1
|
Iglesias Pastrana C, Navas González FJ, Macri M, Martínez Martínez MDA, Ciani E, Delgado Bermejo JV. Identification of novel genetic loci related to dromedary camel (Camelus dromedarius) morphometrics, biomechanics, and behavior by genome-wide association studies. BMC Vet Res 2024; 20:418. [PMID: 39294626 PMCID: PMC11409489 DOI: 10.1186/s12917-024-04263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
In the realm of animal breeding for sustainability, domestic camels have traditionally been valued for their milk and meat production. However, key aspects such as zoometrics, biomechanics, and behavior have often been overlooked in terms of their genetic foundations. Recognizing this gap, the present study perfomed genome-wide association analyses to identify genetic markers associated with zoometrics-, biomechanics-, and behavior-related traits in dromedary camels (Camelus dromedarius). 16 and 108 genetic markers were significantly associated (q < 0.05) at genome and chromosome-wide levels of significance, respectively, with zoometrics- (width, length, and perimeter/girth), biomechanics- (acceleration, displacement, spatial position, and velocity), and behavior-related traits (general cognition, intelligence, and Intelligence Quotient (IQ)) in dromedaries. In most association loci, the nearest protein-coding genes are linkedto neurodevelopmental and sensory disorders. This suggests that genetic variations related to neural development and sensory perception play crucial roles in shaping a dromedary camel's physical characteristics and behavior. In summary, this research advances our understanding of the genomic basis of essential traits in dromedary camels. Identifying specific genetic markers associated with zoometrics, biomechanics, and behavior provides valuable insights into camel domestication. Moreover, the links between these traits and genes related to neurodevelopmental and sensory disorders highlight the broader implications of domestication and modern selection on the health and welfare of dromedary camels. This knowledge could guide future breeding strategies, fostering a more holistic approach to camel husbandry and ensuring the sustainability of these animals in diverse agricultural contexts.
Collapse
Affiliation(s)
| | | | - Martina Macri
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, Córdoba, Spain
- Animal Breeding Consulting S.L, Parque Científico Tecnológico de Córdoba, Córdoba, Spain
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, Faculty of Veterinary Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | | |
Collapse
|
2
|
Almalki F. Review and research gap identification in genetics causes of syndromic and nonsyndromic hearing loss in Saudi Arabia. Ann Hum Genet 2024; 88:364-381. [PMID: 38517009 DOI: 10.1111/ahg.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Congenital hearing loss is one of the most common sensory disabilities worldwide. The genetic causes of hearing loss account for 50% of hearing loss. Genetic causes of hearing loss can be classified as nonsyndromic hearing loss (NSHL) or syndromic hearing loss (SHL). NSHL is defined as a partial or complete hearing loss without additional phenotypes; however, SHL, known as hearing loss, is associated with other phenotypes. Both types follow a simple Mendelian inheritance fashion. Several studies have been conducted to uncover the genetic factors contributing to NSHL and SHL in Saudi patients. However, these studies have encountered certain limitations. This review assesses and discusses the genetic factors underpinning NSHL and SHL globally, with a specific emphasis on the Saudi Arabian context. It also explores the prevalence of the most observed genetic causes of NSHL and SHL in Saudi Arabia. It also sheds light on areas where further research is needed to fully understand the genetic foundations of hearing loss in the Saudi population. This review identifies several gaps in research in NSHL and SHL and provides insights into potential research to be conducted.
Collapse
Affiliation(s)
- Faisal Almalki
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munwarah, Saudi Arabia
| |
Collapse
|
3
|
Yang H, Zhang YJ, Zhu L, Zheng WY, Shi MY, Zhao WR, Zhao HC. A novel compound heterozygous PCDH15 variants is associated with arRP in a Chinese pedigree. BMC Ophthalmol 2024; 24:373. [PMID: 39187782 PMCID: PMC11345949 DOI: 10.1186/s12886-024-03640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases. However, it is still not well understand about the relationship between PCDH15 variants and RP. METHODS In this study, we enrolled a Chinese autosomal recessive retinitis pigmentosa (arRP) pedigree and identified the causative gene in the proband by targeted whole exome sequencing (WES). The variants were validated in the family members by Sanger sequencing and co-segregation analysis. RESULTS Novel compound heterozygous, Frame shift variants of the PCDH15 gene, NM_001384140.1:c.4368 - 2147_4368-2131del and NM_001384140.1:c exon19:c.2505del: p. T836Lfs*6 were identified in the arRP pedigree, which co-segregated with the clinical RP phenotypes. The PCDH15 protein is highly conserved among species. CONCLUSION This is the first study to identify novel compound heterozygous variants c.4368 - 2147_4368-2131del and c.2505del(p.T836Lfs*6) in the PCDH15 gene which might be disease-causing variants, and extending the variant spectra. All above findings may be contribute to genetic counseling, molecular diagnosis and clinical management of arRP disease.
Collapse
Affiliation(s)
- Hong Yang
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Ya-Juan Zhang
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Li Zhu
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Wei-Yi Zheng
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Mei-Yu Shi
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | | | - Hong-Chao Zhao
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China.
| |
Collapse
|
4
|
Mori D, Inami C, Ikeda R, Sawahata M, Urata S, Yamaguchi ST, Kobayashi Y, Fujita K, Arioka Y, Okumura H, Kushima I, Kodama A, Suzuki T, Hirao T, Yoshimi A, Sobue A, Ito T, Noda Y, Mizoguchi H, Nagai T, Kaibuchi K, Okabe S, Nishiguchi K, Kume K, Yamada K, Ozaki N. Mice with deficiency in Pcdh15, a gene associated with bipolar disorders, exhibit significantly elevated diurnal amplitudes of locomotion and body temperature. Transl Psychiatry 2024; 14:216. [PMID: 38806495 PMCID: PMC11133426 DOI: 10.1038/s41398-024-02952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.
Collapse
Affiliation(s)
- Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Chihiro Inami
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Ryosuke Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Urata
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo Pref., Japan
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo Pref., Japan
| | - Sho T Yamaguchi
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | | | - Kosuke Fujita
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuko Arioka
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Hiroki Okumura
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Akiko Kodama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiaki Suzuki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Hirao
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Aichi, Japan
| | - Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Ito
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Aichi, Japan
| | - Yukikiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Aichi, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo Pref., Japan
| | - Koji Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Arora N, Hazra JP, Roy S, Bhati GK, Gupta S, Yogendran KP, Chaudhuri A, Sagar A, Rakshit S. Emergence of slip-ideal-slip behavior in tip-links serve as force filters of sound in hearing. Nat Commun 2024; 15:1595. [PMID: 38383683 PMCID: PMC10881517 DOI: 10.1038/s41467-024-45423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Tip-links in the inner ear convey force from sound and trigger mechanotransduction. Here, we present evidence that tip-links (collectively as heterotetrameric complexes of cadherins) function as force filters during mechanotransduction. Our force-clamp experiments reveal that the tip-link complexes show slip-ideal-slip bond dynamics. At low forces, the lifetime of the tip-link complex drops monotonically, indicating slip-bond dynamics. The ideal bond, rare in nature, is seen in an intermediate force regime where the survival of the complex remains constant over a wide range. At large forces, tip-links follow a slip bond and dissociate entirely to cut-off force transmission. In contrast, the individual tip-links (heterodimers) display slip-catch-slip bonds to the applied forces. While with a phenotypic mutant, we showed the importance of the slip-catch-slip bonds in uninterrupted hearing, our coarse-grained Langevin dynamics simulations demonstrated that the slip-ideal-slip bonds emerge as a collective feature from the slip-catch-slip bonds of individual tip-links.
Collapse
Affiliation(s)
- Nisha Arora
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Jagadish P Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sandip Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gaurav K Bhati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sarika Gupta
- National Institute of Immunology, New Delhi, India
| | - K P Yogendran
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Amin Sagar
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| |
Collapse
|
6
|
Cuzzuol BR, Apolonio JS, da Silva Júnior RT, de Carvalho LS, Santos LKDS, Malheiro LH, Silva Luz M, Calmon MS, Crivellaro HDL, Lemos FFB, Freire de Melo F. Usher syndrome: Genetic diagnosis and current therapeutic approaches. World J Otorhinolaryngol 2024; 11:1-17. [DOI: 10.5319/wjo.v11.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Usher Syndrome (USH) is the most common deaf-blind syndrome, affecting approximately 1 in 6000 people in the deaf population. This genetic condition is characterized by a combination of hearing loss (HL), retinitis pigmentosa, and, in some cases, vestibular areflexia. Among the subtypes of USH, USH type 1 is considered the most severe form, presenting profound bilateral congenital deafness, vestibular areflexia, and early onset RP. USH type 2 is the most common form, exhibiting congenital moderate to severe HL for low frequencies and severe to profound HL for high frequencies. Conversely, type 3 is the rarest, initially manifesting mild symptoms during childhood that become more prominent in the first decades of life. The dual impact of USH on both visual and auditory senses significantly impairs patients’ quality of life, restricting their daily activities and interactions with society. To date, 9 genes have been confirmed so far for USH: MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, ADGRV1, WHRN and CLRN1. These genes are inherited in an autosomal recessive manner and encode proteins expressed in the inner ear and retina, leading to functional loss. Although non-genetic methods can assist in patient triage and disease extension evaluation, genetic and molecular tests play a pivotal role in providing genetic counseling, enabling appropriate gene therapy, and facilitating timely cochlear implantation (CI). The CRISPR/Cas9 system and viral-based gene replacement therapy have recently emerged as highly promising techniques for treating USH. Regarding drug therapy, PTC-124 and Nb54 have been identified as promising drug interventions for genetic HL in USH. Simultaneously, CI has proven to be critical in the restoration of hearing. This review aims to summarize the genetic and molecular diagnosis of USH and highlight the importance of early diagnosis in guiding appropriate treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luciano Hasimoto Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
7
|
Lan Y, Hou T, Peng L, Li Y, Yin S. The association of genetic polymorphisms in protocadherin 15 with sudden sensorineural hearing loss in a Chinese population. J Clin Lab Anal 2023:e24896. [PMID: 37198144 DOI: 10.1002/jcla.24896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Sudden sensorineural hearing loss (SSNHL) is a multifactorial disease, and its etiology is still unknown. SSNHL may be caused by environmental factors and genetic changes. PCDH15 is associated with susceptibility to hearing loss. The relationship between PCDH15 and SSNHL remains unknown. METHODS In this study, the potential association between PCDH15 polymorphism and SSNHL in Chinese population was evaluated. Two single nucleotide polymorphisms PCDH15-rs7095441 and rs11004085 in 195 SSNHL patients and 182 healthy controls were determined by TaqMan technology. RESULTS In Chinese population, the TT genotype and T allele of rs7095441 are associated with increased susceptibility to SSNHL. The relationships between rs7095441 and the degree of hearing loss were analyzed, and TT genotype increased the risk of hearing loss. Among SSNHL patients, patients with TT genotype of rs7095441 have an increased risk of vertigo. CONCLUSION This study found that the TT genotype of SNP rs7095441 can increase the risk of SSNHL in Chinese population.
Collapse
Affiliation(s)
- Ying Lan
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Hou
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lu Peng
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongpeng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shihua Yin
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Parra-Perez AM, Lopez-Escamez JA. Types of Inheritance and Genes Associated with Familial Meniere Disease. J Assoc Res Otolaryngol 2023:10.1007/s10162-023-00896-0. [PMID: 37022572 DOI: 10.1007/s10162-023-00896-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Meniere disease (MD) is a rare disorder of the inner ear defined by sensorineural hearing loss (SNHL) associated with episodes of vertigo and tinnitus. The phenotype is variable, and it may be associated with other comorbidities such as migraine, respiratory allergies, and several autoimmune disorders. The condition has a significant heritability according to epidemiological and familial segregation studies. Familial MD is found in 10% of cases, the most frequently found genes being OTOG, MYO7A, and TECTA, previously associated with autosomal dominant and recessive non-syndromic SNHL. These findings suggest a new hypothesis where proteins involved in the extracellular structures in the apical surface of sensory epithelia (otolithic and tectorial membranes) and proteins in the stereocilia links would be key elements in the pathophysiology of MD. The ionic homeostasis of the otolithic and tectorial membranes could be critical to suppress the innate motility of individual hair cell bundles. Initially, focal detachment of these extracellular membranes may cause random depolarization of hair cells and will explain changes in tinnitus loudness or trigger vertigo attacks in early stages of MD. With the progression of the disease, a larger detachment will lead to an otolithic membrane herniation into the horizontal semicircular canal with dissociation in caloric and head impulse responses. Familial MD shows different types of inheritance, including autosomal dominant and compound recessive patterns and implementation of genetic testing will improve our understanding of the genetic structure of MD.
Collapse
Affiliation(s)
- Alberto M Parra-Perez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards NSW 2064, Sydney, NSW, Australia
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, PTS, Junta de Andalucía, Granada, Spain
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, 10 Westbourne St, St Leonards NSW 2064, Sydney, NSW, Australia.
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, PTS, Junta de Andalucía, Granada, Spain.
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
| |
Collapse
|
9
|
Kim KS, Koo HY, Bok J. Alternative splicing in shaping the molecular landscape of the cochlea. Front Cell Dev Biol 2023; 11:1143428. [PMID: 36936679 PMCID: PMC10018040 DOI: 10.3389/fcell.2023.1143428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
The cochlea is a complex organ comprising diverse cell types with highly specialized morphology and function. Until now, the molecular underpinnings of its specializations have mostly been studied from a transcriptional perspective, but accumulating evidence points to post-transcriptional regulation as a major source of molecular diversity. Alternative splicing is one of the most prevalent and well-characterized post-transcriptional regulatory mechanisms. Many molecules important for hearing, such as cadherin 23 or harmonin, undergo alternative splicing to produce functionally distinct isoforms. Some isoforms are expressed specifically in the cochlea, while some show differential expression across the various cochlear cell types and anatomical regions. Clinical phenotypes that arise from mutations affecting specific splice variants testify to the functional relevance of these isoforms. All these clues point to an essential role for alternative splicing in shaping the unique molecular landscape of the cochlea. Although the regulatory mechanisms controlling alternative splicing in the cochlea are poorly characterized, there are animal models with defective splicing regulators that demonstrate the importance of RNA-binding proteins in maintaining cochlear function and cell survival. Recent technological breakthroughs offer exciting prospects for overcoming some of the long-standing hurdles that have complicated the analysis of alternative splicing in the cochlea. Efforts toward this end will help clarify how the remarkable diversity of the cochlear transcriptome is both established and maintained.
Collapse
Affiliation(s)
- Kwan Soo Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hei Yeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Jinwoong Bok,
| |
Collapse
|
10
|
Al-Bradie R, Uzair M, Bashir S. Sensorineural hearing loss due to a novel mutation in the PCDH15 gene: A case study. BRAIN DISORDERS 2023. [DOI: 10.1016/j.dscb.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
11
|
Zeng B, Xu H, Yu Y, Li S, Tian Y, Li T, Yang Z, Wang H, Wang G, Chang M, Tang W. Increased diagnostic yield in a cohort of hearing loss families using a comprehensive stepwise strategy of molecular testing. Front Genet 2022; 13:1057293. [PMID: 36568381 PMCID: PMC9768221 DOI: 10.3389/fgene.2022.1057293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Hearing loss is one of the most common sensory disorders in humans. This study proposes a stepwise strategy of deafness gene detection using multiplex PCR combined with high-throughput sequencing, Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and whole-exome sequencing (WES) to explore its application in molecular diagnosis of hearing loss families. A total of 152 families with hearing loss were included in this study, the highest overall diagnosis rate was 73% (111/152). The diagnosis rate of multiplex PCR combined with high-throughput sequencing was 52.6% (80/152). One families was diagnosed by Sanger sequencing of GJB2 exon 1. Two families were diagnosed by MLPA analysis of the STRC gene. The diagnosis rate with additional contribution from WES was 18.4% (28/152). We identified 21 novel variants from 15 deafness genes by WES. Combining WES and deep clinical phenotyping, we diagnosed 11 patients with syndromic hearing loss (SHL). This study demonstrated improved diagnostic yield in a cohort of hearing loss families and confirmed the advantages of a stepwise strategy in the molecular diagnosis of hearing loss.
Collapse
Affiliation(s)
- Beiping Zeng
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China,The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Yu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Siqi Li
- Department of Physiology and Neurobiology, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yongan Tian
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengguang Yang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Haili Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Guangke Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Mingxiu Chang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China,*Correspondence: Mingxiu Chang, ; Wenxue Tang,
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Mingxiu Chang, ; Wenxue Tang,
| |
Collapse
|
12
|
Yusuf IH, Garrett A, MacLaren RE, Issa PC. Retinal cadherins and the retinal cadherinopathies: Current concepts and future directions. Prog Retin Eye Res 2022; 90:101038. [DOI: 10.1016/j.preteyeres.2021.101038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
|
13
|
Abstract
Usher syndrome (USH) encompasses a group of clinically and genetically heterogenous disorders defined by the triad of sensorineural hearing loss (SNHL), vestibular dysfunction, and vision loss. USH is the most common cause of deaf blindness. USH is divided clinically into three subtypes-USH1, USH2, and USH3-based on symptom severity, progression, and age of onset. The underlying genetics of these USH forms are, however, significantly more complex, with over a dozen genes linked to the three primary clinical subtypes and other atypical USH phenotypes. Several of these genes are associated with other deaf-blindness syndromes that share significant clinical overlap with USH, pointing to the limits of a clinically based classification system. The genotype-phenotype relationships among USH forms also may vary significantly based on the location and type of mutation in the gene of interest. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to USH. Currently, the state of knowledge varies widely depending on the gene of interest. Recent studies utilizing next-generation sequencing technology have expanded the list of known pathogenic mutations in USH genes, identified new genes associated with USH-like phenotypes, and proposed algorithms to predict the phenotypic effects of specific categories of allelic variants. Further work is required to validate USH gene causality, and better define USH genotype-phenotype relationships and disease natural histories-particularly for rare mutations-to lay the groundwork for the future of USH treatment.
Collapse
|
14
|
Azadegan-Dehkordi F, Koohiyan M, Hoseini M. An update on autosomal recessive hearing loss and loci involved in it. INDIAN JOURNAL OF OTOLOGY 2022. [DOI: 10.4103/indianjotol.indianjotol_115_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Bruno LP, Doddato G, Valentino F, Baldassarri M, Tita R, Fallerini C, Bruttini M, Lo Rizzo C, Mencarelli MA, Mari F, Pinto AM, Fava F, Fabbiani A, Lamacchia V, Carrer A, Caputo V, Granata S, Benetti E, Zguro K, Furini S, Renieri A, Ariani F. New Candidates for Autism/Intellectual Disability Identified by Whole-Exome Sequencing. Int J Mol Sci 2021; 22:ijms222413439. [PMID: 34948243 PMCID: PMC8707363 DOI: 10.3390/ijms222413439] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/27/2022] Open
Abstract
Intellectual disability (ID) is characterized by impairments in the cognitive processes and in the tasks of daily life. It encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders often associated with autism spectrum disorder (ASD). Social and communication abilities are strongly compromised in ASD. The prevalence of ID/ASD is 1–3%, and approximately 30% of the patients remain without a molecular diagnosis. Considering the extreme genetic locus heterogeneity, next-generation sequencing approaches have provided powerful tools for candidate gene identification. Molecular diagnosis is crucial to improve outcome, prevent complications, and hopefully start a therapeutic approach. Here, we performed parent–offspring trio whole-exome sequencing (WES) in a cohort of 60 mostly syndromic ID/ASD patients and we detected 8 pathogenic variants in genes already known to be associated with ID/ASD (SYNGAP1, SMAD6, PACS1, SHANK3, KMT2A, KCNQ2, ACTB, and POGZ). We found four de novo disruptive variants of four novel candidate ASD/ID genes: MBP, PCDHA1, PCDH15, PDPR. We additionally selected via bioinformatic tools many variants in unknown genes that alone or in combination can contribute to the phenotype. In conclusion, our data confirm the efficacy of WES in detecting pathogenic variants of known and novel ID/ASD genes.
Collapse
Affiliation(s)
- Lucia Pia Bruno
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
| | - Gabriella Doddato
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
| | - Floriana Valentino
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
| | - Rossella Tita
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Chiara Fallerini
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
| | - Mirella Bruttini
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Caterina Lo Rizzo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Maria Antonietta Mencarelli
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Francesca Mari
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Francesca Fava
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Alessandra Fabbiani
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Vittoria Lamacchia
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Anna Carrer
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Valentina Caputo
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Stefania Granata
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
| | - Kristina Zguro
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
| | - Francesca Ariani
- Medical Genetics, University of Siena, 53100 Siena, Italy; (L.P.B.); (G.D.); (F.V.); (M.B.); (C.F.); (M.B.); (F.M.); (F.F.); (A.F.); (V.L.); (A.C.); (V.C.); (S.G.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (E.B.); (K.Z.); (S.F.)
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (R.T.); (C.L.R.); (M.A.M.); (A.M.P.)
- Correspondence: ; Tel.: +39-0577-233303
| |
Collapse
|
16
|
Miles A, Blair C, Emili A, Tropepe V. Usher syndrome type 1-associated gene, pcdh15b, is required for photoreceptor structural integrity in zebrafish. Dis Model Mech 2021; 14:272551. [PMID: 34668518 PMCID: PMC8669488 DOI: 10.1242/dmm.048965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Blindness associated with Usher syndrome type 1 (USH1) is typically characterized as rod photoreceptor degeneration, followed by secondary loss of cones. The mechanisms leading to blindness are unknown because most genetic mouse models only recapitulate auditory defects. We generated zebrafish mutants for one of the USH1 genes, protocadherin-15b (pcdh15b), a putative cell adhesion molecule. Zebrafish Pcdh15 is expressed exclusively in photoreceptors within calyceal processes (CPs), at the base of the outer segment (OS) and within the synapse. In our mutants, rod and cone photoreceptor integrity is compromised, with early and progressively worsening abnormal OS disc growth and detachment, in part due to weakening CP contacts. These effects were attenuated or exacerbated by growth in dark and bright-light conditions, respectively. We also describe novel evidence for structural defects in synapses of pcdh15b mutant photoreceptors. Cell death does not accompany these defects at early stages, suggesting that photoreceptor structural defects, rather than overt cell loss, may underlie vision deficits. Thus, we present the first genetic animal model of a PCDH15-associated retinopathy that can be used to understand the aetiology of blindness in USH1. This article has an associated First Person interview with the first author of the paper. Summary: We present one of the first genetic animal mutants for PCDH15 that displays a severe, early retinopathy and suggests that zebrafish could be a useful model for PCDH15-associated retinal phenotypes.
Collapse
Affiliation(s)
- Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Clarke Blair
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
17
|
Van Heurck R, Carminho-Rodrigues MT, Ranza E, Stafuzza C, Quteineh L, Gehrig C, Hammar E, Guipponi M, Abramowicz M, Senn P, Guinand N, Cao-Van H, Paoloni-Giacobino A. Benefits of Exome Sequencing in Children with Suspected Isolated Hearing Loss. Genes (Basel) 2021; 12:genes12081277. [PMID: 34440452 PMCID: PMC8391342 DOI: 10.3390/genes12081277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: Hearing loss is characterized by an extensive genetic heterogeneity and remains a common disorder in children. Molecular diagnosis is of particular benefit in children, and permits the early identification of clinically-unrecognized hearing loss syndromes, which permits effective clinical management and follow-up, including genetic counselling. Methods: We performed whole-exome sequencing with the analysis of a panel of 189 genes associated with hearing loss in a prospective cohort of 61 children and 9 adults presenting mainly with isolated hearing loss. Results: The overall diagnostic rate using exome sequencing was 47.2% (52.5% in children; 22% in adults). In children with confirmed molecular results, 17/32 (53.2%) showed autosomal recessive inheritance patterns, 14/32 (43.75%) showed an autosomal dominant condition, and one case had X-linked hearing loss. In adults, the two patients showed an autosomal dominant inheritance pattern. Among the 32 children, 17 (53.1%) had nonsyndromic hearing loss and 15 (46.7%) had syndromic hearing loss. One adult was diagnosed with syndromic hearing loss and one with nonsyndromic hearing loss. The most common causative genes were STRC (5 cases), GJB2 (3 cases), COL11A1 (3 cases), and ACTG1 (3 cases). Conclusions: Exome sequencing has a high diagnostic yield in children with hearing loss and can reveal a syndromic hearing loss form before other organs/systems become involved, allowing the surveillance of unrecognized present and/or future complications associated with these syndromes.
Collapse
Affiliation(s)
- Roxane Van Heurck
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Maria Teresa Carminho-Rodrigues
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Emmanuelle Ranza
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Caterina Stafuzza
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Lina Quteineh
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Corinne Gehrig
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Eva Hammar
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Michel Guipponi
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Marc Abramowicz
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Pascal Senn
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Nils Guinand
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Helene Cao-Van
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Ariane Paoloni-Giacobino
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
- Correspondence:
| |
Collapse
|
18
|
Zhang X, Huang Q, Yu Z, Wu H. Copy number variation characterization and possible candidate genes in miscarriage and stillbirth by next-generation sequencing analysis. J Gene Med 2021; 23:e3383. [PMID: 34342101 PMCID: PMC9285438 DOI: 10.1002/jgm.3383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Background The present study aimed to explore the etiological relationship between miscarriage and stillbirth and copy number variations (CNVs), as well as provide useful genetic guidance for high‐risk pregnancy. Methods In total, 659 fetal samples were recruited and subjected to DNA extraction and CNV sequencing (CNV‐seq), relevant medical records were collected. Results There were 322 cases (48.86%) with chromosomal abnormalities, including 230 with numerical abnormalities and 92 with structural abnormalities. Chromosomal monosomy variations mainly occurred on sex chromosomes and trisomy variations mainly occurred on chromosomes 16, 22, 21, 18, 13 and 15. In total, 41 pathogenic CNVs (23 microdeletions and 18 microduplications) were detected in 27 fetal tissues. The rates of numerical chromosomal abnormalities were 29.30% (109/372), 32.39% (57/176) and 57.66% (64/111) in < 30‐year‐old, 30–34‐year‐old and ≥ 35‐year‐old age pregnant women, respectively, and increased with an increasing age (p < 0.001). There was statistically significant difference (χ2 = 7.595, p = 0.022) in the rates of structural chromosomal abnormalities in these groups (13.71%, 18.75% and 7.21%, respectively). The rates of numerical chromosomal abnormalities were 45.44% (219/482), 7.80% (11/141) and 0% (0/36) in the ≤ 13 gestational weeks, 14–27 weeks and ≥ 28 weeks groups, respectively, and decreased with respect to the increasing gestational age of the fetuses (p < 0.001). Conclusions The present study has obtained useful and accurate genetic etiology information that will provide useful genetic guidance for high‐risk pregnancies.
Collapse
Affiliation(s)
- Xia Zhang
- Center for Prenatal Disgnosis, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Qingyan Huang
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhikang Yu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
19
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
20
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
21
|
de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021; 22:3910. [PMID: 33920085 PMCID: PMC8068832 DOI: 10.3390/ijms22083910] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Collapse
Affiliation(s)
- Evan M. de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Brett M. Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Jun Yang
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA;
| | - Susan H. Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
22
|
Mulhall EM, Ward A, Yang D, Koussa MA, Corey DP, Wong WP. Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection. Nat Commun 2021; 12:849. [PMID: 33558532 PMCID: PMC7870652 DOI: 10.1038/s41467-021-21033-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/08/2021] [Indexed: 01/11/2023] Open
Abstract
The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca2+ alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli.
Collapse
Affiliation(s)
- Eric M Mulhall
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard University, Cambridge, MA, USA
| | - Andrew Ward
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Darren Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mounir A Koussa
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard University, Cambridge, MA, USA
| | - David P Corey
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
23
|
Vona B, Doll J, Hofrichter MAH, Haaf T, Varshney GK. Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hear Res 2020; 397:107906. [PMID: 32063424 PMCID: PMC7415493 DOI: 10.1016/j.heares.2020.107906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, advancements in high-throughput sequencing have greatly enhanced our knowledge of the mutational signatures responsible for hereditary hearing loss. In its present state, the field has a largely uncensored view of protein coding changes in a growing number of genes that have been associated with hereditary hearing loss, and many more that have been proposed as candidate genes. Sequencing data can now be generated using methods that have become widespread and affordable. The greatest hurdles facing the field concern functional validation of uncharacterized genes and rapid application to human diseases, including hearing and balance disorders. To date, over 30 hearing-related disease models exist in zebrafish. New genome editing technologies, including CRISPR/Cas9 will accelerate the functional validation of hearing loss genes and variants in zebrafish. Here, we discuss current progress in the field and recent advances in genome editing approaches.
Collapse
Affiliation(s)
- Barbara Vona
- Department of Otolaryngology--Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Julia Doll
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.
| |
Collapse
|
24
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
25
|
Cognitive Stimulation Induces Differential Gene Expression in Octopus vulgaris: The Key Role of Protocadherins. BIOLOGY 2020; 9:biology9080196. [PMID: 32751499 PMCID: PMC7465212 DOI: 10.3390/biology9080196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 11/16/2022]
Abstract
Octopuses are unique invertebrates, with sophisticated and flexible behaviors controlled by a high degree of brain plasticity, learning, and memory. Moreover, in Octopus vulgaris, it has been demonstrated that animals housed in an enriched environment show adult neurogenesis in specific brain areas. Firstly, we evaluated the optimal acclimatization period needed for an O. vulgaris before starting a cognitive stimulation experiment. Subsequently, we analyzed differential gene expression in specific brain areas in adult animals kept in tested (enriched environment), wild (naturally enriched environment), and control conditions (unenriched environment). We selected and sequenced three protocadherin genes (PCDHs) involved in the development and maintenance of the nervous system; three Pax genes that control cell specification and tissue differentiation; the Elav gene, an earliest marker for neural cells; and the Zic1 gene, involved in early neural formation in the brain. In this paper, we evaluated gene expression levels in O. vulgaris under different cognitive stimulations. Our data shows that Oct-PCDHs genes are upregulated in the learning and lower motor centers in the brain of both tested and wild animals (higher in the latter). Combining these results with our previous studies on O. vulgaris neurogenesis, we proposed that PCDH genes may be involved in adult neurogenesis processes, and related with their cognitive abilities.
Collapse
|
26
|
French LS, Mellough CB, Chen FK, Carvalho LS. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front Cell Neurosci 2020; 14:183. [PMID: 32733204 PMCID: PMC7363968 DOI: 10.3389/fncel.2020.00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Usher syndrome is a genetic disorder causing neurosensory hearing loss and blindness from retinitis pigmentosa (RP). Adaptive techniques such as braille, digital and optical magnifiers, mobility training, cochlear implants, or other assistive listening devices are indispensable for reducing disability. However, there is currently no treatment to reduce or arrest sensory cell degeneration. There are several classes of treatments for Usher syndrome being investigated. The present article reviews the progress this research has made towards delivering commercial options for patients with Usher syndrome.
Collapse
Affiliation(s)
- Lucy S French
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
27
|
Lombardo B, D'Argenio V, Monda E, Vitale A, Caiazza M, Sacchetti L, Pastore L, Limongelli G, Frisso G, Mazzaccara C. Genetic analysis resolves differential diagnosis of a familial syndromic dilated cardiomyopathy: A new case of Alström syndrome. Mol Genet Genomic Med 2020; 8:e1260. [PMID: 32396277 PMCID: PMC7336746 DOI: 10.1002/mgg3.1260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Syndromic dilated cardiomyopathy (DCM) includes a group of complex disorders with a very heterogeneous genetic etiology, leading to delay in definitive diagnosis. Conversely, an early genetic diagnosis is very important in determining the disease course, the prognosis, and may guide personalized treatments and family counseling. METHODS We analyzed two brothers with a multisystemic disorder, including dilated cardiomyopathy, diabetes, bilateral neurosensorial hearing loss, and optic atrophy, using different genetic approaches, namely mitochondrial DNA sequencing, comparative genomic hybridization-array (a-CGH) and whole exome sequencing (WES). RESULTS Sequencing of the wide mitochondrial genome revealed, in both brothers, the known homoplasmic variant rs2853826 in the subunit 3 of the NADH dehydrogenase gene (MT-ND3), whose pathogenicity was conflicting. Comparative genomic hybridization-array analysis revealed in both patients and their father two heterozygous deletions in Phosphodiesterase 4d-Interacting Protein (PDE4DIP) and Protocadherin-related 15 (PCDH15) genes, respectively. The use of WES detected a pathogenetic mutation in ALMS1, enabling the definitive diagnosis of Alström syndrome. CONCLUSION We demonstrated how the diagnosis of a complex heterogeneous disease may be difficult, due to several overlapping manifestations and the possible interaction of more genetic variants that could lead to a more severe and complex phenotype. This paper strongly evidences how genomics is revolutionizing the diagnosis of rare complex disease, representing one of the most essential steps to enable a definitive diagnosis and to establish the etiology for diseases, such as syndromic DCM.
Collapse
Affiliation(s)
- Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy
| | - Valeria D'Argenio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy
| | - Emanuele Monda
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy.,Cardiomyopathies and Heart Failure Department, Monaldi Hospital, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Andrea Vitale
- CEINGE Advanced Biotechnologies, Naples, Italy.,Department of Motor Science and Health, University of Naples, Parthenope, Naples, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy.,Cardiomyopathies and Heart Failure Department, Monaldi Hospital, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | - Lucio Pastore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy.,Cardiomyopathies and Heart Failure Department, Monaldi Hospital, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
28
|
Abstract
Hearing and balance rely on the transduction of mechanical stimuli arising from sound waves or head movements into electrochemical signals. This archetypal mechanoelectrical transduction process occurs in the hair-cell stereocilia of the inner ear, which experience continuous oscillations driven by undulations in the endolymph in which they are immersed. The filamentous structures called tip links, formed by an intertwined thread composed of an heterotypic complex of cadherin 23 and protocadherin 15 ectodomain dimers, connect each stereocilium to the tip of the lower sterocilium, and must maintain their integrity against continuous stimulatory deflections. By using single molecule force spectroscopy, here we demonstrate that in contrast to the case of classical cadherins, tip-link cadherins are mechanoresilient structures even at the exceptionally low Ca2+ concentration of the endolymph. We also show that the D101G deafness point mutation in cadherin 23, which affects a Ca2+ coordination site, exhibits an altered mechanical phenotype at the physiological Ca2+ concentration. Our results show a remarkable case of functional adaptation of a protein’s nanomechanics to extremely low Ca2+ concentrations and pave the way to a full understanding of the mechanotransduction mechanism mediated by auditory cadherins.
Collapse
|
29
|
Broken force dispersal network in tip-links by the mutations at the Ca 2+-binding residues induces hearing-loss. Biochem J 2019; 476:2411-2425. [PMID: 31399498 PMCID: PMC6717114 DOI: 10.1042/bcj20190453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022]
Abstract
Tip-link as force-sensor in hearing conveys the mechanical force originating from sound to ion-channels while maintaining the integrity of the entire sensory assembly in the inner ear. This delicate balance between structure and function of tip-links is regulated by Ca2+-ions present in endolymph. Mutations at the Ca2+-binding sites of tip-links often lead to congenital deafness, sometimes syndromic defects impairing vision along with hearing. Although such mutations are already identified, it is still not clear how the mutants alter the structure-function properties of the force-sensors associated with diseases. With an aim to decipher the differences in force-conveying properties of the force-sensors in molecular details, we identified the conformational variability of mutant and wild-type tip-links at the single-molecule level using FRET at the endolymphatic Ca2+ concentrations and subsequently measured the force-responsive behavior using single-molecule force spectroscopy with an Atomic Force Microscope (AFM). AFM allowed us to mimic the high and wide range of force ramps (103-106 pN s-1) as experienced in the inner ear. We performed in silico network analysis to learn that alterations in the conformations of the mutants interrupt the natural force-propagation paths through the sensors and make the mutant tip-links vulnerable to input forces from sound stimuli. We also demonstrated that a Ca2+ rich environment can restore the force-response of the mutant tip-links which may eventually facilitate the designing of better therapeutic strategies to the hearing loss.
Collapse
|
30
|
Jaiganesh A, Narui Y, Araya-Secchi R, Sotomayor M. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Cold Spring Harb Perspect Biol 2018; 10:a029280. [PMID: 28847902 PMCID: PMC6008173 DOI: 10.1101/cshperspect.a029280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadherins form a large family of proteins often involved in calcium-dependent cellular adhesion. Although classical members of the family can provide a physical bond between cells, a subset of special cadherins use their extracellular domains to interlink apical specializations of single epithelial sensory cells. Two of these cadherins, cadherin-23 (CDH23) and protocadherin-15 (PCDH15), form extracellular "tip link" filaments that connect apical bundles of stereocilia on hair cells essential for inner-ear mechanotransduction. As these bundles deflect in response to mechanical stimuli from sound or head movements, tip links gate hair-cell mechanosensitive channels to initiate sensory perception. Here, we review the unusual and diverse structural properties of these tip-link cadherins and the functional significance of their deafness-related missense mutations. Based on the structural features of CDH23 and PCDH15, we discuss the elasticity of tip links and models that bridge the gap between the nanomechanics of cadherins and the micromechanics of hair-cell bundles during inner-ear mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
31
|
Honda A, Kita T, Seshadri SV, Misaki K, Ahmed Z, Ladbury JE, Richardson GP, Yonemura S, Ladher RK. FGFR1-mediated protocadherin-15 loading mediates cargo specificity during intraflagellar transport in inner ear hair-cell kinocilia. Proc Natl Acad Sci U S A 2018; 115:8388-8393. [PMID: 30061390 PMCID: PMC6099903 DOI: 10.1073/pnas.1719861115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mechanosensory hair cells of the inner ear are required for hearing and balance and have a distinctive apical structure, the hair bundle, that converts mechanical stimuli into electrical signals. This structure comprises a single cilium, the kinocilium, lying adjacent to an ensemble of actin-based projections known as stereocilia. Hair bundle polarity depends on kinociliary protocadherin-15 (Pcdh15) localization. Protocadherin-15 is found only in hair-cell kinocilia, and is not localized to the primary cilia of adjacent supporting cells. Thus, Pcdh15 must be specifically targeted and trafficked into the hair-cell kinocilium. Here we show that kinocilial Pcdh15 trafficking relies on cell type-specific coupling to the generic intraflagellar transport (IFT) transport mechanism. We uncover a role for fibroblast growth factor receptor 1 (FGFR1) in loading Pcdh15 onto kinociliary transport particles in hair cells. We find that on activation, FGFR1 binds and phosphorylates Pcdh15. Moreover, we find a previously uncharacterized role for clathrin in coupling this kinocilia-specific cargo with the anterograde IFT-B complex through the adaptor, DAB2. Our results identify a modified ciliary transport pathway used for Pcdh15 transport into the cilium of the inner ear hair cell and coordinated by FGFR1 activity.
Collapse
Affiliation(s)
- Akira Honda
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 650-0047 Kobe, Japan
| | - Tomoko Kita
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 650-0047 Kobe, Japan
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Hospital, 606-8507 Kyoto, Japan
| | | | - Kazuyo Misaki
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, 650-0047 Kobe, Japan
- Department of Cell Biology, Tokushima University, 770-8503 Tokushima, Japan
| | - Zamal Ahmed
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Center for Biomolecular Structure and Function, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom
| | - Shigenobu Yonemura
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, 650-0047 Kobe, Japan
- Department of Cell Biology, Tokushima University, 770-8503 Tokushima, Japan
| | - Raj K Ladher
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 650-0047 Kobe, Japan;
- National Centre for Biological Sciences, 560-065 Bangalore, India
| |
Collapse
|
32
|
Ge J, Elferich J, Goehring A, Zhao H, Schuck P, Gouaux E. Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. eLife 2018; 7:38770. [PMID: 30070639 PMCID: PMC6092121 DOI: 10.7554/elife.38770] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Hearing and balance involve the transduction of mechanical stimuli into electrical signals by deflection of bundles of stereocilia linked together by protocadherin 15 (PCDH15) and cadherin 23 'tip links'. PCDH15 transduces tip link tension into opening of a mechano-electrical transduction (MET) ion channel. PCDH15 also interacts with LHFPL5, a candidate subunit of the MET channel. Here we illuminate the PCDH15-LHFPL5 structure, showing how the complex is composed of PCDH15 and LHFPL5 subunit pairs related by a 2-fold axis. The extracellular cadherin domains define a mobile tether coupled to a rigid, 2-fold symmetric 'collar' proximal to the membrane bilayer. LHFPL5 forms extensive interactions with the PCDH15 transmembrane helices and stabilizes the overall PCDH15-LHFPL5 assembly. Our studies illuminate the architecture of the PCDH15-LHFPL5 complex, localize mutations associated with deafness, and shed new light on how forces in the PCDH15 tether may be transduced into the stereocilia membrane.
Collapse
Affiliation(s)
- Jingpeng Ge
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Johannes Elferich
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - April Goehring
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, United States.,Howard Hughes Medical Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
33
|
Jaiganesh A, De-la-Torre P, Patel AA, Termine DJ, Velez-Cortes F, Chen C, Sotomayor M. Zooming in on Cadherin-23: Structural Diversity and Potential Mechanisms of Inherited Deafness. Structure 2018; 26:1210-1225.e4. [PMID: 30033219 DOI: 10.1016/j.str.2018.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/22/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Cadherin-23 (CDH23) is an essential component of hair-cell tip links, fine filaments that mediate inner-ear mechanotransduction. The extracellular domain of CDH23 forms about three-fourths of the tip link with 27 extracellular cadherin (EC) repeats that are structurally similar but not identical to each other. Calcium (Ca2+) coordination at the EC linker regions is key for tip-link elasticity and function. There are ∼116 sites in CDH23 affected by deafness-causing mutations, many of which alter conserved Ca2+-binding residues. Here we present crystal structures showing 18 CDH23 EC repeats, including the most and least conserved, a fragment carrying disease mutations, and EC repeats with non-canonical Ca2+-binding motif sequences and unusual secondary structure. Complementary experiments show deafness mutations' effects on stability and affinity for Ca2+. Additionally, a model of nine contiguous CDH23 EC repeats reveals helicity and potential parallel dimerization faces. Overall, our studies provide detailed structural insight into CDH23 function in mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Aniket A Patel
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Domenic J Termine
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Florencia Velez-Cortes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Conghui Chen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Ahmed ZM, Jaworek TJ, Sarangdhar GN, Zheng L, Gul K, Khan SN, Friedman TB, Sisk RA, Bartles JR, Riazuddin S, Riazuddin S. Inframe deletion of human ESPN is associated with deafness, vestibulopathy and vision impairment. J Med Genet 2018; 55:479-488. [PMID: 29572253 PMCID: PMC6232856 DOI: 10.1136/jmedgenet-2017-105221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Usher syndrome (USH) is a neurosensory disorder characterised by deafness, variable vestibular areflexia and vision loss. The aim of the study was to identify the genetic defect in a Pakistani family (PKDF1051) segregating USH. METHODS Genome-wide linkage analysis was performed by using an Illumina linkage array followed by Sanger and exome sequencing. Heterologous cells and mouse organ of Corti explant-based transfection assays were used for functional evaluations. Detailed clinical evaluations were performed to characterise the USH phenotype. RESULTS Through homozygosity mapping, we genetically linked the USH phenotype segregating in family PKDF1051 to markers on chromosome 1p36.32-p36.22. The locus was designated USH1M. Using a combination of Sanger sequencing and exome sequencing, we identified a novel homozygous 18 base pair inframe deletion in ESPN. Variants of ESPN, encoding the actin-bundling protein espin, have been previously associated with deafness and vestibular areflexia in humans with no apparent visual deficits. Our functional studies in heterologous cells and in mouse organ of Corti explant cultures revealed that the six deleted residues in affected individuals of family PKDF1051 are essential for the actin bundling function of espin demonstrated by ultracentrifugation actin binding and bundling assays. Funduscopic examination of the affected individuals of family PKDF1051 revealed irregular retinal contour, temporal flecks and disc pallor in both eyes. ERG revealed diminished rod photoreceptor function among affected individuals. CONCLUSION Our study uncovers an additional USH gene, assigns the USH1 phenotype to a variant of ESPN and provides a 12th molecular component to the USH proteome.
Collapse
Affiliation(s)
- Zubair M Ahmed
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Thomas J Jaworek
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Gowri N Sarangdhar
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Lili Zheng
- Department of Cell and Molecular Biology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Khitab Gul
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Shaheen N Khan
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A Sisk
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
- Ophthalmology, Cincinnati Eye Institute, Cincinnati, Ohio, USA
| | - James R Bartles
- Department of Cell and Molecular Biology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Sheikh Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
- University of Lahore and Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| |
Collapse
|
35
|
Identification of Pathogenic Genes of Nonsyndromic Hearing Loss in Uyghur Families Using Massively Parallel DNA Sequencing Technique. DISEASE MARKERS 2018; 2018:5298057. [PMID: 29692870 PMCID: PMC5859828 DOI: 10.1155/2018/5298057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/28/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022]
Abstract
We aim to identify the mutations of deafness genes using massively parallel DNA sequencing in the 12 Uyghur families. SNPscan method was used to screen against the 124 sites in the common deafness genes in probands. Subjects with SNPscan negativity were subject to massively parallel DNA sequencing for the sequencing of 97 genes known to be responsible for hearing loss. Eight families (66.7%) showed biallelic mutations in probands, including MYO15A mutation (6892C>T in J02 family, 9514C>T/7894G>T in J07 family, and 9514C>T in J16 family), MYO7A mutation (1258A>T in J03 family), TMC1 mutation (773G>A in J09 family and 1247T>G/1312G>A in J11 family), and PCDH15 mutation (4658delT in J08 and J13 families). Six novel types of mutation were identified including 6892C>T, 9514C>T/7894G>T, and 9514C>T in MYO15A gene, 1258A>T in MYO7A, 773G>A in TMC1, and 4658delT in PCDH15. The ratio of nonsense mutation and frameshift mutation was comparatively high. All these indicated that the mutation types reported in this study were rare. In conclusion, rare deafness genes were identified in the Uyghur families using massively parallel DNA sequencing, part of which were suggested to be related to the pathogenesis of the disease.
Collapse
|
36
|
Choudhary D, Kumar A, Magliery TJ, Sotomayor M. Using thermal scanning assays to test protein-protein interactions of inner-ear cadherins. PLoS One 2017; 12:e0189546. [PMID: 29261728 PMCID: PMC5736220 DOI: 10.1371/journal.pone.0189546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Protein-protein interactions play a crucial role in biological processes such as cell-cell adhesion, immune system-pathogen interactions, and sensory perception. Understanding the structural determinants of protein-protein complex formation and obtaining quantitative estimates of their dissociation constant (KD) are essential for the study of these interactions and for the discovery of new therapeutics. At the same time, it is equally important to characterize protein-protein interactions in a high-throughput fashion. Here, we use a modified thermal scanning assay to test interactions of wild type (WT) and mutant variants of N-terminal fragments (EC1+2) of cadherin-23 and protocadherin-15, two proteins essential for inner-ear mechanotransduction. An environmentally sensitive fluorescent dye (SYPRO orange) is used to monitor melting temperature (Tm) shifts of protocadherin-15 EC1+2 (pcdh15) in the presence of increasing concentrations of cadherin-23 EC1+2 (cdh23). These Tm shifts are absent when we use proteins containing deafness-related missense mutations known to disrupt cdh23 binding to pcdh15, and are increased for some rationally designed mutants expected to enhance binding. In addition, surface plasmon resonance binding experiments were used to test if the Tm shifts correlated with changes in binding affinity. We used this approach to find a double mutation (cdh23(T15E)- pcdh15(G16D)) that enhances binding affinity of the cadherin complex by 1.98 kJ/mol, roughly two-fold that of the WT complex. We suggest that the thermal scanning methodology can be used in high-throughput format to quickly compare binding affinities (KD from nM up to 100 μM) for some heterodimeric protein complexes and to screen small molecule libraries to find protein-protein interaction inhibitors and enhancers.
Collapse
Affiliation(s)
- Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Anusha Kumar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
37
|
Ghasemnejad T, Shekari Khaniani M, Zarei F, Farbodnia M, Mansoori Derakhshan S. An update of common autosomal recessive non-syndromic hearing loss genes in Iranian population. Int J Pediatr Otorhinolaryngol 2017; 97:113-126. [PMID: 28483220 DOI: 10.1016/j.ijporl.2017.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022]
Abstract
Autosomal-recessive genes are responsible for about 80% of the hereditary non-syndromic hearing loss (NSHL) cases. In Iran, due to consanguineous marriages, NSHL is the second most frequent disability after intellectual disability, occurring one in 16 individuals. Enormous heterogeneity in the genetic pathology of hearing loss causes a major challenge in identification of responsible genes. In Iran, GJB2 is responsible for the most cases of pre-lingual and non-syndromic hearing loss (with frequency of 16.7%) which followed by other genes with lower frequency. Although several studies have indicated that a large proportion of both syndromic and non-syndromic hearing loss in Iranian populations are caused by defects in just a few genes, new detection strategies such as NGS (Next-generation sequencing) have increased the spectrum of responsible mutations. However, by applying this technique in Iran patients screening, the role of lots of novel related genes have been reported. In this review, we aim to describe function of these genes and their contribution to non-syndromic genetic hearing loss in Iranian population and we classify the genes by their functions.
Collapse
Affiliation(s)
- Tohid Ghasemnejad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Zarei
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mina Farbodnia
- Department of Cellular and Molecular Biology, Faculty of Sciences, Saba University, Urmia, Iran
| | - Sima Mansoori Derakhshan
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Wang R, Han S, Khan A, Zhang X. Molecular Analysis of Twelve Pakistani Families with Nonsyndromic or Syndromic Hearing Loss. Genet Test Mol Biomarkers 2017; 21:316-321. [PMID: 28281779 DOI: 10.1089/gtmb.2016.0328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM To investigate the causative genetic mutations in 12 Pakistani families with nonsyndromic or syndromic hearing loss. METHODS Mutations in the most common causative gene for hearing loss, GJB2, were evaluated by Sanger sequencing. Targeted next-generation sequencing or whole-exome sequencing was used to analyze the genomic DNA samples from 11 probands with hearing loss. Sanger sequencing was performed to verify all identified variants. RESULTS We found pathogenic, or likely to be pathogenic, mutations in all 12 families, including six known mutations in GJB2, SLC26A4, LHFPL5, and USH2A and eight novel mutations in ESPN, MYO7A, LRTOMT, PCDH15, USH2A, or EPS8L2. Notably, four compound heterozygous mutations in the MYO7A and USH2A genes were detected in two consanguineous families. In addition, the novel frameshift mutation in EPS8L2 was first documented in Pakistan. CONCLUSIONS Our study increases the spectrum of mutations associated with hearing loss in the Pakistani population. In addition, our study highlights the fact that compound heterozygous mutations, although rare, can occur in consanguineous families.
Collapse
Affiliation(s)
- Rongrong Wang
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College , Beijing, China
| | - Shirui Han
- 2 The Research Center for Medical Genomics, China Medical University , Shenyang, China
| | - Amjad Khan
- 2 The Research Center for Medical Genomics, China Medical University , Shenyang, China
| | - Xue Zhang
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, McKusick-Zhang Center for Genetic Medicine, School of Basic Medicine Peking Union Medical College , Beijing, China
| |
Collapse
|
39
|
Kletke S, Batmanabane V, Dai T, Vincent A, Li S, Gordon KA, Papsin BC, Cushing SL, Héon E. The combination of vestibular impairment and congenital sensorineural hearing loss predisposes patients to ocular anomalies, including Usher syndrome. Clin Genet 2017; 92:26-33. [PMID: 27743452 DOI: 10.1111/cge.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
The co-occurrence of hearing impairment and visual dysfunction is devastating. Most deaf-blind etiologies are genetically determined, the commonest being Usher syndrome (USH). While studies of the congenitally deaf population reveal a variable degree of visual problems, there are no effective ophthalmic screening guidelines. We hypothesized that children with congenital sensorineural hearing loss (SNHL) and vestibular impairment were at an increased risk of having USH. A retrospective chart review of 33 cochlear implants recipients for severe to profound SNHL and measured vestibular dysfunction was performed to determine the ocular phenotype. All the cases had undergone ocular examination and electroretinogram (ERG). Patients with an abnormal ERG underwent genetic testing for USH. We found an underlying ocular abnormality in 81.81% (27/33) of cases; of which 75% had refractive errors, and 50% of those patients showed visual improvement with refractive correction. A total of 14 cases (42.42%; 14/33) had generalized rod-cone dysfunction on ERG suggestive of Usher syndrome type 1, confirmed by mutational analysis. This work shows that adding vestibular impairment as a criterion for requesting an eye exam and adding the ERG to detect USH increases the chances of detecting ocular anomalies, when compared with previous literature focusing only on congenital SNHL.
Collapse
Affiliation(s)
- S Kletke
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - V Batmanabane
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - T Dai
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Vincent
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Li
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - K A Gordon
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Otolaryngology - Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - B C Papsin
- Department of Otolaryngology - Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S L Cushing
- Department of Otolaryngology - Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - E Héon
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Williams DS, Chadha A, Hazim R, Gibbs D. Gene therapy approaches for prevention of retinal degeneration in Usher syndrome. Gene Ther 2017; 24:68-71. [PMID: 28054582 DOI: 10.1038/gt.2016.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 01/04/2023]
Affiliation(s)
- D S Williams
- Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.,Departments of Ophthalmology and Neurobiology, UCLA School of Medicine, Los Angeles, CA, USA
| | - A Chadha
- Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.,Departments of Ophthalmology and Neurobiology, UCLA School of Medicine, Los Angeles, CA, USA
| | - R Hazim
- Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.,Departments of Ophthalmology and Neurobiology, UCLA School of Medicine, Los Angeles, CA, USA.,Interdepartmental Program in Neurosciences, UCLA School of Medicine, Los Angeles, CA, USA
| | - D Gibbs
- Translational Neurosciences Institute, Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, USA
| |
Collapse
|
41
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
42
|
Using large sequencing data sets to refine intragenic disease regions and prioritize clinical variant interpretation. Genet Med 2016; 19:496-504. [PMID: 27657688 DOI: 10.1038/gim.2016.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Classification of novel variants is a major challenge facing the widespread adoption of comprehensive clinical genomic sequencing and the field of personalized medicine in general. This is largely because most novel variants do not have functional, genetic, or population data to support their clinical classification. METHODS To improve variant interpretation, we leveraged the Exome Aggregation Consortium (ExAC) data set (N = ~60,000) as well as 7,000 clinically curated variants in 132 genes identified in more than 11,000 probands clinically tested for cardiomyopathies, rasopathies, hearing loss, or connective tissue disorders to perform a systematic evaluation of domain level disease associations. RESULTS We statistically identify regions that are most sensitive to functional variation in the general population and also most commonly impacted in symptomatic individuals. Our data show that a significant number of exons and domains in genes strongly associated with disease can be defined as disease-sensitive or disease-tolerant, leading to potential reclassification of at least 26% (450 out of 1,742) of variants of uncertain clinical significance in the 132 genes. CONCLUSION This approach leverages domain functional annotation and associated disease in each gene to prioritize candidate disease variants, increasing the sensitivity and specificity of novel variant assessment within these genes.Genet Med advance online publication 22 September 2016.
Collapse
|
43
|
Rehman AU, Bird JE, Faridi R, Shahzad M, Shah S, Lee K, Khan SN, Imtiaz A, Ahmed ZM, Riazuddin S, Santos-Cortez RLP, Ahmad W, Leal SM, Riazuddin S, Friedman TB. Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness. Hum Mutat 2016; 37:991-1003. [PMID: 27375115 DOI: 10.1002/humu.23042] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
Abstract
Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal-recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A.
Collapse
Affiliation(s)
- Atteeq U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, 20892
| | - Jonathan E Bird
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, 20892
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, 20892.,Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 54550, Pakistan
| | - Mohsin Shahzad
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, 21201
| | - Sujay Shah
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, 20892
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Shaheen N Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 54550, Pakistan
| | - Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, 20892
| | - Zubair M Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, 21201
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, 21201
| | - Regie Lyn P Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, University of Health Sciences, Lahore, 54550, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, 20892.
| |
Collapse
|
44
|
Saleha S, Ajmal M, Jamil M, Nasir M, Hameed A. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype. Int J Ophthalmol 2016; 9:662-8. [PMID: 27275418 DOI: 10.18240/ijo.2016.05.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/06/2015] [Indexed: 11/23/2022] Open
Abstract
AIM To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. METHODS A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. RESULTS By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. CONCLUSION The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.
Collapse
Affiliation(s)
- Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ajmal
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nasir
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| |
Collapse
|
45
|
Sloan-Heggen CM, Babanejad M, Beheshtian M, Simpson AC, Booth KT, Ardalani F, Frees KL, Mohseni M, Mozafari R, Mehrjoo Z, Jamali L, Vaziri S, Akhtarkhavari T, Bazazzadegan N, Nikzat N, Arzhangi S, Sabbagh F, Otukesh H, Seifati SM, Khodaei H, Taghdiri M, Meyer NC, Daneshi A, Farhadi M, Kahrizi K, Smith RJH, Azaiez H, Najmabadi H. Characterising the spectrum of autosomal recessive hereditary hearing loss in Iran. J Med Genet 2015; 52:823-9. [PMID: 26445815 PMCID: PMC4733363 DOI: 10.1136/jmedgenet-2015-103389] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/14/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND Countries with culturally accepted consanguinity provide a unique resource for the study of rare recessively inherited genetic diseases. Although hereditary hearing loss (HHL) is not uncommon, it is genetically heterogeneous, with over 85 genes causally implicated in non-syndromic hearing loss (NSHL). This heterogeneity makes many gene-specific types of NSHL exceedingly rare. We sought to define the spectrum of autosomal recessive HHL in Iran by investigating both common and rarely diagnosed deafness-causing genes. DESIGN Using a custom targeted genomic enrichment (TGE) panel, we simultaneously interrogated all known genetic causes of NSHL in a cohort of 302 GJB2-negative Iranian families. RESULTS We established a genetic diagnosis for 67% of probands and their families, with over half of all diagnoses attributable to variants in five genes: SLC26A4, MYO15A, MYO7A, CDH23 and PCDH15. As a reflection of the power of consanguinity mapping, 26 genes were identified as causative for NSHL in the Iranian population for the first time. In total, 179 deafness-causing variants were identified in 40 genes in 201 probands, including 110 novel single nucleotide or small insertion-deletion variants and three novel CNV. Several variants represent founder mutations. CONCLUSION This study attests to the power of TGE and massively parallel sequencing as a diagnostic tool for the evaluation of hearing loss in Iran, and expands on our understanding of the genetics of HHL in this country. Families negative for variants in the genes represented on this panel represent an excellent cohort for novel gene discovery.
Collapse
Affiliation(s)
- Christina M Sloan-Heggen
- Molecular Otolaryngology & Renal Research Labs, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Allen C Simpson
- Molecular Otolaryngology & Renal Research Labs, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kevin T Booth
- Molecular Otolaryngology & Renal Research Labs, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Fariba Ardalani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kathy L Frees
- Molecular Otolaryngology & Renal Research Labs, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Mozafari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Mehrjoo
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Leila Jamali
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saeideh Vaziri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nooshin Nikzat
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Hasan Otukesh
- Hazrat –e – Ali Asghar Educational & Treatment Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Nicole C Meyer
- Molecular Otolaryngology & Renal Research Labs, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ahmad Daneshi
- Head and Neck Surgery Department and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- Head and Neck Surgery Department and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard JH Smith
- Molecular Otolaryngology & Renal Research Labs, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Interdepartmental PhD Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Hela Azaiez
- Molecular Otolaryngology & Renal Research Labs, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
46
|
Harrison S, Lewis SJ, Hall AJ, Vuckovic D, Girotto G, Martin RM, Adams JC. Association of SNPs in LCP1 and CTIF with hearing in 11 year old children: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort and the G-EAR consortium. BMC Med Genomics 2015; 8:48. [PMID: 26264041 PMCID: PMC4533938 DOI: 10.1186/s12920-015-0112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 07/02/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The genetic basis of hearing loss in humans is relatively poorly understood. In recent years, experimental approaches including laboratory studies of early onset hearing loss in inbred mouse strains, or proteomic analyses of hair cells or hair bundles, have suggested new candidate molecules involved in hearing function. However, the relevance of these genes/gene products to hearing function in humans remains unknown. We investigated whether single nucleotide polymorphisms (SNPs) in the human orthologues of genes of interest arising from the above-mentioned studies correlate with hearing function in children. METHODS 577 SNPs from 13 genes were each analysed by linear regression against averaged high (3, 4 and 8 kHz) or low frequency (0.5, 1 and 2 kHz) audiometry data from 4970 children in the Avon Longitudinal Study of Parents and Children (ALSPAC) birth-cohort at age eleven years. Genes found to contain SNPs with low p-values were then investigated in 3417 adults in the G-EAR study of hearing. RESULTS Genotypic data were available in ALSPAC for a total of 577 SNPs from 13 genes of interest. Two SNPs approached sample-wide significance (pre-specified at p = 0.00014): rs12959910 in CBP80/20-dependent translation initiation factor (CTIF) for averaged high frequency hearing (p = 0.00079, β = 0.61 dB per minor allele); and rs10492452 in L-plastin (LCP1) for averaged low frequency hearing (p = 0.00056, β = 0.45 dB). For low frequencies, rs9567638 in LCP1 also enhanced hearing in females (p = 0.0011, β = -1.76 dB; males p = 0.23, β = 0.61 dB, likelihood-ratio test p = 0.006). SNPs in LCP1 and CTIF were then examined against low and high frequency hearing data for adults in G-EAR. Although the ALSPAC results were not replicated, a SNP in LCP1, rs17601960, is in strong LD with rs9967638, and was associated with enhanced low frequency hearing in adult females in G-EAR (p = 0.00084). CONCLUSIONS There was evidence to suggest that multiple SNPs in CTIF may contribute a small detrimental effect to hearing, and that a sex-specific locus in LCP1 is protective of hearing. No individual SNPs reached sample-wide significance in both ALSPAC and G-EAR. This is the first report of a possible association between LCP1 and hearing function.
Collapse
Affiliation(s)
- Sean Harrison
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK.
| | - Sarah J Lewis
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK.
| | - Amanda J Hall
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK.
| | - Dragana Vuckovic
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100, Trieste, Italy.
| | - Giorgia Girotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100, Trieste, Italy.
| | - Richard M Martin
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK.
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
47
|
Zhan Y, Liu M, Chen D, Chen K, Jiang H. Novel mutation located in EC7 domain of protocadherin-15 uncovered by targeted massively parallel sequencing in a family segregating non-syndromic deafness DFNB23. Int J Pediatr Otorhinolaryngol 2015; 79:983-6. [PMID: 25930172 DOI: 10.1016/j.ijporl.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Hereditary hearing loss is a clinically and genetically heterogeneous disorder associated with mutations of a large number of diverse genes. In this study we applied targeted capture and massively parallel sequencing to identify the disease-causing gene of a Chinese family segregating recessive inherited deafness. METHODS After excluding mutations in common deafness genes GJB2, SLC26A4, mitochondrial m.1555A>G, genomic DNA of the proband of family GDSW24 was subjected to targeted next-generation sequencing. Subsequently, a candidate homozygous mutation was confirmed by Sanger sequencing. RESULTS A novel PCDH15 c.2367_2369delTGT/p.V788-homozygous mutation was detected. In this family, no obvious vestibular disorder was found. The in-frame mutation c.2367_2369delTGT is located in the evolutionarily conserved EC7 domain of Protocadherin-15 and was predicted to be pathogenic. CONCLUSION The novel homozygous mutation in a family segregating non-syndromic hearing loss family supports previous reported observations that PCDH15 does not only causes Usher syndrome type 1F, but also DFNB23.
Collapse
Affiliation(s)
- Yuan Zhan
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Min Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China
| | - DeHua Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China
| | - KaiTian Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China
| | - HongYan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
48
|
Perreault-Micale C, Frieden A, Kennedy CJ, Neitzel D, Sullivan J, Faulkner N, Hallam S, Greger V. Truncating variants in the majority of the cytoplasmic domain of PCDH15 are unlikely to cause Usher syndrome 1F. J Mol Diagn 2015; 16:673-8. [PMID: 25307757 DOI: 10.1016/j.jmoldx.2014.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
Loss of function variants in the PCDH15 gene can cause Usher syndrome type 1F, an autosomal recessive disease associated with profound congenital hearing loss, vestibular dysfunction, and retinitis pigmentosa. The Ashkenazi Jewish population has an increased incidence of Usher syndrome type 1F (founder variant p.Arg245X accounts for 75% of alleles), yet the variant spectrum in a panethnic population remains undetermined. We sequenced the coding region and intron-exon borders of PCDH15 using next-generation DNA sequencing technology in approximately 14,000 patients from fertility clinics. More than 600 unique PCDH15 variants (single nucleotide changes and small indels) were identified, including previously described pathogenic variants p.Arg3X, p.Arg245X (five patients), p.Arg643X, p.Arg929X, and p.Arg1106X. Novel truncating variants were also found, including one in the N-terminal extracellular domain (p.Leu877X), but all other novel truncating variants clustered in the exon 33 encoded C-terminal cytoplasmic domain (52 patients, 14 variants). One variant was observed predominantly in African Americans (carrier frequency of 2.3%). The high incidence of truncating exon 33 variants indicates that they are unlikely to cause Usher syndrome type 1F even though many remove a large portion of the gene. They may be tolerated because PCDH15 has several alternate cytoplasmic domain exons and differentially spliced isoforms may function redundantly. Effects of some PCDH15 truncating variants were addressed by deep sequencing of a panethnic population.
Collapse
Affiliation(s)
| | | | | | - Dana Neitzel
- Good Start Genetics, Inc., Cambridge, Massachusetts
| | | | | | | | | |
Collapse
|
49
|
Hess JE, Caudill CC, Keefer ML, McIlraith BJ, Moser ML, Narum SR. Genes predict long distance migration and large body size in a migratory fish, Pacific lamprey. Evol Appl 2014; 7:1192-208. [PMID: 25558280 PMCID: PMC4275091 DOI: 10.1111/eva.12203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/17/2014] [Indexed: 12/20/2022] Open
Abstract
Elucidation of genetic mechanisms underpinning migratory behavior could help predict how changes in genetic diversity may affect future spatiotemporal distribution of a migratory species. This ability would benefit conservation of one such declining species, anadromous Pacific lamprey (Entosphenus tridentatus). Nonphilopatric migration of adult Pacific lamprey has homogenized population-level neutral variation but has maintained adaptive variation that differentiates groups based on geography, run-timing and adult body form. To investigate causes for this adaptive divergence, we examined 647 adult lamprey sampled at a fixed location on the Columbia River and radiotracked during their subsequent upstream migration. We tested whether genetic variation [94 neutral and adaptive single nucleotide polymorphisms (SNPs) previously identified from a genomewide association study] was associated with phenotypes of migration distance, migration timing, or morphology. Three adaptive markers were strongly associated with morphology, and one marker also correlated with upstream migration distance and timing. Genes physically linked with these markers plausibly influence differences in body size, which is also consistently associated with migration distance in Pacific lamprey. Pacific lamprey conservation implications include the potential to predict an individual's upstream destination based on its genotype. More broadly, the results suggest a genetic basis for intrapopulation variation in migration distance in migratory species.
Collapse
Affiliation(s)
- Jon E Hess
- Columbia River Inter-Tribal Fish Commission Hagerman, ID, USA
| | - Christopher C Caudill
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho Moscow, ID, USA
| | - Matthew L Keefer
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho Moscow, ID, USA
| | | | - Mary L Moser
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Seattle, WA, USA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission Hagerman, ID, USA
| |
Collapse
|
50
|
Sotomayor M, Gaudet R, Corey DP. Sorting out a promiscuous superfamily: towards cadherin connectomics. Trends Cell Biol 2014; 24:524-36. [PMID: 24794279 DOI: 10.1016/j.tcb.2014.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 12/21/2022]
Abstract
Members of the cadherin superfamily of proteins are involved in diverse biological processes such as morphogenesis, sound transduction, and neuronal connectivity. Key to cadherin function is their extracellular domain containing cadherin repeats, which can mediate interactions involved in adhesion and cell signaling. Recent cellular, biochemical, and structural studies have revealed that physical interaction among cadherins is more complex than originally thought. Here we review work on new cadherin complexes and discuss how the classification of the mammalian family can be used to search for additional cadherin-interacting partners. We also highlight some of the challenges in cadherin research; namely, the characterization of a cadherin connectome in biochemical and structural terms, as well as the elucidation of molecular mechanisms underlying the functional diversity of nonclassical cadherins in vivo.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - David P Corey
- Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|