1
|
Quinn CH, Julson JR, Markert HR, Nazam N, Butey S, Stewart JE, Coleman JC, Markert JM, Leavenworth JW, Beierle EA. Oncolytic virotherapy augments self-maintaining natural killer cell line cytotoxicity against neuroblastoma. Cancer Immunol Immunother 2024; 73:221. [PMID: 39235531 PMCID: PMC11377387 DOI: 10.1007/s00262-024-03818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Neuroblastoma is the most common extracranial solid tumor in children and accounts for 15% of pediatric cancer related deaths. Targeting neuroblastoma with immunotherapies has proven challenging due to a paucity of immune cells in the tumor microenvironment and the release of immunosuppressive cytokines by neuroblastoma tumor cells. We hypothesized that combining an oncolytic Herpes Simplex Virus (oHSV) with natural killer (NK) cells might overcome these barriers and incite tumor cell death. METHODS We utilized MYCN amplified and non-amplified neuroblastoma cell lines, the IL-12 expressing oHSV, M002, and the human NK cell line, NK-92 MI. We assessed the cytotoxicity of NK cells against neuroblastoma with and without M002 infection, the effects of M002 on NK cell priming, and the impact of M002 and priming on the migratory capacity and CD107a expression of NK cells. To test clinical applicability, we then investigated the effects of M002 and NK cells on neuroblastoma in vivo. RESULTS NK cells were more attracted to neuroblastoma cells that were infected with M002. There was an increase in neuroblastoma cell death with the combination treatment of M002 and NK cells both in vitro and in vivo. Priming the NK cells enhanced their cytotoxicity, migratory capacity and CD107a expression. CONCLUSIONS To the best of our knowledge, these investigations are the first to demonstrate the effects of an oncolytic virus combined with self-maintaining NK cells in neuroblastoma and the priming effect of neuroblastoma on NK cells. The current studies provide a deeper understanding of the relation between NK cells and neuroblastoma and these data suggest that oHSV increases NK cell cytotoxicity towards neuroblastoma.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Nazia Nazam
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Swatika Butey
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Jennifer C Coleman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK.
| |
Collapse
|
2
|
Jindra C, Hainisch EK, Brandt S. Immunotherapy of Equine Sarcoids—From Early Approaches to Innovative Vaccines. Vaccines (Basel) 2023; 11:vaccines11040769. [PMID: 37112681 PMCID: PMC10145708 DOI: 10.3390/vaccines11040769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Horses and other equid species are frequently affected by bovine papillomavirus type 1 and/or 2 (BPV1, BPV2)-induced skin tumors termed sarcoids. Although sarcoids do not metastasize, they constitute a serious health problem due to their BPV1/2-mediated resistance to treatment and propensity to recrudesce in a more severe, multiple form following accidental or iatrogenic trauma. This review provides an overview on BPV1/2 infection and associated immune escape in the equid host and presents early and recent immunotherapeutic approaches in sarcoid management.
Collapse
|
3
|
Ghasemi M, Abbasi L, Ghanbari Naeini L, Kokabian P, Nameh Goshay Fard N, Givtaj N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front Immunol 2023; 13:950079. [PMID: 36703982 PMCID: PMC9871831 DOI: 10.3389/fimmu.2022.950079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Every type of cancer tissue is theoretically more vulnerable to viral infection. This natural proclivity has been harnessed as a new anti-cancer therapy by employing oncolytic viruses (OVs) to selectively infect and destroy cancer cells while providing little or no harm with no toxicity to the host. Whereas the primary oncolytic capabilities of OVs initially sparked the greatest concern, the predominant focus of research is on the association between OVs and the host immune system. Numerous OVs are potent causal agents of class I MHC pathway-related chemicals, enabling early tumor/viral immune recognition and cytokine-mediated response. The modified OVs have been studied for their ability to bind to dendritic cells (DCs) by expressing growth factors, chemokines, cytokines, and defensins inside the viral genome. OVs, like reovirus, can directly infect DCs, causing them to release chemokines and cytokines that attract and excite natural killer (NK) cells. In addition, OVs can directly alter cancer cells' sensitivity to NK by altering the expression levels of NK cell activators and inhibitors on cancerous cells. Therefore, NK cells and DCs in modulating the therapeutic response should be considered when developing and improving future OV-based therapeutics, whether modified to express transgenes or used in combination with other drugs/immunotherapies. Concerning the close relationship between NK cells and DCs in the potential of OVs to kill tumor cells, we explore how DCs and NK cells in tumor microenvironment affect oncolytic virotherapy and summarize additional information about the interaction mentioned above in detail in this work.
Collapse
Affiliation(s)
- Matin Ghasemi
- Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nozar Givtaj
- Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Nozar Givtaj,
| |
Collapse
|
4
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
5
|
Jindra C, Hainisch EK, Rümmele A, Wolschek M, Muster T, Brandt S. Influenza virus vector iNS1 expressing bovine papillomavirus 1 (BPV1) antigens efficiently induces tumour regression in equine sarcoid patients. PLoS One 2021; 16:e0260155. [PMID: 34797850 PMCID: PMC8604313 DOI: 10.1371/journal.pone.0260155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Bovine papillomaviruses types 1 and 2 (BPV1, BPV2) commonly induce skin tumours termed sarcoids in horses and other equids. Sarcoids seriously compromise the health and welfare of affected individuals due to their propensity to resist treatment and reoccur in a more severe form. We have developed influenza (Flu) A and B virus vectors that harbour a truncated NS1 gene (iNS) assuring interferon induction and co-express shuffled BPV1 E6 and E7 antigens for sarcoid immunotherapy. In a safety trial involving 12 healthy horses, intradermal administration of iNSA/E6E7equ and iNSB/E6E7equ was well tolerated, with the only transient side effect being mild fever in four horses. Repeated screening of secretions and faeces by RT-PCR and plaque assay revealed no virus shedding, thus also confirming biological safety. In a patient trial involving 29 horses bearing BPV1-induced single or multiple sarcoids, at least one lesion per horse was intratumourally injected and then boosted with iNSA/E6E7equ and/or iNSB/E6E7equ. The treatment induced a systemic antitumour response as reflected by the synchronous regression of injected and non-injected lesions. Irrespective of vaccination schemes, complete tumour regression was achieved in 10/29 horses. In 10/29 horses, regression is still ongoing (May 2021). Intriguingly, scrapings collected from former tumour sites in two patients tested negative by BPV1 PCR. Nine severely affected individuals with a history of unsuccessful therapeutic attempts did not (6/29) or only transiently (3/29) respond to the treatment. INSA/E6E7equ and iNSB/E6E7equ proved safe and effective in significantly reducing the tumour burden even in severe cases.
Collapse
Affiliation(s)
- Christoph Jindra
- Department of Companion Animals and Horses, Division of Equine Surgery, Research Group Oncology, University of Veterinary Medicine, Vienna, Austria
| | - Edmund K. Hainisch
- Department of Companion Animals and Horses, Division of Equine Surgery, Research Group Oncology, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Rümmele
- Department of Companion Animals and Horses, Division of Equine Surgery, Research Group Oncology, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Sabine Brandt
- Department of Companion Animals and Horses, Division of Equine Surgery, Research Group Oncology, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| |
Collapse
|
6
|
Varudkar N, Oyer JL, Copik A, Parks GD. Oncolytic parainfluenza virus combines with NK cells to mediate killing of infected and non-infected lung cancer cells within 3D spheroids: role of type I and type III interferon signaling. J Immunother Cancer 2021; 9:jitc-2021-002373. [PMID: 34172515 PMCID: PMC8237729 DOI: 10.1136/jitc-2021-002373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND There is intense interest in developing novel oncolytic viruses, which can be used in cancer therapies along with immune cells such as natural killer (NK) cells. We have previously developed a particle-based method for in vitro expansion of highly cytotoxic human NK cells (PM21-NK cells). Here, we have tested the hypothesis that oncolytic parainfluenza virus 5 (P/V virus) can combine with PM21-NK cells for targeted killing of lung cancer cells. METHODS PM21-NK cells were assayed for killing of P/V virus-infected A549, H1299 and Calu-1 lung cancer cells in two-dimensional (2D) and three-dimensional (3D) cultures using flow cytometry, luminescence and kinetic imaging-based methods. Blocking antibodies were used to evaluate NK cell activating receptors involved in PM21-NK cell killing of infected target cells. Media transfer experiments tested soluble factors that increase PM21-NK cell killing of both P/V virus-infected and uninfected tumor cells. RESULTS In 2D cultures, PM21-NK cells efficiently killed P/V virus-infected cancer cells compared with non-infected cells, through involvement of the viral glycoprotein and NK cell receptors NKp30, NKp46 and NKG2D. In 3D spheroid cultures, P/V virus infection was restricted to the outer layer of the spheroid. However, PM21-NK cells were able to more efficiently kill both the outer layer of infected cells in the spheroid and progressing further to kill the uninfected interior cells. Media transfer experiments demonstrated that P/V virus infection produced both type I and type III interferons, which decreased cell growth, which contributed to a reduction in the overall number of uninfected tumor cells in conjunction with PM21-NK cells. Across five cancer cell lines, the contribution of P/V virus infection on PM21-NK cell killing of target cells correlated with interferon induction. CONCLUSION Our data support the potential of combining oncolytic parainfluenza virus with PM21-NK cell adoptive therapy against lung cancer.
Collapse
Affiliation(s)
- Namita Varudkar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jeremiah L Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Alicja Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
7
|
Toffoli EC, Sheikhi A, Höppner YD, de Kok P, Yazdanpanah-Samani M, Spanholtz J, Verheul HMW, van der Vliet HJ, de Gruijl TD. Natural Killer Cells and Anti-Cancer Therapies: Reciprocal Effects on Immune Function and Therapeutic Response. Cancers (Basel) 2021; 13:cancers13040711. [PMID: 33572396 PMCID: PMC7916216 DOI: 10.3390/cancers13040711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Natural Killer (NK) cells are innate lymphocytes that play an important role in the immune response against cancer. Their activity is controlled by a balance of inhibitory and activating receptors, which in cancer can be skewed to favor their suppression in support of immune escape. It is therefore imperative to find ways to optimize their antitumor functionality. In this review, we explore and discuss how their activity influences, or even mediates, the efficacy of various anti-cancer therapies and, vice versa, how their activity can be affected by these therapies. Knowledge of the mechanisms underlying these observations could provide rationales for combining anti-cancer treatments with strategies enhancing NK cell function in order to improve their therapeutic efficacy. Abstract Natural Killer (NK) cells are innate immune cells with the unique ability to recognize and kill virus-infected and cancer cells without prior immune sensitization. Due to their expression of the Fc receptor CD16, effector NK cells can kill tumor cells through antibody-dependent cytotoxicity, making them relevant players in antibody-based cancer therapies. The role of NK cells in other approved and experimental anti-cancer therapies is more elusive. Here, we review the possible role of NK cells in the efficacy of various anti-tumor therapies, including radiotherapy, chemotherapy, and immunotherapy, as well as the impact of these therapies on NK cell function.
Collapse
Affiliation(s)
- Elisa C. Toffoli
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Abdolkarim Sheikhi
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran
| | - Yannick D. Höppner
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Pita de Kok
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Mahsa Yazdanpanah-Samani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Jan Spanholtz
- Glycostem, Kloosterstraat 9, 5349 AB Oss, The Netherlands;
| | - Henk M. W. Verheul
- Department of Medical Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Hans J. van der Vliet
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Lava Therapeutics, Yalelaan 60, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Correspondence: ; Tel.: +31-20-4444063
| |
Collapse
|
8
|
Marotel M, Hasim MS, Hagerman A, Ardolino M. The two-faces of NK cells in oncolytic virotherapy. Cytokine Growth Factor Rev 2020; 56:59-68. [PMID: 32586674 DOI: 10.1016/j.cytogfr.2020.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic viruses (OVs) are immunotherapeutics capable of directly killing cancer cells and with potent immunostimulatory properties. OVs exert their antitumor effect, at least partially, by activating the antitumor immune response, of which NK cells are an important component. However, if on the one hand increasing evidence revealed that NK cells are important mediators of oncolytic virotherapy, on the other hand, NK cells have evolved to fight viral infections, and therefore they can have a detrimental effect for the efficacy of OVs. In this review, we will discuss the dichotomy between the antitumor and antiviral functions of NK cells related to oncolytic virotherapy. We will also review NK cell-based and OV-based therapies, engineered OVs aimed at enhancing immune stimulation, and combination therapies involving OVs and NK cells currently used in cancer immunotherapy.
Collapse
Affiliation(s)
- M Marotel
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - M S Hasim
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - A Hagerman
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada; University of Ottawa, Department of Biochemistry, Microbiology and Immunology, Ottawa, Canada
| | - M Ardolino
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada; University of Ottawa, Department of Biochemistry, Microbiology and Immunology, Ottawa, Canada.
| |
Collapse
|
9
|
Kabiljo J, Laengle J, Bergmann M. From threat to cure: understanding of virus-induced cell death leads to highly immunogenic oncolytic influenza viruses. Cell Death Discov 2020; 6:48. [PMID: 32542113 PMCID: PMC7288254 DOI: 10.1038/s41420-020-0284-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023] Open
Abstract
Oncolytic viruses constitute an emerging strategy in immunomodulatory cancer treatment. The first oncolytic virus, Talimogene laherparepvec (T-VEC), based on herpes simplex virus 1 (HSV-1), was approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2015. The field of oncolytic virotherapy is still in its beginnings, since many promising viruses remain only superficially explored. Influenza A virus causes a highly immunogenic acute infection but never leads to a chronic disease. While oncolytic influenza A viruses are in preclinical development, they have not made the transition into clinical practice yet. Recent insights into different types of cell death caused by influenza A virus infection illuminate novel possibilities of enhancing its therapeutic effect. Genetic engineering and experience in influenza A virus vaccine development allow safe application of the virus in patients. In this review we give a summary of efforts undertaken to develop oncolytic influenza A viruses. We discuss strategies for targeting viral replication to cancerous lesions and arming them with immunogenic transgenes. We furthermore describe which modes of cell death are induced by influenza A virus infection and how these insights may be utilized to optimize influenza A virus-based oncolytic virus design.
Collapse
Affiliation(s)
- Julijan Kabiljo
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Johannes Laengle
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Michael Bergmann
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
10
|
Hodgins JJ, Khan ST, Park MM, Auer RC, Ardolino M. Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Invest 2020; 129:3499-3510. [PMID: 31478911 DOI: 10.1172/jci129338] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes involved in the surveillance and elimination of cancer. As we have learned more and more about the mechanisms NK cells employ to recognize and eliminate tumor cells, and how, in turn, cancer evades NK cell responses, we have gained a clear appreciation that NK cells can be harnessed in cancer immunotherapy. Here, we review the evidence for NK cells' critical role in combating transformed and malignant cells, and how cancer immunotherapies potentiate NK cell responses for therapeutic purposes. We highlight cutting-edge immunotherapeutic strategies in preclinical and clinical development such as adoptive NK cell transfer, chimeric antigen receptor-expressing NK cells (CAR-NKs), bispecific and trispecific killer cell engagers (BiKEs and TriKEs), checkpoint blockade, and oncolytic virotherapy. Further, we describe the challenges that NK cells face (e.g., postsurgical dysfunction) that must be overcome by these therapeutic modalities to achieve cancer clearance.
Collapse
Affiliation(s)
- Jonathan J Hodgins
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, and
| | - Sarwat T Khan
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maria M Park
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, and
| | - Rebecca C Auer
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Michele Ardolino
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, and
| |
Collapse
|
11
|
Danziger O, Shai B, Sabo Y, Bacharach E, Ehrlich M. Combined genetic and epigenetic interferences with interferon signaling expose prostate cancer cells to viral infection. Oncotarget 2018; 7:52115-52134. [PMID: 27366948 PMCID: PMC5239539 DOI: 10.18632/oncotarget.10313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/13/2016] [Indexed: 12/27/2022] Open
Abstract
Interferons (IFNs) induce anti-viral programs, regulate immune responses, and exert anti-proliferative effects. To escape anti-tumorigenic effects of IFNs, malignant cells attenuate JAK/STAT signaling and expression of IFN stimulated genes (ISGs). Such attenuation may enhance the susceptibility of tumor cells to oncolytic virotherapy. Here we studied genetic and epigenetic mechanisms of interference with JAK/STAT signaling and their contribution to susceptibility of prostate cancer cells to viral infection. Bioinformatics analysis of gene-expression in cohorts of prostate cancer patients revealed genetic and epigenetic interference with the IFN program. To correlate lack of IFN signaling and susceptibility to viral infection and oncolysis; we employed LNCaP prostate cancer cells as cellular model, and the human metapneumovirus and the epizootic hemorrhagic disease virus as infectious agents. In LNCaP cells, JAK1 is silenced by bi-allelic inactivating mutations and epigenetic silencing, which also silences ISGs. Chemical inhibition of epigenetic silencing partially restored IFN-sensitivity, induced low levels of expression of selected ISGs and attenuated, but failed to block, viral infection and oncolysis. Since viral infection was not blocked by epigenetic modifiers, and these compounds may independently-induce anti-tumor effects, we propose that epigenetic modifiers and virotherapy are compatible in treatment of prostate tumors defective in JAK1 expression and IFN signaling.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ben Shai
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Sabo
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Saintas E, Abrahams L, Ahmad GT, Ajakaiye AOM, AlHumaidi ASHAM, Ashmore-Harris C, Clark I, Dura UK, Fixmer CN, Ike-Morris C, Mato Prado M, Mccullough D, Mishra S, Schöler KMU, Timur H, Williamson MDC, Alatsatianos M, Bahsoun B, Blackburn E, Hogwood CE, Lithgow PE, Rowe M, Yiangou L, Rothweiler F, Cinatl J, Zehner R, Baines AJ, Garrett MD, Gourlay CW, Griffin DK, Gullick WJ, Hargreaves E, Howard MJ, Lloyd DR, Rossman JS, Smales CM, Tsaousis AD, von der Haar T, Wass MN, Michaelis M. Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS. PLoS One 2017; 12:e0172140. [PMID: 28192521 PMCID: PMC5305101 DOI: 10.1371/journal.pone.0172140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin.
Collapse
Affiliation(s)
- Emily Saintas
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Liam Abrahams
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Gulshan T. Ahmad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | | | - Iain Clark
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Usha K. Dura
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Carine N. Fixmer
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Mireia Mato Prado
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Shishir Mishra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Husne Timur
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Basma Bahsoun
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Edith Blackburn
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Catherine E. Hogwood
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Pamela E. Lithgow
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michelle Rowe
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Lyto Yiangou
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Richard Zehner
- Institut für Rechtsmedizin, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Anthony J. Baines
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Emma Hargreaves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Mark J. Howard
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Daniel R. Lloyd
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jeremy S. Rossman
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - C. Mark Smales
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | | | | | - Mark N. Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Industrial Biotechnology Centre, University of Kent, Canterbury, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Jindra C, Huber B, Shafti-Keramat S, Wolschek M, Ferko B, Muster T, Brandt S, Kirnbauer R. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach. PLoS One 2015; 10:e0138722. [PMID: 26381401 PMCID: PMC4575162 DOI: 10.1371/journal.pone.0138722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs)-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c.) prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.
Collapse
Affiliation(s)
- Christoph Jindra
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bettina Huber
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Wolschek
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
- Bluesky Vaccines, Vienna, Austria
| | | | | | - Sabine Brandt
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
14
|
Abstract
Natural killer (NK) cells constitute a subtype of lymphocytes that initiate innate immune responses against tumors and virus-infected cells. The ability of NK cells to kill target cells or to produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. Therapies with NK cells involve activation of endogenous NK cells and/or exogenous transfer by hematopoietic stem cell transplantation/adoptive cell therapy. To exploit the diverse functional abilities of NK cells for cancer immunotherapy, it is important to understand NK cell biology and the underlying regulatory mechanisms. The state of immune suppression prevalent in malignancies creates the need for innovative therapies. Oncolytic viruses are novel anticancer agents showing selective tropism for tumor cells and lacking pathogenicity in humans, but the use of oncolytic virotherapy (OVT) presents multiple challenges. An increasing body of evidence suggests that the host immune response may critically influence the outcome of OVT. Classically, the immune system is thought to limit the efficacy of therapy through virus clearance mediated by innate immune effectors or through adaptive antiviral immune responses eliminating infected cells. Effective strategies do need to be designed in OVT to circumvent the early antiviral activity of NK cells and to augment late NK-cell-mediated antitumor responses. The intrinsic immunostimulating capacity of oncolytic viruses and the possibility of engineering them to express heterologous immunostimulatory molecules (eg, cytokines) support the use of these agents to enhance antitumor immune responses besides inducing direct oncolytic effects. OVT has indeed shown promising therapeutic outcomes in various clinical trials. Here, we review the biology of NK cells, strategies involving NK cells for achieving cancer therapy, and, more particularly, the emerging role of NK cells in OVT.
Collapse
Affiliation(s)
- Rauf Bhat
- Division of Tumor Virology, German Cancer Research Center, Heidelberg, Germany
| | - Jean Rommelaere
- Division of Tumor Virology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
15
|
Ogbomo H, Zemp FJ, Lun X, Zhang J, Stack D, Rahman MM, Mcfadden G, Mody CH, Forsyth PA. Myxoma virus infection promotes NK lysis of malignant gliomas in vitro and in vivo. PLoS One 2013; 8:e66825. [PMID: 23762498 PMCID: PMC3677932 DOI: 10.1371/journal.pone.0066825] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/12/2013] [Indexed: 11/19/2022] Open
Abstract
Myxoma virus (MYXV) is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC) I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase) and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activity. We thus hypothesized that MYXV infection of glioma cells will promote NK cell-mediated recognition and killing of gliomas. We infected human gliomas with MYXV and evaluated their susceptibility to NK cell-mediated cytotoxicity. MYXV enhanced NK cell-mediated killing of glioma cells (U87 cells, MYXV vs. Mock: 51.73% vs. 28.63%, P = .0001, t test; U251 cells, MYXV vs. Mock: 40.4% vs. 20.03%, P .0007, t test). Using MYXV M153R targeted knockout (designated vMyx-M153KO) to infect gliomas, we demonstrate that M153R was responsible for reduced expression of MHC I on gliomas and enhanced NK cell-mediated antiglioma activity (U87 cells, MYXV vs. vMyx-M153KO: 51.73% vs. 25.17%, P = .0002, t test; U251 cells, MYXV vs. vMyx-M153KO: 40.4% vs. 19.27, P = .0013, t test). Consequently, NK cell-mediated lysis of established human glioma tumors in CB-17 SCID mice was accelerated with improved mouse survival (log-rank P = .0072). These results demonstrate the potential for combining MYXV with NK cells to effectively kill malignant gliomas.
Collapse
Affiliation(s)
- Henry Ogbomo
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Departments of Microbiology and Infectious Diseases, and Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Franz J. Zemp
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Xueqing Lun
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Jiqing Zhang
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Danuta Stack
- Departments of Microbiology and Infectious Diseases, and Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Grant Mcfadden
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Christopher H. Mody
- Departments of Microbiology and Infectious Diseases, and Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter A. Forsyth
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of NeuroOncology, Moffitt Cancer Center and University of Southern Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
van Rikxoort M, Michaelis M, Wolschek M, Muster T, Egorov A, Seipelt J, Doerr HW, Cinatl J. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS One 2012; 7:e36506. [PMID: 22563505 PMCID: PMC3341362 DOI: 10.1371/journal.pone.0036506] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/02/2012] [Indexed: 11/24/2022] Open
Abstract
Oncolytic influenza A viruses with deleted NS1 gene (delNS1) replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15) coding sequence into the viral NS gene segment (delNS1-IL-15). DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1) infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected) melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.
Collapse
Affiliation(s)
- Marijke van Rikxoort
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | - Hans Wilhelm Doerr
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Prostate Cancer and Immunoproteome: Awakening and Reprogramming the Guardian Angels. Arch Immunol Ther Exp (Warsz) 2012; 60:191-8. [DOI: 10.1007/s00005-012-0169-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/07/2012] [Indexed: 12/24/2022]
|
18
|
Doerr HW, Cinatl J. Recent publications in medical microbiology and immunology: a retrospective. Med Microbiol Immunol 2012; 201:1-5. [PMID: 22033658 DOI: 10.1007/s00430-011-0219-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Indexed: 01/15/2023]
Abstract
A look back is done to some clinical and basic research activities recently published in medical microbiology and immunology. The review covers clinical experiences and in vitro experiments to understand the emergency, pathogenicity, epidemic spread, and vaccine-based prevention of avian and swine-origin flu. Some new developments and concepts in diagnosis, (molecular) epidemiology, and therapy of AIDS, viral hepatitis C, and herpesvirus-associated diseases are outlined. Regulation of immune system has been discussed in a special issue 2010 including some aspects of CNS affections (measles). Mycobacterial infection and its prevention by modern recombinant vaccines have reached new interest, as well as new concepts of vaccination and prophylaxis against several other bacteria. Adaptation to host niches enables immune escape (example brucella) and determines virulence (example N. meningitidis). Chlamydia pneumoniae, previously considered to trigger atherosclerosis, is hypothetically associated to Alzheimer disease, while CMV, another putative trigger of atherosclerosis, gains evidence of oncomodulation in CNS tumor diseases. In terms of globalization, exotic virus infections are increasingly imported from southern countries.
Collapse
Affiliation(s)
- H W Doerr
- Institute of Medical Virology, University Hospital of Frankfurt/M., Frankfurt/Main, Germany.
| | | |
Collapse
|
19
|
Deciphering the Multifaceted Relationship between Oncolytic Viruses and Natural Killer Cells. Adv Virol 2011; 2012:702839. [PMID: 22312364 PMCID: PMC3263705 DOI: 10.1155/2012/702839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/14/2011] [Indexed: 12/23/2022] Open
Abstract
Despite active research in virotherapy, this apparently safe modality has not achieved widespread success. The immune response to viral infection appears to be an essential factor that determines the efficacy of oncolytic viral therapy. The challenge is determining whether the viral-elicited immune response is a hindrance or a tool for viral treatment. NK cells are a key component of innate immunity that mediates antiviral immunity while also coordinating tumor clearance. Various reports have suggested that the NK response to oncolytic viral therapy is a critical factor in premature viral clearance while also mediating downstream antitumor immunity. As a result, particular attention should be given to the NK cell response to various oncolytic viral vectors and how their antiviral properties can be suppressed while maintaining tumor clearance. In this review we discuss the current literature on the NK response to oncolytic viral infection and how future studies clarify this intricate response.
Collapse
|
20
|
Ogbomo H, Cinatl J, Mody CH, Forsyth PA. Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy. Trends Mol Med 2011; 17:433-41. [DOI: 10.1016/j.molmed.2011.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 12/23/2022]
|
21
|
Activation of cytotoxic and regulatory functions of NK cells by Sindbis viral vectors. PLoS One 2011; 6:e20598. [PMID: 21674047 PMCID: PMC3107224 DOI: 10.1371/journal.pone.0020598] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/05/2011] [Indexed: 01/19/2023] Open
Abstract
Oncolytic viruses (OVs) represent a relatively novel anti-cancer modality. Like other new cancer treatments, effective OV therapy will likely require combination with conventional treatments. In order to design combinatorial treatments that work well together, a greater scrutiny of the mechanisms behind the individual treatments is needed. Sindbis virus (SV) based vectors have previously been shown to target and kill tumors in xenograft, syngeneic, and spontaneous mouse models. However, the effect of SV treatment on the immune system has not yet been studied. Here we used a variety of methods, including FACS analysis, cytotoxicity assays, cell depletion, imaging of tumor growth, cytokine blockade, and survival experiments, to study how SV therapy affects Natural Killer (NK) cell function in SCID mice bearing human ovarian carcinoma tumors. Surprisingly, we found that SV anti-cancer efficacy is largely NK cell-dependent. Furthermore, the enhanced therapeutic effect previously observed from Sin/IL12 vectors, which carry the gene for interleukin 12, is also NK cell dependent, but works through a separate IFNγ-dependent mechanism, which also induces the activation of peritoneal macrophages. These results demonstrate the multimodular nature of SV therapy, and open up new possibilities for potential synergistic or additive combinatorial therapies with other treatments.
Collapse
|