR). The rate of CCA was lower for diabetic patients taking metformin than diabetic patients without metformin intake when comparing two highest quality studies [RR, 0.38; 95% confidence interval (CI), 0.290-0.508; P < 0.001], and three studies with similar inclusion criteria (RR, 0.34; 95% CI, 0.51-0.35; P < 0.001) without significant statistical heterogeneity among them (I2 = 29.83%, P = 0,2326 and I2 = 35.08%; P = 0.2143, respectively). Our study demonstrated a significant impact of metformin in reducing the risk of CCA by nearly 62-66% in diabetic patients taking metformin.
Collapse
Affiliation(s)
- Alice Laffusa
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Effects of the Vitamin D3 on Alleviating the Oxidative Stress Induced by Diquat in Wenchang Chickens. Animals (Basel) 2023; 13:ani13040711. [PMID: 36830496 PMCID: PMC9951941 DOI: 10.3390/ani13040711] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Vitamin D3 (VD3) is an indispensable micronutrient in livestock and poultry feed. Its function in antioxidant stress has been reported. We investigate whether the addition of different concentrations of VD3 to the diet affects the production performance, slaughter performance, meat quality, organ index, and gut injury on the diquat (DQ)-induced model of oxidative stress in Wenchang chickens. Four hundred and eighty one-day-old chickens were randomly divided into six groups: control (basal diet), 4000 VD (basal diet + VD3 4000 IU per kg feed intake), 1000 VD+DI (DQ, basal diet + VD3 1000 IU per kg feed intake), 2000 VD+DI (DQ, basal diet + VD3 2000 IU per kg feed intake), and 4000 VD+DI (DQ, basal diet + VD3 4000 IU per kg feed intake). The results showed that the addition of VD3 to the diet promoted DQ-induced weight loss and reduced ADFI, slaughter rate, splenic index, and pH after 1 h and 24 h in the leg muscles. VD3 decreased the increase in content of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) among proinflammatory cytokines (p < 0.05) and increased the reduction in anti-inflammatory cytokines content of interleukin-10 (IL-10) (p < 0.05) induced by DQ. In addition, liver and kidney injury biomarkers and the intestinal permeability index in serum were disordered after treatment with DQ (p < 0.05). VD3 perfected the increase of D-lactic acid (D-LA), diamine oxidase (DAO), total cholesterol (T-CHO), creatinine (CR), blood urea nitrogen (BUN), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) content, aspartate transaminase (AST), alanine transaminase (ALT), and lactate dehydrogenase (LDH) activity (p < 0.05); it increased the decrease of albumin (ALB) content (p < 0.05). Meanwhile, VD3 regulated the intestinal morphology and intestinal barrier. Moreover, DQ induced a decrease in total antioxidant capacity and antioxidant enzyme activity in the serum, liver, and jejunum (p < 0.05), and an increase in malonaldehyde (MDA) content (p < 0.05). However, the addition of different levels of VD3 could alleviate the above phenomenon of oxidative stress in Wenchang chickens to different degrees. Thus, this research suggested that the addition of VD3 can relieve the DQ-induced oxidative stress of Wenchang chickens, and the level of VD3 acquisition is positively correlated with the remission effect.
Collapse
|
40
|
Hassan I, Ebaid H, Alhazza IM, Al-Tamimi J, Rady AM. Disulfiram Enhances the Antineoplastic Activity and Sensitivity of Murine Hepatocellular Carcinoma to 5-FU via Redox Management. Pharmaceuticals (Basel) 2023; 16:169. [PMID: 37259318 PMCID: PMC9967644 DOI: 10.3390/ph16020169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 11/20/2023] Open
Abstract
The efficacy of anticancer drug 5-FU is suppressed due to various factors, including severe side effects and decreased insensitivity during prolonged chemotherapy. Elevated endogenous copper (Cu) levels are one of the prominent hallmark features of cancer cells. In the present investigation, this feature was targeted in diethyl nitrosamine-phenobarbital-induced hepatocellular carcinoma (HCC) in a rat model system by an established anticancer drug, 5-FU, co-administered with copper and its chelating agent, disulfiram. After treatment with the test chemicals in HCC-induced rats, blood and liver samples were subjected to biochemical, molecular, and histopathological analyses. The analysis revealed that reactive oxygen species-mediated oxidative stress is the crucial etiological reason for the pathogenesis of HCC in rats, as evidenced by the significantly compromised activity of major antioxidant enzymes and elevated levels of oxidative damaged products with major histological alterations compared to the control. However, the combination of 5-FU with DSF demonstrated a significant improvement in most of the parameters, followed by 5-FU-Cu in the combination-treated groups. The combination treatment improved the histological details and triggered apoptosis in the cancer cells to a remarkable extent, as the levels of cleaved PARP and caspase-3 were significantly higher than those in the HCC rats treated with the drug alone. The present study envisages that manipulating the Cu-level greatly enhances the antineoplastic activity of 5-FU and sensitizes cancer cells to the increased efficacy of the drug.
Collapse
Affiliation(s)
| | | | - Ibrahim M. Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
41
|
Glover A, Zhang Z, Shannon-Lowe C. Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis. Front Immunol 2023; 14:1161848. [PMID: 37033972 PMCID: PMC10076641 DOI: 10.3389/fimmu.2023.1161848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of myeloid cells derived from monocyte and granulocyte precursors. They are pathologically expanded in conditions of ongoing inflammation where they function to suppress both innate and adaptive immunity. They are subdivided into three distinct subsets: monocytic (M-) MDSC, polymorphonuclear (or neutrophilic) (PMN-) MDSC and early-stage (e-) MDSC that may exhibit differential function in different pathological scenarios. However, in cancer they are associated with inhibition of the anti-tumour immune response and are universally associated with a poor prognosis. Seven human viruses classified as Group I carcinogenic agents are jointly responsible for nearly one fifth of all human cancers. These viruses represent a large diversity of species, including DNA, RNA and retroviridae. They include the human gammaherpesviruses (Epstein Barr virus (EBV) and Kaposi's Sarcoma-Associated Herpesvirus (KSHV), members of the high-risk human papillomaviruses (HPVs), hepatitis B and C (HBV, HCV), Human T cell leukaemia virus (HTLV-1) and Merkel cell polyomavirus (MCPyV). Each of these viruses encode an array of different oncogenes that perturb numerous cellular pathways that ultimately, over time, lead to cancer. A prerequisite for oncogenesis is therefore establishment of chronic infection whereby the virus persists in the host cells without being eradicated by the antiviral immune response. Although some of the viruses can directly modulate the immune response to enable persistence, a growing body of evidence suggests the immune microenvironment is modulated by expansions of MDSCs, driven by viral persistence and oncogenesis. It is likely these MDSCs play a role in loss of immune recognition and function and it is therefore essential to understand their phenotype and function, particularly given the increasing importance of immunotherapy in the modern arsenal of anti-cancer therapies. This review will discuss the role of MDSCs in viral oncogenesis. In particular we will focus upon the mechanisms thought to drive the MDSC expansions, the subsets expanded and their impact upon the immune microenvironment. Importantly we will explore how MDSCs may modulate current immunotherapies and their impact upon the success of future immune-based therapies.
Collapse
|
42
|
Zhang M, Lai Z, Zhang R, Liu S, Tian H, Qiu Y, Li D, Zhou J, Li Z. Polyurea-Modified Magnetic Particles with Versatile Probes for Chemoselective Capture of Carbonyl Metabolites and Biomarker Discovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204734. [PMID: 36354199 DOI: 10.1002/smll.202204734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Playing a great role in human physiologies and pathologies, carbonyl metabolites are intimately associated with a variety of diseases, though the effective analysis method of them remains a challenge. A hydrazide-terminated polyurea-modified magnetic particle (HPMP) with versatile probes is developed to address this issue. The capture ability of HPMPs for carbonyl metabolite is more than 1200 µmol g-1 , which is increased by 4 orders of magnitude via the introduction of polyurea. With a broad linear range of over 4 orders of magnitude, remarkably improved sensitivity, and limit of detection at attomole quantities, HPMPs are applied in relative quantification of more than 1500 carbonyl metabolites in 113 human serum samples with high throughput and high coverage. The combined indicators of these metabolites demonstrates a great diagnostic accuracy for distinguishing between health and disease subjects as well as differentiating the patients with benign lung disease and lung cancer. Combining powerful capture ability, low-cost preparation, and convenient operation, the HPMPs demonstrate extensive application in biomarker discovery and the detailed study of the biochemical landscape.
Collapse
Affiliation(s)
- Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Renjun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yuming Qiu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
43
|
Chen G, Wu Y, Qian ZM, Wang X, Howard SW, McMillin SE, Lin H, Ruan Z, Zhang Z. Associations between conjunctivitis and ambient PM 2.5 and physical activity: A nationwide prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157979. [PMID: 35981585 DOI: 10.1016/j.scitotenv.2022.157979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Currently, there is no evidence of fine particulate matter pollution (PM2.5) altering the relationship between physical activity (PA) and the risk of conjunctivitis. METHODS Based on the UK Biobank study, we included 308,507 participants aged 40-69 years at baseline (2006 to 2010) and prospectively followed up for conjunctivitis diagnosis till 2020. Annual concentrations of PM2.5 in 2010 were estimated for each participant using Land Use Regression models. PA levels during work and leisure time were reported via the International Physical Activity Questionnaire at baseline. We used Cox proportional hazards models to examine the associations of PM2.5 and PA with incident conjunctivitis, as well as their interaction at both multiplicative and additive scales. RESULTS During the 11.6 years of follow up, we identified 4002 incident conjunctivitis cases. High-PA (≥3000 metabolic equivalent of task [MET]-mins/week) was associated with lower risk of conjunctivitis (hazard ratio [HR]: 0.79, 95% confidence interval [CI]: 0.73-0.86) compared to low-PA (0 to <600 MET-mins/week), while every 1 μg/m3 increment in PM2.5 was associated with a 16% higher risk of conjunctivitis (HR = 1.16, 95% CI: 1.09-1.23). We did not observe statistically significant interactions between PM2.5 and PA on their associations with conjunctivitis. CONCLUSION Habitual PA and PM2.5 exposure were oppositely related to incident conjunctivitis. The benefits of PA remain in people irrespective of exposure to air pollution.
Collapse
Affiliation(s)
- Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yinglin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, United States of America
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Steven W Howard
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, United States of America
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, United States of America
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zengliang Ruan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, Jiangsu 210096, PR China.
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
44
|
Promising hepatoprotective effects of lycopene in different liver diseases. Life Sci 2022; 310:121131. [PMID: 36306869 DOI: 10.1016/j.lfs.2022.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
45
|
Multi-omics profiling reveals Chitinase-3-like protein 1 as a key mediator in the crosstalk between sarcopenia and liver cancer. Redox Biol 2022; 58:102538. [PMID: 36417796 PMCID: PMC9682348 DOI: 10.1016/j.redox.2022.102538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022] Open
Abstract
Sarcopenia is prevalent in patients with hepatocellular carcinoma (HCC), and can adversely affect their outcomes. This study aims to explore the key mechanisms in the crosstalk between sarcopenia and HCC based on multi-omics profiling. A total of 136 male patients with HCC were enrolled. Sarcopenia was an independent risk factor for poor outcomes after liver transplantation (p < 0.05). Inflammatory cytokine and metabolomic profiling on these patients identified elevated plasma sTNF-R1/CHI3L1 and dysregulated lipid metabolism as related to sarcopenia and tumor recurrence risk concurrently (p < 0.05). Integrated analysis revealed close relationship between CHI3L1 and fatty acid metabolism. In mouse cachectic models by intraperitoneal injection of H22 cells, CHI3L1 was significantly elevated in the atrophic muscle tissue, as well as in circulation. In-vitro, CHI3L1 was up-regulated in muscle cells to protect itself from inflammatory damage through TNF-α/TNF-R1 signaling. CHI3L1 secreted by the muscle cells promoted the invasion of co-cultured HCC cells. Tumor tissue transcriptome data for 73 out of the 136 patients revealed that CHI3L1 may regulate fatty acid metabolism and oxidative stress. In vitro, CHI3L1 caused ROS and lipid accumulation. Targeted lipid profiling further proved that CHI3L1 was able to activate arachidonic acid metabolism, leading to lipid peroxide (LPO) accumulation. Meanwhile, LPO inhibition could compromise the remarkable pro-cancerous effects of CHI3L1. In conclusion, sarcopenia adversely affects the outcomes of liver transplantation for HCC. In sarcopenic patients, CHI3L1 was up-regulated and secreted by the skeletal muscle to protect itself through TNF-α/TNF-R1 signaling, which, in turn, can promote HCC tumor progression by inducing LPO accumulation.
Collapse
|
46
|
Budek M, Nuszkiewicz J, Piórkowska A, Czuczejko J, Szewczyk-Golec K. Inflammation Related to Obesity in the Etiopathogenesis of Gastroenteropancreatic Neuroendocrine Neoplasms. Biomedicines 2022; 10:2660. [PMID: 36289922 PMCID: PMC9599081 DOI: 10.3390/biomedicines10102660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare neoplasms, which, due to their heterogeneous nature, non-specific symptoms, and lack of specific tumor markers pose many diagnostic and clinical challenges. In recent years, the effectiveness of GEP-NEN diagnosis has increased, which is probably associated with the greater availability of diagnostic tests and the cooperation of many experienced specialists in various scientific disciplines. In addition to the possible genetic etiology, the cause of GEP-NET development is not fully understood. Inflammation and obesity are known risks that contribute to the development of many diseases. Chronic inflammation accompanying obesity affects the hormonal balance and cell proliferation and causes the impairment of the immune system function, leading to neoplastic transformation. This review explores the role of inflammation and obesity in GEP-NETs. The exact mechanisms inducing tumor growth are unknown; however, the profile of inflammatory factors released in the GEP-NET tumor microenvironment is responsible for the progression or inhibition of tumor growth. Both the excess of adipose tissue and the impaired function of the immune system affect not only the initiation of cancer but also reduce the comfort and lifetime of patients.
Collapse
Affiliation(s)
- Marlena Budek
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Anna Piórkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Jolanta Czuczejko
- Department of Psychiatry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Curie-Skłodowskiej St., 85-094 Bydgoszcz, Poland
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 2 Dr. I. Romanowskiej St., 85-796 Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| |
Collapse
|
47
|
Zhong Z, Xu M, Tan J. Identification of an Oxidative Stress-Related LncRNA Signature for Predicting Prognosis and Chemotherapy in Patients With Hepatocellular Carcinoma. Pathol Oncol Res 2022; 28:1610670. [PMID: 36277962 PMCID: PMC9579291 DOI: 10.3389/pore.2022.1610670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 12/16/2022]
Abstract
Background: Oxidative stress plays a critical role in oncogenesis and tumor progression. However, the prognostic role of oxidative stress-related lncRNA in hepatocellular carcinomas (HCC) has not been fully explored. Methods: We used the gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify oxidative stress-related differentially expressed lncRNAs (DElncRNAs) by pearson correlation analysis. A four-oxidative stress-related DElncRNA signature was constructed by LASSO regression and Cox regression analyses. The predictive signature was further validated by Kaplan-Meier (K-M) survival analysis, receiver operating characteristic (ROC) curves, nomogram and calibration plots, and principal component analysis (PCA). Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the signature and immune status. Finally, the correlation between the signature and chemotherapeutic response of HCC patients was analyzed. Results: In our study, the four-DElncRNA signature was not only proved to be a robust independent prognostic factor for overall survival (OS) prediction, but also played a crucial role in the regulation of progression and chemotherapeutic response of HCC. ssGSEA showed that the signature was correlated with the infiltration level of immune cells. HCC patients in high-risk group were more sensitive to the conventional chemotherapeutic drugs including Sorafenib, lapatinib, Nilotinib, Gefitinib, Erlotinib and Dasatinib, which pave the way for targeting DElncRNA-associated treatments for HCC patients. Conclusion: Our study has originated a prognostic signature for HCC based on oxidative stress-related DElncRNAs, deepened the understanding of the biological role of four key DElncRNAs in HCC and laid a theoretical foundation for the choice of chemotherapy.
Collapse
Affiliation(s)
- Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Department of Experimental Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| |
Collapse
|
48
|
Darbani Torshizi M, Younesian O, Aboomardani M, Roshandel G, Hosseinzadeh S, Hosseini Alarzi SS, Joshaghani H. Serum Selenium, Vitamin A, and Vitamin E Levels of Healthy Individuals in High- and Low-Risk Areas of Esophageal Cancer. Middle East J Dig Dis 2022; 14:396-403. [PMID: 37547507 PMCID: PMC10404097 DOI: 10.34172/mejdd.2022.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/10/2022] [Indexed: 08/08/2023] Open
Abstract
Background: Esophageal cancer is one of the main causes of cancer mortality in the world. Golestan province, in the northern part of Iran, has the highest esophageal cancer rate in the world. The north and south districts of Golestan province can be classified as low and high-risk areas for esophageal cancer. One of the potential risk factors for esophageal cancer in this population is a nutrient-deficient diet. Dietary antioxidant compounds such as selenium, vitamin E, vitamin A, and β-carotene are reactive oxygen species (ROC) scavengers that play a key role in cellular responses to oxidative stress and preventing DNA damage. This study aims to compare the serum levels of selenium, vitamin E, and vitamin A in healthy individuals in high and low-risk areas of esophageal cancer. Methods: This study is a population of 242 healthy individuals. Serum selenium levels were assessed by atomic absorption spectroscopy. Vitamin E and A were assessed by reversed-phase high-performance liquid chromatography. Results: Vitamin E levels of healthy individuals in high-risk areas were significantly lower than in low-risk areas, while there was no significant difference between the selenium and vitamin A levels of healthy individuals in high-risk areas and low-risk areas. Also, there was no significant difference between selenium, vitamin E, and vitamin A levels in urban and rural areas and men and women in Golestan province. Conclusion: High levels of selenium with lower levels of vitamin E, along with other risk factors, may be associated with esophageal squamous cell carcinoma in high-risk areas of Golestan province.
Collapse
Affiliation(s)
- Mehdi Darbani Torshizi
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Maryam Aboomardani
- Department of Nutrition, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Hosseinzadeh
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Hamidreza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
49
|
Carlosama-Rosero Y, Acosta-Astaiza C, Sierra-Torres CH, Bolaños-Bravo H, Quiroga-Quiroga A, Bonilla-Chaves J. Virulence Genes of Helicobacter pylori Increase the Risk of Premalignant Gastric Lesions in a Colombian Population. Can J Gastroenterol Hepatol 2022; 2022:7058945. [PMID: 36212919 PMCID: PMC9534724 DOI: 10.1155/2022/7058945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Genetic variability of Helicobacter pylori is associated with various gastrointestinal diseases; however, little is known about interaction with sociodemographic in the development of premalignant lesions in Colombian patients. METHODS An analytical study was conducted including cases (patients with gastric atrophy, intestinal metaplasia, and gastric dysplasia) and controls (patients with nonatrophic gastritis). Sociodemographic information was obtained using a questionnaire. Histopathological diagnosis was performed according to the Sydney System. The cagA and vacA genotypes were established using polymerase chain reaction in paraffin blocks. The effect of each variable on the study outcome (premalignant lesion) is presented as odds ratio (OR) and 95% CI. A p value of <0.05 was considered as statistically significant. RESULTS The vacA/s1m1 genotype increases the risk of developing premalignant lesions of the stomach (OR: 3.05, 95% IC: 1.57-5.91, p=0.001). Age and educational level showed a positive interaction with the s1m1 genotype (adjusted OR: 3.68, 95% CI: 1.73-7.82, p=0.001). The cagA genotype was not correlated to the development of premalignant lesions of the stomach (OR: 1.32, 95% CI: 0.90-1.94, p=0.151). CONCLUSIONS The vacA genotype, age, and educational level are indicators of the risk of developing premalignant lesions of the stomach in the study population. Significance Statement. Genetic variability of H. pylori and sociodemographic information could be used to predict the risk of premalignant lesions in stomach in Colombian population.
Collapse
Affiliation(s)
- Yeison Carlosama-Rosero
- Interdisciplinary Research Group on Health and Disease, Cooperative University of Colombia, Pasto, Colombia
| | | | | | - H. Bolaños-Bravo
- Human and Applied Genetics Research Group, University of Cauca, Popayán, Colombia
| | | | - Juan Bonilla-Chaves
- Human and Applied Genetics Research Group, University of Cauca, Popayán, Colombia
| |
Collapse
|
50
|
Wu Y, Wang M, Li Y, Xia H, Cheng Y, Liu C, Xia Y, Wang Y, Yue Y, Cheng X, Xie Z. The Fabrication of Docetaxel-Containing Emulsion for Drug Release Kinetics and Lipid Peroxidation. Pharmaceutics 2022; 14:pharmaceutics14101993. [PMID: 36297429 PMCID: PMC9607308 DOI: 10.3390/pharmaceutics14101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/19/2022] Open
Abstract
Docetaxel (DTX)-based formulation development is still confronted with significant challenges, due to its refractory solubility and side effects on normal tissues. Inspired by the application of the transdermal drug delivery model to topical treatment, we developed a biocompatible and slow-release DTX-containing emulsion via self-assembly prepared by a high-speed electric stirring method and optimized the formulation. The results of accelerated the emulsion stability experiment showed that the emulsion prepared at 10,000 rpm/min had a stability of 89.15 ± 2.05%. The ADME, skin irritation, skin toxicity and molecular interaction between DTX and excipients were predicted via Discovery Studio 2016 software. In addition, DTX addition in oil or water phases of the emulsion showed different release rates in vitro and ex vivo. The DTX release ex vivo of the DTX/O-containing emulsion and the DTX/W-containing emulsion were 45.07 ± 5.41% and 96.48 ± 4.54%, respectively. In vitro antioxidant assays and anti-lipid peroxidation models revealed the antioxidant potential of DTX. However, DTX-containing emulsions could maintain and even enhance the antioxidant effect, both scavenging free radicals in vitro and inhibiting the process of lipid peroxidation.
Collapse
Affiliation(s)
- Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengmeng Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yufan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Correspondence: (H.X.); (Y.C.); Tel./Fax: +86-13965033210 (H.X.)
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230601, China
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (H.X.); (Y.C.); Tel./Fax: +86-13965033210 (H.X.)
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| |
Collapse
|