1
|
Hamze JG, Peris-Frau P, Galiano-Cogolludo B, Tomás-Almenar C, Santiago-Moreno J, Bermejo-Álvarez P. Efficient and repeatable in vitro fertilization in rabbits. Theriogenology 2024; 217:64-71. [PMID: 38252980 DOI: 10.1016/j.theriogenology.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Rabbits constitute an interesting model to understand gamete interaction and test novel Artificial Reproductive Techniques, but in vitro fertilization (IVF) is particularly problematic in this species. We have conducted a series of experiments to develop a consistent IVF technique. Initially, we checked viability, acrosome integrity, capacitation and motility in ejaculated sperm purified by a density gradient and incubated at different times in three different media: Tyrode's Albumin Lactate Pyruvate (TALP), human tubal fluid (HTF), and Brackett and Oliphant (BO). Total and progressive motility at 10-24 h and linearity from 3 h onwards was significantly higher in BO medium compared to TALP and HTF. Subsequently, cumulus-oocyte complexes (COCs) collected 10 h after induction of ovulation were incubated with sperm in TALP, HTF or BO for 18 h with or without performing sperm pre-incubation for 6 h. Pronuclear formation rate at 18 h was significantly higher in BO compared to other media (∼84 % vs. 17-22 %) and was not improved by pre-incubation. As COCs recovery rate was low at 10 h after induction of ovulation, COCs were collected at 12 h and co-incubated with sperm in BO. Pronuclear formation rate was similar than those obtained in COCs collected at 10 h (∼85 %), and when embryos were allowed to develop in vitro, the protocol yielded high cleavage and blastocyst rates (91 and 59 %, respectively). In conclusion, ejaculated rabbit sperm purified in a density gradient fertilize efficiently COCs collected at 12 h in BO medium.
Collapse
Affiliation(s)
- J G Hamze
- Animal Reproduction Department, INIA, CSIC, Spain; Department of Cell Biology and Histology, Universidad de Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - P Peris-Frau
- Animal Reproduction Department, INIA, CSIC, Spain
| | | | | | | | | |
Collapse
|
2
|
Mayshar Y, Raz O, Cheng S, Ben-Yair R, Hadas R, Reines N, Mittnenzweig M, Ben-Kiki O, Lifshitz A, Tanay A, Stelzer Y. Time-aligned hourglass gastrulation models in rabbit and mouse. Cell 2023; 186:2610-2627.e18. [PMID: 37209682 DOI: 10.1016/j.cell.2023.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
The hourglass model describes the convergence of species within the same phylum to a similar body plan during development; however, the molecular mechanisms underlying this phenomenon in mammals remain poorly described. Here, we compare rabbit and mouse time-resolved differentiation trajectories to revisit this model at single-cell resolution. We modeled gastrulation dynamics using hundreds of embryos sampled between gestation days 6.0 and 8.5 and compared the species using a framework for time-resolved single-cell differentiation-flows analysis. We find convergence toward similar cell-state compositions at E7.5, supported by the quantitatively conserved expression of 76 transcription factors, despite divergence in surrounding trophoblast and hypoblast signaling. However, we observed noticeable changes in specification timing of some lineages and divergence of primordial germ cell programs, which in the rabbit do not activate mesoderm genes. Comparative analysis of temporal differentiation models provides a basis for studying the evolution of gastrulation dynamics across mammals.
Collapse
Affiliation(s)
- Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofir Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raz Ben-Yair
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Hadas
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Netta Reines
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Markus Mittnenzweig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Ben-Kiki
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Plöger R, Viebahn C. Expression patterns of signalling molecules and transcription factors in the early rabbit embryo and their significance for modelling amniote axis formation. Dev Genes Evol 2021; 231:73-83. [PMID: 34100128 PMCID: PMC8213660 DOI: 10.1007/s00427-021-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
The anterior-posterior axis is a central element of the body plan and, during amniote gastrulation, forms through several transient domains with specific morphogenetic activities. In the chick, experimentally proven activity of signalling molecules and transcription factors lead to the concept of a 'global positioning system' for initial axis formation whereas in the (mammotypical) rabbit embryo, a series of morphological or molecular domains are part of a putative 'three-anchor-point model'. Because circular expression patterns of genes involved in axis formation exist in both amniote groups prior to, and during, gastrulation and may thus be suited to reconcile these models, the expression patterns of selected genes known in the chick, namely the ones coding for the transcription factors eomes and tbx6, the signalling molecule wnt3 and the wnt inhibitor pkdcc, were analysed in the rabbit embryonic disc using in situ hybridisation and placing emphasis on their germ layer location. Peripheral wnt3 and eomes expression in all layers is found initially to be complementary to central pkdcc expression in the hypoblast during early axis formation. Pkdcc then appears - together with a posterior-anterior gradient in wnt3 and eomes domains - in the epiblast posteriorly before the emerging primitive streak is marked by pkdcc and tbx6 at its anterior and posterior extremities, respectively. Conserved circular expression patterns deduced from some of this data may point to shared mechanisms in amniote axis formation while the reshaping of localised gene expression patterns is discussed as part of the 'three-anchor-point model' for establishing the mammalian body plan.
Collapse
Affiliation(s)
- Ruben Plöger
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Pérez-Gómez A, González-Brusi L, Bermejo-Álvarez P, Ramos-Ibeas P. Lineage Differentiation Markers as a Proxy for Embryo Viability in Farm Ungulates. Front Vet Sci 2021; 8:680539. [PMID: 34212020 PMCID: PMC8239129 DOI: 10.3389/fvets.2021.680539] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Embryonic losses constitute a major burden for reproductive efficiency of farm animals. Pregnancy losses in ungulate species, which include cattle, pigs, sheep and goats, majorly occur during the second week of gestation, when the embryo experiences a series of cell differentiation, proliferation, and migration processes encompassed under the term conceptus elongation. Conceptus elongation takes place following blastocyst hatching and involves a massive proliferation of the extraembryonic membranes trophoblast and hypoblast, and the formation of flat embryonic disc derived from the epiblast, which ultimately gastrulates generating the three germ layers. This process occurs prior to implantation and it is exclusive from ungulates, as embryos from other mammalian species such as rodents or humans implant right after hatching. The critical differences in embryo development between ungulates and mice, the most studied mammalian model, have precluded the identification of the genes governing lineage differentiation in livestock species. Furthermore, conceptus elongation has not been recapitulated in vitro, hindering the study of these cellular events. Luckily, recent advances on transcriptomics, genome modification and post-hatching in vitro culture are shedding light into this largely unknown developmental window, uncovering possible molecular markers to determine embryo quality. In this review, we summarize the events occurring during ungulate pre-implantation development, highlighting recent findings which reveal that several dogmas in Developmental Biology established by knock-out murine models do not hold true for other mammals, including humans and farm animals. The developmental failures associated to in vitro produced embryos in farm animals are also discussed together with Developmental Biology tools to assess embryo quality, including molecular markers to assess proper lineage commitment and a post-hatching in vitro culture system able to directly determine developmental potential circumventing the need of experimental animals.
Collapse
Affiliation(s)
- Alba Pérez-Gómez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Leopoldo González-Brusi
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Pablo Bermejo-Álvarez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
5
|
Calderari S, Daniel N, Mourier E, Richard C, Dahirel M, Lager F, Marchiol C, Renault G, Gatien J, Nadal-Desbarats L, Chavatte-Palmer P, Duranthon V. Metabolomic differences in blastocoel and uterine fluids collected in vivo by ultrasound biomicroscopy on rabbit embryos†. Biol Reprod 2021; 104:794-805. [PMID: 33459770 DOI: 10.1093/biolre/ioab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 11/12/2022] Open
Abstract
The success of embryo development and implantation depends in part on the environment in which the embryo evolves. However, the composition of the uterine fluid surrounding the embryo in the peri-implantation period remains poorly studied. In this work, we aimed to develop a new strategy to visualize, collect, and analyze both blastocoelic liquid and juxta-embryonic uterine fluid from in vivo peri-implantation rabbit embryos. Using high-resolution ultrasound biomicroscopy, embryos were observed as fluid-filled anechoic vesicles, some of which were surrounded by a thin layer of uterine fluid. Ultrasound-guided puncture and aspiration of both the blastocoelic fluid contained in the embryo and the uterine fluid in the vicinity of the embryo were performed. Using nuclear magnetic resonance spectroscopy, altogether 24 metabolites were identified and quantified, of which 21 were detected in both fluids with a higher concentration in the uterus compared to the blastocoel. In contrast, pyruvate was detected at a higher concentration in blastocoelic compared to uterine fluid. Two acidic amino acids, glutamate and aspartate, were not detected in uterine fluid in contrast to blastocoelic fluid, suggesting a local regulation of uterine fluid composition. To our knowledge, this is the first report of simultaneous analysis of blastocoelic and uterine fluids collected in vivo at the time of implantation in mammals, shedding new insight for understanding the relationship between the embryo and its local environment at this critical period of development.
Collapse
Affiliation(s)
- Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Eve Mourier
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Michele Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Franck Lager
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Carmen Marchiol
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Gilles Renault
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Julie Gatien
- Research and Development Department, Allice, Nouzilly, France
| | - Lydie Nadal-Desbarats
- UMR 1253, iBrain, Inserm, University of Tours, Tours, France.,PST-ASB, University of Tours, Tours, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
6
|
Abstract
Gene regulatory networks and tissue morphogenetic events drive the emergence of shape and function: the pillars of embryo development. Although model systems offer a window into the molecular biology of cell fate and tissue shape, mechanistic studies of our own development have so far been technically and ethically challenging. However, recent technical developments provide the tools to describe, manipulate and mimic human embryos in a dish, thus opening a new avenue to exploring human development. Here, I discuss the evidence that supports a role for the crosstalk between cell fate and tissue shape during early human embryogenesis. This is a critical developmental period, when the body plan is laid out and many pregnancies fail. Dissecting the basic mechanisms that coordinate cell fate and tissue shape will generate an integrated understanding of early embryogenesis and new strategies for therapeutic intervention in early pregnancy loss.
Collapse
Affiliation(s)
- Marta N Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
7
|
Lubinsky M. The VACTERL association: mosaic mitotic aneuploidy as a cause and a model. J Assist Reprod Genet 2019; 36:1549-1554. [PMID: 31129863 PMCID: PMC6708033 DOI: 10.1007/s10815-019-01485-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
While mitotic errors commonly cause aneuploid clones soon after conception, the embryos often normalize as clones are rapidly eliminated. Although generally considered benign, evidence suggests clone elimination as the primary cause of the vertebral, ano-rectal, cardiac, tracheo-esophageal, renal, and limb (VACTERL) association of anomalies, and possibly other adverse outcomes as well. Here, clone elimination-related development disruption at specific locations is used as the basis of a comprehensive theoretical VACTERL association model that also elucidates mitotic mosaic aneuploidy effects. For the association, the model explains random temporal and spatial origins during a limited time frame and overlapping clusters of component anomalies. It supports early developmental effects involving the stage of determination, where the position in a specific morphogen field controls what a cell will become and where it will be located. Developmental properties related to determination also create specific vulnerabilities to the midline and distal defects, the latter explaining exclusively radial and tibial defects with duplications and deficiencies. The model also supports isolated anomalies as part of the association and, for mosaic mitotic aneuploidy, indicates that clone elimination nears completion at the time of lower limb determination. Although mosaic clone elimination may cause other defects, occurrences in different developmental fields separate them from VACTERL anomalies. Clone elimination may also be related to risks for a single umbilical artery and for non-structural adverse pregnancy outcomes such as losses, prematurity, and growth delays, while a paucity of clone lethality in non-humans explains the rarity of the association and of single umbilical arteries in animals.
Collapse
|
8
|
Simunovic M, Metzger JJ, Etoc F, Yoney A, Ruzo A, Martyn I, Croft G, You DS, Brivanlou AH, Siggia ED. A 3D model of a human epiblast reveals BMP4-driven symmetry breaking. Nat Cell Biol 2019; 21:900-910. [PMID: 31263269 DOI: 10.1038/s41556-019-0349-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/30/2019] [Indexed: 01/05/2023]
Abstract
Breaking the anterior-posterior symmetry in mammals occurs at gastrulation. Much of the signalling network underlying this process has been elucidated in the mouse; however, there is no direct molecular evidence of events driving axis formation in humans. Here, we use human embryonic stem cells to generate an in vitro three-dimensional model of a human epiblast whose size, cell polarity and gene expression are similar to a day 10 human epiblast. A defined dose of BMP4 spontaneously breaks axial symmetry, and induces markers of the primitive streak and epithelial-to-mesenchymal transition. We show that WNT signalling and its inhibitor DKK1 play key roles in this process downstream of BMP4. Our work demonstrates that a model human epiblast can break axial symmetry despite the absence of asymmetry in the initial signal and of extra-embryonic tissues or maternal cues. Our three-dimensional model is an assay for the molecular events underlying human axial symmetry breaking.
Collapse
Affiliation(s)
- Mijo Simunovic
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | - Jakob J Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | - Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Iain Martyn
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | - Gist Croft
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | | | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA.
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Martyn I, Brivanlou AH, Siggia ED. A wave of WNT signaling balanced by secreted inhibitors controls primitive streak formation in micropattern colonies of human embryonic stem cells. Development 2019; 146:dev172791. [PMID: 30814117 PMCID: PMC6451321 DOI: 10.1242/dev.172791] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/20/2019] [Indexed: 01/03/2023]
Abstract
Long-range signaling by morphogens and their inhibitors define embryonic patterning yet quantitative data and models are rare, especially in humans. Here, we use a human embryonic stem cell micropattern system to model formation of the primitive streak (PS) by WNT. In the pluripotent state, E-cadherin (E-CAD) transduces boundary forces to focus WNT signaling to the colony border. Following application of WNT ligand, E-CAD mediates a front or wave of epithelial-to-mesenchymal (EMT) conversion analogous to PS extension in an embryo. By knocking out the secreted WNT inhibitors active in our system, we show that DKK1 alone controls the extent and duration of patterning. The NODAL inhibitor cerberus 1 acts downstream of WNT to refine the endoderm versus mesoderm fate choice. Our EMT wave is a generic property of a bistable system with diffusion and we present a single quantitative model that describes both the wave and our knockout data.
Collapse
Affiliation(s)
- Iain Martyn
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10065, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
10
|
Betters E, Charney RM, Garcia-Castro MI. Early specification and development of rabbit neural crest cells. Dev Biol 2018; 444 Suppl 1:S181-S192. [PMID: 29932896 PMCID: PMC6685428 DOI: 10.1016/j.ydbio.2018.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 11/19/2022]
Abstract
The phenomenal migratory and differentiation capacity of neural crest cells has been well established across model organisms. While the earliest stages of neural crest development have been investigated in non-mammalian model systems such as Xenopus and Aves, the early specification of this cell population has not been evaluated in mammalian embryos, of which the murine model is the most prevalent. Towards a more comprehensive understanding of mammalian neural crest formation and human comparative studies, we have used the rabbit as a mammalian system for the study of early neural crest specification and development. We examine the expression profile of well-characterized neural crest markers in rabbit embryos across developmental time from early gastrula to later neurula stages, and provide a comparison to markers of migratory neural crest in the chick. Importantly, we apply explant specification assays to address the pivotal question of mammalian neural crest ontogeny, and provide the first evidence that a specified population of neural crest cells exists in the rabbit gastrula prior to the overt expression of neural crest markers. Finally, we demonstrate that FGF signaling is necessary for early rabbit neural crest formation, as SU5402 treatment strongly represses neural crest marker expression in explant assays. This study pioneers the rabbit as a model for neural crest development, and provides the first demonstration of mammalian neural crest specification and the requirement of FGF signaling in this process.
Collapse
Affiliation(s)
- Erin Betters
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I Garcia-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
11
|
Plöger R, Viebahn C. Pitx2 and nodal as conserved early markers of the anterior-posterior axis in the rabbit embryo. Ann Anat 2018; 218:256-264. [PMID: 29705588 DOI: 10.1016/j.aanat.2018.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Attaining molecular and morphological axial polarity during gastrulation is a fundamental early requirement for normal development of the embryo. In mammals, the first morphological sign of the anterior-posterior axis appears anteriorly in the form of the anterior marginal crescent (or anterior visceral endoderm) while in the avian the first such sign is the Koller's sickle at the posterior pole of the embryonic disc. Despite this inverse mode of axis formation many genes and molecular pathways involved in various steps of this process seem to be evolutionarily conserved amongst amniotes, the nodal gene being a well-known example with its functional involvement prior and during gastrulation. The pitx2 gene, however, is a new candidate described in the chick as an early marker for anterior-posterior polarity and as a regulator of axis formation including twinning. To find out whether pitx2 has retained its inductive and early marker function during the evolution of mammals this study analyses pitx2 and nodal expression at parallel stages during formation of the anterior-posterior polarity in the early rabbit embryo using whole-mount in situ hybridization and serial light-microscopical sections. At a late pre-gastrulation stage a localized reduction of nodal expression presages the position of the anterior pole of the embryonic disc and thus serves as the earliest molecular marker of anterior-posterior polarity known so far. Pitx2 is expressed in a polarized manner in the anterior marginal crescent and in the posterior half of the embryonic disc during further development. In the anterior segment of the posterior pitx2 expression domain, the anterior streak domain (ASD) is defined by nodal expression as a hypothetical progenitor region of the anterior half of the primitive streak. The expression patterns of both genes thus serve as signs of a conserved involvement in early axis formation in amniotes and, possibly, in twinning in mammals as well.
Collapse
Affiliation(s)
- Ruben Plöger
- Institute of Anatomy and Embryology, Universitätsmedizin Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, Universitätsmedizin Göttingen, Germany.
| |
Collapse
|
12
|
Canon E, Jouneau L, Blachère T, Peynot N, Daniel N, Boulanger L, Maulny L, Archilla C, Voisin S, Jouneau A, Godet M, Duranthon V. Progressive methylation of POU5F1 regulatory regions during blastocyst development. Reproduction 2018; 156:145-161. [PMID: 29866767 DOI: 10.1530/rep-17-0689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/01/2018] [Indexed: 01/14/2023]
Abstract
The POU5F1 gene encodes one of the 'core' transcription factors necessary to establish and maintain pluripotency in mammals. Its function depends on its precise level of expression, so its transcription has to be tightly regulated. To date, few conserved functional elements have been identified in its 5' regulatory region: a distal and a proximal enhancer, and a minimal promoter, epigenetic modifications of which interfere with POU5F1 expression and function in in vitro-derived cell lines. Also, its permanent inactivation in differentiated cells depends on de novo methylation of its promoter. However, little is known about the epigenetic regulation of POU5F1 expression in the embryo itself. We used the rabbit blastocyst as a model to analyze the methylation dynamics of the POU5F1 5' upstream region, relative to its regulated expression in different compartments of the blastocyst over a 2-day period of development. We evidenced progressive methylation of the 5' regulatory region and the first exon accompanying differentiation and the gradual repression of POU5F1 Methylation started in the early trophectoderm before complete transcriptional inactivation. Interestingly, the distal enhancer, which is known to be active in naïve pluripotent cells only, retained a very low level of methylation in primed pluripotent epiblasts and remained less methylated in differentiated compartments than the proximal enhancer. This detailed study identified CpGs with the greatest variations in methylation, as well as groups of CpGs showing a highly correlated behavior, during differentiation. Moreover, our findings evidenced few CpGs with very specific behavior during this period of development.
Collapse
Affiliation(s)
- E Canon
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Jouneau
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - T Blachère
- Univ LyonUniversité Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - N Peynot
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - N Daniel
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Boulanger
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Maulny
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - C Archilla
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - S Voisin
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - A Jouneau
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - M Godet
- Univ LyonUniversité Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - V Duranthon
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| |
Collapse
|
13
|
Abstract
Fusion of sperm and egg generates a totipotent zygote that develops into a whole organism. Accordingly, the "immortal" germline transmits genetic and epigenetic information to subsequent generations with consequences for human health and disease. In mammals, primordial germ cells (PGCs) originate from peri-gastrulation embryos. While early human embryos are inaccessible for research, in vitro model systems using pluripotent stem cells have provided critical insights into human PGC specification, which differs from that in mice. This might stem from significant differences in early embryogenesis at the morphological and molecular levels, including pluripotency networks. Here, we discuss recent advances and experimental systems used to study mammalian germ cell development. We also highlight key aspects of germ cell disorders, as well as mitochondrial and potentially epigenetic inheritance in humans.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| | - Anastasiya Sybirna
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom; Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
14
|
Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff. Stem Cell Res 2017; 19:104-112. [DOI: 10.1016/j.scr.2017.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/01/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
|
15
|
Sandra O, Charpigny G, Galio L, Hue I. Preattachment Embryos of Domestic Animals: Insights into Development and Paracrine Secretions. Annu Rev Anim Biosci 2016; 5:205-228. [PMID: 27959670 DOI: 10.1146/annurev-animal-022516-022900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammalian species, endometrial receptivity is driven by maternal factors independently of embryo signals. When pregnancy initiates, paracrine secretions of the preattachment embryo are essential both for maternal recognition and endometrium preparation for implantation and for coordinating development of embryonic and extraembryonic tissues of the conceptus. This review mainly focuses on domestic large animal species. We first illustrate the major steps of preattachment embryo development, including elongation in bovine, ovine, porcine, and equine species. We next highlight conceptus secretions that are involved in the communication between extraembryonic and embryonic tissues, as well as between the conceptus and the endometrium. Finally, we introduce experimental data demonstrating the intimate connection between conceptus secretions and endometrial activity and how adverse events perturbing this interplay may affect the progression of implantation that will subsequently impact pregnancy outcome, postnatal health, and expression of production traits in livestock offspring.
Collapse
Affiliation(s)
- Olivier Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Gilles Charpigny
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Laurent Galio
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| |
Collapse
|
16
|
Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet 2016; 17:585-600. [DOI: 10.1038/nrg.2016.88] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Püschel B, Männer J. Use of the Coelomic Grafting Technique for Prolonged ex utero Cultivation of Late Preprimitive Streak-Stage Rabbit Embryos. Cells Tissues Organs 2016; 202:329-342. [PMID: 27508409 DOI: 10.1159/000446820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/19/2022] Open
Abstract
Due to its morphological similarity with the early human embryo, the pregastrulation-stage rabbit may represent an appropriate mammalian model for studying processes involved in early human development. The usability of mammalian embryos for experimental studies depends on the availability of whole embryo culture methods facilitating prolonged ex utero development. While currently used culture methods yield high success rates for embryos from primitive streak stages onward, the success rate of extended cultivation of preprimitive streak-stage mammalian embryos is low for all previously established methods and for all studied species. This limits the usability of preprimitive streak-stage rabbit embryos in experimental embryology. We have tested whether the extraembryonic coelom of 4-day-old chick embryos may be used for prolonged ex utero culture of preprimitive streak-stage rabbit embryos (stage 2, 6.2 days post coitum). We found that, within this environment, stage 2 rabbit blastocysts can be cultured at decreasing success rates (55% after 1 day, 35% after 2 days, 15% after 3 days) up to a maximum of 72 h. Grafted blastocysts can continue development from the onset of gastrulation to early organogenesis and thereby form all structures characterizing age-matched controls (e.g. neural tube, somites, beating heart). Compared to normal controls, successfully cultured embryos developed at a slower rate and finally showed some structural and gross morphological anomalies. The method presented here was originally developed for whole embryo culture of mouse embryos by Gluecksohn-Schoenheimer in 1941. It is a simple and inexpensive method that may represent a useful extension to presently available ex utero culture systems for rabbit embryos.
Collapse
|
18
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|
19
|
Yoshida M, Kajikawa E, Kurokawa D, Tokunaga T, Onishi A, Yonemura S, Kobayashi K, Kiyonari H, Aizawa S. Conserved and divergent expression patterns of markers of axial development in eutherian mammals. Dev Dyn 2015; 245:67-86. [PMID: 26404161 DOI: 10.1002/dvdy.24352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/12/2015] [Accepted: 09/12/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Mouse embryos are cup shaped, but most nonrodent eutherian embryos are disk shaped. Extraembryonic ectoderm (ExEc), which may have essential roles in anterior-posterior (A-P) axis formation in mouse embryos, does not develop in many eutherian embryos. To assess A-P axis formation in eutherians, comparative analyses were made on rabbit, porcine, and Suncus embryos. RESULTS All embryos examined expressed Nodal initially throughout epiblast and visceral endoderm; its expression became restricted to the posterior region before gastrulation. Anterior visceral endoderm (AVE) genes were expressed in Otx2-positive visceral endoderm, with Dkk1 expression being most anterior. The mouse pattern of AVE formation was conserved in rabbit embryos, but had diverged in porcine and Suncus embryos. No structure that was molecularly equivalent to Bmp-positive ExEc, existed in rabbit or pig embryos. In Suncus embryos, A-P axis was determined at prehatching stage, and these embryos attached to uterine wall at future posterior side. CONCLUSIONS Nodal, but not Bmp, functions in epiblast and visceral endoderm development may be conserved in eutherians. AVE functions may also be conserved, but the pattern of its formation has diverged among eutherians. Roles of BMP and NODAL gradients in AVE formation seem to have been established in a subset of rodents.
Collapse
Affiliation(s)
- Michio Yoshida
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Eriko Kajikawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan.,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, Japan
| | - Tomoyuki Tokunaga
- Animal Development and Differentiation Research Unit, Animal Research Division, National Institute of Agrobiological Sciences (NIAS), Tsukuba-shi, Ibaraki, Japan
| | - Akira Onishi
- Laboratory of Animal Reproduction, Department of Animal Science and Resources, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, Biosystem Dynamics Group, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Chuo-ku, Kobe, Japan
| | - Kensaku Kobayashi
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Shinichi Aizawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan.,Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| |
Collapse
|
20
|
Martínez-Arroyo AM, Míguez-Forján JM, Remohí J, Pellicer A, Medrano JV. Understanding Mammalian Germ Line Development with In Vitro Models. Stem Cells Dev 2015; 24:2101-13. [DOI: 10.1089/scd.2015.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ana M. Martínez-Arroyo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose M. Míguez-Forján
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose Remohí
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Antonio Pellicer
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Jose V. Medrano
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
21
|
van Leeuwen J, Berg DK, Pfeffer PL. Morphological and Gene Expression Changes in Cattle Embryos from Hatched Blastocyst to Early Gastrulation Stages after Transfer of In Vitro Produced Embryos. PLoS One 2015; 10:e0129787. [PMID: 26076128 PMCID: PMC4468082 DOI: 10.1371/journal.pone.0129787] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/13/2015] [Indexed: 11/19/2022] Open
Abstract
A detailed morphological staging system for cattle embryos at stages following blastocyst hatching and preceding gastrulation is presented here together with spatiotemporal mapping of gene expression for BMP4, BRACHYURY, CERBERUS1 (CER1), CRIPTO, EOMESODERMIN, FURIN and NODAL. Five stages are defined based on distinct developmental events. The first of these is the differentiation of the visceral hypoblast underlying the epiblast, from the parietal hypoblast underlying the mural trophoblast. The second concerns the formation of an asymmetrically positioned, morphologically recognisable region within the visceral hypoblast that is marked by the presence of CER1 and absence of BMP4 expression. We have termed this the anterior visceral hypoblast or AVH. Intra-epiblast cavity formation and the disappearance of the polar trophoblast overlying the epiblast (Rauber’s layer) have been mapped in relation to AVH formation. The third chronological event involves the transition of the epiblast into the embryonic ectoderm with concomitant onset of posterior NODAL, EOMES and BRACHYURY expression. Lastly, gastrulation commences as the posterior medial embryonic ectoderm layer thickens to form the primitive streak and cells ingress between the embryonic ectoderm and hypoblast. At this stage a novel domain of CER1 expression is seen whereas the AVH disappears. Comparison with the mouse reveals that while gene expression patterns at the onset of gastrulation are well conserved, asymmetry establishment, which relies on extraembryonic tissues such as the hypoblast and trophoblast, has diverged in terms of both gene expression and morphology.
Collapse
Affiliation(s)
- Jessica van Leeuwen
- AgResearch Ruakura, Animal Productivity Section, Hamilton, New Zealand
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Debra K. Berg
- AgResearch Ruakura, Animal Productivity Section, Hamilton, New Zealand
| | - Peter L. Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| |
Collapse
|
22
|
Stankova V, Tsikolia N, Viebahn C. Rho kinase activity controls directional cell movements during primitive streak formation in the rabbit embryo. Development 2015; 142:92-8. [PMID: 25516971 PMCID: PMC4299133 DOI: 10.1242/dev.111583] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During animal gastrulation, the specification of the embryonic axes is accompanied by epithelio-mesenchymal transition (EMT), the first major change in cell shape after fertilization. EMT takes place in disparate topographical arrangements, such as the circular blastopore of amphibians, the straight primitive streak of birds and mammals or in intermediate gastrulation forms of other amniotes such as reptiles. Planar cell movements are prime candidates to arrange specific modes of gastrulation but there is no consensus view on their role in different vertebrate classes. Here, we test the impact of interfering with Rho kinase-mediated cell movements on gastrulation topography in blastocysts of the rabbit, which has a flat embryonic disc typical for most mammals. Time-lapse video microscopy, electron microscopy, gene expression and morphometric analyses of the effect of inhibiting ROCK activity showed – besides normal specification of the organizer region – a dose-dependent disruption of primitive streak formation; this disruption resulted in circular, arc-shaped or intermediate forms, reminiscent of those found in amphibians, fishes and reptiles. Our results reveal a crucial role of ROCK-controlled directional cell movements during rabbit primitive streak formation and highlight the possibility that temporal and spatial modulation of cell movements were instrumental for the evolution of gastrulation forms. Summary: ROCK regulates cell motility, polarisation, intercalation and division in gastrulating rabbit embryos, revealing a role for Wnt-PCP signalling in primitive streak formation.
Collapse
Affiliation(s)
- Viktoria Stankova
- Institute of Anatomy and Embryology, University Medical Centre, Georg August University of Göttingen, Göttingen 37079, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Embryology, University Medical Centre, Georg August University of Göttingen, Göttingen 37079, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Centre, Georg August University of Göttingen, Göttingen 37079, Germany
| |
Collapse
|
23
|
Püschel B, Jouneau A. Whole-mount in situ hybridization to assess advancement of development and embryo morphology. Methods Mol Biol 2015; 1222:255-265. [PMID: 25287352 DOI: 10.1007/978-1-4939-1594-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole-mount in situ hybridization (WISH) is widely used to visualize the site and dynamics of gene expression during embryonic development. Various methods of probe labeling and hybridization detection are available nowadays. Meanwhile the technique was adapted to be used on many different species and has evolved from a manual to a larger scale and automated procedure. Standardized automated protocols improve the chance to compare different experimental settings reliably. The high resolution of this method is ideally suited for examination of manipulated (e.g., cloned) embryos often displaying subtle changes only. Embedding and sectioning of in situ hybridized specimen further enhance the detailed examination of their gene expression and morphology.
Collapse
Affiliation(s)
- Bernd Püschel
- Department of Anatomy and Embryology, Center of Anatomy, University Medical Center, University of Göttingen, Kreuzbergring 36, Göttingen, D-37075, Germany,
| | | |
Collapse
|
24
|
Irie N, Tang WWC, Azim Surani M. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reprod Med Biol 2014; 13:203-215. [PMID: 25298745 PMCID: PMC4182624 DOI: 10.1007/s12522-014-0184-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/01/2022] Open
Abstract
Germ cells are unique cell types that generate a totipotent zygote upon fertilization, giving rise to the next generation in mammals and many other multicellular organisms. How germ cells acquire this ability has been of considerable interest. In mammals, primordial germ cells (PGCs), the precursors of sperm and oocytes, are specified around the time of gastrulation. PGCs are induced by signals from the surrounding extra-embryonic tissues to the equipotent epiblast cells that give rise to all cell types. Currently, the mechanism of PGC specification in mammals is best understood from studies in mice. Following implantation, the epiblast cells develop as an egg cylinder while the extra-embryonic ectoderm cells which are the source of important signals for PGC specification are located over the egg cylinder. However, in most cases, including humans, the epiblast cells develop as a planar disc, which alters the organization and the source of the signaling for cell fates. This, in turn, might have an effect on the precise mechanism of PGC specification in vivo as well as in vitro using pluripotent embryonic stem cells. Here, we discuss how the key early embryonic differences between rodents and other mammals may affect the establishment of the pluripotency network in vivo and in vitro, and consequently the basis for PGC specification, particularly from pluripotent embryonic stem cells in vitro.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - Walfred W. C. Tang
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| |
Collapse
|
25
|
Gaivão MMF, Rambags BPB, Stout TAE. Gastrulation and the establishment of the three germ layers in the early horse conceptus. Theriogenology 2014; 82:354-65. [PMID: 24857628 DOI: 10.1016/j.theriogenology.2014.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Experimental studies and field surveys suggest that embryonic loss during the first 6 weeks of gestation is a common occurrence in the mare. During the first 2 weeks of development, a number of important cell differentiation events must occur to yield a viable embryo proper containing all three major germ layers (ectoderm, mesoderm, and endoderm). Because formation of the mesoderm and primitive streak are critical to the development of the embryo proper, but have not been described extensively in the horse, we examined tissue development and differentiation in early horse conceptuses using a combination of stereomicroscopy, light microscopy, and immunohistochemistry. Ingression of epiblast cells to form the mesoderm was first observed on day 12 after ovulation; by Day 18 the conceptus had completed a series of differentiation events and morphologic changes that yielded an embryo proper with a functional circulation. While mesoderm precursor cells were present from Day 12 after ovulation, vimentin expression was not detectable until Day 14, suggesting that initial differentiation of mesoderm from the epiblast in the horse is independent of this intermediate filament protein, a situation that contrasts with other domestic species. Development of the other major embryonic germ layers was similar to other species. For example, ectodermal cells expressed cytokeratins, and there was a clear demarcation in staining intensity between embryonic ectoderm and trophectoderm. Hypoblast showed clear α1-fetoprotein expression from as early as Day 10 after ovulation, and seemed to be the only source of α1-fetoprotein in the early conceptus.
Collapse
Affiliation(s)
- Maria M F Gaivão
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Björn P B Rambags
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081. [PMID: 23085770 DOI: 10.1101/cshperspect.a015081] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
27
|
Hue I, Degrelle SA, Viebahn C. Analysis of molecular markers for staging peri-gastrulating bovine embryos. Methods Mol Biol 2013; 1074:125-35. [PMID: 23975810 DOI: 10.1007/978-1-62703-628-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Whole-mount in situ hybridization (WISH) is a method to visualize gene expression through hybridization of in vitro synthesized riboprobes to cellular mRNAs. WISH has been used in developmental biology for decades and was adapted to many species, especially for model organisms of developmental biology. The method has evolved, from analyzing small embryo batches to large-scale gene expression screenings, using: (1) manual or automated protocols, (2) colorimetric or fluorescent detection of the hybridized riboprobes, and (3) individual or systemic image acquisition and storage. As for bovine embryo staging, the in situ hybridization of whole embryonic discs has both proved useful and efficient, provided that a few improvements were brought to the in vitro riboprobe synthesis.
Collapse
Affiliation(s)
- Isabelle Hue
- UMR Biologie du Développement et Reproduction, INRA, Jouy-en-Josas, France
| | | | | |
Collapse
|
28
|
Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Rabbit as a reproductive model for human health. Reproduction 2012; 144:1-10. [DOI: 10.1530/rep-12-0091] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The renaissance of the laboratory rabbit as a reproductive model for human health is closely related to the growing evidence of periconceptional metabolic programming and its determining effects on offspring and adult health. Advantages of rabbit reproduction are the exact timing of fertilization and pregnancy stages, high cell numbers and yield in blastocysts, relatively late implantation at a time when gastrulation is already proceeding, detailed morphologic and molecular knowledge on gastrulation stages, and a hemochorial placenta structured similarly to the human placenta. To understand, for example, the mechanisms of periconceptional programming and its effects on metabolic health in adulthood, these advantages help to elucidate even subtle changes in metabolism and development during the pre- and peri-implantation period and during gastrulation in individual embryos. Gastrulation represents a central turning point in ontogenesis in which a limited number of cells program the development of the three germ layers and, hence, the embryo proper. Newly developed transgenic and molecular tools offer promising chances for further scientific progress to be attained with this reproductive model species.
Collapse
|
29
|
Degrelle SA, Jaffrezic F, Campion E, Lê Cao KA, Le Bourhis D, Richard C, Rodde N, Fleurot R, Everts RE, Lecardonnel J, Heyman Y, Vignon X, Yang X, Tian XC, Lewin HA, Renard JP, Hue I. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer. PLoS One 2012; 7:e38309. [PMID: 22701625 PMCID: PMC3368877 DOI: 10.1371/journal.pone.0038309] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/04/2012] [Indexed: 02/04/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular “uncoupling”. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way.
Collapse
Affiliation(s)
- Séverine A. Degrelle
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Florence Jaffrezic
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Evelyne Campion
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Kim-Anh Lê Cao
- INRA, UR631, Station d’Amélioration Génétique des Animaux, Castanet, France
| | - Daniel Le Bourhis
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- UNCEIA, R&D Department, Maisons Alfort, France
| | | | - Nathalie Rodde
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Renaud Fleurot
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | | | - Yvan Heyman
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Xavier Vignon
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Xiangzhong Yang
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiuchun C. Tian
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jean-Paul Renard
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Isabelle Hue
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- * E-mail:
| |
Collapse
|
30
|
Maruotti J, Muñoz M, Degrelle SA, Gómez E, Louet C, Díez C, Monforte CD, de Longchamp PH, Brochard V, Hue I, Caamaño JN, Jouneau A. Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Mol Reprod Dev 2012; 79:461-77. [PMID: 22573702 DOI: 10.1002/mrd.22051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 05/01/2012] [Indexed: 12/20/2022]
Abstract
Pluripotency can be captured in vitro, providing that the culture environment meets the requirements that avoid differentiation while stimulating self-renewal. From studies in the mouse embryo, two kinds of pluripotent stem cells have been obtained from the early and late epiblast, embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs), representing the naive and primed states, respectively. All attempts to derive convincing ESCs in ungulates have been unsuccessful, although all attempts were based on the assumption that the conditions used to derive mouse ESCs or human ESC could be applied in other species. Pluripotent cells derived in primates, rabbit, and pig strongly indicate that the state of pluripotency of these cells is, in fact, closer to EpiSCs than to ESCs, and thus depend on fibroblast growth factor (FGF) and Activin signaling pathways. Based on this observation, we have tried to derive EpiSC from the epiblast of bovine elongated embryos as well as ESCs from Day-8 blastocysts. We here show that the core transcription factors Oct4/Sox2/Nanog can be used as markers of pluripotency in the bovine since their expression was restricted to the developing epiblast after Day 8, and disappeared following differentiation of both the ESC-like and EpiSC-like cultures. Although FGF and Activin pathways are indeed present and active in the bovine, it is not sufficient/enough to maintain a long-term pluripotency ex vivo, as was reported for mouse and pig EpiSCs.
Collapse
Affiliation(s)
- Julien Maruotti
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
When amniotes appeared during evolution, embryos freed themselves from intracellular nutrition; development slowed, the mid-blastula transition was lost and maternal components became less important for polarity. Extra-embryonic tissues emerged to provide nutrition and other innovations. One such tissue, the hypoblast (visceral endoderm in mouse), acquired a role in fixing the body plan: it controls epiblast cell movements leading to primitive streak formation, generating bilateral symmetry. It also transiently induces expression of pre-neural markers in the epiblast, which also contributes to delay streak formation. After gastrulation, the hypoblast might protect prospective forebrain cells from caudalizing signals. These functions separate mesendodermal and neuroectodermal domains by protecting cells against being caught up in the movements of gastrulation.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell and Developmental Biology, University College London, GowerStreet (Anatomy Building), London WC1E 6BT, UK.
| | | |
Collapse
|
32
|
Thieme R, Ramin N, Fischer S, Püschel B, Fischer B, Santos AN. Gastrulation in rabbit blastocysts depends on insulin and insulin-like-growth-factor 1. Mol Cell Endocrinol 2012; 348:112-9. [PMID: 21827825 DOI: 10.1016/j.mce.2011.07.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/24/2011] [Accepted: 07/24/2011] [Indexed: 11/26/2022]
Abstract
Insulin and insulin-like-growth-factor 1 (IGF1) are components of the uterine secretions. As potent growth factors they influence early embryo development. The underlying molecular mechanisms are largely unknown. Here we report on the effects of insulin and IGF1 on early gastrulation in rabbit blastocysts. We have studied blastocysts grown in vivo in metabolically healthy rabbits, in rabbits with type 1 diabetes and in vitro in the presence or absence of insulin or IGF1. Embryonic disc morphology and expression of Brachyury, Wnt3a and Wnt4 were analysed by qPCR and IHC. Pre-gastrulated blastocysts (stage 0/1) cultured with insulin or IGF1 showed a significantly higher capacity to form the posterior mesoderm and primitive streak (stage 2 and 3) than blastocysts cultured without growth factors. In gastrulating blastocysts the levels of the mesoderm-specific transcription factor Brachyury and the Wnt signalling molecules Wnt3a and Wnt4 showed a stage-specific expression pattern with Brachyury transcripts increasing from stage 0/1 to 3. Wnt4 protein was found spread over the whole embryoblast. Insulin induced Wnt3a, Wnt4 and Brachyury expression in a temporal- and stage-specific pattern. Only blastocysts cultured with insulin reached the Wnt3a, Wnt4 and Brachyury expression levels of stage 2 in vivo blastocysts, indicating that insulin is required for Wnt3a, Wnt4 and Brachyury expression during gastrulation. Insulin-induced Wnt3a and Wnt4 expression preceded Brachyury. Wnt3a-induced expression could be depleted by MEK1 inhibition (PD98059). Involvement of insulin in embryonic Wnt3a expression was further shown in vivo with Wnt3a expression being notably down regulated in stage 2 blastocysts from rabbits with type 1 diabetes. Blastocysts grown in diabetic rabbits are retarded in development, a finding which supports our current results that insulin is highly likely required for early mesoderm formation in rabbit blastocysts by inducing a distinct spatiotemporal expression profile of Wnt3a, Wnt4 and Brachyury.
Collapse
Affiliation(s)
- René Thieme
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, 06108 Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Williams M, Burdsal C, Periasamy A, Lewandoski M, Sutherland A. Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 2011; 241:270-83. [PMID: 22170865 DOI: 10.1002/dvdy.23711] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND During gastrulation, an embryo acquires the three primordial germ layers that will give rise to all of the tissues in the body. In amniote embryos, this process occurs via an epithelial to mesenchymal transition (EMT) of epiblast cells at the primitive streak. Although the primitive streak is vital to development, many aspects of how it forms and functions remain poorly understood. RESULTS Using live, 4 dimensional imaging and immunohistochemistry, we have shown that the posterior epiblast of the pre-streak murine embryo does not display convergence and extension behavior or large scale migration or rearrangement of a cell population. Instead, the primitive streak develops in situ and elongates by progressive initiation EMT in the posterior epiblast. Loss of basal lamina (BL) is the first step of this EMT, and is strictly correlated with ingression of nascent mesoderm. Once the BL is lost in a given region, cells leave the epiblast by apical constriction in order to enter the primitive streak. CONCLUSIONS This is the first description of dynamic cell behavior during primitive streak formation in the mouse embryo, and reveals mechanisms that are quite distinct from those observed in other amniote model systems. Unlike chick and rabbit, the murine primitive streak arises in situ by progressive initiation of EMT beginning in the posterior epiblast, without large-scale movement or convergence and extension of epiblast cells.
Collapse
Affiliation(s)
- Margot Williams
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
34
|
Hopf C, Viebahn C, Püschel B. BMP signals and the transcriptional repressor BLIMP1 during germline segregation in the mammalian embryo. Dev Genes Evol 2011; 221:209-23. [PMID: 21881976 PMCID: PMC3192270 DOI: 10.1007/s00427-011-0373-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/28/2011] [Indexed: 11/26/2022]
Abstract
Molecular factors and tissue compartments involved in the foundation of the mammalian germline have been mainly described in the mouse so far. To find mechanisms applicable to mammals in general, we analyzed temporal and spatial expression patterns of the transcriptional repressor BLIMP1 (also known as PRDM1) and the signaling molecules BMP2 and BMP4 in perigastrulation and early neurulation embryos of the rabbit using whole-mount in situ hybridization and high-resolution light microscopy. Both BMP2 and BMP4 are expressed in annular domains at the boundary of the embryonic disc, which—in contrast to the situation in the mouse—partly belong to intraembryonic tissues. While BMP2 expression begins at (pregastrulation) stage 1 in the hypoblast, BMP4 expression commences—distinctly delayed compared to the mouse—diffusely at (pregastrulation) stage 2; from stage 3 onwards, BMP4 is expressed peripherally in hypoblast and epiblast and in the mesoderm at the posterior pole of the embryonic disc. BLIMP1 expression begins throughout the hypoblast at stage 1 and emerges in single primordial germ cell (PGC) precursors in the posterior epiblast at stage 2 and then in single mesoderm cells at positions identical to those identified by PGC-specific antibodies. These expression patterns suggest that function and chronology of factors involved in germline segregation are similar in mouse and rabbit, but higher temporal and spatial resolution offered by the rabbit demonstrates a variable role of bone morphogenetic proteins and makes “blimping” a candidate case for lateral inhibition without the need for an allantoic germ cell niche.
Collapse
Affiliation(s)
- Clas Hopf
- Department of Anatomy and Embryology, Center of Anatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Christoph Viebahn
- Department of Anatomy and Embryology, Center of Anatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Bernd Püschel
- Department of Anatomy and Embryology, Center of Anatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany
| |
Collapse
|
35
|
Halacheva V, Fuchs M, Dönitz J, Reupke T, Püschel B, Viebahn C. Planar cell movements and oriented cell division during early primitive streak formation in the mammalian embryo. Dev Dyn 2011; 240:1905-16. [DOI: 10.1002/dvdy.22687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
36
|
Püschel B, Bitzer E, Viebahn C. Live rabbit embryo culture. Cold Spring Harb Protoc 2010; 2010:pdb.prot5352. [PMID: 20150111 DOI: 10.1101/pdb.prot5352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Bernd Püschel
- Department of Anatomy and Embryology, University of Göttingen, 37075 Göttingen, Germany
| | | | | |
Collapse
|
37
|
Püschel B, Blum M, Viebahn C. Whole-mount in situ hybridization of early rabbit embryos. Cold Spring Harb Protoc 2010; 2010:pdb.prot5355. [PMID: 20150114 DOI: 10.1101/pdb.prot5355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTIONThis protocol describes whole-mount in situ hybridization of early rabbit embryos. The method allows specific mRNA expression to be localized with respect to position and intensity in predefined embryonic areas. Optimal resolution of mRNA distribution can be achieved by subsequently embedding in situ hybridized embryos for histological sectioning.
Collapse
Affiliation(s)
- Bernd Püschel
- Department of Anatomy and Embryology, University of Göttingen, 37075 Göttingen, Germany
| | | | | |
Collapse
|
38
|
Axial differentiation and early gastrulation stages of the pig embryo. Differentiation 2009; 78:301-11. [DOI: 10.1016/j.diff.2009.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 11/23/2022]
|
39
|
Tracing and ablation of single cells in the mammalian blastocyst using fluorescent DNA staining and multi-photon laser microscopy. Histochem Cell Biol 2008; 131:521-30. [DOI: 10.1007/s00418-008-0548-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2008] [Indexed: 10/21/2022]
|
40
|
Mogi A, Ichikawa H, Matsumoto C, Hieda T, Tomotsune D, Sakaki S, Yamada S, Sasaki K. The method of mouse embryoid body establishment affects structure and developmental gene expression. Tissue Cell 2008; 41:79-84. [PMID: 18722634 DOI: 10.1016/j.tice.2008.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 11/15/2022]
Abstract
To investigate formation of the three primary germ layers in mouse embryoid bodies (EBs), we observed changes in structure and gene expression over a 7-day culture period. We compared these changes using two methods for EB formation: hanging drop (HD) and static suspension culture (SSC). Light microscopy showed that a stratified columnar epithelial layer developed on the surface of EBs formed using the HD method. From Day 3 in culture, ultrastructural changes occurred in the aligned cellular membranes. Condensation of actin filaments was followed by formation of complicated adherent junctions and dilatation of intercellular canaliculi containing well-developed microvilli. These changes were more marked in EBs formed by the HD method than the SSC method. On Day 5 of culture, Brachyury gene expression, a marker for mesoderm formation, was detected only with the HD method. Nestin, an ectoderm marker, and Foxa2, an endoderm marker, were expressed with both methods. These results suggest that in EBs formed with the HD method, actin formation and Brachyury gene expression mark the transition from two to three primary germ layers. Additionally, the HD method promotes more rapid and complete development of mouse EBs than does the SSC method. While the SSC method is simple and easy to use, it needs improvement to form more complete EBs.
Collapse
Affiliation(s)
- A Mogi
- Department of Anatomy and Organ Technology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Blomberg L, Hashizume K, Viebahn C. Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction 2008; 135:181-95. [DOI: 10.1530/rep-07-0355] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular basis of ungulate and non-rodent conceptus elongation and gastrulation remains poorly understood; however, use of state-of-the-art genomic technologies is beginning to elucidate the mechanisms regulating these complicated processes. For instance, transcriptome analysis of elongating porcine concepti indicates that protein synthesis and trafficking, cell growth and proliferation, and cellular morphology are major regulated processes. Furthermore, potential autocrine roles of estrogen and interleukin-1-β in regulating porcine conceptus growth and remodeling and metabolism have become evident. The importance of estrogen in pig is emphasized by the altered expression of essential steroidogenic and trophoblast factors in lagging ovoid concepti. In ruminants, the characteristic mononucleate trophoblast cells differentiate into a second lineage important for implantation, the binucleate trophoblast, and transcriptome profiling of bovine concepti has revealed a gene cluster associated with rapid trophoblast proliferation and differentiation. Gene cluster analysis has also provided evidence of correlated spatiotemporal expression and emphasized the significance of the bovine trophoblast cell lineage and the regulatory mechanism of trophoblast function. As a part of the gastrulation process in the mammalian conceptus, specification of the germ layers and hence definitive body axes occur in advance of primitive streak formation. Processing of the transforming growth factor-β-signaling molecules nodal and BMP4 by specific proteases is emerging as a decisive step in the initial patterning of the pre-gastrulation embryo. The topography of expression of these and other secreted molecules with reference to embryonic and extraembryonic tissues determines their local interaction potential. Their ensuing signaling leads to the specification of axial epiblast and hypoblast compartments through cellular migration and differentiation and, in particular, the specification of the early germ layer tissues in the epiblast via gene expression characteristic of endoderm and mesoderm precursor cells.
Collapse
|
42
|
Hickford D, Shaw G, Renfree MB. In vitro culture of peri-gastrulation embryos of a macropodid marsupial. J Anat 2007; 212:180-91. [PMID: 18086130 DOI: 10.1111/j.1469-7580.2007.00846.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Peri-gastrulation stage tammar wallaby embryos were cultured for up to 78 h in either Dulbecco's Modified Eagle's Medium or Medium 199, in air/6% CO(2) or 95% O(2)/5% CO(2), and with added fetal calf or wallaby serum. There was little difference between the two media or sera sources, but development was markedly superior for embryos cultured in 95% O(2)/5% CO(2). Many embryos survived even prolonged culture periods up to and over 70 h, and although development continued throughout the culture period, the embryos as a whole became increasingly abnormal. Embryos explanted at the primitive streak/ regressing node stages performed better in vitro than embryos explanted at earlier or later stages. The embryo that developed the furthest had a newly formed node at the initiation of culture and after 64 h in vitro it had developed forelimb ridges, fused, beating heart tubes and mesonephric ducts. Thus high oxygen appears to be the critical component of the culture system for optimal development of primitive streak stage tammar embryos. These results provide a basis for developing culture conditions for longer term development of marsupial embryos in vitro.
Collapse
Affiliation(s)
- Danielle Hickford
- Department of Zoology, The University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
43
|
Abstract
During early mouse embryogenesis, temporal and spatial regulation of gene expression and cell signalling influences lineage specification, embryonic polarity, the patterning of tissue progenitors and the morphogenetic movement of cells and tissues. Uniquely in mammals, the extraembryonic tissues are the source of signals for lineage specification and tissue patterning. Here we discuss recent discoveries about the lead up to gastrulation, including early manifestations of asymmetry, coordination of cell and tissue movements and the interactions of transcription factors and signalling activity for lineage allocation and germ-layer specification.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and Faculty of Medicine, University of Sydney, Westmead, NSW 2145, Australia.
| | | |
Collapse
|
44
|
Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev 2007; 124:253-78. [PMID: 17307341 DOI: 10.1016/j.mod.2007.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/24/2006] [Accepted: 01/03/2007] [Indexed: 01/13/2023]
Abstract
Endoderm differentiation and movements are of fundamental importance not only for subsequent morphogenesis of the digestive tract but also to enable normal patterning and differentiation of mesoderm- and ectoderm-derived organs. This review defines the tissues that have been called endoderm in different species, their cellular origin and their movements. We take a comparative approach to ask how signaling pathways leading to embryonic and extraembryonic endoderm differentiation have emerged in different organisms, how they became integrated and point to specific gaps in our knowledge that would be worth filling. Lastly, we address whether the gastrulation movements that lead to endoderm internalization are coupled with its differentiation.
Collapse
|
45
|
Abstract
Dickkopf (Dkk) genes comprise an evolutionary conserved small gene family of four members (Dkk1-4) and a unique Dkk3-related gene, Dkkl1 (soggy). They encode secreted proteins that typically antagonize Wnt/beta-catenin signaling, by inhibiting the Wnt coreceptors Lrp5 and 6. Additionally, Dkks are high affinity ligands for the transmembrane proteins Kremen1 and 2, which also modulate Wnt signaling. Dkks play an important role in vertebrate development, where they locally inhibit Wnt regulated processes such as antero-posterior axial patterning, limb development, somitogenesis and eye formation. In the adult, Dkks are implicated in bone formation and bone disease, cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- C Niehrs
- Department of Molecular Embryology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
46
|
Levin M. Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. ACTA ACUST UNITED AC 2006; 78:191-223. [PMID: 17061264 DOI: 10.1002/bdrc.20078] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well-characterized, the left-right (LR) axis has only relatively recently begun to be understood at the molecular level. The mechanisms that ensure invariant LR asymmetry of the heart, viscera, and brain involve fundamental aspects of cell biology, biophysics, and evolutionary biology, and are important not only for basic science but also for the biomedicine of a wide range of birth defects and human genetic syndromes. The LR axis links biomolecular chirality to embryonic development and ultimately to behavior and cognition, revealing feedback loops and conserved functional modules occurring as widely as plants and mammals. This review focuses on the unique and fascinating physiological aspects of LR patterning in a number of vertebrate and invertebrate species, discusses several profound mechanistic analogies between biological regulation in diverse systems (specifically proposing a nonciliary parallel between kidney cells and the LR axis based on subcellular regulation of ion transporter targeting), highlights the possible importance of early, highly-conserved intracellular events that are magnified to embryo-wide scales, and lays out the most important open questions about the function, evolutionary origin, and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Developmental Biology, The Forsyth Institute, and the Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA.
| |
Collapse
|
47
|
Barrantes IDB, Montero-Pedrazuela A, Guadaño-Ferraz A, Obregon MJ, Martinez de Mena R, Gailus-Durner V, Fuchs H, Franz TJ, Kalaydjiev S, Klempt M, Hölter S, Rathkolb B, Reinhard C, Morreale de Escobar G, Bernal J, Busch DH, Wurst W, Wolf E, Schulz H, Shtrom S, Greiner E, Hrabé de Angelis M, Westphal H, Niehrs C. Generation and characterization of dickkopf3 mutant mice. Mol Cell Biol 2006; 26:2317-26. [PMID: 16508007 PMCID: PMC1430294 DOI: 10.1128/mcb.26.6.2317-2326.2006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/19/2005] [Accepted: 12/21/2005] [Indexed: 11/20/2022] Open
Abstract
dickkopf (dkk) genes encode a small family of secreted Wnt antagonists, except for dkk3, which is divergent and whose function is poorly understood. Here, we describe the generation and characterization of dkk3 mutant mice. dkk3-deficient mice are viable and fertile. Phenotypic analysis shows no major alterations in organ morphology, physiology, and most clinical chemistry parameters. Since Dkk3 was proposed to function as thyroid hormone binding protein, we have analyzed deiodinase activities, as well as thyroid hormone levels. Mutant mice are euthyroid, and the data do not support a relationship of dkk3 with thyroid hormone metabolism. Altered phenotypes in dkk3 mutant mice were observed in the frequency of NK cells, immunoglobulin M, hemoglobin, and hematocrit levels, as well as lung ventilation. Furthermore, dkk3-deficient mice display hyperactivity.
Collapse
Affiliation(s)
- Ivan del Barco Barrantes
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Degrelle SA, Campion E, Cabau C, Piumi F, Reinaud P, Richard C, Renard JP, Hue I. Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Dev Biol 2005; 288:448-60. [PMID: 16289134 DOI: 10.1016/j.ydbio.2005.09.043] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/20/2005] [Accepted: 09/22/2005] [Indexed: 01/12/2023]
Abstract
Embryonic and extra-embryonic lineages are separated at the blastocyst stage in the mouse at the onset of implantation but well ahead of implantation in most mammals. To provide information on the development of the trophoblast lineage in late-implanting bovine embryos, we combined the use of molecular markers defining embryonic and extra-embryonic lineages in the mouse with a transcriptomic approach dedicated to the early steps of the elongation process, a characteristic feature of blastocyst development in ruminants. In this study, we present molecular evidence for differences between the cow and the mouse in the programming of trophoblast differentiation. This different programming encompasses: (i) the expression of epiblast specifying genes (Oct-4, Nanog) in bovine trophoblast cells at the onset of elongation, (ii) the transcription of proliferation markers in early elongating blastocysts, (iii) the early detection of trophoblast-specific transcripts related to extra-embryonic tissue's differentiation (Hand1, Ets2, IFN-tau) and (iv) the identification of a new transcript (c12) which displays a reciprocal pattern to that of Oct-4 and Nanog genes in the embryonic cells and for which no equivalent has thus far been found in the mouse. Altogether, these results tended to show that early elongation is a critical transition in bovine trophoblast development.
Collapse
Affiliation(s)
- Séverine A Degrelle
- UMR INRA/ENVA/CNRS Biologie du Développement et de la Reproduction, 78352 Jouy-en-Josas cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Vejlsted M, Du Y, Vajta G, Maddox-Hyttel P. Post-hatching development of the porcine and bovine embryo--defining criteria for expected development in vivo and in vitro. Theriogenology 2005; 65:153-65. [PMID: 16257443 DOI: 10.1016/j.theriogenology.2005.09.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Particular attention has been paid to the pre-hatching period of embryonic development although blastocyst development is a poor indicator of embryo viability. Post-hatching embryonic development in vitro would allow for establishment of more accurate tools for evaluating developmental potential without the need for transfer to recipient animals. Such a system would require (1) definition of milestones of expected post-hatching embryonic development in vivo; and (2) development of adequate culture systems. We propose a stereomicroscopical staging system for post-hatching embryos defining the following stages: (1) Expanded hatched blastocyst stage where the embryo presents an inner cell mass (ICM) covered by trophoblast. (2) Pre-streak stage 1 where the embryonic disc is formed. (3) Pre-streak stage 2 where a crescent-shaped thickening of the caudal portion of the embryonic disk appears. (4) Primitive streak stage where the primitive streak has developed as an axis of cell ingression of cells for meso- and endoderm formation. (5) Neural groove stage where the neural groove is developing from the rostral pole of the embryo along with a proportional shortening of the primitive streak; and (6) Somite stage(s) where paraxial mesoderm gradually condensates to form somites. Post-hatching development of bovine embryos in vitro is compromised and although hatching occurs and elongation can be physically provoked by culture in agarose tunnels, the embryonic disk characterizing the pre-streak stage 1 is never established. Thus, particular focus should be placed on establishing culture conditions that support at least some of the above-mentioned critical phases of development that in vivo occur within the initial two (pig) to three (cattle) weeks.
Collapse
Affiliation(s)
- Morten Vejlsted
- Department of Animal and Veterinary Basic Sciences, Royal Veterinary and Agricultural University, Groennegaardsvej 7, DK-1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|