1
|
Liew KY, Chee HY, Abas F, Leong SW, Harith HH, Israf DA, Sulaiman MR, Tham CL. A synthetic curcumin-like diarylpentanoid analog inhibits rhinovirus infection in H1 hela cells via multiple antiviral mechanisms. Daru 2024; 32:729-744. [PMID: 39395148 PMCID: PMC11554966 DOI: 10.1007/s40199-024-00542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/19/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Rhinovirus (RV) infection is a major cause of common colds and asthma exacerbations, with no antiviral drug available. Curcumin exhibits broad-spectrum antiviral activities, but its therapeutic effect is limited by a poor pharmacokinetics profile. Curcumin-like diarylpentanoid analogs, particularly 2-benzoyl-6-(3,4-dihydroxybenzylidene)cyclohexen-1-ol (BDHBC) and 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), have better solubility and stability compared to curcumin. OBJECTIVES Therefore, this study aims to evaluate and compare the antiviral effects of curcumin, BDHBC, and DHHPD in an in vitro model of RV infection. METHODS The inhibitory effects on RV-16 infection in H1 HeLa cells were assessed using cytopathic effect (CPE) reduction assay, virus yield reduction assay, RT-qPCR, and Western blot. Antiviral effects in different modes of treatment (pre-, co-, and post-treatment) were also compared. Additionally, intercellular adhesion molecule 1 (ICAM-1) expression, RV binding, and infectivity were measured with Western blot, flow cytometry, and virucidal assay, respectively. RESULTS When used as a post-treatment, BDHBC (EC50: 4.19 µM; SI: 8.32) demonstrated stronger antiviral potential on RV-16 compared to DHHPD (EC50: 18.24 µM; SI: 1.82) and curcumin (less than 50% inhibition). BDHBC also showed the strongest inhibitory effect on RV-induced CPE, virus yield, vRNA, and viral proteins (P1, VP0, and VP2). Furthermore, BDHBC pre-treatment has a prophylactic effect against RV infection, which was attributed to reduced basal expression of ICAM-1. However, it did not affect virus binding, but exerted virucidal activity on RV-16, contributing to its antiviral effect during co-treatment. CONCLUSION BDHBC exhibits multiple antiviral mechanisms against RV infection and thus could be a potential antiviral agent for RV.
Collapse
Affiliation(s)
- Kong Yen Liew
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui-Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sze Wei Leong
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Goh VSL, Ang CCW, Low SL, Lee PX, Setoh YX, Wong JCC. Evaluation of three alternative methods to the plaque reduction neutralizing assay for measuring neutralizing antibodies to dengue virus serotype 2. Virol J 2024; 21:208. [PMID: 39227969 PMCID: PMC11373480 DOI: 10.1186/s12985-024-02459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Dengue is a global public health challenge which requires accurate diagnostic methods for surveillance and control. The gold standard for detecting dengue neutralizing antibodies (nAbs) is the plaque reduction neutralization test (PRNT), which is both labor-intensive and time-consuming. This study aims to evaluate three alternative approaches, namely, the MTT-based (or (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) microneutralization assay, the xCELLigence real-time cell analysis (RTCA), and the immuno-plaque assay-focus reduction neutralization test (iPA-FRNT). METHODS Twenty-two residual serum samples were tested for DENV-2 nAbs using all four assays at three neutralization endpoints of 50%, 70% and 90% inhibition in virus growth. For each neutralization endpoint, results were compared using linear regression and correlation analyses. Test performance characteristics were further obtained for iPA-FRNT using 38 additional serum samples. RESULTS Positive correlation of DENV-2 neutralization titers for the MTT-based microneutralization assay and the PRNT assay was only observed at the neutralization endpoint of 50% (r = 0.690). In contrast, at all three neutralization end points, a linear trend and positive correlation of DENV-2 neutralization titers for the xCELLigence RTCA and the PRNT assays were observed, yielding strong or very strong correlation (r = 0.829 to 0.967). This was similarly observed for the iPA-FRNT assay (r = 0.821 to 0.916), which also offered the added advantage of measuring neutralizing titers to non-plaque forming viruses. CONCLUSION The xCELLigence RTCA and iPA-FRNT assays could serve as suitable alternatives to PRNT for dengue serological testing. The decision to adopt these methods may depend on the laboratory setting, and the utility of additional applications offered by these technologies.
Collapse
Affiliation(s)
- Vanessa Shi Li Goh
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
| | - Christopher Chong Wei Ang
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
| | - Swee Ling Low
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
| | - Pei Xuan Lee
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
| | - Yin Xiang Setoh
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
- Infectious Diseases Translational Research Programme (ID TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Judith Chui Ching Wong
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore.
| |
Collapse
|
3
|
Oeyen M, Meyen E, Doijen J, Schols D. In-Depth Characterization of Zika Virus Inhibitors Using Cell-Based Electrical Impedance. Microbiol Spectr 2022; 10:e0049122. [PMID: 35862960 PMCID: PMC9431523 DOI: 10.1128/spectrum.00491-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we use electric cell-substrate impedance sensing (ECIS), an established cell-based electrical impedance (CEI) technology, to decipher the kinetic cytopathic effect (CPE) induced by Zika virus (ZIKV) in susceptible human A549 lung epithelial cells and to evaluate several classes of compounds with reported antiviral activity (two entry inhibitors and two replication inhibitors). To validate the assay, we compare the results with those obtained with more traditional in vitro methods based on cell viability and viral yield readouts. We demonstrate that CEI can detect viral infection in a sensitive manner and can be used to determine antiviral potency. Moreover, CEI has multiple benefits compared to conventional assays: the technique is less laborious and better at visualizing the dynamic antiviral activity profile of the compounds, while also it has the ability to determine interesting time points that can be selected as endpoints in assays without continuous readout. We describe several parameters to characterize the compounds' cytotoxicity and their antiviral activity profile. In addition, the CEI patterns provide valuable additional information about the presumed mechanism of action of these compounds. Finally, as a proof of concept, we used CEI to evaluate the antiviral activity of a small series of compounds, for which we demonstrate that the sulfonated polymer PRO2000 inhibits ZIKV with a response profile representative for a viral entry inhibitor. Overall, we demonstrate for the first time that CEI is a powerful technology to evaluate and characterize compounds against ZIKV replication in a real-time, label-free, and noninvasive manner. IMPORTANCE Zika virus can cause serious disease in humans. Unfortunately, no antiviral drugs are available to treat infection. Here, we use an impedance-based method to continuously monitor virus infection in-and damage to-human cells. We can determine the Zika viral dose with this technique and also evaluate whether antiviral compounds protect the cells from damage caused by virus replication. We also show that this technique can be used to further unravel the characteristics of these compounds, such as their toxicity to the cells, and that it might even give further insight in their mechanism of antiviral action. Finally, we also find a novel Zika virus inhibitor, PRO2000. Overall, in this study, we use the impedance technology to-for the first time-evaluate compounds with anti-Zika virus properties, and therefore it can add valuable information in the further search for antiviral drugs.
Collapse
Affiliation(s)
- Merel Oeyen
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Eef Meyen
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Jordi Doijen
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dominique Schols
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
4
|
Harms M, von Maltitz P, Groß R, Mayer B, Deniz M, Müller J, Münch J. Utilization of Aminoguanidine Prevents Cytotoxic Effects of Semen. Int J Mol Sci 2022; 23:ijms23158563. [PMID: 35955696 PMCID: PMC9369337 DOI: 10.3390/ijms23158563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Studies of human semen in cell or tissue culture are hampered by the high cytotoxic activity of this body fluid. The components responsible for the cell damaging activity of semen are amine oxidases, which convert abundant polyamines, such as spermine or spermidine in seminal plasma into toxic intermediates. Amine oxidases are naturally present at low concentrations in seminal plasma and at high concentrations in fetal calf serum, a commonly used cell culture supplement. Here, we show that, in the presence of fetal calf serum, seminal plasma, as well as the polyamines spermine and spermidine, are highly cytotoxic to immortalized cells, primary blood mononuclear cells, and vaginal tissue. Thus, experiments investigating the effect of polyamines and seminal plasma on cellular functions should be performed with great caution, considering the confounding cytotoxic effects. The addition of the amine oxidase inhibitor aminoguanidine to fetal calf serum and/or the utilization of serum-free medium greatly reduced this serum-induced cytotoxicity of polyamines and seminal plasma in cell lines, primary cells, and tissues and, thus, should be implemented in all future studies analyzing the role of polyamines and semen on cellular functions.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
| | - Pascal von Maltitz
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
| | - Rüdiger Groß
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany;
| | - Miriam Deniz
- Department of Gynecology and Obstetrics, Ulm University Hospital, 89075 Ulm, Germany;
| | - Janis Müller
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
| | - Jan Münch
- Institute of Molecular Virology, University Ulm Medical Center, 89081 Ulm, Germany; (M.H.); (P.v.M.); (R.G.); (J.M.)
- Correspondence:
| |
Collapse
|
5
|
Weil T, Lawrenz J, Seidel A, Münch J, Müller JA. Immunodetection assays for the quantification of seasonal common cold coronaviruses OC43, NL63, or 229E infection confirm nirmatrelvir as broad coronavirus inhibitor. Antiviral Res 2022; 203:105343. [PMID: 35598779 PMCID: PMC9119192 DOI: 10.1016/j.antiviral.2022.105343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023]
Abstract
Besides pandemic SARS-CoV-2, also endemic seasonal human common cold coronaviruses (hCoVs) have a significant impact on human health and economy. Studies on hCoVs and the identification of antivirals are therefore crucial to improve human well-being. However, hCoVs have long been neglected and the methodology to study virus infection, replication and inhibition warrants being updated. We here evaluated the established plaque-based assays to determine viral titers and cell-to-cell spread and developed protocols for the immunodetection of the viral nucleocapsid protein by flow cytometry and in-cell ELISA to study infection rates at early time points. The developed protocols allow detection of hCoV-229E infection after 2, and hCoV-NL63 and -OC43 infection after 3 days at a single cell level or in a 96 well microtiter format, in large sample numbers without being laborious or expensive. Both assays can be applied to assess the susceptibility of cells to hCoV infection and replication, and to determine the efficacy of antiviral compounds as well as neutralizing antibodies in a sensitive and quantitative manner. Application revealed that clinically applied SARS-CoV-2 targeting monoclonal antibodies are inactive against hCoVs, but that the viral polymerase targeting antivirals remdesivir and molnupiravir are broadly active also against all three hCoVs. Further, the in-cell ELISA provided evidence that nirmatrelvir, previously shown to broadly inhibit coronavirus proteases, also prevents replication of authentic hCoVs. Importantly, the protocols described here can be easily adapted to other coronavirus strains and species as well as viruses of other families within a short time. This will facilitate future research on known and emerging (corona)viruses, support the identification of antivirals and increase the preparedness for future virus outbreaks.
Collapse
Affiliation(s)
- Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Institute of Virology, Philipps University of Marburg, 35043, Marburg, Germany.
| |
Collapse
|
6
|
Rasulova M, Vercruysse T, Paulissen J, Coun C, Suin V, Heyndrickx L, Ma J, Geerts K, Timmermans J, Mishra N, Li LH, Kum DB, Coelmont L, Van Gucht S, Karimzadeh H, Thorn-Seshold J, Rothenfußer S, Ariën KK, Neyts J, Dallmeier K, Thibaut HJ. A High-Throughput Yellow Fever Neutralization Assay. Microbiol Spectr 2022; 10:e0254821. [PMID: 35670599 PMCID: PMC9241659 DOI: 10.1128/spectrum.02548-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
Quick and accurate detection of neutralizing antibodies (nAbs) against yellow fever is essential in serodiagnosis during outbreaks for surveillance and to evaluate vaccine efficacy in population-wide studies. All of this requires serological assays that can process a large number of samples in a highly standardized format. Albeit being laborious, time-consuming, and limited in throughput, the classical plaque reduction neutralization test (PRNT) is still considered the gold standard for the detection and quantification of nAbs due to its sensitivity and specificity. Here, we report the development of an alternative fluorescence-based serological assay (SNTFLUO) with an equally high sensitivity and specificity that is fit for high-throughput testing with the potential for automation. Finally, our novel SNTFLUO was cross-validated in several reference laboratories and against international WHO standards, showing its potential to be implemented in clinical use. SNTFLUO assays with similar performance are available for the Japanese encephalitis, Zika, and dengue viruses amenable to differential diagnostics. IMPORTANCE Fast and accurate detection of neutralizing antibodies (nAbs) against yellow fever virus (YFV) is key in yellow fever serodiagnosis, outbreak surveillance, and monitoring of vaccine efficacy. Although classical PRNT remains the gold standard for measuring YFV nAbs, this methodology suffers from inherent limitations such as low throughput and overall high labor intensity. We present a novel fluorescence-based serum neutralization test (SNTFLUO) with equally high sensitivity and specificity that is fit for processing a large number of samples in a highly standardized manner and has the potential to be implemented for clinical use. In addition, we present SNTFLUO assays with similar performance for Japanese encephalitis, Zika, and dengue viruses, opening new avenues for differential diagnostics.
Collapse
Affiliation(s)
- Madina Rasulova
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Jasmine Paulissen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Catherina Coun
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Vanessa Suin
- Sciensano, Viral Diseases Service, Scientific Directorate of Infectious Diseases in Humans, Brussels, Belgium
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Katrien Geerts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Jolien Timmermans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Li-Hsin Li
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Dieudonné Buh Kum
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Steven Van Gucht
- Sciensano, Viral Diseases Service, Scientific Directorate of Infectious Diseases in Humans, Brussels, Belgium
| | - Hadi Karimzadeh
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany
- Unit Clinical Pharmacology (EKliP), Helmholtz Center for Environmental Health, Munich, Germany
| | - Julia Thorn-Seshold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany
- Unit Clinical Pharmacology (EKliP), Helmholtz Center for Environmental Health, Munich, Germany
| | - Simon Rothenfußer
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany
- Unit Clinical Pharmacology (EKliP), Helmholtz Center for Environmental Health, Munich, Germany
| | - Kevin K. Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology and Chemotherapy, Molecular Vaccinology & Vaccine Discovery, Leuven, Belgium
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| |
Collapse
|
7
|
Drug-Screening Strategies for Inhibition of Virus-Induced Neuronal Cell Death. Viruses 2021; 13:v13112317. [PMID: 34835123 PMCID: PMC8619239 DOI: 10.3390/v13112317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
A number of viruses, including Herpes Simplex Virus (HSV), West Nile Virus (WNV), La Crosse Virus (LACV), Zika virus (ZIKV) and Tick-borne encephalitis virus (TBEV), have the ability to gain access to the central nervous system (CNS) and cause severe neurological disease or death. Although encephalitis cases caused by these viruses are generally rare, there are relatively few treatment options available for patients with viral encephalitis other than palliative care. Many of these viruses directly infect neurons and can cause neuronal death. Thus, there is the need for the identification of useful therapeutic compounds that can inhibit virus replication in neurons or inhibit virus-induced neuronal cell death. In this paper, we describe the methodology to test compounds for their ability to inhibit virus-induced neuronal cell death. These protocols include the isolation and culturing of primary neurons; the culturing of neuroblastoma and neuronal stem cell lines; infection of these cells with viruses; treatment of these cells with selected drugs; measuring virus-induced cell death using MTT or XTT reagents; analysis of virus production from these cells; as well as the basic understanding in mode of action. We further show direct evidence of the effectiveness of these protocols by utilizing them to test the effectiveness of the polyphenol drug, Rottlerin, at inhibiting Zika virus infection and death of neuronal cell lines.
Collapse
|
8
|
Loeffler FF, Viana IFT, Fischer N, Coêlho DF, Silva CS, Purificação AF, Araújo CMCS, Leite BHS, Durães-Carvalho R, Magalhães T, Morais CNL, Cordeiro MT, Lins RD, Marques ETA, Jaenisch T. Identification of a Zika NS2B epitope as a biomarker for severe clinical phenotypes. RSC Med Chem 2021; 12:1525-1539. [PMID: 34671736 DOI: 10.1039/d1md00124h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
The identification of specific biomarkers for Zika infection and its clinical complications is fundamental to mitigate the infection spread, which has been associated with a broad range of neurological sequelae. We present the characterization of antibody responses in serum samples from individuals infected with Zika, presenting non-severe (classical) and severe (neurological disease) phenotypes, with high-density peptide arrays comprising the Zika NS1 and NS2B proteins. The data pinpoints one strongly IgG-targeted NS2B epitope in non-severe infections, which is absent in Zika patients, where infection progressed to the severe phenotype. This differential IgG profile between the studied groups was confirmed by multivariate data analysis. Molecular dynamics simulations and circular dichroism have shown that the peptide in solution presents itself in a sub-optimal conformation for antibody recognition, which led us to computationally engineer an artificial protein able to stabilize the NS2B epitope structure. The engineered protein was used to interrogate paired samples from mothers and their babies presenting Zika-associated microcephaly and confirmed the absence of NS2B IgG response in those samples. These findings suggest that the assessment of antibody responses to the herein identified NS2B epitope is a strong candidate biomarker for the diagnosis and prognosis of Zika-associated neurological disease.
Collapse
Affiliation(s)
- Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems Potsdam Germany
| | - Isabelle F T Viana
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Nico Fischer
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital Germany
| | - Danilo F Coêlho
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil.,Department of Fundamental Chemistry, Federal University of Pernambuco Recife PE Brazil
| | - Carolina S Silva
- Department of Chemical Engineering, Federal University of Pernambuco Recife PE Brazil
| | - Antônio F Purificação
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Catarina M C S Araújo
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Bruno H S Leite
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | | | - Tereza Magalhães
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Clarice N L Morais
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Marli T Cordeiro
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Roberto D Lins
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil
| | - Ernesto T A Marques
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation Recife PE Brazil.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Pittsburgh PA USA
| | - Thomas Jaenisch
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital Germany .,German Centre for Infection Research (DZIF) Heidelberg Site Heidelberg Germany
| |
Collapse
|
9
|
Zhang X, Li G, Chen G, Zhu N, Wu D, Wu Y, James TD. Recent progresses and remaining challenges for the detection of Zika virus. Med Res Rev 2021; 41:2039-2108. [PMID: 33559917 DOI: 10.1002/med.21786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) has emerged as a particularly notorious mosquito-borne flavivirus, which can lead to a devastating congenital syndrome in the fetuses of pregnant mothers (e.g., microcephaly, spasticity, craniofacial disproportion, miscarriage, and ocular abnormalities) and cause the autoimmune disorder Guillain-Barre' syndrome of adults. Due to its severity and rapid dispersal over several continents, ZIKV has been acknowledged to be a global health concern by the World Health Organization. Unfortunately, the ZIKV has recently resurged in India with the potential for devastating effects. Researchers from all around the world have worked tirelessly to develop effective detection strategies and vaccines for the prevention and control of ZIKV infection. In this review, we comprehensively summarize the most recent research into ZIKV, including the structural biology and evolution, historical overview, pathogenesis, symptoms, and transmission. We then focus on the detection strategies for ZIKV, including viral isolation, serological assays, molecular assays, sensing methods, reverse transcription loop mediated isothermal amplification, transcription-mediated amplification technology, reverse transcription strand invasion based amplification, bioplasmonic paper-based device, and reverse transcription isothermal recombinase polymerase amplification. To conclude, we examine the limitations of currently available strategies for the detection of ZIKV, and outline future opportunities and research challenges.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guang Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Niu Zhu
- Department of Public Health, Xi'an Medical University, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
10
|
Aligholipour Farzani T, Bilge Dagalp S, Ozkul A, Gurdal H, Dogan F, Alkan F. Assessment of replication of bovine herpesvirus type 4 in human glioblastoma and breast cancer cells as a potential oncolytic virus. Virus Genes 2020; 57:31-39. [PMID: 33104955 DOI: 10.1007/s11262-020-01802-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022]
Abstract
Oncolytic viruses have been extensively used in cancer treatment due to their tropism, selective replication only in tumor cells, and possible synergic interaction with other therapeutics. Different researchers have demonstrated that bovine herpesvirus 4 (BoHV-4), a member of the gammaherpesviridae family, has oncolytic potential in some human-origin cancer cell lines like glioma through the selective replication strategy. Using four apoptosis detection methods, namely MTT, LDH, TUNEL, and Annexin V assays, we evaluated the apoptotic effect of BoHV-4 Movar33/63 reference strain along with a recombinant BoHV-4 expressing EGFP in U87 MG cells (human glioblastoma cell line), MDA MB-231 (human breast cancer cell line), and MCF10a (non-tumorigenic human mammary epithelial cell line). Our findings indicate that this virus can replicate and induce apoptosis in these cell lines and hinder in vitro proliferation in a dose-dependent manner. In conclusion, BoHV-4 has in vitro potential as a novel oncolytic virus in human cancer therapy. However, its replication potential in the MCF10a cells as a non-tumorigenic human mammary epithelial cell line is a concern in using this virus in cancer therapy, at least against human mammary tumors. Further studies must therefore be conducted to examine the specific apoptotic pathways induced by this virus to move on to further experiments.
Collapse
Affiliation(s)
- Touraj Aligholipour Farzani
- Division of Infectious Diseases and International Medicine (IDIM), University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Seval Bilge Dagalp
- Virology Department, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| | - Aykut Ozkul
- Virology Department, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Hakan Gurdal
- Pharmacology Department, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Firat Dogan
- Virology Department, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Feray Alkan
- Virology Department, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Conzelmann C, Gilg A, Groß R, Schütz D, Preising N, Ständker L, Jahrsdörfer B, Schrezenmeier H, Sparrer KM, Stamminger T, Stenger S, Münch J, Müller JA. An enzyme-based immunodetection assay to quantify SARS-CoV-2 infection. Antiviral Res 2020; 181:104882. [PMID: 32738255 PMCID: PMC7388004 DOI: 10.1016/j.antiviral.2020.104882] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 01/07/2023]
Abstract
SARS-CoV-2 is a novel pandemic coronavirus that caused a global health and economic crisis. The development of efficient drugs and vaccines against COVID-19 requires detailed knowledge about SARS-CoV-2 biology. Several techniques to detect SARS-CoV-2 infection have been established, mainly based on counting infected cells by staining plaques or foci, or by quantifying the viral genome by PCR. These methods are laborious, time-consuming and expensive and therefore not suitable for a high sample throughput or rapid diagnostics. We here report a novel enzyme-based immunodetection assay that directly quantifies the amount of de novo synthesized viral spike protein within fixed and permeabilized cells. This in-cell ELISA enables a rapid and quantitative detection of SARS-CoV-2 infection in microtiter format, regardless of the virus isolate or target cell culture. It follows the established method of performing ELISA assays and does not require expensive instrumentation. Utilization of the in-cell ELISA allows to e.g. determine TCID50 of virus stocks, antiviral efficiencies (IC50 values) of drugs or neutralizing activity of sera. Thus, the in-cell spike ELISA represents a promising alternative to study SARS-CoV-2 infection and inhibition and may facilitate future research.
Collapse
Affiliation(s)
- Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Andrea Gilg
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University, 89081, Ulm, Germany,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen and University Hospital Ulm, 89081, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University, 89081, Ulm, Germany,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen and University Hospital Ulm, 89081, Ulm, Germany
| | | | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany,Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A. Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany,Corresponding author
| |
Collapse
|
12
|
Lee EM, Titus SA, Xu M, Tang H, Zheng W. High-Throughput Zika Viral Titer Assay for Rapid Screening of Antiviral Drugs. Assay Drug Dev Technol 2020; 17:128-139. [PMID: 30958701 DOI: 10.1089/adt.2018.881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zika virus has recently emerged as a worldwide pathogen and public health burden due to its rapid spread and identification as a causative agent for multiple neurological defects, including congenital microcephaly. While there has been a flurry of recent research to address this emerging pathogen, there are currently no approved drug treatments for ZIKV infection. The gold standard for testing antiviral activity is to quantify infectious virion production. However, current infectious viral production assays, such as the plaque-forming or focus-forming unit assay, are tedious and labor intensive with a low-screening throughput. To facilitate drug development, we developed a Zika viral titration assay using an automated imaging system and an image analysis algorithm for viral colony quantification. This assay retained the principle of the classical virus titer assay, while improving workflow and offering higher screening throughput. In addition, this assay can be broadly adapted to quantification of other viruses.
Collapse
Affiliation(s)
- Emily M Lee
- 1 Department of Biological Science, Florida State University, Tallahassee, Florida.,2 National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Steven A Titus
- 2 National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Miao Xu
- 2 National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Hengli Tang
- 1 Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Wei Zheng
- 2 National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Lynch CA, Foguel MV, Reed AJ, Balcarcel AM, Calvo-Marzal P, Gerasimova YV, Chumbimuni-Torres KY. Selective Determination of Isothermally Amplified Zika Virus RNA Using a Universal DNA-Hairpin Probe in Less than 1 Hour. Anal Chem 2019; 91:13458-13464. [DOI: 10.1021/acs.analchem.9b02455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Charles A. Lynch
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
- Rose Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, Indiana 47803, United States
| | - Marcos V. Foguel
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Adam J. Reed
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Angelica M. Balcarcel
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Percy Calvo-Marzal
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Yulia V. Gerasimova
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Karin Y. Chumbimuni-Torres
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| |
Collapse
|
15
|
Liu H, Zhou W, Liao H, Hu Z, Zou M, Liu S. [A non-coated enzyme-linked immunosorbent assay for screening zika virus envelope protein]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:699-704. [PMID: 31270049 DOI: 10.12122/j.issn.1673-4254.2019.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To establish a non-coated enzyme-linked immunosorbent assay (ELISA) based on zika virus envelope (E) protein for detecting the expression of E protein in infected cells. METHODS Adherent Vero-143 cells infected with zika virus in a 96-well plate were fixed, and the antibodies against zika virus E protein were added at an optimized concentration to establish the non-coated ELISA method for E protein. The antiviral activities of lignans compound C1 was evaluated using this method. The accuracy of this non-coated ELISA was verified by RT-PCR, and the cross reaction with dengue virus was assessed. RESULTS After optimization, the background absorbance at 450 nm of uninfected cells was reduced to about 0.20. The antiviral activities of lignans compound C1 detected by this method were basically consistent with the results of RT-PCR. No cross reaction with dengue virus was found in this assay. CONCLUSIONS A non- coated ELISA method based on zika virus E protein was established, which can be used for screening antiviral agents against zika virus.
Collapse
Affiliation(s)
- Hongmiao Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Lab of Drug Screening, Guangzhou Key Lab of Drug Research for Emerging Virus Prevention and Treatment, Guangzhou 510515, China
| | - Weifeng Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Lab of Drug Screening, Guangzhou Key Lab of Drug Research for Emerging Virus Prevention and Treatment, Guangzhou 510515, China
| | - Hui Liao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Lab of Drug Screening, Guangzhou Key Lab of Drug Research for Emerging Virus Prevention and Treatment, Guangzhou 510515, China
| | - Zhengyang Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Lab of Drug Screening, Guangzhou Key Lab of Drug Research for Emerging Virus Prevention and Treatment, Guangzhou 510515, China
| | - Min Zou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Lab of Drug Screening, Guangzhou Key Lab of Drug Research for Emerging Virus Prevention and Treatment, Guangzhou 510515, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Lab of Drug Screening, Guangzhou Key Lab of Drug Research for Emerging Virus Prevention and Treatment, Guangzhou 510515, China
| |
Collapse
|
16
|
A novel microfluidic chip and antibody-aptamer based multianalysis method for simultaneous determination of several tumor markers with polymerization nicking reactions for homogenous signal amplification. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Nurtop E, Villarroel PMS, Pastorino B, Ninove L, Drexler JF, Roca Y, Gake B, Dubot-Peres A, Grard G, Peyrefitte C, Priet S, de Lamballerie X, Gallian P. Combination of ELISA screening and seroneutralisation tests to expedite Zika virus seroprevalence studies. Virol J 2018; 15:192. [PMID: 30587193 PMCID: PMC6307276 DOI: 10.1186/s12985-018-1105-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Here we propose a strategy allowing implementing efficient and practicable large-scale seroepidemiological studies for Zika Virus (ZIKV). It combines screening by a commercial NS1 protein-based Zika IgG ELISA, and confirmation by a cytopathic effect-based virus neutralization test (CPE-based VNT). In post-epidemic samples from Martinique Island blood donors (a population with a dengue seroprevalence above 90%), this strategy allowed reaching specificity and sensitivity values over 98%. The CPE-based VNT consists of recording CPE directly under the optical microscope, which is easy to identify with ZIKV strain H/PF/2013 at day 5 pi. Overall, considered that CPE-based VNT is cost effective and widely automatable, the NS1 protein-based Zika IgG ELISA+CPE-based VNT combination strategy represents a convenient tool to expedite ZIKV seroprevalence studies.
Collapse
Affiliation(s)
- Elif Nurtop
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
| | - Paola Mariela Saba Villarroel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
- Virología II, Centro Nacional de Enfermedades Tropicales (CENETROP), Santa Cruz de la Sierra, Bolivia
| | - Boris Pastorino
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
| | - Laetitia Ninove
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
| | - Jan-Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yelin Roca
- Virología II, Centro Nacional de Enfermedades Tropicales (CENETROP), Santa Cruz de la Sierra, Bolivia
| | - Bouba Gake
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
- Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Audrey Dubot-Peres
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
- National Reference Centre for Arboviruses, French Armed Forces Biomedical Research Institute, Marseille, France
| | - Christophe Peyrefitte
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
- National Reference Centre for Arboviruses, French Armed Forces Biomedical Research Institute, Marseille, France
| | - Stéphane Priet
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
| | - Pierre Gallian
- Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France
- Laboratoire de Virologie, Établissement Français du Sang Alpes Méditerranée (EFS), Marseille, France
| |
Collapse
|
18
|
Alves MP, Vielle NJ, Thiel V, Pfaender S. Research Models and Tools for the Identification of Antivirals and Therapeutics against Zika Virus Infection. Viruses 2018; 10:v10110593. [PMID: 30380760 PMCID: PMC6265910 DOI: 10.3390/v10110593] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zika virus recently re-emerged and caused global outbreaks mainly in Central Africa, Southeast Asia, the Pacific Islands and in Central and South America. Even though there is a declining trend, the virus continues to spread throughout different geographical regions of the world. Since its re-emergence in 2015, massive advances have been made regarding our understanding of clinical manifestations, epidemiology, genetic diversity, genomic structure and potential therapeutic intervention strategies. Nevertheless, treatment remains a challenge as there is no licensed effective therapy available. This review focuses on the recent advances regarding research models, as well as available experimental tools that can be used for the identification and characterization of potential antiviral targets and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Marco P Alves
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Nathalie J Vielle
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Stephanie Pfaender
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
19
|
Sin SH, Eason AB, Bigi R, Kim Y, Kang S, Tan K, Seltzer TA, Venkataramanan R, An H, Dittmer DP. Kaposi's Sarcoma-Associated Herpesvirus Latency Locus Renders B Cells Hyperresponsive to Secondary Infections. J Virol 2018; 92:e01138-18. [PMID: 30021906 PMCID: PMC6146794 DOI: 10.1128/jvi.01138-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/28/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) induces B cell hyperplasia and neoplasia, such as multicentric Castleman's disease (MCD) and primary effusion lymphoma (PEL). To explore KSHV-induced B cell reprogramming in vivo, we expressed the KSHV latency locus, inclusive of all viral microRNAs (miRNAs), in B cells of transgenic mice in the absence of the inhibitory FcγRIIB receptor. The BALB/c strain was chosen as this is the preferred model to study B cell differentiation. The mice developed hyperglobulinemia, plasmacytosis, and B lymphoid hyperplasia. This phenotype was ameliorated by everolimus, which is a rapamycin derivative used for the treatment of mantle cell lymphoma. KSHV latency mice exhibited hyperresponsiveness to the T-dependent (TD) antigen mimic anti-CD40 and increased incidence of pristane-induced inflammation. Lastly, the adaptive immunity against a secondary infection with Zika virus (ZIKV) was markedly enhanced. These phenotypes are consistent with KSHV lowering the activation threshold of latently infected B cells, which may be beneficial in areas of endemicity, where KSHV is acquired in childhood and infections are common.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latency in B cells and is stringently linked to primary effusion lymphoma (PEL) and the premalignant B cell hyperplasia multicentric Castleman's disease (MCD). To investigate potential genetic background effects, we expressed the KSHV miRNAs in BALB/c transgenic mice. BALB/c mice are the preferred strain for B cell hybridoma development because of their propensity to develop predictable B cell responses to antigen. The BALB/c latency mice exhibited a higher incidence of B cell hyperplasia as well as sustained hyperglobulinemia. The development of neutralizing antibodies against ZIKV was augmented in BALB/c latency mice. Hyperglobulinemia was dampened by everolimus, a derivative of rapamycin, suggesting a role for mTOR inhibitors in managing immune activation, which is hallmark of KSHV infection as well as HIV infection.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/virology
- Cell Differentiation/drug effects
- Coinfection
- Disease Resistance/genetics
- Everolimus/pharmacology
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Humans
- Hypergammaglobulinemia/genetics
- Hypergammaglobulinemia/immunology
- Hypergammaglobulinemia/virology
- Immunosuppressive Agents/pharmacology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/immunology
- Plasmacytoma/genetics
- Plasmacytoma/immunology
- Plasmacytoma/virology
- RNA, Viral/genetics
- RNA, Viral/immunology
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- Terpenes/pharmacology
- Virus Latency
- Zika Virus/drug effects
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus Infection/genetics
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony B Eason
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachele Bigi
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - SunAh Kang
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kelly Tan
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tischan A Seltzer
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hyowon An
- Department of Statistics & Operations Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Quintana ME, Barone L, Forlenza MB, Trotta MV, Turco C, Mansilla FC, Cardoso NP, Capozzo AV. A direct high-throughput in Cell-ELISA for measuring infectivity of cytopathic and non-cytopathic bovine viral diarrhoea virus strains applied to the assessment of antiviral activity. J Virol Methods 2018; 260:75-81. [PMID: 30031751 DOI: 10.1016/j.jviromet.2018.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023]
Abstract
Low-cost high-throughput methods applicable to any virus strain are required for screening antiviral compounds against multiple field strains. Colorimetric cell-viability assays are used for this purpose as long as the viruses are cytopathic (CP) in cell culture. However, bovine viral diarrhoea virus (BVDV) strains circulating in the field are mostly non-cytopathic (NCP). An In Cell-ELISA aimed to measure viral infectivity by detecting a conserved protein produced during viral replication (non-structural protein 3, "NS3") was developed. The ELISA is performed without harvesting the cells, directly on the 96-wells culture plate. NS3 In Cell-ELISA was tested for its ability to assess BVDV-specific antiviral activity of recombinant bovine type I and III IFNs. Results correlated to those measured by qRT-PCR and virus titration. NS3 In Cell-ELISA was also efficient in estimating the IC50 of two compounds with different antiviral activity. Estimation of the 50% inhibition dose of each IFN using six BVDV strains of different biotype and genotype showed that CP strains were more susceptible to both IFNs than NCP, while type 2 NCP viruses were more sensitive to IFN-I. The In Cell-ELISA format using a detector antibody against a conserved non-structural protein can be potentially applied to accurately measure infectivity of any viral strain.
Collapse
Affiliation(s)
- María Eugenia Quintana
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología, Nicolás Repetto y Los Reseros s/n, Hurlingham B1686, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas. Godoy Cruz 2290 C1425FQB, CABA, Argentina
| | - Lucas Barone
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología, Nicolás Repetto y Los Reseros s/n, Hurlingham B1686, Provincia de Buenos Aires, Argentina
| | - María Belén Forlenza
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología, Nicolás Repetto y Los Reseros s/n, Hurlingham B1686, Provincia de Buenos Aires, Argentina
| | - Myrian Vanesa Trotta
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología, Nicolás Repetto y Los Reseros s/n, Hurlingham B1686, Provincia de Buenos Aires, Argentina
| | - Cecilia Turco
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología, Nicolás Repetto y Los Reseros s/n, Hurlingham B1686, Provincia de Buenos Aires, Argentina
| | - Florencia Celeste Mansilla
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología, Nicolás Repetto y Los Reseros s/n, Hurlingham B1686, Provincia de Buenos Aires, Argentina
| | - Nancy Patricia Cardoso
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología, Nicolás Repetto y Los Reseros s/n, Hurlingham B1686, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas. Godoy Cruz 2290 C1425FQB, CABA, Argentina
| | - Alejandra Victoria Capozzo
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología, Nicolás Repetto y Los Reseros s/n, Hurlingham B1686, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas. Godoy Cruz 2290 C1425FQB, CABA, Argentina.
| |
Collapse
|
21
|
Mathé P, Egah DZ, Müller JA, Shehu NY, Obishakin ET, Shwe DD, Pam VC, Okolo MO, Yilgwan C, Gomerep SS, Fuchs J, Abok I, Onyedibe KI, Olugbo EJ, Isa SE, Machunga-Mambula SS, Attah CJ, Münch J, Oguche S, Panning M. Low Zika virus seroprevalence among pregnant women in North Central Nigeria, 2016. J Clin Virol 2018; 105:35-40. [PMID: 29885620 DOI: 10.1016/j.jcv.2018.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Zika virus (ZIKV) has been known for decades in Africa but contemporary data is lacking at large. OBJECTIVES To describe the seroepidemiology of ZIKV in North Central Nigeria. STUDY DESIGN We performed a cross-sectional study at six health care facilities in North Central Nigeria from January to December 2016. Detection of ZIKV antibodies was done using an anti-ZIKV recombinant non-structural protein 1 (NS1)-based ELISA. A colorimetric assay to detect ZIKV neutralizing antibodies was used on ELISA reactive and randomly selected ELISA non-reactive samples. ZIKV real-time RT-PCR was done on a subset of samples. RESULTS A total of 468 individual samples were included with almost 60% from pregnant women. Using NS1-based ELISA, an anti-ZIKV positive rate of 6% for IgM and 4% for IgG was found. Pregnant women showed anti-ZIKV positive rates of 4% for IgM and 3% for IgG. None of the ZIKV antibody positive samples tested ZIKV RT-PCR positive. An association with male sex was found for anti-ZIKV IgG ELISA positivity (prevalence ratio 3.49; 95% confidence interval: 1.48-8.25; p = .004). No association with pregnancy, yellow fever vaccination or malaria was found for anti-ZIKV IgM or IgG positivity. ZIKV neutralizing antibodies were detected in 17/18 (94%) anti-ZIKV NS1 positive/borderline samples and in one sample without detectable ZIKV NS1 antibodies. Partial ZIKV E gene sequence was retrieved in one sample without ZIKV antibodies, which clustered within the West African ZIKV lineage. CONCLUSIONS Our results show a largely ZIKV immunologically naïve population and reinforce the importance of ZIKV surveillance in Africa.
Collapse
Affiliation(s)
- Philipp Mathé
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Z Egah
- Department of Medical Microbiology, Jos University Teaching Hospital, Jos, Nigeria
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Nathan Y Shehu
- Department of Medical Microbiology, Jos University Teaching Hospital, Jos, Nigeria
| | - Emmanuel T Obishakin
- Biotechnology Department, National Veterinary Research Institute, Vom-Jos, Nigeria
| | - David D Shwe
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
| | - Victor C Pam
- Department of Obstetrics and Gynaecology, Jos University Teaching Hospital, Jos, Nigeria
| | - Mark O Okolo
- Department of Medical Microbiology, Jos University Teaching Hospital, Jos, Nigeria
| | | | - Simji S Gomerep
- Department of Obstetrics and Gynaecology, Jos University Teaching Hospital, Jos, Nigeria
| | - Jonas Fuchs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ibrahim Abok
- Department of Obstetrics and Gynaecology, Jos University Teaching Hospital, Jos, Nigeria
| | - Kenneth I Onyedibe
- Department of Medical Microbiology, Jos University Teaching Hospital, Jos, Nigeria
| | | | - Samson E Isa
- Department of Obstetrics and Gynaecology, Jos University Teaching Hospital, Jos, Nigeria
| | | | - Caleb J Attah
- Department of Paediatrics, Federal Medical Center, Keffi, Nigeria
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Stephen Oguche
- Department of Obstetrics and Gynaecology, Jos University Teaching Hospital, Jos, Nigeria
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
22
|
Röcker AE, Müller JA, Dietzel E, Harms M, Krüger F, Heid C, Sowislok A, Riber CF, Kupke A, Lippold S, von Einem J, Beer J, Knöll B, Becker S, Schmidt-Chanasit J, Otto M, Vapalahti O, Zelikin AN, Bitan G, Schrader T, Münch J. The molecular tweezer CLR01 inhibits Ebola and Zika virus infection. Antiviral Res 2018; 152:26-35. [PMID: 29428508 PMCID: PMC7113745 DOI: 10.1016/j.antiviral.2018.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 01/13/2023]
Abstract
Ebola (EBOV) and Zika viruses (ZIKV) are responsible for recent global health threats. As no preventive vaccines or antiviral drugs against these two re-emerging pathogens are available, we evaluated whether the molecular tweezer CLR01 may inhibit EBOV and ZIKV infection. This small molecule has previously been shown to inactivate HIV-1 and herpes viruses through a selective interaction with lipid-raft-rich regions in the viral envelope, which results in membrane disruption and loss of infectivity. We found that CLR01 indeed blocked infection of EBOV and ZIKV in a dose-dependent manner. The tweezer inhibited infection of epidemic ZIKV strains in cells derived from the anogenital tract and the central nervous system, and remained antivirally active in the presence of semen, saliva, urine and cerebrospinal fluid. Our findings show that CLR01 is a broad-spectrum inhibitor of enveloped viruses with prospects as a preventative microbicide or antiviral agent.
Collapse
Affiliation(s)
- Annika E Röcker
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany; German Centre for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35043 Marburg, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Franziska Krüger
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christian Heid
- Faculty of Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Andrea Sowislok
- Faculty of Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | | | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany; German Centre for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35043 Marburg, Germany
| | - Sina Lippold
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Judith Beer
- Institute of Physiological Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, University of Ulm, 89081 Ulm, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany; German Centre for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35043 Marburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institut für Tropenmedizin, 20359 Hamburg, Germany; German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 20359 Hamburg, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Olli Vapalahti
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | | | - Gal Bitan
- David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; U-PEP and Core Facility Functional Peptidomics, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
23
|
Koishi AC, Suzukawa AA, Zanluca C, Camacho DE, Comach G, Duarte dos Santos CN. Development and evaluation of a novel high-throughput image-based fluorescent neutralization test for detection of Zika virus infection. PLoS Negl Trop Dis 2018; 12:e0006342. [PMID: 29543803 PMCID: PMC5871014 DOI: 10.1371/journal.pntd.0006342] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/27/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) is an emerging arbovirus belonging to the genus flavivirus that comprises other important public health viruses, such as dengue (DENV) and yellow fever (YFV). In general, ZIKV infection is a self-limiting disease, however cases of Guillain-Barré syndrome and congenital brain abnormalities in newborn infants have been reported. Diagnosing ZIKV infection remains a challenge, as viral RNA detection is only applicable until a few days after the onset of symptoms. After that, serological tests must be applied, and, as expected, high cross-reactivity between ZIKV and other flavivirus serology is observed. Plaque reduction neutralization test (PRNT) is indicated to confirm positive samples for being more specific, however it is laborious intensive and time consuming, representing a major bottleneck for patient diagnosis. To overcome this limitation, we developed a high-throughput image-based fluorescent neutralization test for ZIKV infection by serological detection. Using 226 human specimens, we showed that the new test presented higher throughput than traditional PRNT, maintaining the correlation between results. Furthermore, when tested with dengue virus samples, it showed 50.53% less cross reactivity than MAC-ELISA. This fluorescent neutralization test could be used for clinical diagnosis confirmation of ZIKV infection, as well as for vaccine clinical trials and seroprevalence studies.
Collapse
Affiliation(s)
- Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/ Fiocruz- PR), Curitiba, Paraná, Brazil
| | - Andréia Akemi Suzukawa
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/ Fiocruz- PR), Curitiba, Paraná, Brazil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/ Fiocruz- PR), Curitiba, Paraná, Brazil
| | - Daria Elena Camacho
- Laboratorio Regional de Diagnostico e Investigación del Dengue y otras Enfermedades Virales, Instituto de Investigaciones Biomédicas de la Universidad de Carabobo (LARDIDEV/BIOMED-UC), Maracay, Venezuela
| | - Guillermo Comach
- Laboratorio Regional de Diagnostico e Investigación del Dengue y otras Enfermedades Virales, Instituto de Investigaciones Biomédicas de la Universidad de Carabobo (LARDIDEV/BIOMED-UC), Maracay, Venezuela
| | | |
Collapse
|
24
|
Han Y, Mesplède T, Xu H, Quan Y, Wainberg MA. The antimalarial drug amodiaquine possesses anti-ZIKA virus activities. J Med Virol 2018; 90:796-802. [PMID: 29315671 DOI: 10.1002/jmv.25031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/24/2017] [Indexed: 02/02/2023]
Abstract
Zika virus (ZIKV) outbreak has emerged as a global health threat, particularly in tropical areas, over the past few years. No antiviral therapy or vaccine is available at present. For these reasons, repurposing clinically approved drugs against ZIKV infection may provide rapid and cost-effective global health benefits. Here, we explored this strategy and screened eight FDA-approved drugs for antiviral activity against ZIKV using a cell-based assay. Our results show that the antimalarial drug amodiaquine has anti-ZIKV activity with EC50 at low micromolar concentrations in cell culture. We further characterized amodiaquine antiviral activity against ZIKV and found that it targets early events of the viral replication cycle. Altogether, our results suggest that amodiaquine may be efficacious for the treatment of ZIKV infection.
Collapse
Affiliation(s)
- Yingshan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Faculty of Medicine, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Faculty of Medicine, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Singh RK, Dhama K, Karthik K, Tiwari R, Khandia R, Munjal A, Iqbal HMN, Malik YS, Bueno-Marí R. Advances in Diagnosis, Surveillance, and Monitoring of Zika Virus: An Update. Front Microbiol 2018; 8:2677. [PMID: 29403448 PMCID: PMC5780406 DOI: 10.3389/fmicb.2017.02677] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
Zika virus (ZIKV) is associated with numerous human health-related disorders, including fetal microcephaly, neurological signs, and autoimmune disorders such as Guillain-Barré syndrome (GBS). Perceiving the ZIKA associated losses, in 2016, the World Health Organization (WHO) declared it as a global public health emergency. In consequence, an upsurge in the research on ZIKV was seen around the globe, with significant attainments over developing several effective diagnostics, drugs, therapies, and vaccines countering this life-threatening virus at an early step. State-of-art tools developed led the researchers to explore virus at the molecular level, and in-depth epidemiological investigations to understand the reason for increased pathogenicity and different clinical manifestations. These days, ZIKV infection is diagnosed based on clinical manifestations, along with serological and molecular detection tools. As, isolation of ZIKV is a tedious task; molecular assays such as reverse transcription-polymerase chain reaction (RT-PCR), real-time qRT-PCR, loop-mediated isothermal amplification (LAMP), lateral flow assays (LFAs), biosensors, nucleic acid sequence-based amplification (NASBA) tests, strand invasion-based amplification tests and immune assays like enzyme-linked immunosorbent assay (ELISA) are in-use to ascertain the ZIKV infection or Zika fever. Herein, this review highlights the recent advances in the diagnosis, surveillance, and monitoring of ZIKV. These new insights gained from the recent advances can aid in the rapid and definitive detection of this virus and/or Zika fever. The summarized information will aid the strategies to design and adopt effective prevention and control strategies to counter this viral pathogen of great public health concern.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Hafiz M. N. Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Mexico
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Valencia, Spain
| |
Collapse
|
26
|
Schandock F, Riber CF, Röcker A, Müller JA, Harms M, Gajda P, Zuwala K, Andersen AHF, Løvschall KB, Tolstrup M, Kreppel F, Münch J, Zelikin AN. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses. Adv Healthc Mater 2017; 6. [PMID: 28945945 PMCID: PMC7161897 DOI: 10.1002/adhm.201700748] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/07/2017] [Indexed: 01/08/2023]
Abstract
Viral pathogens continue to constitute a heavy burden on healthcare and socioeconomic systems. Efforts to create antiviral drugs repeatedly lag behind the advent of pathogens and growing understanding is that broad‐spectrum antiviral agents will make strongest impact in future antiviral efforts. This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure–activity relationships for these pathogens in terms of their susceptibility to inhibition by polymers, and for polymers in terms of their anionic charge and hydrophobicity that make up broad‐spectrum antiviral agents. The identified leads cannot be predicted based on prior data on polymer‐based antivirals and represent promising candidates for further development as preventive microbicides.
Collapse
Affiliation(s)
- Franziska Schandock
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | | | - Annika Röcker
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Janis A. Müller
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Mirja Harms
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Paulina Gajda
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Kaja Zuwala
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Anna H. F. Andersen
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | | | - Martin Tolstrup
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Florian Kreppel
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Jan Münch
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Alexander N. Zelikin
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
- iNano Interdisciplinary Nanoscience Centre; Aarhus University; Aarhus 8000 Denmark
| |
Collapse
|
27
|
Rönnberg B, Gustafsson Å, Vapalahti O, Emmerich P, Lundkvist Å, Schmidt-Chanasit J, Blomberg J. Compensating for cross-reactions using avidity and computation in a suspension multiplex immunoassay for serotyping of Zika versus other flavivirus infections. Med Microbiol Immunol 2017; 206:383-401. [PMID: 28852878 PMCID: PMC5599479 DOI: 10.1007/s00430-017-0517-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/09/2017] [Indexed: 12/24/2022]
Abstract
The recent spread of Zika virus (ZIKV) in the Americas and Asia necessitates an increased preparedness for improved maternal and perinatal health and blood safety. However, serological cross-reactions, especially to Dengue virus (DENV), complicate ZIKV antibody serodiagnosis. A novel “pan-Flavi” suspension multiplex immunoassay (PFSMIA) using 25 antigens, whole virus (WV), non-structural protein 1 (NS1), and envelope (E) proteins, from 7 zoonotic flaviviruses for specific detection of ZIKV and DENV IgM and IgG was developed. Patterns of antibody cross-reactivity, avidity, and kinetics were established in 104 sera from returning travelers with known ZIKV and DENV infections. PFSMIA gave IgM- and IgG-sensitivities for both viruses of 96–100%, compared to an immunofluorescence assay. Main IgM cross-reactions were to NS1, for IgG to the E and WV antigens. Infecting virus yielded reactivity to several antigens of the homologous virus, while cross-reactions tended to occur only to a single antigen from heterologous virus(es). A specificity-enhancing computer procedure took into account antibody isotype, number of antibody-reactive antigens per virus, avidity, average degree of cross-reactivity to heterologous flavivirus antigens, and reactivity changes in serial sera. It classified all 50 cases correctly. Applied to sera from 200 pregnant women and 173 blood donors from Sweden, one blood donor was found ZIKV NS1 IgM positive, and another as ZIKV NS1 IgG positive. These samples did not react with other ZIKV antigens and were thereby judged as false-positives. PFSMIA provided sensitive and specific ZIKV and DENV serology, warranting high-throughput serological surveillance and a minimized need for laborious and expensive virus neutralization assays.
Collapse
Affiliation(s)
- Bengt Rönnberg
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala Academic Hospital, Uppsala University, 751 85, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Åke Gustafsson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Olli Vapalahti
- Department of Veterinary Biosciences and Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Petra Emmerich
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.,Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057, Rostock, Germany
| | - Åke Lundkvist
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala Academic Hospital, Uppsala University, 751 85, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Jonas Schmidt-Chanasit
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.,German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Jonas Blomberg
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala Academic Hospital, Uppsala University, 751 85, Uppsala, Sweden. .,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Yu Y, Deng YQ, Zou P, Wang Q, Dai Y, Yu F, Du L, Zhang NN, Tian M, Hao JN, Meng Y, Li Y, Zhou X, Fuk-Woo Chan J, Yuen KY, Qin CF, Jiang S, Lu L. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat Commun 2017; 8:15672. [PMID: 28742068 PMCID: PMC5537589 DOI: 10.1038/ncomms15672] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/17/2017] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV), a re-emerging flavivirus associated with neurological disorders, has spread rapidly to more than 70 countries and territories. However, no specific vaccines or antiviral drugs are currently available to prevent or treat ZIKV infection. Here we report that a synthetic peptide derived from the stem region of ZIKV envelope protein, designated Z2, potently inhibits infection of ZIKV and other flaviviruses in vitro. We show that Z2 interacts with ZIKV surface protein and disrupts the integrity of the viral membrane. Z2 can penetrate the placental barrier to enter fetal tissues and is safe for use in pregnant mice. Intraperitoneal administration of Z2 inhibits vertical transmission of ZIKV in pregnant C57BL/6 mice and protects type I or type I/II interferon receptor-deficient mice against lethal ZIKV challenge. Thus, Z2 has potential to be further developed as an antiviral treatment against ZIKV infection in high-risk populations, particularly pregnant women. Zika virus (ZIKV) has spread rapidly in recent years and there is a need for antiviral treatments. Here, the authors develop an antiviral peptide, based on the stem region of ZIKV envelope protein, and show that it is safe in pregnant mice and inhibits ZIKV infection in pregnant mice and fetuses.
Collapse
Affiliation(s)
- Yufeng Yu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Peng Zou
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Yanyan Dai
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Fei Yu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, USA
| | - Na-Na Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Min Tian
- Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing 100010, China
| | - Jia-Nan Hao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Yu Meng
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Yuan Li
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Xiaohui Zhou
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong 999077, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong 999077, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| |
Collapse
|