1
|
Cacace A, De Leva G, Di Lelio I, Becchimanzi A. Immune-Related Genes in the Honey Bee Mite Varroa destructor ( Acarina, Parasitidae). INSECTS 2025; 16:356. [PMID: 40332846 PMCID: PMC12027997 DOI: 10.3390/insects16040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
Despite its ecological and economic importance, many aspects of Varroa destructor's biology remain poorly understood, particularly its defense mechanisms against pathogens. The limited knowledge of Varroa's immunity has hindered the development of RNA interference (RNAi)-based strategies targeting immune-related genes. In this study, we investigated the immune gene repertoire of V. destructor by querying its NCBI nr protein database and comparing it to model species of ticks (Ixodes scapularis) and mites (Galendromus occidentalis and Tetranychus urticae). Transcription of candidate immune genes was confirmed by analyzing a de novo assembled transcriptome of V. destructor. Our findings reveal that V. destructor shares key immunological traits with ticks, including lysozymes, chitinases, and thioester-containing proteins (TEPs), but also shares the absence of transmembrane peptidoglycan recognition proteins (PGRPs), Gram-negative binding proteins, and several lectin families involved in pathogen recognition. Additionally, Varroa mites, like ticks, lack homologs of crucial immune signaling components, such as the unpaired ligand (JAK/STAT), Eiger (JNK), and multiple elements of the IMD pathway. They also do not encode canonical antimicrobial peptides (AMPs) like defensins but possess putative homologs of ctenidins, AMPs previously identified in spiders and ticks, which may be adopted as a novel genetic readout for immune response in mites. Our findings lay the groundwork for future functional studies on mite immunity and open new avenues for RNAi-based biocontrol strategies targeting immune pathways to enhance Varroa management.
Collapse
Affiliation(s)
- Alfonso Cacace
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.C.); (G.D.L.); (I.D.L.)
| | - Giovanna De Leva
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.C.); (G.D.L.); (I.D.L.)
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.C.); (G.D.L.); (I.D.L.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.C.); (G.D.L.); (I.D.L.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
2
|
Yang J, Zhang Y, Zhang Z, Ren M, Wang Y, Duan Y, Gao Y, Liu Z, Zhang P, Fan R, Zhou X. The development of an egg-soaking method for delivering dsRNAs into spider mites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105905. [PMID: 38685227 DOI: 10.1016/j.pestbp.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Recently, the first sprayable RNAi biopesticide, Ledprona, against the Colorado potato beetle, Leptinotarsa decemlineata, has been registered at the United States Environmental Protection Agency. Spider mites (Acari: Tetranychidae), a group of destructive agricultural and horticultural pests, are notorious for rapid development of insecticide/acaricide resistance. The management options, on the other hand, are extremely limited. RNAi-based biopesticides offer a promising control alternative to address this emerging issue. In this study, we i) developed an egg-soaking dsRNA delivery method; ii) evaluated the factors influencing RNAi efficiency, and finally iii) investigated the potential mode of entry of this newly developed egg-soaking RNAi method. In comparison to other dsRNA delivery methods, egg-soaking method was the most efficient, convenient/practical, and cost-effective method for delivering dsRNAs into spider mites. RNAi efficiency of this RNAi method was affected by target genes, dsRNA concentration, developmental stages, and mite species. In general, the hawthorn spider mite, Amphitetranychus viennensis, is more sensitive to RNAi than the two-spotted spider mite, Tetranychus urticae, and both of them have dose-dependent RNAi effect. For different life stages, egg and larvae are the most sensitive life stages to dsRNAs. For different target genes, there is no apparent association between the suppression level and the resultant phenotype. Finally, we demonstrated that this egg-soaking RNAi method acts as both stomach and contact toxicity. Our combined results demonstrate the effectiveness of a topically applied dsRNA delivery method, and the potential of a spray induced gene silencing (SIGS) method as a control alternative for spider mites.
Collapse
Affiliation(s)
- Jing Yang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China.
| | - Yuying Zhang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Zhonghuan Zhang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Meifeng Ren
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Yifei Wang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Yuanpeng Duan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Yue Gao
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Zhongfang Liu
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Pengjiu Zhang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Renjun Fan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA..
| |
Collapse
|
3
|
Hajdusek O, Kopacek P, Perner J. Experimental platforms for functional genomics in ticks. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101102. [PMID: 37586557 DOI: 10.1016/j.cois.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Ticks are blood-feeding ectoparasites that devastate cattle farming and are an omnipresent nuisance to pets and humans, posing a threat of pathogen transmission. Laboratory experimental models can be instrumental in the search for molecular targets of novel acaricides or vaccines. Mainly, though, the experimental models represent invaluable tools for broadening our basic understanding of key processes of tick blood-feeding physiology and vector competence. In order to understand the function of a single component within the full complexity of a feeding tick, genetic or biochemical interventions are used for systemic phenotypisation. In this work, we summarise current experimental modalities that represent powerful approaches for determining biological functions of tick molecular components.
Collapse
Affiliation(s)
- Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
4
|
Yang J, Zhang Y, Zhao J, Gao Y, Liu Z, Zhang P, Fan R, Xing S, Zhou X. Target gene selection for RNAi-based biopesticides against the hawthorn spider mite, Amphitetranychus viennensis (Acari: Tetranychidae). PEST MANAGEMENT SCIENCE 2023; 79:2482-2492. [PMID: 36866409 DOI: 10.1002/ps.7437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Recently, RNA interference (RNAi)-based biopesticide, a species-specific pest control alternative, has been deregulated and commercialized in the US and Canada. The hawthorn spider mite, Amphitetranychus viennensis Zacher, is a major pest for rosaceous plants, which has been controlled primarily by synthetic pesticides. To address the emerging resistance issues in A. viennensis, we initiated a project to develop RNAi-based biopesticides. RESULTS In this study, we (i) developed a dietary RNAi system for A. viennensis using leaf disc, (ii) assessed the suitability of multiple control genes to distinguish sequence-specific silencing from non-specific effects within this RNAi system, and (iii) screened for the target gene candidates. As a result, β-Glucuronidase (GUS), an enzyme derived from E. coli and a broadly used reporter for plants is the appropriate control for A. viennensis RNAi, while green fluorescent protein (GFP), is not suitable due to its significantly higher mortality than the other controls. For target gene screening, suppression was confirmed for all the candidates, including two housekeeping genes (Vacuolar-type H + -ATPase subunit A (V-ATPase A) and Glyceraldehyde 3-phosphate dehydrogenase, (GAPDH)), and three genes associated with development (ATP-dependent RNA Helicase DDX3Y (Belle), CREB-binding protein (CBP), and Farnesoic acid O-methyltransferase (FaMet)). Knocking down of V-ATPase A resulted in the highest mortality (~ 90%) and reduced fecundity (over 90%) than other candidates. As for the genes associated with development, suppression of Belle and CBP, led to approximately 65% mortality, as well as 86% and 40% reduction in fecundity, respectively. Silencing of FaMet, however, had negligible biological impacts on A. viennensis. CONCLUSION The combined efforts not only establish an effective dsRNA delivery method, but also provide potential target genes for RNAi-based biopesticides against A. viennensis, a devastating invasive pest for fruit trees and woody ornamental plants throughout Asia and Europe. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Yang
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Yuying Zhang
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jin Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yue Gao
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Zhongfang Liu
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Pengjiu Zhang
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Renjun Fan
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Shuping Xing
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Luo X, Xu YQ, Jin DC, Guo JJ, Yi TC. Role of the Hox Genes, Sex combs reduced, Fushi tarazu and Antennapedia, in Leg Development of the Spider Mite Tetranychus urticae. Int J Mol Sci 2023; 24:10391. [PMID: 37373537 DOI: 10.3390/ijms241210391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Mites, the second largest arthropod group, exhibit rich phenotypic diversity in the development of appendages (legs). For example, the fourth pair of legs (L4) does not form until the second postembryonic developmental stage, namely the protonymph stage. These leg developmental diversities drive body plan diversity in mites. However, little is known about the mechanisms of leg development in mites. Hox genes, homeotic genes, can regulate the development of appendages in arthropods. Three Hox genes, Sex combs reduced (Scr), Fushi tarazu (Ftz) and Antennapedia (Antp), have previously been shown to be expressed in the leg segments of mites. Here, the quantitative real-time reverse transcription PCR shows that three Hox genes are significantly increased in the first molt stage. RNA interference results in a set of abnormalities, including L3 curl and L4 loss. These results suggest that these Hox genes are required for normal leg development. Furthermore, the loss of single Hox genes results in downregulating the expression of the appendage marker Distal-less (Dll), suggesting that the three Hox genes can work together with Dll to maintain leg development in Tetranychus urticae. This study will be essential to understanding the diversity of leg development in mites and changes in Hox gene function.
Collapse
Affiliation(s)
- Xiang Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Yu-Qi Xu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Jian-Jun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| |
Collapse
|
6
|
Wu M, Zhang Q, Dong Y, Wang Z, Zhan W, Ke Z, Li S, He L, Ruf S, Bock R, Zhang J. Transplastomic tomatoes expressing double-stranded RNA against a conserved gene are efficiently protected from multiple spider mites. THE NEW PHYTOLOGIST 2023; 237:1363-1373. [PMID: 36328788 DOI: 10.1111/nph.18595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Spider mites are serious pests and have evolved significant resistance to many chemical pesticides, thus making their control challenging. Several insect pests can be combated by plastid-mediated RNA interference (PM-RNAi), but whether PM-RNAi can be utilized to control noninsect pests is unknown. Here, we show that three species of spider mites (Tetranychus evansi, Tetranychus truncatus, and Tetranychus cinnabarinus) take up plastid RNA upon feeding. We generated transplastomic tomato plants expressing double-stranded RNA (dsRNA) targeted against a conserved region of the spider mite β-Actin mRNA. Transplastomic plants exhibited high levels of resistance to all three spider mite species, as evidenced by increased mortality and suppression of target gene expression. Notably, transplastomic plants induced a more robust RNAi response, caused higher mortality, and were overall better protected from spider mites than dsRNA-expressing nuclear transgenic plants. Our data demonstrate the potential of PM-RNAi as an efficient pest control measure for spider mites and extend the application range of the technology to noninsect pests.
Collapse
Affiliation(s)
- Mengting Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yi Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zican Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wenqin Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zebin Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
7
|
Bensoussan N, Milojevic M, Bruinsma K, Dixit S, Pham S, Singh V, Zhurov V, Grbić M, Grbić V. Localized efficacy of environmental RNAi in Tetranychus urticae. Sci Rep 2022; 12:14791. [PMID: 36042376 PMCID: PMC9427735 DOI: 10.1038/s41598-022-19231-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Environmental RNAi has been developed as a tool for reverse genetics studies and is an emerging pest control strategy. The ability of environmental RNAi to efficiently down-regulate the expression of endogenous gene targets assumes efficient uptake of dsRNA and its processing. In addition, its efficiency can be augmented by the systemic spread of RNAi signals. Environmental RNAi is now a well-established tool for the manipulation of gene expression in the chelicerate acari, including the two-spotted spider mite, Tetranychus urticae. Here, we focused on eight single and ubiquitously-expressed genes encoding proteins with essential cellular functions. Application of dsRNAs that specifically target these genes led to whole mite body phenotypes—dark or spotless. These phenotypes were associated with a significant reduction of target gene expression, ranging from 20 to 50%, when assessed at the whole mite level. Histological analysis of mites treated with orally-delivered dsRNAs was used to investigate the spatial range of the effectiveness of environmental RNAi. Although macroscopic changes led to two groups of body phenotypes, silencing of target genes was associated with the distinct cellular phenotypes. We show that regardless of the target gene tested, cells that displayed histological changes were those that are in direct contact with the dsRNA-containing gut lumen, suggesting that the greatest efficiency of the orally-delivered dsRNAs is localized to gut tissues in T. urticae.
Collapse
Affiliation(s)
- Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, 33882, Villenave d'Ornon, France
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Sameer Dixit
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sean Pham
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Vinayak Singh
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
8
|
Nganso BT, Pines G, Soroker V. Insights into gene manipulation techniques for Acari functional genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103705. [PMID: 35134533 DOI: 10.1016/j.ibmb.2021.103705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Functional genomics is an essential tool for elucidating the structure and function of genes in any living organism. Here, we review the use of different gene manipulation techniques in functional genomics of Acari (mites and ticks). Some of these Acari species inflict severe economic losses to managed crops and health problems to humans, wild and domestic animals, but many also provide important ecosystem services worldwide. Currently, RNA interference (RNAi) is the leading gene expression manipulation tool followed by gene editing via the bacterial type II Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 system (CRISPR-Cas9). Whilst RNAi, via siRNA, does not always lead to expected outcomes, the exploitations of the CRISPR systems in Acari are still in their infancy and are limited only to CRISP/Cas9 to date. In this review, we discuss the advantages and disadvantages of RNAi and CRISPR-Cas9 and the technical challenges associated with their exploitations. We also compare the biochemical machinery of RNAi and CRISPR-Cas9 technologies. We highlight some potential solutions for experimental optimization of each mechanism in gene function studies. The potential benefits of adopting various CRISPR-Cas9 systems for expanding on functional genomics experiments in Acari are also discussed.
Collapse
Affiliation(s)
- Beatrice T Nganso
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Gur Pines
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Victoria Soroker
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| |
Collapse
|
9
|
Gainett G, Crawford AR, Klementz BC, So C, Baker CM, Setton EVW, Sharma PP. Eggs to long-legs: embryonic staging of the harvestman Phalangium opilio (Opiliones), an emerging model arachnid. Front Zool 2022; 19:11. [PMID: 35246168 PMCID: PMC8896363 DOI: 10.1186/s12983-022-00454-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman) Phalangium opilio, a member of the order Opiliones. Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system. RESULTS We present a staging system of P. opilio embryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation. CONCLUSION Considering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference for P. opilio that we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| | - Audrey R Crawford
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Calvin So
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Zhenhui W, Qi C, Shuo Y, Shuoyu Y, Qin L, Endong W, Bo Z, Jiale L, Xuenong X. Molecular characterization, expression, and function of Vitellogenin genes in Phytoseiulus persimilis. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:343-356. [PMID: 35239074 DOI: 10.1007/s10493-022-00698-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Vitellogenin (Vg) is an important factor that impacts oocyte maturation, egg formation and embryonic development in Arthropoda. Two orthologs of Vg gene were obtained from the genome of Phytoseiulus persimilis and termed as PpVg1 and PpVg2. Both orthologs belong to the large lipid transfer protein superfamily. The expression of PpVg1 and PpVg2 was low in immatures and male adults, and increased rapidly in female adults after mating, and reached a peak before the first egg was laid (168× and 20.5× the level in virgin females, respectively). When PpVg1 and PpVg2 were interfered with dsRNA, the relative expression decreased by 81.0 and 30.9%, respectively, and 7.8 and 31.4% interfered individuals died within 24 h. Among surviving individuals, ca. 51.1 and 44.8% are infertile. Factors that might be related to expression of Vg genes are also discussed.
Collapse
Affiliation(s)
- Wang Zhenhui
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cai Qi
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Shuo
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Shuoyu
- Beijing Hooseen Biotechnology Co., Ltd, Beijing, China
| | - Lu Qin
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Endong
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhang Bo
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lv Jiale
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xu Xuenong
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Glucosamine-6-phosphate N-acetyltransferase gene silencing by parental RNA interference in rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Sci Rep 2022; 12:2141. [PMID: 35136178 PMCID: PMC8825807 DOI: 10.1038/s41598-022-06193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Parental RNAi (pRNAi) is a response of RNA interference in which treated insect pests progenies showed a gene silencing phenotypes. pRNAi of CmGNA gene has been studied in Cnaphalocrocis medinalis via injection. Our results showed significant reduction in ovulation per female that was 26% and 35.26% in G1 and G2 generations, respectively. Significant reduction of hatched eggs per female were observed 23.53% and 45.26% as compared to control in G1–G2 generations, respectively. We also observed the significant variation in the sex ratio between female (40% and 53%) in G1–G2 generations, and in male (65%) in G1 generation as compared to control. Our results also demonstrated the significant larval mortality (63% and 55%) and pupal mortality (55% and 41%), and significant reduction of mRNA expression level in G1 and G2 generations. Our findings have confirmed that effectiveness of pRNAi induced silencing on the CmGNA target gene in G1–G2 generations of C. medinalis. These results suggested the potential role of pRNAi in insect pest resistance management strategies.
Collapse
|
12
|
Fernando DD, Korhonen PK, Gasser RB, Fischer K. An RNA Interference Tool to Silence Genes in Sarcoptes scabiei Eggs. Int J Mol Sci 2022; 23:ijms23020873. [PMID: 35055058 PMCID: PMC8777771 DOI: 10.3390/ijms23020873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
In a quest for new interventions against scabies-a highly significant skin disease of mammals, caused by a parasitic mite Sarcoptes scabiei-we are focusing on finding new intervention targets. RNA interference (RNAi) could be an efficient functional genomics approach to identify such targets. The RNAi pathway is present in S. scabiei and operational in the female adult mite, but other developmental stages have not been assessed. Identifying potential intervention targets in the egg stage is particularly important because current treatments do not kill this latter stage. Here, we established an RNAi tool to silence single-copy genes in S. scabiei eggs. Using sodium hypochlorite pre-treatment, we succeeded in rendering the eggshell permeable to dsRNA without affecting larval hatching. We optimised the treatment of eggs with gene-specific dsRNAs to three single-copy target genes (designated Ss-Cof, Ss-Ddp, and Ss-Nan) which significantly and repeatedly suppressed transcription by ~66.6%, 74.3%, and 84.1%, respectively. Although no phenotypic alterations were detected in dsRNA-treated eggs for Ss-Cof and Ss-Nan, the silencing of Ss-Ddp resulted in a 38% reduction of larval hatching. This RNAi method is expected to provide a useful tool for larger-scale functional genomic investigations for the identification of essential genes as potential drug targets.
Collapse
Affiliation(s)
- Deepani D. Fernando
- Infectious Diseases Program, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3052, Australia; (P.K.K.); (R.B.G.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3052, Australia; (P.K.K.); (R.B.G.)
| | - Katja Fischer
- Infectious Diseases Program, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Correspondence:
| |
Collapse
|
13
|
Ghazy NA, Suzuki T. Environmental RNAi-based reverse genetics in the predatory mite Neoseiulus californicus: Towards improved methods of biological control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104993. [PMID: 34955179 DOI: 10.1016/j.pestbp.2021.104993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The predatory mite Neoseiulus californicus (McGregor) (Mesostigmata: Phytoseiidae) has been commercialized by manufacturers in the pest control industry and is used worldwide as a natural enemy of spider mites. However, because its genome has not been sequenced, reverse genetics techniques that could be used to analyze gene function have not been established. Here we partially sequenced the gene that encodes the vacuolar-type H+-ATPase (V-ATPase), an ATP-dependent proton pump, in N. californicus (NcVATPase) and then conducted a functional analysis using environmental RNA interference (eRNAi) by orally administering sequence-specific exogenous dsRNA (dsRNA-NcVATPase) to larvae and adult females. The larvae treated with dsRNA-NcVATPase took longer to develop and had lower survivorship, fecundity, and offspring viability at the adult stage than those treated with a control dsRNA. Adult females treated with dsRNA-NcVATPase showed significant reductions in survival, fecundity, and prey consumption, and their endogenous gene expression level of NcVATPase was reduced by approximately 65% compared with the control. Our findings suggest that the NcVATPase gene, silencing of which inhibits feeding and reproduction, is an excellent biomarker for investigating the eRNAi mechanism in N. californicus. The highly efficient experimental system of eRNAi established in this study paves the way for applied research using eRNAi to enhance the predatory ability of N. californicus.
Collapse
Affiliation(s)
- Noureldin Abuelfadl Ghazy
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Agriculture Zoology Department, Faculty of Agriculture, Mansoura University, 35516 El-Mansoura, Egypt; Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan.
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan.
| |
Collapse
|
14
|
Wei P, Wang C, Li C, Chen M, Sun J, Van Leeuwen T, He L. Comparing the efficiency of RNAi after feeding and injection of dsRNA in spider mites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104966. [PMID: 34802516 DOI: 10.1016/j.pestbp.2021.104966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pesticide resistance in spider mites drives the development of acaricides with novel mode of action, which could benefit from RNAi as a screening tool in search of new molecular targets. RNAi via oral delivery of dsRNA has been frequently reported in spider mites, but injection of dsRNA is rarely reported. We compare here the efficiency of oral delivery versus injection of dsRNA in female adult mites. When comparing silencing efficiency, oral delivery of dsRNAs silenced 40.6 ± 8.9% of CPR, 63.8 ± 6.9% of CHMP2A, and 37.7 ± 5.7% of CHMP3 genes. Similar silencing efficiencies were found for injection (48.6 ± 3.7% of CPR, 70.2 ± 4.1% of CHMP2A, 59.8 ± 2.2% of CHMP3), but with much lower quantities of dsRNAs. Oral delivery of dsRNA failed to silence the expression of the CHMP4B gene, but this could be accomplished by injection of dsRNA (23.1 ± 1.0%). When scoring the phenotypic effects of silencing, both oral delivery and injection of CHMP2A- and CHMP3-dsRNA influenced the locomotion speed of mites significantly. For CPR, silencing could only be accomplished by dsRNA injection, not by feeding. CPR silencing significantly impacted the toxicity of a typical acaricide, pyridaben, as the susceptibility of mites raised 2.75-fold. Last, injection of Eya-dsRNA in adults produced transgenerational phenotypic effects on 3.59% of offspring, as quantified by an observed deviation in eye development, while oral delivery of Eya-dsRNA did not. In conclusion, injection of dsRNA is superior to oral delivery in silencing the expression of the selected genes in this study and could be considered the method of choice to study gene function in reverse genetic approaches.
Collapse
Affiliation(s)
- Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chao Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chunji Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Ming Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jingyu Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
15
|
Chen W, Bartley K, Nunn F, Bowman AS, Sternberg JM, Burgess STG, Nisbet AJ, Price DRG. RNAi gene knockdown in the poultry red mite, Dermanyssus gallinae (De Geer 1778), a tool for functional genomics. Parasit Vectors 2021; 14:57. [PMID: 33461614 PMCID: PMC7813172 DOI: 10.1186/s13071-020-04562-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background The avian haematophagous ectoparasite Dermanyssus gallinae, commonly known as the poultry red mite, causes significant economic losses to the egg-laying industry worldwide and also represents a significant welfare threat. Current acaricide-based controls are unsustainable due to the mite’s ability to rapidly develop resistance, thus developing a novel sustainable means of control for D. gallinae is a priority. RNA interference (RNAi)-mediated gene silencing is a valuable tool for studying gene function in non-model organisms, but is also emerging as a novel tool for parasite control. Methods Here we use an in silico approach to identify core RNAi pathway genes in the recently sequenced D. gallinae genome. In addition we utilise an in vitro feeding device to deliver double-stranded (ds) RNA to D. gallinae targeting the D. gallinae vATPase subunit A (Dg vATPase A) gene and monitor gene knockdown using quantitative PCR (qPCR). Results Core components of the small interfering RNA (siRNA) and microRNA (miRNA) pathways were identified in D. gallinae, which indicates that these gene silencing pathways are likely functional. Strikingly, the P-element-induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway was absent in D. gallinae. In addition, feeding Dg vATPase A dsRNA to adult female D. gallinae resulted in silencing of the targeted gene compared to control mites fed non-specific lacZ dsRNA. In D. gallinae, dsRNA-mediated gene knockdown was rapid, being detectable 24 h after oral delivery of the dsRNA, and persisted for at least 120 h. Conclusions This study shows the presence of core RNAi machinery components in the D. gallinae genome. In addition, we have developed a robust RNAi methodology for targeting genes in D. gallinae that will be of value for studying genes of unknown function and validating potential control targets in D. gallinae. ![]()
Collapse
Affiliation(s)
- Wan Chen
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.,Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Kathryn Bartley
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Francesca Nunn
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Alan S Bowman
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Jeremy M Sternberg
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Stewart T G Burgess
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.
| |
Collapse
|
16
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
17
|
Nganso BT, Sela N, Soroker V. A genome-wide screening for RNAi pathway proteins in Acari. BMC Genomics 2020; 21:791. [PMID: 33183236 PMCID: PMC7659050 DOI: 10.1186/s12864-020-07162-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a highly conserved, sequence-specific gene silencing mechanism present in Eukaryotes. Three RNAi pathways are known, namely micro-RNA (miRNA), piwi-interacting RNA (piRNA) and short interfering RNA (siRNA). However, little knowledge exists about the proteins involved in these pathways in Acari. Moreover, variable successes has been obtained in gene knockdown via siRNA pathway in their functional genomics and management. We hypothesized that the clue may be in the variability of the composition and the efficacy of siRNA machinery among Acari. RESULTS Both comparative genomic analyses and domain annotation suggest that all the analyzed species have homologs of putative core proteins that mediate cleaving of targeted genes via the three RNAi pathways. We identified putative homologs of Caenorhabditis elegans RNA-dependent RNA polymerase (RdRP) protein in all species though no secondary Argonaute homologs that operate with this protein in siRNA amplification mechanism were found, suggesting that the siRNA amplification mechanism present in Acari may be distinct from that described in C. elegans. Moreover, the genomes of these species do not encode homologs of C. elegans systemic RNAi defective-1 (Sid-1) protein that mediate silencing of the mRNA target throughout the treated organisms suggesting that the phenomena of systemic RNAi that has been reported in some Acari species probably occur through a different mechanism. However, homologs of putative RNAi spreading defective-3 (Rsd-3) protein and scavenger receptors namely Eater and SR-CI that mediate endocytosis cellular update of dsRNA in C. elegans and Drosophila melanogaster were found in Acari genomes. This result suggests that cellular dsRNA uptake in Acari is endocytosis-dependent. Detailed phylogenetic analyses of core RNAi pathway proteins in the studied species revealed that their evolution is compatible with the proposed monophyletic evolution of this group. CONCLUSIONS Our analyses have revealed the potential activity of all three pathways in Acari. Still, much experimental work remains to be done to confirm the mechanisms behind these pathways in particular those that govern systemic/parental RNAi and siRNA amplification in Acari. Disclosure of these mechanisms will facilitate the development of new and specific management tools for the harmful species and enrichment of the beneficial species.
Collapse
Affiliation(s)
- Beatrice T Nganso
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, P.O.B 15159, 7505101, Rishon leZion, Israel
| | - Noa Sela
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, P.O.B 15159, 7505101, Rishon leZion, Israel
| | - Victoria Soroker
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, P.O.B 15159, 7505101, Rishon leZion, Israel.
| |
Collapse
|
18
|
Environmental RNA interference in two-spotted spider mite, Tetranychus urticae, reveals dsRNA processing requirements for efficient RNAi response. Sci Rep 2020; 10:19126. [PMID: 33154461 PMCID: PMC7644771 DOI: 10.1038/s41598-020-75682-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive understanding of pleiotropic roles of RNAi machinery highlighted the conserved chromosomal functions of RNA interference. The consequences of the evolutionary variation in the core RNAi pathway genes are mostly unknown, but may lead to the species-specific functions associated with gene silencing. The two-spotted spider mite, Tetranychus urticae, is a major polyphagous chelicerate pest capable of feeding on over 1100 plant species and developing resistance to pesticides used for its control. A well annotated genome, susceptibility to RNAi and economic importance, make T. urticae an excellent candidate for development of an RNAi protocol that enables high-throughput genetic screens and RNAi-based pest control. Here, we show that the length of the exogenous dsRNA critically determines its processivity and ability to induce RNAi in vivo. A combination of the long dsRNAs and the use of dye to trace the ingestion of dsRNA enabled the identification of genes involved in membrane transport and 26S proteasome degradation as sensitive RNAi targets. Our data demonstrate that environmental RNAi can be an efficient reverse genetics and pest control tool in T. urticae. In addition, the species-specific properties together with the variation in the components of the RNAi machinery make T. urticae a potent experimental system to study the evolution of RNAi pathways.
Collapse
|
19
|
Takeda N, Takata A, Arai Y, Sasaya K, Noyama S, Wakisaka S, Ghazy NA, Voigt D, Suzuki T. A vegetable oil-based biopesticide with ovicidal activity against the two-spotted spider mite, Tetranychus urticae Koch. Eng Life Sci 2020; 20:525-534. [PMID: 33204239 PMCID: PMC7645644 DOI: 10.1002/elsc.202000042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/30/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022] Open
Abstract
A recently developed biopesticide made of safflower and cottonseed oils has excellent ovicidal activity against the hard-to-control spider mite Tetranychus urticae Koch (Acari: Tetranychidae). It has attracted attention as a sustainable treatment for controlling T. urticae because it has low potential for promoting resistance and little effect on the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae), which is an important natural enemy of spider mites. Here, we investigated the mechanism of its ovicidal activity against T. urticae. The oil droplets in the oil-in-water emulsion of the biopesticide strongly adhered to T. urticae eggs, seeped through the chorion being cut during hatching, and inhibited the embryonic rotational movement necessary for cutting and hatching. No adverse effect was observed on N. californicus eggs even in undiluted biopesticide. We conclude that this biopesticide and N. californicus can be used simultaneously in the integrated management of T. urticae in oily biopesticide-tolerant plant species.
Collapse
Affiliation(s)
- Naoki Takeda
- Graduate School of Bio‐Applications and Systems EngineeringTokyo University of Agriculture and TechnologyKoganeiTokyoJapan
| | - Ayumi Takata
- Graduate School of Bio‐Applications and Systems EngineeringTokyo University of Agriculture and TechnologyKoganeiTokyoJapan
| | - Yuka Arai
- Graduate School of Bio‐Applications and Systems EngineeringTokyo University of Agriculture and TechnologyKoganeiTokyoJapan
| | - Kazuhiro Sasaya
- Graduate School of Bio‐Applications and Systems EngineeringTokyo University of Agriculture and TechnologyKoganeiTokyoJapan
- Kanagawa Agricultural Technology CenterHiratsukaKanagawaJapan
| | - Shimpei Noyama
- Graduate School of Bio‐Applications and Systems EngineeringTokyo University of Agriculture and TechnologyKoganeiTokyoJapan
- OAT Agrio Co., Ltd.NarutoTokushimaJapan
| | | | - Noureldin Abuelfadl Ghazy
- Graduate School of Bio‐Applications and Systems EngineeringTokyo University of Agriculture and TechnologyKoganeiTokyoJapan
- Agriculture Zoology DepartmentFaculty of AgricultureMansoura UniversityEl‐MansouraEgypt
- Japan Society for the Promotion of ScienceChiyodaTokyoJapan
| | - Dagmar Voigt
- Institute for BotanyFaculty of BiologyTechnische Universität DresdenDresdenGermany
| | - Takeshi Suzuki
- Graduate School of Bio‐Applications and Systems EngineeringTokyo University of Agriculture and TechnologyKoganeiTokyoJapan
- Institute of Global Innovation ResearchTokyo University of Agriculture and TechnologyKoganeiTokyoJapan
| |
Collapse
|
20
|
Gainett G, Sharma PP. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. EvoDevo 2020; 11:18. [PMID: 32874529 PMCID: PMC7455915 DOI: 10.1186/s13227-020-00163-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The resurgence of interest in the comparative developmental study of chelicerates has led to important insights, such as the discovery of a genome duplication shared by spiders and scorpions, inferred to have occurred in the most recent common ancestor of Arachnopulmonata (a clade comprising the five arachnid orders that bear book lungs). Nonetheless, several arachnid groups remain understudied in the context of development and genomics, such as the order Amblypygi (whip spiders). The phylogenetic position of Amblypygi in Arachnopulmonata posits them as an interesting group to test the incidence of the proposed genome duplication in the common ancestor of Arachnopulmonata, as well as the degree of retention of duplicates over 450 Myr. Moreover, whip spiders have their first pair of walking legs elongated and modified into sensory appendages (a convergence with the antennae of mandibulates), but the genetic patterning of these antenniform legs has never been investigated. RESULTS We established genomic resources and protocols for cultivation of embryos and gene expression assays by in situ hybridization to study the development of the whip spider Phrynus marginemaculatus. Using embryonic transcriptomes from three species of Amblypygi, we show that the ancestral whip spider exhibited duplications of all ten Hox genes. We deploy these resources to show that paralogs of the leg gap genes dachshund and homothorax retain arachnopulmonate-specific expression patterns in P. marginemaculatus. We characterize the expression of leg gap genes Distal-less, dachshund-1/2 and homothorax-1/2 in the embryonic antenniform leg and other appendages, and provide evidence that allometry, and by extension the antenniform leg fate, is specified early in embryogenesis. CONCLUSION This study is the first step in establishing P. marginemaculatus as a chelicerate model for modern evolutionary developmental study, and provides the first resources sampling whip spiders for comparative genomics. Our results suggest that Amblypygi share a genome duplication with spiders and scorpions, and set up a framework to study the genetic specification of antenniform legs. Future efforts to study whip spider development must emphasize the development of tools for functional experiments in P. marginemaculatus.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
21
|
Ghazy NA, Okamura M, Sai K, Yamakawa S, Hamdi FA, Grbic V, Suzuki T. A Leaf-Mimicking Method for Oral Delivery of Bioactive Substances Into Sucking Arthropod Herbivores. FRONTIERS IN PLANT SCIENCE 2020; 11:1218. [PMID: 32849754 PMCID: PMC7431704 DOI: 10.3389/fpls.2020.01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 05/22/2023]
Abstract
Spider mites (Acari: Tetranychidae) are pests of a wide range of agricultural crops, vegetables, and ornamental plants. Their ability to rapidly develop resistance to synthetic pesticides has prompted the development of new strategies for their control. Evaluation of synthetic pesticides and bio-pesticides-and more recently the identification of RNA interference (RNAi) target genes-requires an ability to deliver test compounds efficiently. Here we describe a novel method that uses a sheet-like structure mimicking plant leaves and allows for oral delivery of liquid test compounds to a large number of individuals in a limited area simultaneously (~100 mites cm-2). The main component is a fine nylon mesh sheet that holds the liquid within each pore, much like a plant cell, and consequently allows for greater distribution of specific surface area even in small amounts (10 µl cm-2 for 100-µm mesh opening size). The nylon mesh sheet is placed on a solid plane (e.g., the undersurface of a Petri dish), a solution or suspension of test compounds is pipetted into the mesh sheet, and finally a piece of paraffin wax film is gently stretched above the mesh so that the test mites can feed through it. We demonstrate the use of the method for oral delivery of a tracer dye (Brilliant Blue FCF), pesticides (abamectin and bifenazate), dsRNA targeting the Vacuolar-type H+-VATPase gene, or fluorescent nanoparticles to three species of Tetranychus spider mites (Acari: Tetranychidae) and to the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). The method is fast, easy, and highly reproducible and can be adapted to facilitate several aspects of bioassays.
Collapse
Affiliation(s)
- Noureldin Abuelfadl Ghazy
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
- Agriculture Zoology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
- Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Mayo Okamura
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Kanae Sai
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Sota Yamakawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Faten Abdelsalam Hamdi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Instituto de Ciencias de la Vid y el Vino, Logrono, Spain
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
22
|
Yang R, Niu D, Zhao Y, Gong X, Hu L, Ai L. Function of heat shock protein 70 in the thermal stress response of Dermatophagoides farinae and establishment of an RNA interference method. Gene 2019; 705:82-89. [DOI: 10.1016/j.gene.2019.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 11/25/2022]
|
23
|
Abouelmaaty HG, Fukushi M, Abouelmaaty AG, Ghazy NA, Suzuki T. Leaf disc-mediated oral delivery of small molecules in the absence of surfactant to the two-spotted spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:1-10. [PMID: 30604195 DOI: 10.1007/s10493-018-0335-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/12/2018] [Indexed: 05/12/2023]
Abstract
The two-spotted spider mite (TSSM), Tetranychus urticae, is a chelicerate herbivore with a wide host range and strong ability to develop pesticide resistance. Experimental TSSM populations are easy to maintain, and the recent publication of the complete TSSM genome sequence and development of RNA interference-based reverse genetics protocols make this species an ideal chelicerate model for the study of pesticide resistance and plant-herbivore interactions. In such studies, treated leaf discs are often used for oral delivery of test compounds. When preparing these leaf discs, the organosilicone surfactant Silwet L-77 is used to promote wetting of the leaf surface and distribution of the test compound across the entire leaf surface. Here, we examined the toxicity of Silwet L-77 and found it to be toxic to TSSMs. We then developed a novel means of preparing leaf discs in which a polypropylene sheet rather than Silwet L-77 was used to ensure distribution of a tracer dye across the entire leaf surface. These leaf discs were then successfully used to deliver the tracer dye into the midgut of TSSMs. No significant differences were observed in the survival, fecundity, or feeding activity of TSSMs fed on leaf discs treated with water via our novel method compared with those fed on untreated leaf discs. Thus, our novel method of preparing leaf discs eliminates concerns regarding the bioactivity of surfactants in TSSMs, and we anticipate that it will be useful for improving oral delivery-based bioassays that use TSSMs.
Collapse
Affiliation(s)
- Hebatallah Galal Abouelmaaty
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
- Plant Protection Research Institute, Agriculture Research Center, Dokki, Giza, 12311, Egypt
| | - Mimoe Fukushi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Ayatallah Galal Abouelmaaty
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Noureldin Abuelfadl Ghazy
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
- Agriculture Zoology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, 35516, Egypt
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
24
|
Wei P, Li J, Liu X, Nan C, Shi L, Zhang Y, Li C, He L. Functional analysis of four upregulated carboxylesterase genes associated with fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). PEST MANAGEMENT SCIENCE 2019; 75:252-261. [PMID: 29877064 DOI: 10.1002/ps.5109] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Carboxylesterases (CarEs) are important in pesticide resistance. Four overexpressed CarE genes with inducible character were screened out in fenpropathrin-resistant Tetranychus cinnabarinus, but their functional roles remained to be further analyzed by RNAi and protein expression. RESULTS Feeding a single double-stranded (ds)RNA of each of four genes led to gene-specific downregulation of mRNA, decreased esterase activity and diminished resistance in T. cinnabarinus. More interestingly, feeding four dsRNAs simultaneously led to a more significant decrease in enzymatic activity and fold resistance than feeding a single dsRNA individually, suggesting that these CarE genes were involved in fenpropathrin-resistance and had cooperative roles. The gene CarE6 was regarded as the primary and representative candidate to be functionally expressed, because silencing of CarE6 led to the most significant decrease in resistance level. The activity of CarE6 protein was competitively inhibited by fenpropathrin. It could effectively decompose 41.7 ± 0.09% of fenpropathrin within 3 h, proving that CarE6 protein was capable of metabolizing fenpropathrin effectively in T. cinnabarinus. CONCLUSION The results confirm that four CarE genes are cooperatively involved in fenpropathrin resistance and the metabolic enzymes encoded by these overexpressed genes do indeed metabolize acaricide in resistant T. cinnabarinus in the evolution of acaricide resistance. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng Wei
- Academy of Agricultural Sciences, Southwest University; College of Plant Protection, Southwest University, Chongqing, China
| | - Jinhang Li
- Academy of Agricultural Sciences, Southwest University; College of Plant Protection, Southwest University, Chongqing, China
| | - Xinyang Liu
- Academy of Agricultural Sciences, Southwest University; College of Plant Protection, Southwest University, Chongqing, China
| | - Can Nan
- Academy of Agricultural Sciences, Southwest University; College of Plant Protection, Southwest University, Chongqing, China
| | - Li Shi
- Academy of Agricultural Sciences, Southwest University; College of Plant Protection, Southwest University, Chongqing, China
- College of Plant Protection, Hunan Agricultural University, Hunan Province, China
| | - Yichao Zhang
- Academy of Agricultural Sciences, Southwest University; College of Plant Protection, Southwest University, Chongqing, China
| | - Chuanzhen Li
- Academy of Agricultural Sciences, Southwest University; College of Plant Protection, Southwest University, Chongqing, China
| | - Lin He
- Academy of Agricultural Sciences, Southwest University; College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Niu J, Shen G, Christiaens O, Smagghe G, He L, Wang J. Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives. PEST MANAGEMENT SCIENCE 2018; 74:2680-2687. [PMID: 29749092 DOI: 10.1002/ps.5071] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 05/28/2023]
Abstract
Mites comprise a group of key agricultural pests on a wide range of crops. They cause harm through feeding on the plant and transferring dangerous pathogens, and the rapid evolution of pesticide resistance in mites highlights the need for novel control methods. Currently, RNA interference (RNAi) shows great potential for insect pest control. Here, we review the literature regarding RNAi in mite pests. We discuss different target genes and RNAi efficiency in various mite species, a promising Varroa control program using RNAi, the synergy of RNAi with plant defense mechanisms and microorganisms, and current understanding of systemic movement of double-stranded RNA (dsRNA). On the basis of this evidence, we can conclude that there is clear potential for application of RNAi-based mite control, but further research on several aspects of RNAi in mites is needed, including: (i) the factors influencing RNAi efficiency, (ii) the mechanism of environmental RNAi and cross-kingdom dsRNA trafficking, (iii) the mechanism of possible systemic and parental RNAi, and (iv) non-target effects, specifically in predatory mites, which should be considered during RNAi target selection. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Yoon JS, Sahoo DK, Maiti IB, Palli SR. Identification of target genes for RNAi-mediated control of the Twospotted Spider Mite. Sci Rep 2018; 8:14687. [PMID: 30279530 PMCID: PMC6168543 DOI: 10.1038/s41598-018-32742-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023] Open
Abstract
RNA interference (RNAi) is being developed for the management of pests that destroy crops. The twospotted Spider Mite (TSSM), Tetranychus urticae is a worldwide pest due to its unique physiological and behavioral characteristics including extraordinary ability to detoxify a wide range of pesticides and feed on many host plants. In this study, we conducted experiments to identify target genes that could be used for the development of RNAi-based methods to control TSSM. Leaf disc feeding assays revealed that knockdown in the expression genes coding for proteins involved in the biosynthesis and action of juvenile hormone (JH) and action of ecdysteroids [Methoprene-tolerant (Met), retinoid X receptor β, farnesoic acid O-methyltransferase, and CREB-binding protein] caused 35-56% mortality. Transgenic tobacco plants expressing hairpin dsRNA targeting Met gene were generated and tested. About 48% mortality was observed in TSSM raised on transgenic tobacco plants expressing dsMet. These studies not only broaden our knowledge on understanding hormone action in TSSM but also identified target genes that could be used in RNAi-mediated control of TSSM.
Collapse
Affiliation(s)
- June-Sun Yoon
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - Dipak K Sahoo
- KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Indu B Maiti
- KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba R Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA.
| |
Collapse
|
27
|
Bensoussan N, Zhurov V, Yamakawa S, O'Neil CH, Suzuki T, Grbić M, Grbić V. The Digestive System of the Two-Spotted Spider Mite, Tetranychus urticae Koch, in the Context of the Mite-Plant Interaction. FRONTIERS IN PLANT SCIENCE 2018; 9:1206. [PMID: 30271412 PMCID: PMC6142783 DOI: 10.3389/fpls.2018.01206] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 05/07/2023]
Abstract
The two-spotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most polyphagous herbivores, feeding on more than 1,100 plant species. Its wide host range suggests that TSSM has an extraordinary ability to modulate its digestive and xenobiotic physiology. The analysis of the TSSM genome revealed the expansion of gene families that encode proteins involved in digestion and detoxification, many of which were associated with mite responses to host shifts. The majority of plant defense compounds that directly impact mite fitness are ingested. They interface mite compounds aimed at counteracting their effect in the gut. Despite several detailed ultrastructural studies, our knowledge of the TSSM digestive tract that is needed to support the functional analysis of digestive and detoxification physiology is lacking. Here, using a variety of histological and microscopy techniques, and a diversity of tracer dyes, we describe the organization and properties of the TSSM alimentary system. We define the cellular nature of floating vesicles in the midgut lumen that are proposed to be the site of intracellular digestion of plant macromolecules. In addition, by following the TSSM's ability to intake compounds of defined sizes, we determine a cut off size for the ingestible particles. Moreover, we demonstrate the existence of a distinct filtering function between midgut compartments which enables separation of molecules by size. Furthermore, we broadly define the spatial distribution of the expression domains of genes involved in digestion and detoxification. Finally, we discuss the relative simplicity of the spider mite digestive system in the context of mite's digestive and xenobiotic physiology, and consequences it has on the effectiveness of plant defenses.
Collapse
Affiliation(s)
- Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Sota Yamakawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Caroline H. O'Neil
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
28
|
Zotti M, Dos Santos EA, Cagliari D, Christiaens O, Taning CNT, Smagghe G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. PEST MANAGEMENT SCIENCE 2018; 74:1239-1250. [PMID: 29194942 DOI: 10.1002/ps.4813] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/09/2017] [Accepted: 11/22/2017] [Indexed: 05/03/2023]
Abstract
Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Moises Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Ericmar Avila Dos Santos
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Deise Cagliari
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Gogoi A, Sarmah N, Kaldis A, Perdikis D, Voloudakis A. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves. PLANTA 2017; 246:1233-1241. [PMID: 28924923 DOI: 10.1007/s00425-017-2776-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/10/2017] [Indexed: 05/20/2023]
Abstract
Exogenously applied double-stranded RNA (dsRNA) molecules onto tomato leaves, moved rapidly from local to systemic leaves and were uptaken by agricultural pests namely aphids, whiteflies and mites. Four small interfering RNAs, deriving from the applied dsRNA, were molecularly detected in plants, aphids and mites but not in whiteflies. Double-stranded RNA (dsRNA) acts as the elicitor molecule of the RNA silencing (RNA interference, RNAi), the endogenous and evolutionary conserved surveillance system present in all eukaryotes. DsRNAs and their subsequent degradation products, namely the small interfering RNAs (siRNAs), act in a sequence-specific manner to control gene expression. Exogenous application of dsRNAs onto plants elicits resistance against plant viruses. In the present work, exogenously applied dsRNA molecules, derived from Zucchini yellow mosaic virus (ZYMV) HC-Pro region, onto tomato plants were detected in aphids (Myzus persicae), whiteflies (Trialeurodes vaporariorum) and mites (Tetranychus urticae) that were fed on treated as well as systemic tomato leaves. Furthermore, four siRNAs, deriving from the dsRNA applied, were detected in tomato and the agricultural pests fed on treated tomato plants. More specifically, dsRNA was detected in agricultural pests at 3 and 10 dpt (days post treatment) in dsRNA-treated leaves and at 14 dpt in systemic leaves. In addition, using stem-loop RT-PCR, siRNAs were detected in agricultural pests at 3 and 10 dpt in aphids and mites. Surprisingly, in whiteflies carrying the applied dsRNA, siRNAs were not molecularly detected. Our results showed that, upon exogenous application of dsRNAs molecules, these moved rapidly within tomato and were uptaken by agricultural pests fed on treated tomato. As a result, this non-transgenic method has the potential to control important crop pests via RNA silencing of vital genes of the respective pests.
Collapse
Affiliation(s)
- Anupam Gogoi
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Nomi Sarmah
- Laboratory of Agricultural Zoology and Entomology, Faculty of Plant Production Science, Agricultural University of Athens, 11855, Athens, Greece
- Department of Entomology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Dionysios Perdikis
- Laboratory of Agricultural Zoology and Entomology, Faculty of Plant Production Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
30
|
Bomfim L, Vieira P, Fonseca A, Ramos I. Eggshell ultrastructure and delivery of pharmacological inhibitors to the early embryo of R. prolixus by ethanol permeabilization of the extraembryonic layers. PLoS One 2017; 12:e0185770. [PMID: 28961275 PMCID: PMC5621698 DOI: 10.1371/journal.pone.0185770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
Most vectors of arthropod-borne diseases produce large eggs with hard and opaque eggshells. In several species, it is still not possible to induce molecular perturbations to the embryo by delivery of molecules using microinjections or eggshell permeabilization without losing embryo viability, which impairs basic studies regarding development and population control. Here we tested the properties and permeability of the eggshell of R. prolixus, a Chagas disease vector, with the aim to deliver pharmacological inhibitors to the egg cytoplasm and allow controlled molecular changes to the embryo. Using field emission scanning and transmission electron microscopy we found that R. prolixus egg is coated by three main layers: exochorion, vitelline layer and the plasma membrane, and that the pores that allow gas exchange (aeropiles) have an average diameter of 10 μm and are found in the rim of the operculum at the anterior pole of the egg. We tested if different solvents could permeate through the aeropiles and reach the egg cytoplasm/embryo and found that immersions of the eggs in ethanol lead to its prompt penetration through the aeropiles. A single five minute-immersion of the eggs/embryos in pharmacological inhibitors, such as azide, cyanide and cycloheximide, solubilized in ethanol resulted in impairment of embryogenesis in a dose dependent manner and DAPI-ethanol solutions were also able to label the embryo cells, showing that ethanol penetration was able to deliver those molecules to the embryo cells. Multiple immersions of the embryo in the same solutions increased the effect and tests using bafilomycin A1 and Pepstatin A, known inhibitors of the yolk proteolysis, were also able to impair embryogenesis and the yolk protein degradation. Additionally, we found that ethanol pre-treatments of the egg make the aeropiles more permeable to aqueous solutions, so drugs diluted in water can be carried after the eggs are pre-treated with ethanol. Thus, we found that delivery of pharmacological inhibitors to the embryo of R. prolixus can be performed simply by submersing the fertilized eggs in ethanol with no need for additional methods such as microinjections or electroporation. We discuss the potential importance of this methodology to the study of this vector developmental biology and population control.
Collapse
Affiliation(s)
- Larissa Bomfim
- Laboratório de bioquímica de insetos, Universidade Federal do Rio de Janeiro Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, Brazil
| | - Priscila Vieira
- Laboratório de bioquímica de insetos, Universidade Federal do Rio de Janeiro Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, Brazil
| | - Ariene Fonseca
- Laboratório de bioquímica de insetos, Universidade Federal do Rio de Janeiro Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Laboratório de bioquímica de insetos, Universidade Federal do Rio de Janeiro Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: A comparative analysis of five methods for gene silencing. PLoS One 2017; 12:e0180654. [PMID: 28704448 PMCID: PMC5507529 DOI: 10.1371/journal.pone.0180654] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) can be used for the protection against agricultural pests through the silencing of genes required for pest fitness. To assess the potential of RNAi approaches in the two-spotted spider mite, Tetranychus urticae, we compared 5 methods for the delivery of double-stranded RNA (dsRNA). These methods include mite feeding on either (i) leaves floating on a dsRNA solution, (ii) dsRNA-expressing plants, (iii) artificial diet supplemented with dsRNA, or (iv) dsRNA-coated leaves, and (v) mite soaking in a dsRNA solution. In all cases, the gene targeted for method validation was the Vacuolar-type H+-ATPase (TuVATPase), encoding a constitutively expressed ATP-driven proton pump located in the membrane. Down-regulation of TuVATPase increased mortality and/or reduced fecundity in all methods, but with variable efficiency. The most efficient methods for dsRNA delivery were direct soaking of mites in the dsRNA solution and mite feeding on dsRNA-coated leaves that mimics dsRNA application as a sprayable pesticide. Both resulted in a dark-body phenotype not observed in mites treated with a control dsRNA. Although with lower efficiency, dsRNA designed for TuVATPase silencing and expressed in transgenic Arabidopsis plants impacted the fitness of mites feeding on these plants. RNAi may thus be a valuable strategy to control spider mite populations, either as a sprayable pesticide or through transgenic crops. This comparative methodological study focusing on the induction of RNAi-based gene silencing in T. urticae paves the way for reverse genetics approaches in this model chelicerate system and prepares large-scale systematic RNAi screens as a first step towards the development of specific RNA-based pesticides. Such alternative molecules may help control spider mites that cause significant damages to crops and ornamental plant species, as well as other chelicerates detrimental to agriculture and health.
Collapse
|
32
|
Suzuki T, España MU, Nunes MA, Zhurov V, Dermauw W, Osakabe M, Van Leeuwen T, Grbic M, Grbic V. Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae. PLoS One 2017; 12:e0180658. [PMID: 28686745 PMCID: PMC5501582 DOI: 10.1371/journal.pone.0180658] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | | | - Maria Andreia Nunes
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.,Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London, Ontario, Canada.,Universidad de La Rioja, Logroño, Spain
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
33
|
Fernando DD, Marr EJ, Zakrzewski M, Reynolds SL, Burgess STG, Fischer K. Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets. Parasit Vectors 2017; 10:289. [PMID: 28601087 PMCID: PMC5466799 DOI: 10.1186/s13071-017-2226-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/01/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Scabies is one of the most common and widespread parasitic skin infections globally, affecting a large range of mammals including humans, yet the molecular biology of Sarcoptes scabiei is astonishingly understudied. Research has been hampered primarily due to the difficulty of sampling or culturing these obligatory parasitic mites. A further and major impediment to identify and functionally analyse potential therapeutic targets from the recently emerging molecular databases is the lack of appropriate molecular tools. METHODS We performed standard BLAST based searches of the existing S. scabiei genome databases using sequences of genes described to be involved in RNA interference in Drosophila and the mite model organism Tetranychus urticae. Experimenting with the S. scabiei mu-class glutathione S-transferase (SsGST-mu1) as a candidate gene we explored the feasibility of gene knockdown in S. scabiei by double-stranded RNA-interference (dsRNAi). RESULTS We provide here an analysis of the existing S. scabiei draft genomes, confirming the presence of a double stranded RNA (dsRNA) - mediated silencing machinery. We report for the first time experimental gene silencing by RNA interference (RNAi) in S. scabiei. Non-invasive immersion of S. scabiei in dsRNA encoding an S. scabiei glutathione S-transferase mu-class 1 enzyme (SsGST-mu1) resulted in a 35% reduction in the transcription of the target gene compared to controls. CONCLUSIONS A series of experiments identified the optimal conditions allowing systemic experimental RNAi without detrimental side effects on mite viability. This technique can now be used to address the key questions on the fundamental aspects of mite biology and pathogenesis, and to assess the potential therapeutic benefits of silencing S. scabiei target genes.
Collapse
Affiliation(s)
- Deepani D. Fernando
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, 300 Herston Road, Herston, Brisbane, 4006 Australia
- School of Veterinary Sciences, University of Queensland, Gatton, QLD 4343 Australia
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Edward J. Marr
- Parasitology Division, Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, Scotland EH26 0PZ UK
| | - Martha Zakrzewski
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, 300 Herston Road, Herston, Brisbane, 4006 Australia
| | - Simone L. Reynolds
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, 300 Herston Road, Herston, Brisbane, 4006 Australia
| | - Stewart T. G. Burgess
- Parasitology Division, Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, Scotland EH26 0PZ UK
| | - Katja Fischer
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, 300 Herston Road, Herston, Brisbane, 4006 Australia
| |
Collapse
|
34
|
Lefebvre FA, Lécuyer E. Small Luggage for a Long Journey: Transfer of Vesicle-Enclosed Small RNA in Interspecies Communication. Front Microbiol 2017; 8:377. [PMID: 28360889 PMCID: PMC5352665 DOI: 10.3389/fmicb.2017.00377] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
In the evolutionary arms race, symbionts have evolved means to modulate each other's physiology, oftentimes through the dissemination of biological signals. Beyond small molecules and proteins, recent evidence shows that small RNA molecules are transferred between organisms and transmit functional RNA interference signals across biological species. However, the mechanisms through which specific RNAs involved in cross-species communication are sorted for secretion and protected from degradation in the environment remain largely enigmatic. Over the last decade, extracellular vesicles have emerged as prominent vehicles of biological signals. They can stabilize specific RNA transcripts in biological fluids and selectively deliver them to recipient cells. Here, we review examples of small RNA transfers between plants and bacterial, fungal, and animal symbionts. We also discuss the transmission of RNA interference signals from intestinal cells to populations of the gut microbiota, along with its roles in intestinal homeostasis. We suggest that extracellular vesicles may contribute to inter-species crosstalk mediated by small RNA. We review the mechanisms of RNA sorting to extracellular vesicles and evaluate their relevance in cross-species communication by discussing conservation, stability, stoichiometry, and co-occurrence of vesicles with alternative communication vehicles.
Collapse
Affiliation(s)
- Fabio A. Lefebvre
- Institut de Recherches Cliniques de Montréal (IRCM), RNA Biology DepartmentMontreal, QC, Canada
- Département de Biochimie, Université de MontréalMontreal, QC, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), RNA Biology DepartmentMontreal, QC, Canada
- Département de Biochimie, Université de MontréalMontreal, QC, Canada
- Divison of Experimental Medicine, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
35
|
Xia WK, Shen XM, Ding TB, Niu JZ, Zhong R, Liao CY, Feng YC, Dou W, Wang JJ. Functional analysis of a chitinase gene during the larval-nymph transition in Panonychus citri by RNA interference. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 70:1-15. [PMID: 27388447 DOI: 10.1007/s10493-016-0063-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Chitinases are hydrolytic enzymes that are required for chitin degradation and reconstruction in arthropods. In this study, we report a cDNA sequence encoding a putative chitinase (PcCht1) from the citrus red mite, Panonychus citri. The PcCht1 (564 aa) possessed a signal peptide, a conserver domain, and a chitin-binding domain. Structural and phylogenetic analyses found that PcCht1 had high sequence similarity to chitinases in Tetranychus urticae. Real-time quantitative PCR analyses showed that the transcript levels of PcCht1 peaked periodically in larval and nymph stages. Moreover, significant increase of PcCht1 transcript level in the larvae was observed upon the exposure of diflubenzuron. In contrast, exposures of the larvae to diflubenzuron resulted in the decreased chitin content. Furthermore, through a feeding-based RNA interference approach, we were able to reduce the PcCht1 transcript level by 59.7 % in the larvae, and consequently the treated larvae showed a very low molting rate compared with the control. Our results expanded the understanding of the important role of PcCht1 in the growth and development of P. citri.
Collapse
Affiliation(s)
- Wen-Kai Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Xiao-Min Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Tian-Bo Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Rui Zhong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Chong-Yu Liao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Ying-Cai Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
36
|
Liao CY, Xia WK, Feng YC, Li G, Liu H, Dou W, Wang JJ. Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:72-80. [PMID: 27521916 DOI: 10.1016/j.pestbp.2015.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 06/06/2023]
Abstract
The citrus red mite, Panonychus citri (McGregor), a major citrus pest distributed worldwide, has been found to be resistant to various insecticides and acaricides used in China. However, the molecular mechanisms associated with the abamectin resistance in this species have not yet been reported. In this study, results showed over-expression of a novel glutathione S-transferases (GSTs) gene (PcGSTm5) in abamectin-resistant P. citri. Quantitative real-time PCR analysis showed that the transcripts of PcGSTm5 were also significantly up-regulated after exposure to abamectin and the maximum mRNA expression level at nymphal stage. The recombinant protein of PcGSTm5-pET-28a produced by Escherichia coli showed a pronounced activity toward the conjugates of 1-chloro-2,4 dinitrobenzene (CDNB) and glutathione (GSH). The kinetics of CDNB and GSH and its optimal pH and thermal stability were also determined. Reverse genetic study through a new method of leaf-mediated dsRNA feeding further support a link between the expression of PcGSTm5 and abamectin resistance. However, no direct evidence was found in metabolism or inhibition assays to confirm the hypothesis that PcGSTm5 can metabolize abamectin. Finally, it is here speculated that PcGSTm5 may play a role in abamectin detoxification through other pathway such as the antioxidant protection.
Collapse
Affiliation(s)
- Chong-Yu Liao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
| | - Wen-Kai Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
| | - Ying-Cai Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
| | - Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
| | - Hai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
37
|
Goto SG. Physiological and molecular mechanisms underlying photoperiodism in the spider mite: comparisons with insects. J Comp Physiol B 2016; 186:969-984. [PMID: 27424162 DOI: 10.1007/s00360-016-1018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
Photoperiodism is an adaptive, seasonal timing system that enables organisms to coordinate their development and physiology to annual changes in the environment using day length (photoperiod) as a cue. This review summarizes our knowledge of the physiological mechanisms underlying photoperiodism in spider mites. In particular, the two-spotted spider mite Tetranychus urticae is focussed, which has long been used as a model species for studying photoperiodism. Photoperiodism is established by several physiological modules, such as the photoreceptor, photoperiodic time measurement system, counter system, and endocrine effector. It is now clear that retinal photoreception through the ocelli is indispensable for the function of photoperiodism, at least in T. urticae. Visual pigment, which comprised opsin protein and a vitamin A-based pigment, is involved in photoreception. The physiological basis of the photoperiodic time measurement system is still under debate, and we have controversial evidence for the hourglass-based time measurement and the oscillator-based time measurement. Less attention has been centred on the counter system in insects and mites. Mite reproduction is possibly regulated by the ecdysteroid, ponasterone A. Prior physiological knowledge has laid the foundation for the next steps essential for the elucidation of the molecular mechanisms driving photoperiodism.
Collapse
Affiliation(s)
- Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
38
|
Kwon DH, Park JH, Ashok PA, Lee U, Lee SH. Screening of target genes for RNAi in Tetranychus urticae and RNAi toxicity enhancement by chimeric genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 130:1-7. [PMID: 27155477 DOI: 10.1016/j.pestbp.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 05/09/2023]
Abstract
Due to its rapid development of resistance to nearly all arrays of acaricide, Tetranychus urticae is extremely hard to control using conventional acaricides. As an alternative control measure of acaricide-resistant mites, RNA interference (RNAi)-based method has recently been suggested. A double-stranded RNA (dsRNA) delivery method using multi-unit chambers was established and employed to screen the RNAi toxicity of 42 T. urticae genes. Among them, the dsRNA treatment of coatomer I (COPI) genes, such as coatomer subunit epsilon (COPE) and beta 2 (COPB2), resulted in high mortality [median lethal time (LT50)=89.7 and 120.3h, respectively]. The transcript level of the COPE gene was significantly (F3,9=16.2, P=0.001) reduced by up to 24% following dsRNA treatment, suggesting that the toxicity was likely mediated by the RNAi of the target gene. As a toxicity enhancement strategy, the recombinant dsRNA was generated by reciprocally recombining half-divided fragments of COPE and COPB2. The two recombinant dsRNAs exhibited higher toxicity than the respective single dsRNA treatments as determined by LT50 values (79.2 and 81.5h, respectively). This finding indicates that the recombination of different genes can enhance RNAi toxicity and be utilized to generate synthetic dsRNA with improved RNAi efficacy.
Collapse
Affiliation(s)
- Deok Ho Kwon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ji Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Patil Anandrao Ashok
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Unggyu Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
39
|
Campbell EM, Budge GE, Watkins M, Bowman AS. Transcriptome analysis of the synganglion from the honey bee mite, Varroa destructor and RNAi knockdown of neural peptide targets. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:116-126. [PMID: 26721201 DOI: 10.1016/j.ibmb.2015.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/04/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
Varroa mites (Varroa destructor) and the viruses that they transmit are one of the major contributing factors to the global honey bee crisis. Gene products within the nervous system are the targets of all the insecticides currently used to control Varroa but there is a paucity of transcriptomic data available for Varroa neural tissues. A cDNA library from the synganglia ("brains") of adult female Varroa was constructed and 600 ESTs sequenced and analysed revealing several current and potential druggable targets. Contigs coding for the deformed wing virus (DWV) variants V. destructor virus-1 (VDV-1) and the recombinant (VDV-1DVD) were present in the synganglion library. Negative-sense RNA-specific PCR indicated that VDV-1 replicates in the Varroa synganglion and all other tissues tested, but we could not detect DWV replicating in any Varroa tissue. Two neuropeptides were identified in the synganlion EST library: a B-type allatostatin and a member of the crustacean hyperglycaemic hormone (CHH) superfamily. Knockdown of the allatostatin or the CHH-like gene by double-stranded RNA-interference (dsRNAi) resulted in 85% and 55% mortality, respectively, of Varroa. Here, we present the first transcriptomic survey in Varroa and demonstrate that neural genes can be targeted by dsRNAi either for genetic validation of putative targets during drug discovery programmes or as a potential control measure in itself.
Collapse
Affiliation(s)
- Ewan M Campbell
- School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Giles E Budge
- National Bee Unit, Fera, Sand Hutton, York YO41 1LZ, UK
| | - Max Watkins
- Vita (Europe) Limited, Vita House, London Street, Basingstoke, Hampshire RG21 7PG, UK
| | - Alan S Bowman
- School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
40
|
Shi L, Wei P, Wang X, Shen G, Zhang J, Xiao W, Xu Z, Xu Q, He L. Functional Analysis of Esterase TCE2 Gene from Tetranychus cinnabarinus (Boisduval) involved in Acaricide Resistance. Sci Rep 2016; 6:18646. [PMID: 26725309 PMCID: PMC4698665 DOI: 10.1038/srep18646] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/23/2015] [Indexed: 01/31/2023] Open
Abstract
The carmine spider mite, Tetranychus cinnabarinus is an important pest of crops and vegetables worldwide, and it has the ability to develop resistance against acaricides rapidly. Our previous study identified an esterase gene (designated TCE2) over-expressed in resistant mites. To investigate this gene's function in resistance, the expression levels of TCE2 in susceptible, abamectin-, fenpropathrin-, and cyflumetofen-resistant strains were knocked down (65.02%, 63.14%, 57.82%, and 63.99%, respectively) via RNA interference. The bioassay data showed that the resistant levels to three acaricides were significantly decreased after the down-regulation of TCE2, indicating a correlation between the expression of TCE2 and the acaricide-resistance in T. cinnabarinus. TCE2 gene was then re-engineered for heterologous expression in Escherichia coli. The recombinant TCE2 exhibited α-naphthyl acetate activity (483.3 ± 71.8 nmol/mg pro. min(-1)), and the activity of this enzyme could be inhibited by abamectin, fenpropathrin, and cyflumetofen, respectively. HPLC and GC results showed that 10 μg of the recombinant TCE2 could effectively decompose 21.23% fenpropathrin and 49.70% cyflumetofen within 2 hours. This is the first report of a successful heterologous expression of an esterase gene from mites. This study provides direct evidence that TCE2 is a functional gene involved in acaricide resistance in T. cinnabarinus.
Collapse
Affiliation(s)
- Li Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xiangzun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jiao Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Xiao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiang Xu
- Department of Biology, Abilene Christian University, Abilene, Texas, U.S.A.
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
41
|
Van Leeuwen T, Dermauw W. The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:475-98. [PMID: 26982444 DOI: 10.1146/annurev-ento-010715-023907] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chelicerate mites diverged from other arthropod lineages more than 400 million years ago and subsequently developed specific and remarkable xenobiotic adaptations. The study of the two-spotted spider mite, Tetranychus urticae, for which a high-quality Sanger-sequenced genome was first available, revealed expansions and radiations in all major detoxification gene families, including P450 monooxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters. Novel gene families that are not well studied in other arthropods, such as major facilitator family transporters and lipocalins, also reflect the evolution of xenobiotic adaptation. The acquisition of genes by horizontal gene transfer provided new routes to handle toxins, for example, the β-cyanoalanine synthase enzyme that metabolizes cyanide. The availability of genomic resources for other mite species has allowed researchers to study the lineage specificity of these gene family expansions and the distinct evolution of genes involved in xenobiotic metabolism in mites. Genome-based tools have been crucial in supporting the idiosyncrasies of mite detoxification and will further support the expanding field of mite-plant interactions.
Collapse
Affiliation(s)
- Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; ,
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; ,
| |
Collapse
|
42
|
Marr EJ, Sargison ND, Nisbet AJ, Burgess STG. Gene silencing by RNA interference in the house dust mite, Dermatophagoides pteronyssinus. Mol Cell Probes 2015. [PMID: 26212476 DOI: 10.1016/j.mcp.2015.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This is the first report of gene silencing by RNA interference (RNAi) in the European house dust mite, Dermatophagoides pteronyssinus, Trouessart, 1897. Using a non-invasive immersion method first developed for the honey bee mite, Varroa destructor, a significant reduction in the expression of D. pteronyssinus glutathione-S-transferase mu-class 1 enzyme (DpGST-mu1) was achieved following overnight immersion in double stranded RNA encoding DpGST-mu1. Although no detrimental phenotypic changes were observed following silencing, this technique can now be used to address fundamental physiological questions and assess the potential therapeutic benefit in silencing D. pteronyssinus target genes in selected domestic situations of high human-mite interface.
Collapse
Affiliation(s)
- Edward J Marr
- Division of Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Scotland, United Kingdom
| | - Neil D Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Scotland, United Kingdom
| | - Alasdair J Nisbet
- Division of Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, United Kingdom
| | - Stewart T G Burgess
- Division of Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
43
|
Badillo-Vargas IE, Rotenberg D, Schneweis BA, Whitfield AE. RNA interference tools for the western flower thrips, Frankliniella occidentalis. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:36-46. [PMID: 25796097 DOI: 10.1016/j.jinsphys.2015.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 05/12/2023]
Abstract
The insect order Thysanoptera is exclusively comprised of small insects commonly known as thrips. The western flower thrips, Frankliniella occidentalis, is an economically important pest amongst thysanopterans due to extensive feeding damage and tospovirus transmission to hundreds of plant species worldwide. Geographically-distinct populations of F. occidentalis have developed resistance against many types of traditional chemical insecticides, and as such, management of thrips and tospoviruses are a persistent challenge in agriculture. Molecular methods for defining the role(s) of specific genes in thrips-tospovirus interactions and for assessing their potential as gene targets in thrips management strategies is currently lacking. The goal of this work was to develop an RNA interference (RNAi) tool that enables functional genomic assays and to evaluate RNAi for its potential as a biologically-based approach for controlling F. occidentalis. Using a microinjection system, we delivered double-stranded RNA (dsRNA) directly to the hemocoel of female thrips to target the vacuolar ATP synthase subunit B (V-ATPase-B) gene of F. occidentalis. Gene expression analysis using real-time quantitative reverse transcriptase-PCR (qRT-PCR) revealed significant reductions of V-ATPase-B transcripts at 2 and 3 days post-injection (dpi) with dsRNA of V-ATPase-B compared to injection with dsRNA of GFP. Furthermore, the effect of knockdown of the V-ATPase-B gene in females at these two time points was mirrored by the decreased abundance of V-ATPase-B protein as determined by quantitative analysis of Western blots. Reduction in V-ATPase-B expression in thrips resulted in increased female mortality and reduced fertility, i.e., number of viable offspring produced. Survivorship decreased significantly by six dpi compared to the dsRNA-GFP control group, which continued decreasing significantly until the end of the bioassay. Surviving female thrips injected with dsRNA-V-ATPase-B produced significantly fewer offspring compared to those in the dsRNA-GFP control group. Our findings indicate that an RNAi-based strategy to study gene function in thrips is feasible, can result in quantifiable phenotypes, and provides a much-needed tool for investigating the molecular mechanisms of thrips-tospovirus interactions. To our knowledge, this represents the first report of RNAi for any member of the insect order Thysanoptera and demonstrates the potential for translational research in the area of thrips pest control.
Collapse
Affiliation(s)
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| | - Brandi A Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
44
|
Martel C, Zhurov V, Navarro M, Martinez M, Cazaux M, Auger P, Migeon A, Santamaria ME, Wybouw N, Diaz I, Van Leeuwen T, Navajas M, Grbic M, Grbic V. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:343-61. [PMID: 25679539 DOI: 10.1094/mpmi-09-14-0291-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.
Collapse
|
45
|
Marr EJ, Sargison ND, Nisbet AJ, Burgess STG. RNA interference for the identification of ectoparasite vaccine candidates. Parasite Immunol 2015; 36:616-26. [PMID: 25065384 DOI: 10.1111/pim.12132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Ectoparasites present a major challenge for disease management globally. With drug resistance increasingly observed in many disease-causing species, the need for novel control measures is pressing. Ever-expanding genomic resources from 'next generation' sequencing are now available for a number of arthropod ectoparasites, necessitating an effective means of screening these data for novel candidates for vaccine antigens or targets for chemotherapeutics. Such in vitro screening methods must be developed if we are to make discoveries in a timely and cost-effective manner. This review will discuss the potential that RNA interference (RNAi) has demonstrated thus far in the context of arthropod ectoparasites and the potential roles for this technology in the development of novel methods for parasite control.
Collapse
Affiliation(s)
- E J Marr
- Division of Vaccines and Diagnostics, Pentlands Science Park, Moredun Research Institute, Bush Loan, Penicuik, Edinburgh, UK; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, UK
| | | | | | | |
Collapse
|
46
|
Zhang G, He LS, Wong YH, Yu L, Qian PY. siRNA transfection in the barnacle Amphibalanus amphitrite larvae. J Exp Biol 2015; 218:2505-9. [DOI: 10.1242/jeb.120113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/15/2015] [Indexed: 01/20/2023]
Abstract
RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either nauplius or cyprid stage, or both. Effects of siRNA transfection on p38 MAPK level were hardly detectable in the cyprids that their corresponding nauplii were transfected. In contrast, larvae that were transfected at cyprid stage showed lower level of p38 MAPK than the blank and reagent controls. However, significantly decreased level of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rate were observed only in the “Double Transfection”, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. Relatively longer transfection time and more cells of the larvae exposed to siRNA directly might explain the higher efficiency in the “Double Transfection”.
Collapse
Affiliation(s)
- Gen Zhang
- Environmental Science Programs, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Li-sheng He
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Science, No. 62, Fenghuang Road, Sanya City, Hainan Province, China, 572000
| | - Yue Him Wong
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Li Yu
- Environmental Science Programs, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pei-yuan Qian
- Environmental Science Programs, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
47
|
Barreto FS, Schoville SD, Burton RS. Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepodTigriopus californicus. Mol Ecol Resour 2014; 15:868-79. [DOI: 10.1111/1755-0998.12359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| | - Sean D. Schoville
- Department of Entomology; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| |
Collapse
|
48
|
Smith FW, Angelini DR, Gaudio MS, Jockusch EL. Metamorphic labral axis patterning in the beetle Tribolium castaneum requires multiple upstream, but few downstream, genes in the appendage patterning network. Evol Dev 2014; 16:78-91. [PMID: 24617987 DOI: 10.1111/ede.12066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The arthropod labrum is an anterior appendage-like structure that forms the dorsal side of the preoral cavity. Conflicting interpretations of fossil, nervous system, and developmental data have led to a proliferation of scenarios for labral evolution. The best supported hypothesis is that the labrum is a novel structure that shares development with appendages as a result of co-option. Here, we use RNA interference in the red flour beetle Tribolium castaneum to compare metamorphic patterning of the labrum to previously published data on ventral appendage patterning. As expected under the co-option hypothesis, depletion of several genes resulted in similar defects in the labrum and ventral appendages. These include proximal deletions and proximal-to-distal transformations resulting from depletion of the leg gap genes homothorax and extradenticle, large-scale deletions resulting from depletion of the leg gap gene Distal-less, and smaller distal deletions resulting from knockdown of the EGF ligand Keren. However, depletion of dachshund and many of the genes that function downstream of the leg gap genes in the ventral appendages had either subtle or no effects on labral axis patterning. This pattern of partial similarity suggests that upstream genes act through different downstream targets in the labrum. We also discovered that many appendage axis patterning genes have roles in patterning the epipharyngeal sensillum array, suggesting that they have become integrated into a novel regulatory network. These genes include Notch, Delta, and decapentaplegic, and the transcription factors abrupt, bric à brac, homothorax, extradenticle and the paralogs apterous a and apterous b.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT, 06269-3043, USA
| | | | | | | |
Collapse
|
49
|
Pace RM, Eskridge PC, Grbić M, Nagy LM. Evidence for the plasticity of arthropod signal transduction pathways. Dev Genes Evol 2014; 224:209-22. [PMID: 25213332 PMCID: PMC10492230 DOI: 10.1007/s00427-014-0479-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 01/23/2023]
Abstract
Metazoans are known to contain a limited, yet highly conserved, set of signal transduction pathways that instruct early developmental patterning mechanisms. Genomic surveys that have compared gene conservation in signal transduction pathways between various insects and Drosophila support the conclusion that these pathways are conserved in evolution. However, the degree to which individual components of signal transduction pathways vary among more divergent arthropods is not known. Here, we report our results of a survey of the genome of the two-spotted spider mite Tetranychus urticae, using a set of 294 Drosophila orthologs of genes that function in signal transduction. We find a third of all genes surveyed absent from the spider mite genome. We also identify several novel duplications that have not been previously reported for a chelicerate. In comparison with previous insect surveys, Tetranychus contains a decrease in overall gene conservation, as well as an unusual ratio of ligands to receptors and other modifiers. These findings suggest that gene loss and duplication among components of signal transduction pathways are common among arthropods and suggest that signal transduction pathways in arthropods are more evolutionarily labile than previously hypothesized.
Collapse
Affiliation(s)
- Ryan M Pace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | |
Collapse
|
50
|
Fischer K, Walton S. Parasitic mites of medical and veterinary importance--is there a common research agenda? Int J Parasitol 2014; 44:955-67. [PMID: 25218570 DOI: 10.1016/j.ijpara.2014.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 01/31/2023]
Abstract
There are an estimated 0.5-1 million mite species on earth. Among the many mites that are known to affect humans and animals, only a subset are parasitic but these can cause significant disease. We aim here to provide an overview of the most recent work in this field in order to identify common biological features of these parasites and to inform common strategies for future research. There is a critical need for diagnostic tools to allow for better surveillance and for drugs tailored specifically to the respective parasites. Multi-'omics' approaches represent a logical and timely strategy to identify the appropriate mite molecules. Recent advances in sequencing technology enable us to generate de novo genome sequence data, even from limited DNA resources. Consequently, the field of mite genomics has recently emerged and will now rapidly expand, which is a particular advantage for parasitic mites that cannot be cultured in vitro. Investigations of the microbiota associated with mites will elucidate the link between parasites and pathogens, and define the role of the mite in transmission and pathogenesis. The databases generated will provide the crucial knowledge essential to design novel diagnostic tools, control measures, prophylaxes, drugs and immunotherapies against the mites and associated secondary infections.
Collapse
Affiliation(s)
- Katja Fischer
- QIMR Berghofer Medical Research Institute, Infectious Diseases Program, Biology Department, Brisbane, Queensland, Australia.
| | - Shelley Walton
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| |
Collapse
|