1
|
Chantadul V, Rotpenpian N, Arayapisit T, Wanasuntronwong A. Transient receptor potential channels in dental inflammation and pain perception: A comprehensive review. Heliyon 2025; 11:e41730. [PMID: 39872449 PMCID: PMC11761930 DOI: 10.1016/j.heliyon.2025.e41730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 01/30/2025] Open
Abstract
Transient Receptor Potential (TRP) channels are a family of ion channels that play pivotal roles in various physiological processes, including sensory transduction, temperature regulation, and inflammation. In the context of dentistry, recent research has highlighted the involvement of TRP channels in mediating sensory responses and inflammation in dental tissues and temporo-mandibular joint (TMJ) structure. TRP channels have emerged as major contributors in the development of inflammatory conditions and pain affecting the oral cavity and related structures, such as periodontitis, dental erosion cause hypersensitivity, pulpitis, and TMJ disorders. These inflammatory conditions notably contribute to oral health challenges, often leading to sharp pain, dull aches, and compromised functionality. Pharmacological interventions and emerging strategies aimed at modulating TRP channel activity are critically evaluated. The therapeutic potential of targeting TRP channels in the management within dental practice is a focal point of view to alleviate pain and inflammation. In conclusion, this comprehensive review provides a valuable synthesis of current knowledge regarding the involvement of TRP channels in inflammatory conditions of dentistry underscoring the potential of TRP channels as promising targets for therapeutic intervention, and then paving the way for innovative strategies to address the complexities of inflammatory dental conditions.
Collapse
Affiliation(s)
- Varunya Chantadul
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Nattapon Rotpenpian
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Tawepong Arayapisit
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Aree Wanasuntronwong
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Zhu M, Fang Y, Sun Y, Li S, Yu J, Xiong B, Wen C, Zhou B, Huang B, Yin H, Xu H. Sonogenetics in the Treatment of Chronic Diseases: A New Method for Cell Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407373. [PMID: 39488795 PMCID: PMC11672274 DOI: 10.1002/advs.202407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Sonogenetics is an innovative technology that integrates ultrasound with genetic editing to precisely modulate cellular activities in a non-invasive manner. This method entails introducing and activating mechanosensitive channels on the cell membrane of specific cells using gene delivery vectors. When exposed to ultrasound, these channels can be manipulated to open or close, thereby impacting cellular functions. Sonogenetics is currently being used extensively in the treatment of various chronic diseases, including Parkinson's disease, vision restoration, and cancer therapy. This paper provides a comprehensive review of key components of sonogenetics and focuses on evaluating its prospects and potential challenges in the treatment of chronic disease.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yan Fang
- Department of Ultrasound, Huashan HospitalFudan UniversityShanghai200040P. R. China
| | - Yikang Sun
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalUltrasound Research and Education InstituteClinical Research Center for Interventional MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jifeng Yu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bing Xiong
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Congjian Wen
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Boyang Zhou
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bin Huang
- Zhejiang HospitalHangzhou310013P. R. China
| | - Haohao Yin
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Huixiong Xu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| |
Collapse
|
3
|
Moura TDBD, Nunes FB, Crestani BDV, Araujo TFC, Hanauer EL, Corleta HVE, Branchini G. Preeclampsia and transport of ions and small molecules: A literature review. Placenta 2024; 156:77-91. [PMID: 39293185 DOI: 10.1016/j.placenta.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Preeclampsia (PE) is a prevalent obstetric complication affecting approximately 3-5% of pregnancies worldwide and is a major cause of maternal and perinatal morbidity and mortality. Preeclampsia is considered a disease of the endothelial system that can progress to eclampsia, characterized by seizures. Early diagnosis and appropriate management are crucial to improving maternal and fetal outcomes, as preeclampsia can lead to severe complications such as placental abruption, fetal growth restriction, and stroke. The pathophysiology of PE is complex, involving a combination of genetic, acquired, and immunological factors. A central feature of the condition is inadequate placentation and impaired uteroplacental perfusion, leading to local hypoxia, endothelial dysfunction, vasoconstriction, and immunological dysregulation. Recent evidence suggests that dysregulation of ion transporters may play a significant role in the adaptation of uterine circulation during placentation. These transporters are essential for maintaining maternal-fetal homeostasis, influencing processes such as nutrient exchange, hormone synthesis, trophoblast cell migration, and the function of smooth muscle cells in blood vessels. In preeclampsia, adverse conditions like hypoxia and oxidative stress result in the downregulation of ion, solute, and water transporters, impairing their function. This review focuses on membrane transporters involved in PE, discussing functional alterations and their physiological implications. The goal of this investigation is to enhance understanding of how dysregulation of ion and small molecule transporters contributes to the development and progression of preeclampsia, underscoring the importance of exploring these signaling pathways for potential therapeutic interventions.
Collapse
Affiliation(s)
- Thaís Duarte Borges de Moura
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil
| | - Fernanda Bordignon Nunes
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil; Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 6681 Ipiranga Av, Porto Alegre, RS, ZIP 90619-900, Brazil
| | - Bianca Dalla Vecchia Crestani
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | | | - Eduarda Luiza Hanauer
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | - Helena von Eye Corleta
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul (UFRGS), 2400 Ramiro Barcelos St, Porto Alegre, RS, ZIP 90035-003, Brazil
| | - Gisele Branchini
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil.
| |
Collapse
|
4
|
Tang J, Feng M, Wang D, Zhang L, Yang K. Recent advancement of sonogenetics: A promising noninvasive cellular manipulation by ultrasound. Genes Dis 2024; 11:101112. [PMID: 38947740 PMCID: PMC11214298 DOI: 10.1016/j.gendis.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/02/2024] Open
Abstract
Recent advancements in biomedical research have underscored the importance of noninvasive cellular manipulation techniques. Sonogenetics, a method that uses genetic engineering to produce ultrasound-sensitive proteins in target cells, is gaining prominence along with optogenetics, electrogenetics, and magnetogenetics. Upon stimulation with ultrasound, these proteins trigger a cascade of cellular activities and functions. Unlike traditional ultrasound modalities, sonogenetics offers enhanced spatial selectivity, improving precision and safety in disease treatment. This technology broadens the scope of non-surgical interventions across a wide range of clinical research and therapeutic applications, including neuromodulation, oncologic treatments, stem cell therapy, and beyond. Although current literature predominantly emphasizes ultrasonic neuromodulation, this review offers a comprehensive exploration of sonogenetics. We discuss ultrasound properties, the specific ultrasound-sensitive proteins employed in sonogenetics, and the technique's potential in managing conditions such as neurological disorders, cancer, and ophthalmic diseases, and in stem cell therapies. Our objective is to stimulate fresh perspectives for further research in this promising field.
Collapse
Affiliation(s)
- Jin Tang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingxuan Feng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| |
Collapse
|
5
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
6
|
Byrd K, Lund M, Pan Y, Chung BH, Child K, Fowler D, Burns-Martin J, Sanikommu M, Henderson H, Gregory C, Fleming RK, Xie JY. Potential mechanisms for osteopathic manipulative treatment to alleviate migraine-like pain in female rats. FRONTIERS IN PAIN RESEARCH 2024; 5:1280589. [PMID: 38380374 PMCID: PMC10877942 DOI: 10.3389/fpain.2024.1280589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Migraines are the leading cause of disability in the United States, and the use of non-pharmaceutical treatments like osteopathic manipulative treatment (OMT) has shown promise. Despite its potential, the lack of mechanistic understanding has hindered widespread adoption. This study aims to investigate the efficacy of OMT in treating acute migraines and unravel its underlying mechanisms of action. Methods Female rats were subjected to a "two-hit" approach to induce migraine-like pain. This involved bilateral injections of Complete Freund's Adjuvant (CFA) into the trapezius muscle (1st hit) followed by exposure to Umbellulone, a human migraine trigger, on Day 6 post-CFA (2nd hit). Soft tissue and articulatory techniques were applied to the cervical region for acute abortive or repeated prophylactic treatment. Cutaneous allodynia and trigeminal system activation were assessed through behavioral tests and immunohistochemical staining. Results Following Umbellulone inhalation, CFA-primed rats exhibited periorbital and hind paw allodynia. Immediate application of OMT after Umbellulone inhalation as an abortive treatment partially alleviated cutaneous allodynia. With OMT applied thrice as a prophylactic measure, complete suppression of tactile hypersensitivity was observed. Prophylactic OMT also prevented the increase of c-fos signals in the trigeminal nucleus caudalis and the elevation of calcitonin gene-related peptide expression in trigeminal ganglia induced by CFA and Umbellulone exposure at 2 h post-inhalation. Discussion These findings provide mechanistic insights into OMT's migraine-relief potential and underscore its viability as a non-pharmacological avenue for managing migraines.
Collapse
Affiliation(s)
- Katherine Byrd
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Makayla Lund
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Yan Pan
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Brandon H. Chung
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Kaitlyn Child
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Danny Fowler
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Jared Burns-Martin
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Mythili Sanikommu
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Hallie Henderson
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Caroline Gregory
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Regina K. Fleming
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Jennifer Yanhua Xie
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| |
Collapse
|
7
|
Ueno T, Yamanaka M, Taniguchi W, Nishio N, Matsuyama Y, Miyake R, Kaimochi Y, Nakatsuka T, Yamada H. Methylglyoxal activates transient receptor potential A1/V1 via reactive oxygen species in the spinal dorsal horn. Mol Pain 2024; 20:17448069241233744. [PMID: 38323375 PMCID: PMC10868495 DOI: 10.1177/17448069241233744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Methylglyoxal (MGO), a highly reactive dicarbonyl metabolite of glucose primarily formed during the glycolytic pathway, is a precursor of advanced glycation end-products (AGEs). Recently, numerous studies have shown that MGO accumulation can cause pain and hyperalgesia. However, the mechanism through which MGO induces pain in the spinal dorsal horn remains unclear. The present study investigated the effect of MGO on spontaneous excitatory postsynaptic currents (sEPSC) in rat spinal dorsal horn neurons using blind whole-cell patch-clamp recording. Perfusion of MGO increased the frequency and amplitude of sEPSC in spinal horn neurons in a concentration-dependent manner. Additionally, MGO administration increased the number of miniature EPSC (mEPSC) in the presence of tetrodotoxin, a sodium channel blocker. However, 6-cyano-7-nitroqiunocaline-2,3-dione (CNQX), an AMPA/kainate receptor antagonist, blocked the enhancement of sEPSC by MGO. HC-030031, a TRP ankyrin-1 (TRPA1) antagonist, and capsazepine, a TRP vanilloid-1 (TRPV1) antagonist, inhibited the action of MGO. Notably, the effects of MGO were completely inhibited by HC-030031 and capsazepine. MGO generates reactive oxygen species (ROS) via AGEs. ROS also potentially induce pain via TRPA1 and TRPV1 in the spinal dorsal horn. Furthermore, we examined the effect of MGO in the presence of N-tert-butyl-α-phenylnitrone (PBN), a non-selective ROS scavenger, and found that the effect of MGO was completely inhibited. These results suggest that MGO increases spontaneous glutamate release from the presynaptic terminal to spinal dorsal horn neurons through TRPA1, TRPV1, and ROS and could enhance excitatory synaptic transmission.
Collapse
Affiliation(s)
- Takeru Ueno
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Manabu Yamanaka
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Wataru Taniguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Naoko Nishio
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Yuki Matsuyama
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Ryo Miyake
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Yuta Kaimochi
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Terumasa Nakatsuka
- Pain Research Center, Kansai University of Health Sciences, Osaka, Japan
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
8
|
Park KT, Ko SG, Kim W. Phlomidis Radix Extract Alleviates Paclitaxel-Induced Neuropathic Pain by Modulating Spinal TRPV1 in Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3819. [PMID: 38005716 PMCID: PMC10674976 DOI: 10.3390/plants12223819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Paclitaxel is a chemotherapeutic drug reported to have excellent activity against tumors; however, various side effects, including peripheral neuropathy, limit its use in some cases. In this study, the effect of Phlomidis radix (P.Radix) extract was assessed on paclitaxel-induced cold and mechanical peripheral neuropathy in mice. Multiple paclitaxel injections (accumulative dose of 8 mg/kg, i.p.) induced increased behavioral responses to cold and mechanical stimuli in mice from D10 to D21 after the first paclitaxel injection. Cold and mechanical stimuli were performed by acetone drop and von Frey filament, respectively. Oral administrations of 25% ethanol extract of P.Radix (300 and 500 mg/kg) relieved cold and mechanical pain in a dose-dependent manner. Furthermore, among the various transient receptor potential (TRP) cation channel subfamilies, paclitaxel upregulated the spinal gene expression of transient receptor potential vanilloid 1 (TRPV1) and melastatin 4 (TRPM4), but not ankyrin 1 (TRPA1). However, 500 mg/kg but not 300 mg/kg of P.Radix extract significantly downregulated the gene expression of TRPV1 but not TRPM4. Among the components of P.Radix, sesamoside was identified and quantified by high-performance liquid chromatography (HPLC), and the administration of sesamoside (7.5 mg/kg, i.p.) showed a similar analgesic effect to 300 mg/kg P.Radix. These results suggest that P.Radix and sesamoside should be considered when treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
9
|
Zheng Y, Huang Q, Zhang Y, Geng L, Wang W, Zhang H, He X, Li Q. Multimodal roles of transient receptor potential channel activation in inducing pathological tissue scarification. Front Immunol 2023; 14:1237992. [PMID: 37705977 PMCID: PMC10497121 DOI: 10.3389/fimmu.2023.1237992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Transient receptor potential (TRP) channels are a class of transmembrane proteins that can sense a variety of physical/chemical stimuli, participate in the pathological processes of various diseases and have attracted increasing attention from researchers. Recent studies have shown that some TRP channels are involved in the development of pathological scarification (PS) and directly participate in PS fibrosis and re-epithelialization or indirectly activate immune cells to release cytokines and neuropeptides, which is subdivided into immune inflammation, fibrosis, pruritus and mechanical forces increased. This review elaborates on the characteristics of TRP channels, the mechanism of PS and how TRP channels mediate the development of PS, summarizes the important role of TRP channels in the different pathogenesis of PS and proposes that therapeutic strategies targeting TRP will be important for the prevention and treatment of PS. TRP channels are expected to become new targets for PS, which will make further breakthroughs and provide potential pharmacological targets and directions for the in-depth study of PS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang He
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiannan Li
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Tamai H, Yamanaka M, Taniguchi W, Nishio N, Fukui D, Nakatsuka T, Yamada H. Transient receptor potential ankyrin 1 in the knee is involved in osteoarthritis pain. Biochem Biophys Rep 2023; 34:101470. [PMID: 37293534 PMCID: PMC10244472 DOI: 10.1016/j.bbrep.2023.101470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/10/2023] Open
Abstract
Transient receptor potential families play important roles in the pathology of osteoarthritis (OA) of the knee. While transient receptor potential ankyrin 1 (TRPA1) is also an essential component of the pathogenesis of various arthritic conditions, its association with pain is controversial. Thus, we researched whether TRPA1 is involved in knee OA pain by in vivo patch-clamp recordings and evaluated the behavioral responses using CatWalk gait analysis and pressure application measurement (PAM). Injection of the Trpa1 agonist, allyl isothiocyanate (AITC), into the knee joint significantly increased spontaneous excitatory synaptic current (sEPSC) frequency in the substantia gelatinosa of rats with knee OA, while injection of the Trpa1 antagonist, HC-030031, significantly decreased the sEPSC. Meanwhile, AITC did not affect the sEPSC in sham rats. In the CatWalk and PAM behavioral tests, AITC significantly decreased pain thresholds, but no difference between HC-030031 and saline injections was observed. Our results indicate that Trpa1 mediates knee OA-induced pain. We demonstrated that Trpa1 is activated in the knee joints of rats with OA, and Trpa1 activity enhanced the pain caused by knee OA.
Collapse
Affiliation(s)
- Hidenobu Tamai
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Manabu Yamanaka
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Wataru Taniguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Naoko Nishio
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Daisuke Fukui
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Terumasa Nakatsuka
- Pain Research Center, Kansai University of Health Sciences, 2-11-1 Wakaba, Kumatorityou, Osaka, 590-0433, Japan
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| |
Collapse
|
11
|
Szallasi A. "ThermoTRP" Channel Expression in Cancers: Implications for Diagnosis and Prognosis (Practical Approach by a Pathologist). Int J Mol Sci 2023; 24:9098. [PMID: 37240443 PMCID: PMC10219044 DOI: 10.3390/ijms24109098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels (so-called "thermoTRPs") are multifunctional signaling molecules with important roles in cell growth and differentiation. Several "thermoTRP" channels show altered expression in cancers, though it is unclear if this is a cause or consequence of the disease. Regardless of the underlying pathology, this altered expression may potentially be used for cancer diagnosis and prognostication. "ThermoTRP" expression may distinguish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive urothelial carcinoma. "ThermoTRP" expression can also be used to predict clinical outcomes. For instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma patients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents. This review will explore the current state of this rapidly evolving field with special emphasis on immunostains that can already be added to the armoire of diagnostic pathologists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
12
|
Wang Z, Li S, Yao JW, Tang C, Jiao HC, Wang XJ, Lin H, Zhao JP. Differential expressions of hypothalamic thermosensitive TRP ion channels may underlie the posthatching ontogeny of brain cooling capacity in broiler chickens. Poult Sci 2023; 102:102782. [PMID: 37276706 PMCID: PMC10258507 DOI: 10.1016/j.psj.2023.102782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Two trials were performed to evaluate the association of hypothalamic abundances of thermosensitive transient receptor potential (TRP) ion channels with thermoregulation in broiler chickens. In trial 1, temporal changes in body temperatures, and hypothalamic expression patterns of TRP channels and thermoregulatory neurotransmitter concentrations were assessed from 3 to 42 d of age. In trial 2, the same variables were compared at 2 age stages between 2 distinct types of birds with high or low rectal temperatures (HRT or LRT). The core-to-brain temperature difference exhibited a rapid increase after hatching, arriving at a steady state in the fourth week (P < 0.01). The hypothalamus saw a progressive decrease of TRPV4 protein expression through 28 d (P < 0.01), followed by a great increase in the abundance of other channels right up to the end (P < 0.05). Compared to LRT birds, a decline in hypothalamic content of TRPV4 (P < 0.05), together with a bigger core-to-brain temperature difference (P < 0.01), was evident in the HRT counterpart at 33 d. In both trials, the core-to-brain and core-to-surface temperature differences were controlled in a synchronous and coordinated manner. These results allow concluding that developmental changes in the thermal sensitivity of hypothalamic neurons, determined by brain cooling capacity, involve a neuro-genomic mechanism, which regulates the ratio between thermosensitive TRP ion channels to attain a lower proportion of TRPV4 in comparison with other channels.
Collapse
Affiliation(s)
- Zhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Sheng Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Jing Wen Yao
- Pharmacy Department, Taian City Central Hospital Affiliated to Qingdao University, Taian, Shandong 271000, P. R. China
| | - Chao Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Hong Chao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Xiao Juan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Jing Peng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, P. R. China.
| |
Collapse
|
13
|
Kuvaeva EE, Mertsalov IB, Simonova OB. Transient Receptor Potential (TRP) Family of Channel Proteins. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Brown BJ, Boekell KL, Stotter BR, Talbot BE, Schlondorff JS. Gain-of-function, focal segmental glomerulosclerosis Trpc6 mutation minimally affects susceptibility to renal injury in several mouse models. PLoS One 2022; 17:e0272313. [PMID: 35913909 PMCID: PMC9342776 DOI: 10.1371/journal.pone.0272313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations in TRPC6 are a cause of autosomal dominant focal segmental glomerulosclerosis in humans. Many of these mutations are known to have a gain-of-function effect on the non-specific cation channel function of TRPC6. In vitro studies have suggested these mutations affect several signaling pathways, but in vivo studies have largely compared wild-type and Trpc6-deficient rodents. We developed mice carrying a gain-of-function Trpc6 mutation encoding an E896K amino acid change, corresponding to a known FSGS mutation in TRPC6. Homozygous mutant Trpc6 animals have no appreciable renal pathology, and do not develop albuminuria until very advanced age. The Trpc6E896K mutation does not impart susceptibility to PAN nephrosis. The animals show a slight delay in recovery from the albumin overload model. In response to chronic angiotensin II infusion, Trpc6E896K/E896K mice have slightly greater albuminuria initially compared to wild-type animals, an effect that is lost at later time points, and a statistically non-significant trend toward more glomerular injury. This phenotype is nearly opposite to that of Trpc6-deficient animals previously described. The Trpc6 mutation does not appreciably impact renal interstitial fibrosis in response to either angiotensin II infusion, or folate-induced kidney injury. TRPC6 protein and TRPC6-agonist induced calcium influx could not be detected in glomeruli. In sum, these findings suggest that a gain-of-function Trpc6 mutation confers only a mild susceptibility to glomerular injury in the mouse.
Collapse
Affiliation(s)
- Brittney J. Brown
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kimber L. Boekell
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian R. Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna E. Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Johannes S. Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
New Insights into TRP Ion Channels in Stem Cells. Int J Mol Sci 2022; 23:ijms23147766. [PMID: 35887116 PMCID: PMC9318110 DOI: 10.3390/ijms23147766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Transient receptor potential (TRP) ion channels are cationic permeable proteins located on the plasma membrane. TRPs are cellular sensors for perceiving diverse physical and/or chemical stimuli; thus, serving various critical physiological functions, including chemo-sensation, hearing, homeostasis, mechano-sensation, pain, taste, thermoregulation, vision, and even carcinogenesis. Dysregulated TRPs are found to be linked to many human hereditary diseases. Recent studies indicate that TRP ion channels are not only involved in sensory functions but are also implicated in regulating the biological characteristics of stem cells. In the present review, we summarize the expressions and functions of TRP ion channels in stem cells, including cancer stem cells. It offers an overview of the current understanding of TRP ion channels in stem cells.
Collapse
|
16
|
Coexpression of TRPML1 and TRPML2 Mucolipin Channels Affects the Survival of Glioblastoma Patients. Int J Mol Sci 2022; 23:ijms23147741. [PMID: 35887088 PMCID: PMC9321332 DOI: 10.3390/ijms23147741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Among brain cancers, glioblastoma (GBM) is the most malignant glioma with an extremely poor prognosis. It is characterized by high cell heterogeneity, which can be linked to its high malignancy. We have previously demonstrated that TRPML1 channels affect the OS of GBM patients. Herein, by RT-PCR, FACS and Western blot, we demonstrated that TRPML1 and TRPML2 channels are differently expressed in GBM patients and cell lines. Moreover, these channels partially colocalized in ER and lysosomal compartments in GBM cell lines, as evaluated by confocal analysis. Interestingly, the silencing of TRPML1 or TRPML2 by RNA interference results in the decrease in the other receptor at protein level. Moreover, the double knockdown of TRPML1 and TRPML2 leads to increased GBM cell survival with respect to single-channel-silenced cells, and improves migration and invasion ability of U251 cells. Finally, the Kaplan–Meier survival analysis demonstrated that patients with high TRPML2 expression in absence of TRPML1 expression strongly correlates with short OS, whereas high TRPML1 associated with low TRPML2 mRNA expression correlates with longer OS in GBM patients. The worst OS in GBM patients is associated with the loss of both TRPML1 and TRPML2 channels.
Collapse
|
17
|
TRPP2 ion channels: The roles in various subcellular locations. Biochimie 2022; 201:116-127. [PMID: 35760123 DOI: 10.1016/j.biochi.2022.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
TRPP2 (PC2, PKD2 or Polycytin-2), encoded by PKD2 gene, belongs to the nonselective cation channel TRP family. Recently, the three-dimensional structure of TRPP2 was constructed. TRPP2 mainly functions in three subcellular compartments: endoplasmic reticulum, plasma membrane and primary cilia. TRPP2 can act as a calcium-activated intracellular calcium release channel on the endoplasmic reticulum. TRPP2 also interacts with other Ca2+ release channels to regulate calcium release, like IP3R and RyR2. TRPP2 acts as an ion channel regulated by epidermal growth factor through activation of downstream factors in the plasma membrane. TRPP2 binding to TRPC1 in the plasma membrane or endoplasmic reticulum is associated with mechanosensitivity. In cilium, TRPP2 was found to combine with PKD1 and TRPV4 to form a complex related to mechanosensitivity. Because TRPP2 is involved in regulating intracellular ion concentration, TRPP2 mutations often lead to autosomal dominant polycystic kidney disease, which may also be associated with cardiovascular disease. In this paper, we review the molecular structure of TRPP2, the subcellular localization of TRPP2, the related functions and mechanisms of TRPP2 at different sites, and the diseases related to TRPP2.
Collapse
|
18
|
Akhilesh, Uniyal A, Gadepalli A, Tiwari V, Allani M, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci 2022; 288:120187. [PMID: 34856209 DOI: 10.1016/j.lfs.2021.120187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/23/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is among the most common clinical complications associated with the use of anti-cancer drugs. CINP occurs in nearly 68.1% of the cancer patients receiving chemotherapeutic drugs. Most of the clinically available analgesics are ineffective in the case of CINP patients as the pathological mechanisms involved with different chemotherapeutic drugs are distinct from each other. CINP triggers the somatosensory nervous system, increases the neuronal firing and activation of nociceptive mediators including transient receptor protein vanilloid 1 (TRPV1). TRPV1 is widely present in the peripheral nociceptive nerve cells and it has been reported that the higher expression of TRPV1 in DRGs serves a critical role in the potentiation of CINP. The therapeutic glory of TRPV1 is well recognized in clinics which gives a promising insight into the treatment of pain. But the adverse effects associated with some of the antagonists directed the scientists towards RNA interference (RNAi), a tool to silence gene expression. Thus, ongoing research is focused on developing small interfering RNA (siRNA)-based therapeutics targeting TRPV1. In this review, we have discussed the involvement of TRPV1 in the nociceptive signaling associated with CINP and targeting this nociceptor, using siRNA will potentially arm us with effective therapeutic interventions for the clinical management of CINP.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vineeta Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nimisha Verma
- Department of Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
19
|
Experimental observation of effects of acupoints, cone numbers and durations of moxibustion with different moxibustion methods on skin surface and inside temperature. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2021. [DOI: 10.1007/s11726-021-1265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Peng C, Yang Z, Liu Z, Wang S, Yu H, Cui C, Hu Y, Xing Q, Hu J, Huang X, Bao Z. A Systematical Survey on the TRP Channels Provides New Insight into Its Functional Diversity in Zhikong Scallop ( Chlamys farreri). Int J Mol Sci 2021; 22:ijms222011075. [PMID: 34681735 PMCID: PMC8539334 DOI: 10.3390/ijms222011075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential (TRP) channel plays a significant role in mediating various sensory physiological functions. It is widely present in the vertebrate and invertebrate genomes and can be activated by multiple compounds, messenger molecules, temperature, and mechanical stimulation. Mollusks are the second largest phylum of the animal kingdom and are sensitive to environmental factors. However, the molecular underpinnings through which mollusks sense and respond to environmental stimulus are unknown. In this study, we systematically identified and characterized 17 TRP channels (C.FA TRPs, seven subfamilies) in the genome of the Zhikong scallop (Chlamys farreri). All C.FA TRPs had six transmembrane structures (TM1–TM6). The sequences and structural features of C.FA TRPs are highly conserved with TRP channels of other species. Spatiotemporal expression profiling suggested that some C.FA TRPs participated in the early embryonic development of scallops and the sensory process of adult tissues. Notably, the expression of C.FA TRPM3 continuously increased during developmental stages and was highest among all C.FA TRPs. C.FA TRPC-α was specifically expressed in eyes, which may be involved in light transmission of scallop eyes. Under high temperature stress, C.FA TRPA1 and C.FA TRPA1-homolog upregulated significantly, which indicated that the TRPA subfamily is the thermoTRPs channel of scallops. Our results provided the first systematic study of TRP channels in scallops, and the findings will provide a valuable resource for a better understanding of TRP evolution and function in mollusks.
Collapse
Affiliation(s)
- Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence:
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (C.P.); (Z.Y.); (Z.L.); (S.W.); (H.Y.); (C.C.); (Y.H.); (Q.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| |
Collapse
|
21
|
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep 2021; 17:1570-1589. [PMID: 33686595 DOI: 10.1007/s12015-021-10142-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Proliferation of osteoblasts is essential for maturation and mineralization of bone matrix. Ossification, the natural phase of bone-forming and hardening is a carefully regulated phase where deregulation of this process may result in insufficient or excessive bone mineralization or ectopic calcification. Osteoblasts can also be differentiated into osteocytes, populating short interconnecting passages within the bone matrix. Over the past few decades, we have seen a significant improvement in awareness and techniques using photobiomodulation (PBM) to stimulate cell function. One of the applications of PBM is the promotion of osteoblast proliferation and maturation. PBM research results on osteoblasts showed increased mitochondrial ATP production, increased osteoblast activity and proliferation, increased and pro-osteoblast expression in the presence of red and NIR radiation. Osteocyte differentiation was also accomplished using blue and green light, showing that different light parameters have various signalling effects. The current review addresses osteoblast function and control, a new understanding of PBM on osteoblasts and its therapeutic impact using various parameters to optimize osteoblast function that may be clinically important. Graphical Abstract.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
22
|
Functional Expression of TRPV1 Ion Channel in the Canine Peripheral Blood Mononuclear Cells. Int J Mol Sci 2021; 22:ijms22063177. [PMID: 33804707 PMCID: PMC8003907 DOI: 10.3390/ijms22063177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
TRPV1, known as a capsaicin receptor, is the best-described transient receptor potential (TRP) ion channel. Recently, it was shown to be expressed by non-excitable cells such as lymphocytes. However, the data regarding the functional expression of the TRPV1 channel in the immune cells are often contradictory. In the present study, we performed a phylogenetical analysis of the canine TRP ion channels, we assessed the expression of TRPV1 in the canine peripheral blood mononuclear cells (PBMC) by qPCR and Western blot, and we determined the functionality of TRPV1 by whole-cell patch-clamp recordings and calcium assay. We found high expression of TRPV2, -M2, and -M7 in the canine PBMCs, while expression of TRPV1, -V4 and, -M5 was relatively low. We confirmed that TRPV1 is expressed on the protein level in the PBMC and it localizes in the plasma membrane. The whole-cell patch-clamp recording revealed that capsaicin application caused a significant increase in the current density. Similarly, the results from the calcium assay show a dose-dependent increase in intracellular calcium level in the presence of capsaicin that was partially abolished by capsazepine. Our study confirms the expression of TRPV1 ion channel on both mRNA and protein levels in the canine PBMC and indicates that the ion channel is functional.
Collapse
|
23
|
Yi XX, Li JY, Tang ZZ, Jiang S, Liu YH, Deng JG, Gao CH. Marinoid J, a phenylglycoside from Avicennia marina fruit, ameliorates cognitive impairment in rat vascular dementia: a quantitative iTRAQ proteomic study. PHARMACEUTICAL BIOLOGY 2020; 58:1211-1220. [PMID: 33280468 PMCID: PMC7723022 DOI: 10.1080/13880209.2020.1837187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/11/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
CONTEXT Fruit of Avicennia marina (Forsk.) Vierh. (Acanthaceae) is used as a Chinese herb. Studies have found that it contains marinoid J, a novel phenylethanoid glycoside (PG) compound, but its neuroprotective functions are largely unknown. OBJECTIVE This study evaluated the effects of marinoid J on vascular dementia (VD) and determined its potential mechanisms of action. MATERIALS AND METHODS The VD model was established by the ligation of the bilateral common carotid artery in Sprague-Dawley rats, who received daily intragastrically administration of saline, marinoid J (125 or 500 mg/kg body weight/d), or oxiracetam (250 mg/kg body weight/d) for 14 days (20 rats in each group). The Morris water maze (MWM) was used to evaluate cognitive performance. The hippocampus was subjected to histological and proteomic analyses. RESULTS Marinoid J shortened the escape latency of VD rats (31.07 ± 3.74 s, p < 0.05). It also decreased malondialdehyde (MDA) (27.53%) and nitric oxide (NO) (20.41%) while increasing superoxide dismutase (SOD) (11.26%) and glutathione peroxidase (GSH-Px) (20.38%) content in hippocampus tissues. Proteomic analysis revealed 45 differentially expressed proteins (DEPs) in marinoid J-treated VD rats, which included angiotensin-converting enzyme (ACE), keratin 18 (KRT18), cluster of differentiation 34 (CD34), and synaptotagmin II (SYT2). CONCLUSIONS Marinoid J played a role in protecting hippocampal neurons by regulating a set of proteins that influence oxidative stress and apoptosis, this effect may thereby alleviate the symptoms of VD rats. Thus, pharmacological manipulation of marinoid J may offer a novel opportunity for VD treatment.
Collapse
Affiliation(s)
- Xiang-xi Yi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, China
| | - Jia-yi Li
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, China
| | - Zhen-zhou Tang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
| | - Shu Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
| | - Yong-hong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
| | - Jia-gang Deng
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, China
| | - Cheng-hai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
| |
Collapse
|
24
|
The Expression of Cold-Inducible RNA-Binding Protein mRNA in Sow Genital Tract Is Modulated by Natural Mating, But Not by Seminal Plasma. Int J Mol Sci 2020; 21:ijms21155333. [PMID: 32727091 PMCID: PMC7432381 DOI: 10.3390/ijms21155333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding proteins (RBPs), some of them induced by transient receptor potential (TRP) ion channels, are crucial regulators of RNA function that can contribute to reproductive pathogenesis, including inflammation and immune dysfunction. This study aimed to reveal the influence of spermatozoa, seminal plasma, or natural mating on mRNA expression of RBPs and TRP ion channels in different segments of the internal genital tract of oestrous, preovulatory sows. Particularly, we focused on mRNA expression changes of the cold-inducible proteins (CIPs) and related TRP channels. Pre-ovulatory sows were naturally mated (NM) or cervically infused with semen (Semen-AI) or sperm-free seminal plasma either from the entire ejaculate (SP-TOTAL) or the sperm-rich fraction (SP-AI). Samples (cervix to infundibulum) were collected by laparotomy under general anaesthesia for transcriptomic analysis (GeneChip® Porcine Gene 1.0 ST Array) 24 h after treatments. The NM treatment induced most of the mRNA expression changes, compared to Semen-AI, SP-AI, and SP-TOTAL treatments including unique significative changes in CIRBP, RBM11, RBM15B, RBMS1, TRPC1, TRPC4, TRPC7, and TRPM8. The findings on the differential mRNA expression on RBPs and TRP ion channels, especially to CIPs and related TRP ion channels, suggest that spermatozoa and seminal plasma differentially modulated both protein families during the preovulatory phase, probably related to a still unknown early signalling mechanism in the sow reproductive tract.
Collapse
|
25
|
Wang S, Meng W, Ren Z, Li B, Zhu T, Chen H, Wang Z, He B, Zhao D, Jiang H. Ultrasonic Neuromodulation and Sonogenetics: A New Era for Neural Modulation. Front Physiol 2020; 11:787. [PMID: 32765294 PMCID: PMC7378787 DOI: 10.3389/fphys.2020.00787] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Non-invasive ultrasonic neural modulation (UNM), a non-invasive technique with enhanced spatial focus compared to conventional electrical neural modulation, has attracted much attention in recent decades and might become the mainstream regimen for neurological disorders. However, as ultrasonic bioeffects and its adjustments are still unclear, it remains difficult to be extensively applied for therapeutic purpose, much less in the setting of human skull. Hence to comprehensively understand the way ultrasound exerts bioeffects, we explored UNM from a basic perspective by illustrating the parameter settings and the underlying mechanisms. In addition, although the spatial resolution and precision of UNM are considerable, UNM is relatively non-specific to tissue or cell type and shows very low specificity at the molecular level. Surprisingly, Ibsen et al. (2015) first proposed the concept of sonogenetics, which combined UNM and mechanosensitive (MS) channel protein. This emerging approach is a valuable improvement, as it may markedly increase the precision and spatial resolution of UNM. It seemed to be an inspiring tool with high accuracy and specificity, however, little information about sonogenetics is currently available. Thus, in order to provide an overview of sonogenetics and prompt the researches on UNM, we summarized the potential mechanisms from a molecular level.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weilun Meng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Medical Department, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Ren
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Medical Department, Soochow University Medical College, Suzhou, China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tongjian Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Kelemen B, Lisztes E, Vladár A, Hanyicska M, Almássy J, Oláh A, Szöllősi AG, Pénzes Z, Posta J, Voets T, Bíró T, Tóth BI. Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochem Pharmacol 2020; 174:113826. [PMID: 31987857 DOI: 10.1016/j.bcp.2020.113826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Volatile anaesthetics (VAs) are the most widely used compounds to induce reversible loss of consciousness and maintain general anaesthesia during surgical interventions. Although the mechanism of their action is not yet fully understood, it is generally believed, that VAs depress central nervous system functions mainly through modulation of ion channels in the neuronal membrane, including 2-pore-domain K+ channels, GABA and NMDA receptors. Recent research also reported their action on nociceptive and thermosensitive TRP channels expressed in the peripheral nervous system, including TRPV1, TRPA1, and TRPM8. Here, we investigated the effect of VAs on TRPM3, a less characterized member of the thermosensitive TRP channels playing a central role in noxious heat sensation. METHODS We investigated the effect of VAs on the activity of recombinant and native TRPM3, by monitoring changes in the intracellular Ca2+ concentration and measuring TRPM3-mediated transmembrane currents. RESULTS All the investigated VAs (chloroform, halothane, isoflurane, sevoflurane) inhibited both the agonist-induced (pregnenolone sulfate, CIM0216) and heat-activated Ca2+ signals and transmembrane currents in a concentration dependent way in HEK293T cells overexpressing recombinant TRPM3. Among the tested VAs, halothane was the most potent blocker (IC50 = 0.52 ± 0.05 mM). We also investigated the effect of VAs on native TRPM3 channels expressed in sensory neurons of the dorsal root ganglia. While VAs activated certain sensory neurons independently of TRPM3, they strongly and reversibly inhibited the agonist-induced TRPM3 activity. CONCLUSIONS These data provide a better insight into the molecular mechanism beyond the analgesic effect of VAs and propose novel strategies to attenuate TRPM3 dependent nociception.
Collapse
Affiliation(s)
- Balázs Kelemen
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Vladár
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Martin Hanyicska
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Pénzes
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary; Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Posta
- Laboratory of Toxicology, Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine and TRP Research Platform Leuven (TRPLe), KU Leuven, Leuven, Belgium
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Center of Excellence for Molecular Medicine, Szeged, Hungary
| | - Balázs István Tóth
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
27
|
Abstract
Two decades ago a class of ion channels, hitherto unsuspected, was discovered. In mammals these Transient Receptor Potential channels (TRPs) have not only expanded in number (to 26 functional channels) but also expanded the view of our interface with the physical and chemical environment. Some are heat and cold sensors while others monitor endogenous and/or exogenous chemical signals. Some TRP channels monitor osmotic potential, and others measure cell movement, stretching, and fluid flow. Many TRP channels are major players in nociception and integration of pain signals. One member of the vanilloid sub-family of channels is TRPV6. This channel is highly selective for divalent cations, particularly calcium, and plays a part in general whole-body calcium homeostasis, capturing calcium in the gut from the diet. TRPV6 can be greatly elevated in a number of cancers deriving from epithelia and considerable study has been made of its role in the cancer phenotype where calcium control is dysfunctional. This review compiles and updates recent published work on TRPV6 as a promising drug target in a number of cancers including those afflicting breast, ovarian, prostate and pancreatic tissues.
Collapse
Affiliation(s)
- John M. Stewart
- Soricimed Biopharma Inc. 18 Botsford Street, Moncton, NB, Canada, E1C 4W7
| |
Collapse
|
28
|
Tanaka A, Shibukawa Y, Yamamoto M, Abe S, Yamamoto H, Shintani S. Developmental studies on the acquisition of perception conducting pathways via TRP channels in rat molar odontoblasts using immunohistochemistry and RT-qPCR. Anat Sci Int 2019; 95:251-257. [PMID: 31848975 PMCID: PMC7012969 DOI: 10.1007/s12565-019-00517-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022]
Abstract
Odontoblasts act as dentin formation and sensory receptors. Recently, it was reported that transient receptor potential ankyrin (TRPA) 1, TRP vanilloid (TRPV) 4 and pannexin 1 (PANX-1) play important roles in odontoblast sensory reception. However, it is not known when odontoblasts begin to possess a sense reception function. The aim of this study was to clarify the development of odontoblasts as sense receptors. Sections of mandibular first molars from postnatal day (PN) 0 to PN12 Wistar rats were prepared for hematoxylin–eosin staining. Immunohistochemically, we used anti-dentin sialoprotein (DSP), anti-TRPA1, anti-TRPV4, anti-PANX-1, and anti-neurofilament (NF) antibodies. In addition, we investigated TRPA1 and TRPV4 expression by reverse transcriptional quantitative polymerase chain reaction (RT-qPCR). At PN0, undifferentiated odontoblasts showed no immunoreaction to anti-DSP, anti-TRPA1, anti-TRPV4, or anti-PANX-1 antibodies. However, immunopositive reactions of these antibodies increased during odontoblast differentiation at PN3 and PN6. An immunopositive reaction of the anti-NF antibody appeared in the odontoblast neighborhood at PN12, when the odontoblasts began to form root dentin, and this appeared later than that of the other antibodies. By RT-qPCR, expression of TRPA1 at PN6 was significantly lower than that at PN0 (p < 0.05) and PN3 (p < 0.01). Expression of TRPV4 at PN6 was significantly lower than that at PN0 (p < 0.01) and PN3 (p < 0.01). The results of this study suggest that odontoblasts may acquire sensory receptor function after beginning to form root dentin, when TRPA1, TRPV4, PANX-1 channels, and nerve fibers are completely formed.
Collapse
Affiliation(s)
- Aoi Tanaka
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Seikou Shintani
- Department of Pediatric Dentistry, Tokyo Dental College, 2-9-18, Kanda Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| |
Collapse
|
29
|
Talbot BE, Vandorpe DH, Stotter BR, Alper SL, Schlondorff JS. Transmembrane insertases and N-glycosylation critically determine synthesis, trafficking, and activity of the nonselective cation channel TRPC6. J Biol Chem 2019; 294:12655-12669. [PMID: 31266804 PMCID: PMC6709635 DOI: 10.1074/jbc.ra119.008299] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential cation channel subfamily C member 6 (TRPC6) is a widely expressed ion channel. Gain-of-function mutations in the human TRPC6 channel cause autosomal-dominant focal segmental glomerulosclerosis, but the molecular components involved in disease development remain unclear. Here, we found that overexpression of gain-of-function TRPC6 channel variants is cytotoxic in cultured cells. Exploiting this phenotype in a genome-wide CRISPR/Cas screen for genes whose inactivation rescues cells from TRPC6-associated cytotoxicity, we identified several proteins essential for TRPC6 protein expression, including the endoplasmic reticulum (ER) membrane protein complex transmembrane insertase. We also identified transmembrane protein 208 (TMEM208), a putative component of a signal recognition particle-independent (SND) ER protein-targeting pathway, as being necessary for expression of TRPC6 and several other ion channels and transporters. TRPC6 expression was also diminished by loss of the previously uncharacterized WD repeat domain 83 opposite strand (WDR83OS), which interacted with both TRPC6 and TMEM208. Additionally enriched among the screen hits were genes involved in N-linked protein glycosylation. Deletion of the mannosyl (α-1,3-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase (MGAT1), necessary for the generation of complex N-linked glycans, abrogated TRPC6 gain-of-function variant-mediated Ca2+ influx and extracellular signal-regulated kinase activation in HEK cells, but failed to diminish cytotoxicity in cultured podocytes. However, mutating the two TRPC6 N-glycosylation sites abrogated the cytotoxicity of mutant TRPC6 and reduced its surface expression. These results expand the targets of TMEM208-mediated ER translocation to include multipass transmembrane proteins and suggest that TRPC6 N-glycosylation plays multiple roles in modulating channel trafficking and activity.
Collapse
Affiliation(s)
- Brianna E Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - David H Vandorpe
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Brian R Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Johannes S Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
30
|
Pouokam E, Diener M. Segmental differences in ion transport in rat cecum. Pflugers Arch 2019; 471:1007-1023. [PMID: 31093757 DOI: 10.1007/s00424-019-02276-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
Abstract
Ion-transport properties of the epithelium of the cecum, the biggest fermental chamber in non-ruminant species, are largely unknown. Recently, in Ussing chamber experiments, segmental differences in basal short-circuit current (Isc) in rat corpus ceci were observed. The oral segment usually exhibited a much lower or even negative basal Isc in comparison with the aboral segment. The aim of the present study was the closer characterization of these differences. Basal Isc was inhibited by bumetanide and tetrodotoxin in both segments, whereas indomethacin reduced basal Isc only in the aboral corpus. Amiloride did not inhibit basal Isc suggesting that spontaneous anion secretion (but not electrogenic Na+ absorption via ENaC) contributes to the baseline current. In both segments, mucosally applied K+ channel blockers increased Isc indicating a spontaneous K+ secretion. Basolateral depolarization was used to characterize the ion conductances in the apical membrane. When a Cl- gradient was applied, apical Cl- conductance stimulated by carbachol and by forskolin was revealed. When the Cl- gradient was omitted and instead a K+ gradient was used to drive currents across apical K+ channels, a Ba2+-sensititve K+ conductance was observed in both segments, and carbachol stimulated this conductance leading to a negative Isc. Conversely, forskolin induced a positive Isc under these conditions which was dependent on the presence of mucosal Na+ consistent with electrogenic Na+ absorption. This current was reduced by amiloride and several blockers of members of the TRP channel superfamily. These results indicate that similar transport mechanisms are involved in electrogenic ion transport across cecal oral and aboral segments, but with a higher spontaneous prostaglandin production in the aboral segment responsible for higher basal transport rates of both anions and cations.
Collapse
Affiliation(s)
- Ervice Pouokam
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
31
|
Lamas JA, Rueda-Ruzafa L, Herrera-Pérez S. Ion Channels and Thermosensitivity: TRP, TREK, or Both? Int J Mol Sci 2019; 20:ijms20102371. [PMID: 31091651 PMCID: PMC6566417 DOI: 10.3390/ijms20102371] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Controlling body temperature is a matter of life or death for most animals, and in mammals the complex thermoregulatory system is comprised of thermoreceptors, thermosensors, and effectors. The activity of thermoreceptors and thermoeffectors has been studied for many years, yet only recently have we begun to obtain a clear picture of the thermosensors and the molecular mechanisms involved in thermosensory reception. An important step in this direction was the discovery of the thermosensitive transient receptor potential (TRP) cationic channels, some of which are activated by increases in temperature and others by a drop in temperature, potentially converting the cells in which they are expressed into heat and cold receptors. More recently, the TWIK-related potassium (TREK) channels were seen to be strongly activated by increases in temperature. Hence, in this review we want to assess the hypothesis that both these groups of channels can collaborate, possibly along with other channels, to generate the wide range of thermal sensations that the nervous system is capable of handling.
Collapse
Affiliation(s)
- J Antonio Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Lola Rueda-Ruzafa
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Salvador Herrera-Pérez
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| |
Collapse
|
32
|
Role of the calcium toolkit in cancer stem cells. Cell Calcium 2019; 80:141-151. [PMID: 31103948 DOI: 10.1016/j.ceca.2019.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Cancer stem cells are a subpopulation of tumor cells that proliferate, self-renew and produce more differentiated tumoral cells building-up the tumor. Responsible for the sustained growth of malignant tumors, cancer stem cells are proposed to play significant roles in cancer resistance to standard treatment and in tumor recurrence. Among the mechanisms dysregulated in neoplasms, those related to Ca2+ play significant roles in various aspects of cancers. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are tightly controlled by channels, pumps, exchangers and Ca2+ binding proteins. These components support the genesis of Ca2+ signals with specific spatio-temporal characteristics that define the cell response. Being involved in the coupling of extracellular events with intracellular responses, the Ca2+ toolkit is often hijacked by cancer cells to promote notably their proliferation and invasion. Growing evidence obtained during the last decade pointed to a role of Ca2+ handling and mishandling in cancer stem cells. In this review, after a general overview of the concept of cancer stem cells we analyse and discuss the studies and current knowledge regarding the complex roles of Ca2+ toolkit and signaling in these cells. We highlight that numbers of Ca2+ signaling actors promote cancer stem cell state and are associated with cell resistance to current cancer treatments and thus may represent promising targets for potential clinical applications.
Collapse
|
33
|
Zubcevic L, Le S, Yang H, Lee SY. Conformational plasticity in the selectivity filter of the TRPV2 ion channel. Nat Struct Mol Biol 2018; 25:405-415. [PMID: 29728656 PMCID: PMC6025827 DOI: 10.1038/s41594-018-0059-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022]
Abstract
Transient receptor potential vanilloid (TRPV) channels are activated by ligands and heat and are involved in various physiological processes. In contrast to the architecturally related voltage-gated cation channels, TRPV1 and TRPV2 subtypes possess another activation gate at the selectivity filter that can open widely enough to permeate large organic cations. Despite recent structural advances, the mechanism of selectivity filter gating and permeation for both metal ions and large molecules by TRPV1 or TRPV2 is not well known. Here, we determined two crystal structures of rabbit TRPV2 in its Ca2+-bound and resiniferatoxin (RTx)- and Ca2+-bound forms, to 3.9 Å and 3.1 Å, respectively. Notably, our structures show that RTx binding leads to two-fold symmetric opening of the selectivity filter of TRPV2 that is wide enough for large organic cation permeation. Combined with functional characterizations, our studies reveal a structural basis for permeation of Ca2+ and large organic cations in TRPV2.
Collapse
Affiliation(s)
- Lejla Zubcevic
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Son Le
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
34
|
Lillo MA, Gaete PS, Puebla M, Ardiles NM, Poblete I, Becerra A, Simon F, Figueroa XF. Critical contribution of Na +-Ca 2+ exchanger to the Ca 2+-mediated vasodilation activated in endothelial cells of resistance arteries. FASEB J 2018; 32:2137-2147. [PMID: 29217667 DOI: 10.1096/fj.201700365rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Na+-Ca2+ exchanger (NCX) contributes to control the intracellular free Ca2+ concentration ([Ca2+]i), but the functional activation of NCX reverse mode (NCXrm) in endothelial cells is controversial. We evaluated the participation of NCXrm-mediated Ca2+ uptake in the endothelium-dependent vasodilation of rat isolated mesenteric arterial beds. In phenylephrine-contracted mesenteries, the acetylcholine (ACh)-induced vasodilation was abolished by treatment with the NCXrm blockers SEA0400, KB-R7943, or SN-6. Consistent with that, the ACh-induced hyperpolarization observed in primary cultures of mesenteric endothelial cells and in smooth muscle of isolated mesenteric resistance arteries was attenuated by KB-R7943 and SEA0400, respectively. In addition, both blockers abolished the NO production activated by ACh in intact mesenteric arteries. In contrast, the inhibition of NCXrm did not affect the vasodilator responses induced by the Ca2+ ionophore, ionomycin, and the NO donor, S-nitroso- N-acetylpenicillamine. Furthermore, SEA0400, KB-R7943, and a small interference RNA directed against NCX1 blunted the increase in [Ca2+]i induced by ACh or ATP in cultured endothelial cells. The analysis by proximity ligation assay showed that the NO-synthesizing enzyme, eNOS, and NCX1 were associated in endothelial cell caveolae of intact mesenteric resistance arteries. These results indicate that the activation of NCXrm has a central role in Ca2+-mediated vasodilation initiated by ACh in endothelial cells of resistance arteries.-Lillo, M. A., Gaete, P. S., Puebla, M., Ardiles, N. M., Poblete, I., Becerra, A., Simon, F., Figueroa, X. F. Critical contribution of Na+-Ca2+ exchanger to the Ca2+-mediated vasodilation activated in endothelial cells of resistance arteries.
Collapse
Affiliation(s)
- Mauricio A Lillo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo S Gaete
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M Ardiles
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Inés Poblete
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alvaro Becerra
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Deporte y Recreación, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Xiao X, Liu HX, Shen K, Cao W, Li XQ. Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases. Biomol Ther (Seoul) 2017; 25:471-481. [PMID: 28274093 PMCID: PMC5590790 DOI: 10.4062/biomolther.2016.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
36
|
Seebacher F, Little AG. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms. Front Physiol 2017; 8:575. [PMID: 28824463 PMCID: PMC5543086 DOI: 10.3389/fphys.2017.00575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, University of SydneySydney, NSW, Australia
| | - Alexander G Little
- Rosenstiel School of Marine and Atmospheric Science, The University of MiamiMiami, FL, United States
| |
Collapse
|
37
|
A Gate Hinge Controls the Epithelial Calcium Channel TRPV5. Sci Rep 2017; 7:45489. [PMID: 28374795 PMCID: PMC5379628 DOI: 10.1038/srep45489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/27/2017] [Indexed: 12/03/2022] Open
Abstract
TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonstrates that W583 is part of the gate for Ca2+ permeation. The W583 mutants show increased cell death due to profoundly enhanced Ca2+ influx, resulting from altered channel function. A glycine residue above W583 might act as flexible linker to rearrange the tryptophan gate. Furthermore, we hypothesize functional crosstalk between the pore region and carboxy terminus, involved in Ca2+-calmodulin-mediated inactivation. This study proposes a unique channel gating mechanism and delivers detailed molecular insight into the Ca2+ permeation pathway that can be extrapolated to other Ca2+-selective channels.
Collapse
|
38
|
Fujiseki M, Yamamoto M, Ubaidus S, Shinomiya T, Abe S, Tazaki M, Yamamoto H. Localization and expression patterns of TRP channels in submandibular gland development. Arch Oral Biol 2017; 74:46-50. [DOI: 10.1016/j.archoralbio.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023]
|
39
|
Chrétien C, Fenech C, Liénard F, Grall S, Chevalier C, Chaudy S, Brenachot X, Berges R, Louche K, Stark R, Nédélec E, Laderrière A, Andrews ZB, Benani A, Flockerzi V, Gascuel J, Hartmann J, Moro C, Birnbaumer L, Leloup C, Pénicaud L, Fioramonti X. Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis. Diabetes 2017; 66:314-324. [PMID: 27899482 DOI: 10.2337/db16-1114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022]
Abstract
The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake.
Collapse
Affiliation(s)
- Chloé Chrétien
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Claire Fenech
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Grall
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Charlène Chevalier
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Chaudy
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Xavier Brenachot
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Raymond Berges
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Katie Louche
- INSERM UMR1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, University of Toulouse, Toulouse, France
| | - Romana Stark
- Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Emmanuelle Nédélec
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Amélie Laderrière
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Zane B Andrews
- Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University School of Medicine, Homburg, Germany
| | - Jean Gascuel
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Jana Hartmann
- Institute of Neuroscience and Center for Integrated Protein Science, Technical University Munich, Munich, Germany
| | - Cédric Moro
- INSERM UMR1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, University of Toulouse, Toulouse, France
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
- Institute of Biomedical Research, Catholic University of Argentina, Buenos Aires, Argentina
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Institut National de la Recherche Agronomique, University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
40
|
Omari SA, Adams MJ, Geraghty DP. TRPV1 Channels in Immune Cells and Hematological Malignancies. ADVANCES IN PHARMACOLOGY 2017; 79:173-198. [DOI: 10.1016/bs.apha.2017.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Ko J, Myeong J, Yang D, So I. Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:133-140. [PMID: 28066150 PMCID: PMC5214905 DOI: 10.4196/kjpp.2017.21.1.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 12/16/2022]
Abstract
Conflicting evidence has been obtained regarding whether transient receptor potential cation channels (TRPC) are store-operated channels (SOCs) or receptor-operated channels (ROCs). Moreover, the Ca/Na permeability ratio differs depending on whether the current-voltage (I-V) curve has a doubly rectifying shape or inward rectifying shape. To investigate the calcium permeability of TRPC4 channels, we attached GCaMP6s to TRPC4 and simultaneously measured the current and calcium signals. A TRPC4 specific activator, (–)-englerin A, induced both current and calcium fluorescence with the similar time course. Muscarinic receptor stimulator, carbachol, also induced both current and calcium fluorescence with the similar time course. By forming heteromers with TRPC4, TRPC1 significantly reduced the inward current with outward rectifying I-V curve, which also caused the decrease of calcium fluorescence intensity. These results suggest that GCaMP6s attached to TRPC4 can detect slight calcium changes near TRPC4 channels. Consequently, TRPC4-GCaMP6s can be a useful tool for testing the calcium permeability of TRPC4 channels.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21936, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
42
|
Denner AC, Vogler B, Messlinger K, De Col R. Role of transient receptor potential ankyrin 1 receptors in rodent models of meningeal nociception - Experiments in vitro. Eur J Pain 2016; 21:843-854. [PMID: 27977070 DOI: 10.1002/ejp.986] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The TRP channel ankyrin type 1 (TRPA1) is a nonselective cation channel known to be activated by environmental irritants, cold and endogenous mediators of inflammation. Activation of TRPA1 in trigeminal afferents innervating meningeal structures has recently been suggested to be involved in the generation of headaches. METHODS Two in vitro models of meningeal nociception were employed using the hemisected rodent head preparation, (1) recording of single meningeal afferents and (2) release of calcitonin gene-related peptide (CGRP) from the cranial dura mater. The role of TRPA1 was examined using the TRPA1 agonists acrolein and mustard oil (MO). BCTC, an inhibitor of TRP vanilloid type 1 receptor channels (TRPV1), and the TRPA1 inhibitor HC030031 as well as mice with genetically deleted TRPA1 and TRPV1 proteins, were used to differentiate between effects. RESULTS Acrolein did not cause discharge activity in meningeal Aδ- or C-fibres but increased the electrical activation threshold. Acrolein was also effective in releasing CGRP from the dura of TRPV1-/- but not of TRPA1-/- mice. MO increased the discharge activity of afferent fibres from rat as well as C57 wild-type and TRPA1-/- but not TRPV1-/- mice. The effect was higher in C57 compared to TRPA1-/- mice. CONCLUSION Sole TRPA1 receptor channel activation releases CGRP and increases the activation threshold of meningeal afferents but does not generate propagated activity, and so would be capable of causing local effects like vasodilatation but not pain generation. In contrast, combined TRPA1 and TRPV1 activation may be rather pronociceptive supporting headache generation. SIGNIFICANCE Sole activation of TRPA1 receptor channels increases the activation threshold but does not cause propagated action potentials in meningeal afferents. TRPA1 agonists cause CGRP release from rodent dura mater. Peripheral TRPA1 receptors may have a pronociceptive function in trigeminal nociception only in combination with TRPV1.
Collapse
Affiliation(s)
- A C Denner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Germany
| | - B Vogler
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Germany
| | - K Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Germany
| | - R De Col
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Germany
| |
Collapse
|
43
|
Kim J, Lee J, Kim S, Ryu HY, Cha KS, Sung DJ. Exercise-induced rhabdomyolysis mechanisms and prevention: A literature review. JOURNAL OF SPORT AND HEALTH SCIENCE 2016; 5:324-333. [PMID: 30356493 PMCID: PMC6188610 DOI: 10.1016/j.jshs.2015.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/26/2014] [Accepted: 01/26/2015] [Indexed: 05/27/2023]
Abstract
Exercise-induced rhabdomyolysis (exRML), a pathophysiological condition of skeletal muscle cell damage that may cause acute renal failure and in some cases death. Increased Ca2+ level in cells along with functional degradation of cell signaling system and cell matrix have been suggested as the major pathological mechanisms associated with exRML. The onset of exRML may be exhibited in athletes as well as in general population. Previous studies have reported that possible causes of exRML were associated with excessive eccentric contractions in high temperature, abnormal electrolytes balance, and nutritional deficiencies possible genetic defects. However, the underlying mechanisms of exRML have not been clearly established among health professionals or sports medicine personnel. Therefore, we reviewed the possible mechanisms and correlated prevention of exRML, while providing useful and practical information for the athlete and general exercising population.
Collapse
Affiliation(s)
- Jooyoung Kim
- Health and Rehabilitation Major, College of Physical Education, Kookmin University, Seoul 136-702, Republic of Korea
| | - Joohyung Lee
- Health and Rehabilitation Major, College of Physical Education, Kookmin University, Seoul 136-702, Republic of Korea
| | - Sojung Kim
- Department of Physical Education, Global Campus, Kyung Hee University, Suwon 446-701, Republic of Korea
| | - Ho Young Ryu
- Division of Sport Science, College of Science and Technology, Konkuk University, Choong-Ju 380-702, Republic of Korea
| | - Kwang Suk Cha
- Division of Sport Science, College of Science and Technology, Konkuk University, Choong-Ju 380-702, Republic of Korea
| | - Dong Jun Sung
- Division of Sport Science, College of Science and Technology, Konkuk University, Choong-Ju 380-702, Republic of Korea
| |
Collapse
|
44
|
Differential Activation of TRP Channels in the Adult Rat Spinal Substantia Gelatinosa by Stereoisomers of Plant-Derived Chemicals. Pharmaceuticals (Basel) 2016; 9:ph9030046. [PMID: 27483289 PMCID: PMC5039499 DOI: 10.3390/ph9030046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/19/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Activation of TRPV1, TRPA1 or TRPM8 channel expressed in the central terminal of dorsal root ganglion (DRG) neuron increases the spontaneous release of l-glutamate onto spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons which play a pivotal role in regulating nociceptive transmission. The TRP channels are activated by various plant-derived chemicals. Although stereoisomers activate or modulate ion channels in a distinct manner, this phenomenon is not fully addressed for TRP channels. By applying the whole-cell patch-clamp technique to SG neurons of adult rat spinal cord slices, we found out that all of plant-derived chemicals, carvacrol, thymol, carvone and cineole, increase the frequency of spontaneous excitatory postsynaptic current, a measure of the spontaneous release of l-glutamate from nerve terminals, by activating TRP channels. The presynaptic activities were different between stereoisomers (carvacrol and thymol; (-)-carvone and (+)-carvone; 1,8-cineole and 1,4-cineole) in the extent or the types of TRP channels activated, indicating that TRP channels in the SG are activated by stereoisomers in a distinct manner. This result could serve to know the properties of the central terminal TRP channels that are targets of drugs for alleviating pain.
Collapse
|
45
|
de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:7000417. [PMID: 28070154 PMCID: PMC5215870 DOI: 10.1109/jstqe.2016.2561201] [Citation(s) in RCA: 843] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photobiomodulation (PBM) also known as low-level laser (or light) therapy (LLLT), has been known for almost 50 years but still has not gained widespread acceptance, largely due to uncertainty about the molecular, cellular, and tissular mechanisms of action. However, in recent years, much knowledge has been gained in this area, which will be summarized in this review. One of the most important chromophores is cytochrome c oxidase (unit IV in the mitochondrial respiratory chain), which contains both heme and copper centers and absorbs light into the near-infra-red region. The leading hypothesis is that the photons dissociate inhibitory nitric oxide from the enzyme, leading to an increase in electron transport, mitochondrial membrane potential and ATP production. Another hypothesis concerns light-sensitive ion channels that can be activated allowing calcium to enter the cell. After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic proteins, antioxidant enzymes. Stem cells and progenitor cells appear to be particularly susceptible to LLLT.
Collapse
Affiliation(s)
- Lucas Freitas de Freitas
- Programa de Pós-Graduação
Interunidades Bioengenharia, University of São Paulo, São Carlos -
SP, Brazil
- Wellman Center for Photomedicine, Harvard Medical School,
Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Harvard Medical School,
Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston,
MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology,
Cambridge, MA 02139, USA
- Correspondence: Michael R Hamblin,
; Tel 1-617-726-6182
| |
Collapse
|
46
|
Perspectives of TRPV1 Function on the Neurogenesis and Neural Plasticity. Neural Plast 2016; 2016:1568145. [PMID: 26881090 PMCID: PMC4736371 DOI: 10.1155/2016/1568145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023] Open
Abstract
The development of new strategies to renew and repair neuronal networks using neural plasticity induced by stem cell graft could enable new therapies to cure diseases that were considered lethal until now. In adequate microenvironment a neuronal progenitor must receive molecular signal of a specific cellular context to determine fate, differentiation, and location. TRPV1, a nonselective calcium channel, is expressed in neurogenic regions of the brain like the subgranular zone of the hippocampal dentate gyrus and the telencephalic subventricular zone, being valuable for neural differentiation and neural plasticity. Current data show that TRPV1 is involved in several neuronal functions as cytoskeleton dynamics, cell migration, survival, and regeneration of injured neurons, incorporating several stimuli in neurogenesis and network integration. The function of TRPV1 in the brain is under intensive investigation, due to multiple places where it has been detected and its sensitivity for different chemical and physical agonists, and a new role of TRPV1 in brain function is now emerging as a molecular tool for survival and control of neural stem cells.
Collapse
|
47
|
Reinach PS, Mergler S, Okada Y, Saika S. Ocular transient receptor potential channel function in health and disease. BMC Ophthalmol 2015; 15 Suppl 1:153. [PMID: 26818117 PMCID: PMC4895786 DOI: 10.1186/s12886-015-0135-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transient receptor potential (TRP) channels sense and transduce environmental stimuli into Ca(2+) transients that in turn induce responses essential for cell function and adaptation. These non-selective channels with variable Ca(2+) selectivity are grouped into seven different subfamilies containing 28 subtypes based on differences in amino acid sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells where they affect a host of stress-induced regulatory responses essential for normal vision maintenance. This article reviews our current knowledge about the expression, function and regulation of TRPs in different eye tissues. We also describe how under certain conditions TRP activation can induce responses that are maladaptive to ocular function. Furthermore, the possibility of an association between TRP mutations and disease is considered. These findings contribute to evidence suggesting that drug targeting TRP channels may be of therapeutic benefit in a clinical setting. We point out issues that must be more extensively addressed before it will be possible to decide with certainty that this is a realistic endeavor. Another possible upshot of future studies is that disease process progression can be better evaluated by profiling changes in tissue specific functional TRP subtype activity as well as their gene and protein expression.
Collapse
Affiliation(s)
- Peter S Reinach
- Department of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xuejuan Road, Wenzhou, Zhejiang, 325027, P. R. China.
| | - Stefan Mergler
- Department of Ophthalmology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| |
Collapse
|
48
|
Jiang CY, Wang C, Xu NX, Fujita T, Murata Y, Kumamoto E. 1,8- and 1,4-cineole enhance spontaneous excitatory transmission by activating different types of transient receptor potential channels in the rat spinal substantia gelatinosa. J Neurochem 2015; 136:764-777. [PMID: 26578070 DOI: 10.1111/jnc.13433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 01/12/2023]
Abstract
Although transient receptor potential (TRP) channels expressed in the spinal substantia gelatinosa play a role in modulating nociceptive transmission, their properties have not been fully examined yet. In order to address this issue, the effects of 1,8-cineole and its stereoisomer 1,4-cineole on excitatory transmission were examined by applying the whole-cell patch-clamp technique to substantia gelatinosa neurons in adult rat spinal cord slices. Miniature excitatory postsynaptic current frequency was increased by 1,8- and 1,4-cineole. The cineole activities were repeated and resistant to voltage-gated Na+ -channel blocker tetrodotoxin. The 1,8-cineole activity was inhibited by TRP ankyrin-1 (TRPA1) antagonists (HC-030031 and mecamylamine) but not TRP vanilloid-1 (TRPV1) antagonists (capsazepine and SB-366791), whereas the 1,4-cineole activity was depressed by the TRPV1 but not TRPA1 antagonists. Although 1,8- and 1,4-cineole reportedly activate TRP melastatin-8 (TRPM8) channels, their activities were unaffected by TRPM8 antagonist 4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide. Monosynaptically evoked C-fiber, but not Aδ-fiber excitatory postsynaptic current amplitude, was reduced by 1,8- and 1,4-cineole. These results indicate that 1,8- and 1,4-cineole increase spontaneous l-glutamate release from nerve terminals by activating TRPA1 and TRPV1 channels, respectively, while inhibiting C-fiber but not Aδ-fiber evoked l-glutamate release. This difference between 1,8- and 1,4-cineole may serve to know the properties of TRP channels located in the central terminals of primary-afferent neurons. The spinal dorsal horn lamina II (substantia gelatinosa; SG) plays a pivotal role in regulating nociceptive transmission from the periphery. We found out in the SG that 1,4- and 1,8-cineole activate TRPV1 and TRPA1 channels, respectively, located in primary-afferent, possibly C-fiber, central terminals. This difference may serve to know the properties of TRP channels expressed in the central terminals.
Collapse
Affiliation(s)
- Chang-Yu Jiang
- Department of Physiology, Saga Medical School, Saga, Japan
| | - Chong Wang
- Department of Physiology, Saga Medical School, Saga, Japan
| | - Nian-Xiang Xu
- Department of Physiology, Saga Medical School, Saga, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Saga, Japan
| | - Yuzo Murata
- Department of Anatomy, Saga Medical School, Saga, Japan
| | | |
Collapse
|
49
|
Yamanaka M, Taniguchi W, Nishio N, Hashizume H, Yamada H, Yoshida M, Nakatsuka T. In vivo patch-clamp analysis of the antinociceptive actions of TRPA1 activation in the spinal dorsal horn. Mol Pain 2015; 11:20. [PMID: 25896791 PMCID: PMC4422151 DOI: 10.1186/s12990-015-0021-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/10/2015] [Indexed: 01/24/2023] Open
Abstract
Background Transient receptor potential (TRP) channels are nonselective cation channels expressed in a variety of sensory structures, and are important molecular mediators of thermal, mechanical, cellular and chemical signals. We investigated the function of one key member of the TRP superfamily, TRPA1, in the spinal dorsal horn using in vivo patch-clamp recordings. Results The application of allyl isothiocyanate (AITC), a TRPA1 agonist, significantly increased the frequency and amplitude of inhibitory postsynaptic currents (IPSCs; holding potential (VH) = 0 mV) as well as excitatory postsynaptic currents (EPSCs; VH = −70 mV) in substantia gelatinosa (SG) neurons. The AITC-induced increases in EPSC frequency and amplitude were resistant to the Na+ channel blocker tetrodotoxin (TTX). In the presence of the glutamate receptor antagonists CNQX and AP5, AITC did not generate any synaptic activity. The AITC-induced increases in IPSC frequency and amplitude were abolished by TTX or glutamate receptor antagonists. Moreover, the duration of IPSCs enhanced by TRPA1 activation were significantly longer than those of EPSCs enhanced by activation of this channel in the spinal dorsal horn. AITC induced hyperpolarization of the membrane potential of SG neurons in the spinal cord but depolarized the membrane potential in the presence of TTX. Furthermore, we examined the effects of mechanical stimuli to the skin during TRPA1 activation in the spinal dorsal horn in normal rats in both voltage-clamp and current-clamp modes. In the peripheral tissue stimuli test, AITC significantly suppressed EPSCs evoked by pinch or air puff stimulation of the skin. In current-clamp mode, AITC significantly suppressed excitatory postsynaptic potentials (EPSPs) evoked by pinch stimuli. Conclusions TRPA1 appears to be localized not only at presynaptic terminals on SG neurons, enhancing glutamate release, but also in the terminals of primary afferents innervating spinal inhibitory interneurons, which have synaptic interactions with SG neurons. This study offers further insight into the mechanisms underlying the possible antinociceptive actions of TRPA1 activation in the spinal dorsal horn. Our findings suggest that pharmacological activation of spinal TRPA1 channels may have therapeutic potential for the treatment of pain.
Collapse
Affiliation(s)
- Manabu Yamanaka
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan.
| | - Wataru Taniguchi
- Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka, 590-0482, Japan.
| | - Naoko Nishio
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan. .,Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka, 590-0482, Japan.
| | - Hiroshi Hashizume
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan.
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan.
| | - Munehito Yoshida
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan.
| | - Terumasa Nakatsuka
- Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka, 590-0482, Japan.
| |
Collapse
|
50
|
Sostegni S, Diakov A, McIntyre P, Bunnett N, Korbmacher C, Haerteis S. Sensitisation of TRPV4 by PAR2 is independent of intracellular calcium signalling and can be mediated by the biased agonist neutrophil elastase. Pflugers Arch 2015; 467:687-701. [PMID: 24906497 PMCID: PMC11450633 DOI: 10.1007/s00424-014-1539-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
Abstract
Proteolytic activation of protease-activated receptor 2 (PAR2) may represent a major mechanism of regulating the transient receptor potential vanilloid 4 (TRPV4) non-selective cation channel in pathophysiological conditions associated with protease activation (e.g. during inflammation). To provide electrophysiological evidence for PAR2-mediated TRPV4 regulation, we characterised the properties of human TRPV4 heterologously expressed in Xenopus laevis oocytes in the presence and absence of co-expressed human PAR2. In outside-out patches from TRPV4 expressing oocytes, we detected single-channel activity typical for TRPV4 with a single-channel conductance of about 100 pS for outward and 55 pS for inward currents. The synthetic TRPV4 activator GSK1016790A stimulated TRPV4 mainly by converting previously silent channels into active channels with an open probability of nearly one. In oocytes co-expressing TRPV4 and PAR2, PAR2 activation by trypsin or by specific PAR2 agonist SLIGRL-NH2 potentiated the GSK1016790A-stimulated TRPV4 whole-cell currents several fold, indicative of channel sensitisation. Pre-incubation of oocytes with the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM did not reduce the stimulatory effect of PAR2 activation on TRPV4, which indicates that the effect is independent of intracellular calcium signalling. Neutrophil elastase, a biased agonist of PAR2 that does not induce intracellular calcium signalling, also caused a PAR2-dependent sensitisation of TRPV4. The Rho-kinase inhibitor Y27362 abolished elastase-stimulated sensitisation of TRPV4, which indicates that Rho-kinase signalling plays a critical role in PAR2-mediated TRPV4 sensitisation by the biased agonist neutrophil elastase. During acute inflammation, neutrophil elastase may sensitise TRPV4 by a mechanism involving biased agonism of PAR2 and activation of Rho-kinase.
Collapse
Affiliation(s)
- Silvia Sostegni
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr. 6, 91054, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|