1
|
Dwyer AA. Health Disparities and Disrupted Puberty in Males. Endocrinol Metab Clin North Am 2025; 54:295-306. [PMID: 40348570 DOI: 10.1016/j.ecl.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Disrupted puberty in males may result from self-limiting constitutional delay of growth and puberty (CDGP) or abiding hypogonadism (ie, congenital hypogonadotropic hypogonadism, CHH). This article provides an overview of normal puberty, CDGP, and CHH and synthesizes current evidence on health and wellbeing outcomes. Particular attention is given to the drivers of disparities in outcomes and discussion of future directions to advance the care of males with disrupted puberty.
Collapse
Affiliation(s)
- Andrew A Dwyer
- William F. Connell School of Nursing, Boston College; P50 Massachusetts General Hospital - Harvard Center for Reproductive Medicine, Massachusetts General Hospital, MA, USA.
| |
Collapse
|
2
|
Yuan Y, Huang Q, Zhang J, Zhou Z, Wan Q, Chen L, Zeng T, Li H, Zhang Q, Hu X. PROKR2 mutations and SPRY4 variants with uncertain significance in a Kallmann syndrome family: Incomplete penetrance. Glob Med Genet 2025; 12:100037. [PMID: 40034250 PMCID: PMC11875164 DOI: 10.1016/j.gmg.2025.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 03/05/2025] Open
Abstract
Kallmann syndrome is a rare genetic disease characterized by the idiopathic hypogonadotropic hypogonadism with hyposmia or anosmia, which exhibits considerable heterogeneity in genotype and phenotype. Herein, we reported a 32-year-old male patient with Kallmann syndrome in a family associated with heterozygous mutations in PROKR2 and SPRY4 genes. The genotyping results indicated PROKR2 mutations and SPRY4 variants of uncertain significance, which might be incompletely penetrant in this family.
Collapse
Affiliation(s)
- Yuanfan Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
- The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianqian Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Jiehan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Zehua Zhou
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Endocrinology, Hubei Xianfeng County Hospital of Traditional Chinese Medicine, Enshi 445600, Hubei, China
| | - Qing Wan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Qiao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| |
Collapse
|
3
|
Chiarello P, Gualtieri G, Bossio S, Seminara G, Molinaro M, Antonucci G, Perri A, Rocca V, Cannarella R, La Vignera S, Calogero AE, Greco EA, Iuliano R, Alcaro S, Aversa A. Identification of Novel Genetic Variants in a Cohort of Congenital Hypogonadotropic Hypogonadism: Computational Analysis of Pathogenicity Predictions. Int J Mol Sci 2025; 26:5207. [PMID: 40508017 PMCID: PMC12154317 DOI: 10.3390/ijms26115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/26/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare and heterogeneous genetic disorder with variable penetrance caused by GnRH deficiency, leading to delayed puberty and infertility. In 50-60% of cases, CHH is associated with non-reproductive abnormalities, most commonly anosmia/hyposmia (Kallmann syndrome, KS). Over 60 genes have been implicated in CHH pathogenesis. We aimed to perform genetic screening in a cohort of 14 patients (10 males, 4 females; mean age 22 ± 7.72 years) with suspected or diagnosed HH/KS. Genetic analysis was conducted using next-generation sequencing (NGS) with a custom panel of 46 candidate genes. Variant interpretation followed ACMG standards and guidelines. Multiple tools were used to predict the structural effects of variants on tertiary protein structure, assessing their pathogenicity. Novel variants were functionally characterized by qRT-PCR on mRNA extracted from peripheral leukocytes. NGS identified nine rare variants and four novel variants in genes previously associated with normosmic isolated HH (nHH) and/or KS (FGFR1, PROK2, TAC3R, DCC, WDR11, IL17RD, DUSP6, KAL1, FGF8, IL17RD and DCC). The variant in TAC3R (p.Trp275Ter) was pathogenic; variants in ANOS1 (c.541+1G>A), IL17RD (c.1303_1304dup, p.Lys436ThrfsTer58), and TAC3R (p.Lys361Ter) were likely pathogenic. Nine variants were classified as variants of uncertain significance (VUS). Our study identified a possible genetic cause in 71% of the CHH/KS cohort, emphasizing the importance of genetic screening and functional characterization of genetic variants in patients with a phenotypically and genetically heterogeneous disorder like CHH.
Collapse
Affiliation(s)
- Paola Chiarello
- Department of Pediatrics, Dulbecco Azienda Ospedaliero-Universitaria of Catanzaro, 88100 Catanzaro, Italy;
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, 88100 Catanzaro, Italy; (S.B.); (G.S.); (M.M.); (A.P.); (V.R.)
| | - Gianmarco Gualtieri
- Dipartimento di Scienze della Salute, Università degli Studi Magna Græcia di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (R.I.)
| | - Sabrina Bossio
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, 88100 Catanzaro, Italy; (S.B.); (G.S.); (M.M.); (A.P.); (V.R.)
| | - Giuseppe Seminara
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, 88100 Catanzaro, Italy; (S.B.); (G.S.); (M.M.); (A.P.); (V.R.)
| | - Marianna Molinaro
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, 88100 Catanzaro, Italy; (S.B.); (G.S.); (M.M.); (A.P.); (V.R.)
| | - Gemma Antonucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, 88100 Catanzaro, Italy; (S.B.); (G.S.); (M.M.); (A.P.); (V.R.)
| | - Valentina Rocca
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, 88100 Catanzaro, Italy; (S.B.); (G.S.); (M.M.); (A.P.); (V.R.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.C.); (S.L.V.); (A.E.C.)
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.C.); (S.L.V.); (A.E.C.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.C.); (S.L.V.); (A.E.C.)
| | - Emanuela A. Greco
- Dipartimento di Scienze Economiche, Psicologiche, della Comunicazione, della Formazione e Motorie, Nicolò Cusano University, 00166 Rome, Italy;
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Università degli Studi Magna Græcia di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (R.I.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi Magna Græcia di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (R.I.)
- Net4Science srl, Università degli Studi Magna Græcia di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia di Catanzaro, 88100 Catanzaro, Italy; (S.B.); (G.S.); (M.M.); (A.P.); (V.R.)
| |
Collapse
|
4
|
Alexandraki KI, Violetis O, Memi E, Fryssira H, Papanikolaou V, Papagianni M, Mastorakos G. A rare combination of hypogonadotropic hypogonadism, GH deficiency and rectal atresia in a female with an FGFR1 variant: a case report and systematic review of the literature. Endocrine 2025:10.1007/s12020-025-04261-4. [PMID: 40434549 DOI: 10.1007/s12020-025-04261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/27/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE To report a case with combined pituitary hormone deficiency (CPHD) and Fibroblast growth factor receptor 1 (FGFR1) gene defect, and summarize the clinical characteristics of similar cases by reviewing the current reports from the literature. METHODS A 24-year-old woman was admitted to the outpatient endocrinology unit with a diagnosis of primary amenorrhea, history of Growth Hormone deficiency and multiple congenital anomalies including rectal atresia. The subsequent hormonal investigation led to the diagnosis of hypogonadotropic hypogonadism and persistent GH deficiency. Abdominal and pelvic ultrasounds were normal whereas the brain MRI revealed a hypoplastic sella turcica with a hypoplastic anterior pituitary lobe, an ectopic posterior pituitary lobe and a thin pituitary stalk. The genetic analysis revealed a novel pathogenic missense heterozygous variant (c.1958G > A, p.Agr635Gln) in exon 15 of FGFR1 gene. PubMed, Scopus, and Web of Science were searched for the identification of studies reporting cases of CPHD with FGFR1 gene defects. RESULTS Of the 648 records retrieved, 10 were included in this review. A comprehensive overview of the cases was summarized, and their clinical and genetic characteristics were presented. CONCLUSION Although FGFR1 variants have been associated with Kallmann syndrome and isolated hypogonadotropic hypogonadism and recently with CPHD, the patient's phenotype includes phenotypic alterations not previously described, to the best of our knowledge, within the spectrum of non-reproductive features of either of these entities. Isolated GH deficiency combined with other non-common abnormalities exerts a great possibility for subsequent CPHD manifestation.
Collapse
Affiliation(s)
- Krystallenia I Alexandraki
- 2nd Department of Surgery, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Odysseas Violetis
- 2nd Department of Surgery, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Memi
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Helen Fryssira
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Papagianni
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Mastorakos
- 2nd Department of Surgery, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece.
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Hubbard L, Rambhatla A, Colpi GM. Differentiation between nonobstructive azoospermia and obstructive azoospermia: then and now. Asian J Androl 2025; 27:298-306. [PMID: 39268812 DOI: 10.4103/aja202475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/02/2024] [Indexed: 09/15/2024] Open
Abstract
ABSTRACT Male infertility has seen an increase in prevalence with cases of azoospermia estimated to affect 10%-15% of infertile men. Confirmation of azoospermia subsequently necessitates an early causal differentiation between obstructive azoospermia (OA) and nonobstructive azoospermia (NOA). Although less common when compared to NOA, OA can represent upward 20%-40% of cases of azoospermia. While there are a multitude of etiologies responsible for causing NOA and OA, correctly distinguishing between the two types of azoospermia has profound implications in managing the infertile male. This review represents an amalgamation of the current guidelines and literature which will supply the reproductive physician with a diagnostic armamentarium to properly distinguish between NOA and OA, therefore providing the best possible care to the infertile couple.
Collapse
Affiliation(s)
- Logan Hubbard
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI 48202-3450, USA
| | - Amarnath Rambhatla
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI 48202-3450, USA
| | - Giovanni M Colpi
- Andrology and IVF Center, Next Fertility Procrea, Lugano 6900, Switzerland
| |
Collapse
|
6
|
Hubbard L, Rambhatla A, Glina S. Nonobstructive azoospermia: an etiologic review. Asian J Androl 2025; 27:279-287. [PMID: 39243180 DOI: 10.4103/aja202472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/24/2024] [Indexed: 09/09/2024] Open
Abstract
ABSTRACT Azoospermia is the complete absence of spermatozoa in the ejaculate in two or more semen analyses after centrifugation. Nonobstructive azoospermia (NOA) represents the most severe form of male factor infertility accounting for 10%-15% of cases and stems from an impairment to spermatogenesis. Understanding of the hypothalamic-pituitary-testicular axis has allowed NOA to be subcategorized by anatomic and/or pathophysiologic level. The etiologies of NOA, and therefore, the differential diagnoses when considering NOA as a cause of male factor infertility, can be subcategorized and condensed into several distinct classifications. Etiologies of NOA include primary hypogonadism, secondary hypogonadism, defects in androgen synthesis and/or response, defective spermatogenesis and sperm maturation, or a mixed picture thereof. This review includes up-to-date clinical, diagnostic, cellular, and histologic features pertaining to the multitude of NOA etiologies. This in turn will provide a framework by which physicians practicing infertility can augment their clinical decision-making, patient counseling, thereby improving upon the management of men with NOA.
Collapse
Affiliation(s)
- Logan Hubbard
- Vattikuti Urology Institute, Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Amarnath Rambhatla
- Vattikuti Urology Institute, Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Sidney Glina
- Department of Urology, ABC Medical School, Av Lauro Gomes, 2000, Santo André, SP 09060-870, Brazil
| |
Collapse
|
7
|
Rezende RC, He W, Kaisinger LR, Lerario AM, Schafer EC, Kentistou KA, Barroso PS, Andrade NLM, Dantas NCB, Costa EMF, Cellin LP, P S Quedas E, Seminara SB, Rey RA, Grinspon RP, Meriq V, Ong KK, Latronico AC, Perry JRB, Howard SR, Chan YM, Jorge AAL. Deleterious variants in intolerant genes reveal new candidates for self-limited delayed puberty. Eur J Endocrinol 2025; 192:481-490. [PMID: 40193575 PMCID: PMC12013340 DOI: 10.1093/ejendo/lvaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
OBJECTIVE Self-limited delayed puberty (SLDP) is the most common cause of delayed puberty and exhibits high heritability, although few causal genes have been identified. This study aims to identify potential candidate genes associated with SLDP. METHODS Whole-exome sequencing was conducted in 71 children with SLDP, most of whom presented with short stature. Rare coding variants were prioritized through comprehensive bioinformatics analyses and classified as high-impact or moderate-impact based on predicted functional effects. Candidate genes were selected based on the absence of human phenotype data, recurrence within the cohort, intolerance to mutation, and prior identification in genome-wide association studies. Burden tests compared the frequency of rare high-impact variants in these candidate genes between SLDP patients and the gnomAD v2.0 control group. Gene-phenotype associations were further explored using UK Biobank data. RESULTS Fourteen high-impact and 7 moderate-impact variants were identified in 19 candidate genes, suggesting a potential role in SLDP. Variants in 8 candidate genes (GPS1, INHBB, SP3, NAMPT, ARID3B, NASP, FNBP1, PRDM2) were significantly enriched in cases compared to controls in the burden test analysis. INHBB was additionally linked to delayed menarche in UK Biobank data. Furthermore, 3 pathogenic variants (CDK13, GDF5, ANRKD11) and 6 likely pathogenic variants (TYMP, DPF2, KMT2C, TP63, MC3R, GHSR) previously associated with growth or pubertal human disorders were identified. CONCLUSION These findings suggest that SLDP involves both monogenic and polygenic mechanisms, with novel candidate genes contributing to its genetic basis. The association of INHBB with pubertal timing underscores its potential role in SLDP pathophysiology.
Collapse
Affiliation(s)
- Raíssa C Rezende
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP 0124690, Brazil
| | - Wen He
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Lena R Kaisinger
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, United Kingdom
| | - Antonio M Lerario
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Evan C Schafer
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, United Kingdom
| | - Priscila S Barroso
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP 0124690, Brazil
| | - Nathalia L M Andrade
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP 0124690, Brazil
| | - Naiara C B Dantas
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP 0124690, Brazil
| | - Elaine Maria F Costa
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP 0124690, Brazil
| | - Laurana P Cellin
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP 0124690, Brazil
| | - Elisangela P S Quedas
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP 0124690, Brazil
| | - Stephanie B Seminara
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Bartlett Hall Extension, 5th Floor, 55 Fruit Street, Boston, MA 02114, United States
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET–FEI–Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET–FEI–Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Veronica Meriq
- Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, Santa Rosa 1234, 2° piso, Santiago 8320000, Chile
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, United Kingdom
| | - Ana Claudia Latronico
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP 0124690, Brazil
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, United Kingdom
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, United Kingdom
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica (LIM 25), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP 0124690, Brazil
| |
Collapse
|
8
|
Tüttelmann F, Wyrwoll MJ, Steingröver J, Wieacker P. The Genetics of Female and Male Infertility. DEUTSCHES ARZTEBLATT INTERNATIONAL 2025:arztebl.m2024.0259. [PMID: 39836465 DOI: 10.3238/arztebl.m2024.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND An estimated 17% of all couples worldwide are involuntarily childless (infertile). The clinically identifiable causes of infertility can be found in the male or female partner or in both. The molecular pathophysiology of infertility still remains unclear in many cases but is increasingly being revealed by genetic analyses. METHODS This review article is based on pertinent publications retrieved by a selective literature search. RESULTS The clinical diagnostic evaluation of an infertile couple may yield an indication for genetic analysis. Women with premature ovarian insufficiency should undergo chromosomal analysis and study of the FMR1 gene. If congenital adrenal hyperplasia is suspected, the CYP21A2 gene should be investigated. In men, genetic diagnosis is based primarily on the findings of semen analysis. Klinefelter syndrome and deletions of the Y-chromosomal azoospermia factors may severely limit sperm production. In both male and female partners, the analysis of a gene panel selected on the basis of the individual indication may identify the cause of infertility, e.g., hypogonadotropic hypogonadism, premature ovarian insufficiency, or severe disturbances of spermatogenesis. In some cases, genetic analysis can help determine the likelihood of success of sperm retrieval via testicular biopsy in men, and the potential indication for oocyte cryopreservation in women. CONCLUSION Genetic causes, disease patterns, and the related investigations are becoming increasingly important in the diagnostic evaluation of infertile couples and have implications for further treatment, for the children of the affected couple, and for other family members.
Collapse
|
9
|
Kouri C, Martinez de Lapiscina I, Naamneh-Elzenaty R, Sommer G, Sauter KS, Flück CE. Oligogenic analysis across broad phenotypes of 46,XY differences in sex development associated with NR5A1/SF-1 variants: findings from the international SF1next study. EBioMedicine 2025; 113:105624. [PMID: 40037090 PMCID: PMC11925193 DOI: 10.1016/j.ebiom.2025.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Oligogenic inheritance has been suggested as a possible mechanism to explain the broad phenotype observed in individuals with differences of sex development (DSD) harbouring NR5A1/SF-1 variants. METHODS We investigated genetic patterns of possible oligogenicity in a cohort of 30 individuals with NR5A1/SF-1 variants and 46,XY DSD recruited from the international SF1next study, using whole exome sequencing (WES) on family trios whenever available. WES data were analysed using a tailored filtering algorithm designed to identify rare variants in DSD and SF-1-related genes. Identified variants were subsequently tested using the Oligogenic Resource for Variant Analysis (ORVAL) bioinformatics platform for a possible combined pathogenicity with the individual NR5A1/SF-1 variant. FINDINGS In 73% (22/30) of the individuals with NR5A1/SF-1 related 46,XY DSD, we identified one to seven additional variants, predominantly in known DSD-related genes, that might contribute to the phenotype. We found identical variants in eight unrelated individuals with DSD in DSD-related genes (e.g., TBCE, FLNB, GLI3 and PDGFRA) and different variants in eight genes frequently associated with DSD (e.g., CDH23, FLNB, GLI2, KAT6B, MYO7A, PKD1, SPRY4 and ZFPM2) in 15 index cases. Our study also identified combinations with NR5A1/SF-1 variants and variants in novel candidate genes. INTERPRETATION These findings highlight the complex genetic landscape of DSD associated with NR5A1/SF-1, where in several cases, the use of advanced genetic testing and filtering with specific algorithms and machine learning tools revealed additional genetic hits that may contribute to the phenotype. FUNDING Swiss National Science Foundation and Boveri Foundation Zurich.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Research into the Genetics and Control of Diabetes and Other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain; Endo-ERN, Amsterdam 1081 HV, the Netherlands
| | - Rawda Naamneh-Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Grit Sommer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Bern 3012, Switzerland
| | - Kay-Sara Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
10
|
Kumar Yadav R, Qi B, Wen J, Gang X, Banerjee S. Kallmann syndrome: Diagnostics and management. Clin Chim Acta 2025; 565:119994. [PMID: 39384129 DOI: 10.1016/j.cca.2024.119994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Kallmann syndrome is a genetic disorder characterized by delayed or absence of puberty and a reduced or absent sense of smell (anosmia). Kallmann syndrome is a form of hypogonadotropic hypogonadism due to lack of the production of sex hormones which is associated with development of secondary sexual characteristics. Kallmann Syndrome is a genetically heterogeneous disorder, characterized by the combination of hypogonadotropic hypogonadism (a deficiency in sex hormone production) and anosmia. Germline mutations in KAL1 gene causes deficiency in GnRH hormone followed by low level of circulating gonadotropin and testosterone which finally leads to the failure of puberty (development of secondary sexual characters). Kallmann Syndrome can be inherited in several manners including X-linked recessive (e.g., mutations within KAL1) and autosomal dominant and recessive forms. Germline mutation in KAL1 gene was identified among 8% of patients with Kallmann Syndrome. A review of the recent literature done reveals numerous clinical manifestations in Kallmann Syndrome patients with the KAL1 mutation, including microgenitalia, impotence, reduced libido, infertility, unilateral renal agenesis, and synkinesia. Genetic molecular diagnostics through prenatal diagnosis and preimplantation genetic testing are most significant way to reduce the risk of Kallmann syndrome in next generation. Complication associated with Kallmann syndrome can be prevented by early diagnosis, diet supplementation and medical therapy. Goal of therapeutic intervention is to the development of secondary sexual characteristics, build and sustain bone density as well as muscle mass and restore fertility. This review aims to explore the genetic diagnosis and management strategies for Kallmann Syndrome, particularly focusing on KAL1 gene mutations.
Collapse
Affiliation(s)
- Rajiv Kumar Yadav
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China; Department of Endocrinology (Internal Medicine), First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Baiyu Qi
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xiaokun Gang
- Department of Endocrinology (Internal Medicine), First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
11
|
Bonomi M, Cangiano B, Cianfarani S, Garolla A, Gianfrilli D, Lanfranco F, Rastrelli G, Sbardella E, Corona G, Isidori AM, Rochira V. "Management of andrological disorders from childhood and adolescence to transition age: guidelines from the Italian Society of Andrology and Sexual Medicine (SIAMS) in collaboration with the Italian Society for Pediatric Endocrinology and Diabetology (SIEDP)-Part-1". J Endocrinol Invest 2025; 48:1-22. [PMID: 39126560 PMCID: PMC11729124 DOI: 10.1007/s40618-024-02435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE Andrological pathologies in the adulthood are often the results of conditions that originate during childhood and adolescence and sometimes even during gestation and neonatal period. Unfortunately, the reports in the literature concerning pediatric andrological diseases are scares and mainly concerning single issues. Furthermore, no shared position statement are so far available. METHODS The Italian Society of Andrology and Sexual Medicine (SIAMS) commissioned an expert task force involving the Italian Society of Pediatric Endocrinology and Diabetology (SIEDP) to provide an updated guideline on the diagnosis and management of andrological disorders from childhood and adolescence to transition age. Derived recommendations were based on the grading of recommendations, assessment, development, and evaluation (GRADE) system. RESULTS A literature search of articles in English for the term "varicoceles", "gynecomastia", "fertility preservation", "macroorchidism", "precocious puberty" and "pubertal delay" has been performed. Three major aspects for each considered disorder were assessed including diagnosis, clinical management, and treatment. Recommendations and suggestions have been provided for each of the mentioned andrological disorders. CONCLUSIONS These are the first guidelines based on a multidisciplinary approach that involves important societies related to the field of andrological medicine from pediatric to transition and adult ages. This fruitful discussion allowed for a general agreement on several recommendations and suggestions to be reached, which can support all stakeholders in improving andrological and general health of the transitional age.
Collapse
Affiliation(s)
- M Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| | - B Cangiano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - S Cianfarani
- Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - A Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padua, Italy
| | - D Gianfrilli
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
- Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - F Lanfranco
- Division of Endocrinology, Andrology and Metabolism, Department of Medical Sciences, Humanitas Gradenigo, University of Turin, Turin, Italy
| | - G Rastrelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Careggi Hospital, University of Florence, Florence, Italy
| | - E Sbardella
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
- Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - G Corona
- Endocrinology Unit, Medical Department, Maggiore-Bellaria Hospital, Azienda Usl, Bologna, Italy
| | - A M Isidori
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
- Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - V Rochira
- Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria Di Modena Policlinico Di Modena, Ospedale Civile Di Baggiovara, Via Giardini 1355, 41126, Modena, Italy.
| |
Collapse
|
12
|
Yamamoto S, Nakajima H, Okada H, Nakanishi N, Hamaguchi M, Fukui M. Congenital Hypogonadotropic Hypogonadism With Novel Pathogenic Variants in FGFR1 and GNRHR. JCEM CASE REPORTS 2025; 3:luae254. [PMID: 39817151 PMCID: PMC11733946 DOI: 10.1210/jcemcr/luae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) can cause delayed secondary sexual characteristics and contribute to juvenile osteoporosis, with multiple causative genes having been reported. We treated a 27-year-old man diagnosed with central hypogonadism, presenting with delayed secondary sexual characteristics and juvenile osteoporosis, using bone resorption inhibitors and testosterone therapy. Genetic testing revealed missense variants both in the fibroblast growth factor receptor 1 (FGFR1) and gonadotropin-releasing hormone receptor (GNRHR) genes, a combination that has not been previously reported. This case represents a CHH caused by a novel combination of gene variants not registered in the human genome mutation database.
Collapse
Affiliation(s)
- Shinta Yamamoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hanako Nakajima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
13
|
Soares JMAL, Sousa-Neto SS, Lima CRDS, Drumond VZ, de Andrade BAB, Mesquita RA, Abreu LG, de Arruda JAA, Sampaio GC. Oral and Maxillofacial Manifestations of Kallmann Syndrome: A Systematic Analysis of the Literature. SPECIAL CARE IN DENTISTRY 2025; 45:1-21. [PMID: 39817612 DOI: 10.1111/scd.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/19/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
AIMS Kallmann syndrome (KS) is a rare genetic disorder characterized by congenital hypogonadotropic hypogonadism and varied clinical features. Despite its recognition, the oral and maxillofacial manifestations remain poorly understood. This study synthesized clinical aspects and management of KS-related oral and maxillofacial alterations. METHODS Searches were conducted in the PubMed, Web of Science, Scopus, Embase, and LILACS databases, supplemented by manual scrutiny and gray literature. Case series and/or case reports were included. The Joanna Briggs Institute tool was employed for critical appraisal of the studies. RESULTS A total of 46 studies comprising 108 cases were included. The mean age of individuals was 19.8 (±12.6) years, and there was a marked predominance of males (79.3%). Cleft lip/palate (32.7%) was the predominant oral condition, followed by high-arched palate (21.7%), and dental agenesis (19.8%). Oral treatment consisted of corrective surgery of the cleft lip and/or palate (n = 9), myoplasty (n = 1), and tooth extraction/orthodontic treatment (n = 1). Hyposmia/anosmia (71.3%) was the most frequently reported manifestation. CONCLUSION Early diagnosis and interdisciplinary collaboration are essential for addressing the complex nature of KS-related oral and maxillofacial alterations and improving patient outcomes. The scarcity of data on oral treatment underscores the need for additional research and clinical attention in this field.
Collapse
Affiliation(s)
| | - Sebastião Silvério Sousa-Neto
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Cleiton Rone Dos Santos Lima
- Department of Stomatology (Oral Pathology), School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Victor Zanetti Drumond
- Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ricardo Alves Mesquita
- Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Guimarães Abreu
- Department of Child and Adolescent Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gerhilde Callou Sampaio
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
14
|
Jayasena CN, Devine K, Barber K, Comninos AN, Conway GS, Crown A, Davies MC, Ewart A, Seal LJ, Smyth A, Turner HE, Webber L, Anderson RA, Quinton R. Society for endocrinology guideline for understanding, diagnosing and treating female hypogonadism. Clin Endocrinol (Oxf) 2024; 101:409-442. [PMID: 39031660 DOI: 10.1111/cen.15097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
Female hypogonadism (FH) is a relatively common endocrine disorder in women of premenopausal age, but there are significant uncertainties and wide variation in its management. Most current guidelines are monospecialty and only address premature ovarian insufficiency (POI); some allude to management in very brief and general terms, and most rely upon the extrapolation of evidence from the studies relating to physiological estrogen deficiency in postmenopausal women. The Society for Endocrinology commissioned new guidance to provide all care providers with a multidisciplinary perspective on managing patients with all forms of FH. It has been compiled using expertise from Endocrinology, Primary Care, Gynaecology and Reproductive Health practices, with contributions from expert patients and a patient support group, to help clinicians best manage FH resulting from both POI and hypothalamo-pituitary disorders, whether organic or functional.
Collapse
Affiliation(s)
- Channa N Jayasena
- Section of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Kerri Devine
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | - Katie Barber
- Community Gynaecology (NHS), Principal Medical Limited, Bicester, Oxfordshire, UK
- Oxford Menopause Ltd, Ardington, Wantage, UK
| | - Alexander N Comninos
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Gerard S Conway
- Reproductive Medicine Unit, University College London Hospitals, London, UK
| | - Anna Crown
- Department of Endocrinology, Royal Sussex County Hospital, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Melanie C Davies
- Reproductive Medicine Unit, University College London Hospitals, London, UK
| | - Ann Ewart
- Kallman Syndrome and Congenital Hypogonadotropic Hypogonadism Support Group, Dallas, Texas, United States
| | - Leighton J Seal
- Department of Endocrinology, St George's Hospital Medical School, London, UK
| | - Arlene Smyth
- UK Turner Syndrome Support Society, Clydebank, UK
| | - Helen E Turner
- Department of Endocrinology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lisa Webber
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Singapore
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Richard Quinton
- Section of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| |
Collapse
|
15
|
De Silva NL, Papanikolaou N, Grossmann M, Antonio L, Quinton R, Anawalt BD, Jayasena CN. Male hypogonadism: pathogenesis, diagnosis, and management. Lancet Diabetes Endocrinol 2024; 12:761-774. [PMID: 39159641 DOI: 10.1016/s2213-8587(24)00199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Organic male hypogonadism due to irreversible hypothalamic-pituitary-testicular (HPT) pathology is easily diagnosed and treated with testosterone-replacement therapy. However, controversy surrounds the global practice of prescribing testosterone to symptomatic men with low testosterone and non-gonadal factors reducing health status, such as obesity, type 2 diabetes, and ageing (ie, functional hypogonadism), but without identifiable HPT axis pathology. Health optimisation remains the gold-standard management strategy. Nevertheless, in the last decade large clinical trials and an individual patient data meta-analysis of smaller clinical trials confirmed that testosterone therapy induces modest, yet statistically significant, improvements in sexual function without increasing short-term to medium-term cardiovascular or prostate cancer risks in men with functional hypogonadism. Although testosterone improves bone mineral density and insulin sensitivity in these men, trials from the last decade suggest insufficient evidence to determine the safety and effectiveness of use of this hormone for the prevention of fractures or type 2 diabetes. This Review discusses the pathogenesis and diagnosis of male hypogonadism and appraises the evidence underpinning the management of this condition.
Collapse
Affiliation(s)
- Nipun Lakshitha De Silva
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo, Sri Lanka
| | - Nikoleta Papanikolaou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Mathis Grossmann
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia; Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
| | - Leen Antonio
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Richard Quinton
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Northern Regional Gender Dysphoria Service, Cumbria Northumberland Tyne & Wear NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Bradley David Anawalt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Channa N Jayasena
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
16
|
Friedrich C, Tüttelmann F. Genetics of female and male infertility. MED GENET-BERLIN 2024; 36:161-170. [PMID: 39253719 PMCID: PMC11380935 DOI: 10.1515/medgen-2024-2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Infertility is defined as the inability to conceive within one year of unprotected intercourse, and the causes are equally distributed between both sexes. Genetics play a crucial role in couple infertility and respective diagnostic testing should follow available guidelines. Appropriate tiered genetic analyses require comprehensive physical examination of both partners in an infertile couple. A wide range of chromosomal and monogenic variants can be the underlying genetic cause of infertility in both women and men. Accurate clinical phenotyping, together with identification of the genetic origin, helps to recommend the proper treatment and to counsel couples on the success rates and potential risks for offspring.
Collapse
Affiliation(s)
- Corinna Friedrich
- University and University Hospital Münster Centre of Medical Genetics, Institute of Reproductive Genetics Vesaliusweg 12-14 48149 Münster Germany
| | - Frank Tüttelmann
- University and University Hospital Münster Centre of Medical Genetics, Institute of Reproductive Genetics Vesaliusweg 12-14 48149 Münster Germany
| |
Collapse
|
17
|
Ali G, Shin KC, Ahmed N, Habbab W, Alkhadairi G, Razzaq A, Bejaoui Y, El Hajj N, Mifsud B, Park Y, Stanton LW. Deletion in RMST lncRNA impairs hypothalamic neuronal development in a human stem cell-based model of Kallmann Syndrome. Cell Death Discov 2024; 10:330. [PMID: 39030180 PMCID: PMC11271498 DOI: 10.1038/s41420-024-02074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
Rhabdomyosarcoma 2-associated transcript (RMST) long non-coding RNA has previously been shown to cause Kallmann syndrome (KS), a rare genetic disorder characterized by congenital hypogonadotropic hypogonadism (CHH) and olfactory dysfunction. In the present study, we generated large deletions of approximately 41.55 kb in the RMST gene in human pluripotent stem cells using CRISPR/Cas9 gene editing. To evaluate the impact of RMST deletion, these cells were differentiated into hypothalamic neurons that include 10-15% neurons that express gonadotrophin-releasing hormone (GnRH). We found that deletion in RMST did not impair the neurogenesis of GnRH neurons, however, the hypothalamic neurons were electro-physiologically hyperactive and had increased calcium influx activity compared to control. Transcriptomic and epigenetic analyses showed that RMST deletion caused altered expression of key genes involved in neuronal development, ion channels, synaptic signaling and cell adhesion. The in vitro generation of these RMST-deleted GnRH neurons provides an excellent cell-based model to dissect the molecular mechanism of RMST function in Kallmann syndrome and its role in hypothalamic neuronal development.
Collapse
Affiliation(s)
- Gowher Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nisar Ahmed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Wesal Habbab
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ghaneya Alkhadairi
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Aleem Razzaq
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Yosra Bejaoui
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nady El Hajj
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Borbala Mifsud
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- William Harvey Research Institute, Queen Mary University London, London, UK
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Lawrence W Stanton
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad, Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
18
|
Kałużna M, Budny B, Rabijewski M, Dubiel A, Trofimiuk-Müldner M, Szutkowski K, Piotrowski A, Wrotkowska E, Hubalewska-Dydejczyk A, Ruchała M, Ziemnicka K. Variety of genetic defects in GnRH and hypothalamic-pituitary signaling and development in normosmic patients with IHH. Front Endocrinol (Lausanne) 2024; 15:1396805. [PMID: 39010903 PMCID: PMC11246878 DOI: 10.3389/fendo.2024.1396805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Normosmic isolated hypogonadotropic hypogonadism (nIHH) is a clinically and genetically heterogeneous disorder. Deleterious variants in over 50 genes have been implicated in the etiology of IHH, which also indicates a possible role of digenicity and oligogenicity. Both classes of genes controlling GnRH neuron migration/development and hypothalamic/pituitary signaling and development are strongly implicated in nIHH pathogenesis. The study aimed to investigate the genetic background of nIHH and further expand the genotype-phenotype correlation. Methods A total of 67 patients with nIHH were enrolled in the study. NGS technology and a 38-gene panel were applied. Results Causative defects regarded as at least one pathogenic/likely pathogenic (P/LP) variant were found in 23 patients (34%). For another 30 individuals, variants of unknown significance (VUS) or benign (B) were evidenced (45%). The most frequently mutated genes presenting P/LP alterations were GNRHR (n = 5), TACR3 (n = 3), and CHD7, FGFR1, NSMF, BMP4, and NROB1 (n = 2 each). Monogenic variants with solid clinical significance (P/LP) were observed in 15% of subjects, whereas oligogenic defects were detected in 19% of patients. Regarding recurrence, 17 novel pathogenic variants affecting 10 genes were identified for 17 patients. The most recurrent pathogenic change was GNRHR:p.Arg139His, detected in four unrelated subjects. Another interesting observation is that P/LP defects were found more often in genes related to hypothalamic-pituitary pathways than those related to GnRH. Conclusions The growing importance of the neuroendocrine pathway and related genes is drawing increasing attention to nIHH. However, the underestimated potential of VUS variants in IHH etiology, particularly those presenting recurrence, should be further elucidated.
Collapse
Affiliation(s)
- Małgorzata Kałużna
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Rabijewski
- Department of Reproductive Health, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Dubiel
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Kosma Szutkowski
- NanoBioMedical Centre at Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Adam Piotrowski
- Department of Biomedical Physics at Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
19
|
Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, Mendes de Oliveira E, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santoni F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia RY, Terao C, Riggan MJ, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington de Gonzalez A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, De Vivo I, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, et alKentistou KA, Kaisinger LR, Stankovic S, Vaudel M, Mendes de Oliveira E, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santoni F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia RY, Terao C, Riggan MJ, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington de Gonzalez A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, De Vivo I, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, Hickey M, Hooning MJ, Hoppe R, Hopper JL, Hottenga JJ, Hu FB, Huebner H, Hunter DJ, Jernström H, John EM, Karasik D, Khusnutdinova EK, Kristensen VN, Lacey JV, Lambrechts D, Launer LJ, Lind PA, Lindblom A, Magnusson PKE, Mannermaa A, McCarthy MI, Meitinger T, Menni C, Michailidou K, Millwood IY, Milne RL, Montgomery GW, Nevanlinna H, Nolte IM, Nyholt DR, Obi N, O'Brien KM, Offit K, Oldehinkel AJ, Ostrowski SR, Palotie A, Pedersen OB, Peters A, Pianigiani G, Plaseska-Karanfilska D, Pouta A, Pozarickij A, Radice P, Rennert G, Rosendaal FR, Ruggiero D, Saloustros E, Sandler DP, Schipf S, Schmidt CO, Schmidt MK, Small K, Spedicati B, Stampfer M, Stone J, Tamimi RM, Teras LR, Tikkanen E, Turman C, Vachon CM, Wang Q, Winqvist R, Wolk A, Zemel BS, Zheng W, van Dijk KW, Alizadeh BZ, Bandinelli S, Boerwinkle E, Boomsma DI, Ciullo M, Chenevix-Trench G, Cucca F, Esko T, Gieger C, Grant SFA, Gudnason V, Hayward C, Kolčić I, Kraft P, Lawlor DA, Martin NG, Nøhr EA, Pedersen NL, Pennell CE, Ridker PM, Robino A, Snieder H, Sovio U, Spector TD, Stöckl D, Sudlow C, Timpson NJ, Toniolo D, Uitterlinden A, Ulivi S, Völzke H, Wareham NJ, Widen E, Wilson JF, Pharoah PDP, Li L, Easton DF, Njølstad PR, Sulem P, Murabito JM, Murray A, Manousaki D, Juul A, Erikstrup C, Stefansson K, Horikoshi M, Chen Z, Farooqi IS, Pitteloud N, Johansson S, Day FR, Perry JRB, Ong KK. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. Nat Genet 2024; 56:1397-1411. [PMID: 38951643 PMCID: PMC11250262 DOI: 10.1038/s41588-024-01798-4] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024]
Abstract
Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Andrea Messina
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alexander S Busch
- Department of General Pediatrics, University of Münster, Münster, Germany
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Federico Santoni
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Yassine Zouaghi
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirik Bratland
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Raina Y Jia
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Marjorie J Riggan
- Department of Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Jonathan P Bradfield
- Quantinuum Research, Wayne, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Diana L Cousminer
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lude H Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Chunyan He
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky College of Medicine, Lexington, KY, USA
- Cancer Prevention and Control Research Program, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, Finland
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Augsburg, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam; Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Marek Zygmunt
- Clinic of Gynaecology and Obstetrics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Catriona L K Barnes
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Healthcare, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Yong Loo Lin School of Medicine, Department of Obstetrics and Gynecology and Human Potential Translational Research Programme, National University Singapore, Singapore City, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Liana Ferreli
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS Santiago de Compostela, Coruña, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Pascal Guénel
- Team 'Exposome and Heredity', CESP, Gustave Roussy INSERM, University Paris-Saclay, UVSQ, Orsay, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger J Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Crawley, Western Australia, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, University of Melbourne and The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam; Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health School of Public Health, Boston, MA, USA
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine Stanford, Stanford, CA, USA
- Department of Medicine, Division of Oncology Stanford Cancer Institute, Stanford University School of Medicine Stanford, Stanford, CA, USA
| | - David Karasik
- Hebrew SeniorLife Institute for Aging Research, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nadia Obi
- Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet-University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology-IBE, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giulia Pianigiani
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', MASA, Skopje, Republic of North Macedonia
| | - Anneli Pouta
- National Institute for Health and Welfare, Helsinki, Finland
| | - Alfred Pozarickij
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Paolo Radice
- Unit of Preventive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Faculty of Medicine, Clalit National Cancer Control Center, Carmel Medical Center and Technion, Haifa, Israel
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
- IRCCS Neuromed, Isernia, Italy
| | - Emmanouil Saloustros
- Division of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Kerrin Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Meir Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia Perth, Perth, Western Australia, Australia
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ko W van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam; Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Marina Ciullo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
- IRCCS Neuromed, Isernia, Italy
| | | | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Struan F A Grant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ellen A Nøhr
- Institute of Clinical Research, University of Southern Denmark, Department of Obstetrics and Gynecology, Odense University Hospital, Odense, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulla Sovio
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Doris Stöckl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- State Institute of Health, Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Cathie Sudlow
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Nic J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Adolescent Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Joanne M Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Boston University Chobanian and Avedisian School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA, USA
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, RILD Level 3, Royal Devon and Exeter Hospital, Exeter, UK
| | - Despoina Manousaki
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Nelly Pitteloud
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK.
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Castets S, Albarel F, Bachelot A, Brun G, Bouligand J, Briet C, Bui Quoc E, Cazabat L, Chabbert-Buffet N, Christin-Maitre S, Courtillot C, Cuny T, De Filippo G, Donadille B, Illouz F, Pellegrini I, Reznik Y, Saveanu A, Teissier N, Touraine P, Vantyghem MC, Vergier J, Léger J, Brue T, Reynaud R. Position statement on the diagnosis and management of congenital pituitary deficiency in adults: The French National Diagnosis and Treatment Protocol (NDTP). ANNALES D'ENDOCRINOLOGIE 2024; 85:327-339. [PMID: 38452869 DOI: 10.1016/j.ando.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Pituitary deficiency, or hypopituitarism, is a rare chronic disease. It is defined by insufficient synthesis of one or more pituitary hormones (growth hormone, TSH, ACTH, LH-FSH, prolactin), whether or not associated with arginine vasopressin deficiency (formerly known as diabetes insipidus). In adult patients, it is usually acquired (notably during childhood), but can also be congenital, due to abnormal pituitary development. The present study focuses on congenital pituitary deficiency in adults, from diagnosis to follow-up, including special situations such as pregnancy or the elderly. The clinical presentation is highly variable, ranging from isolated deficit to multiple deficits, which may be part of a syndromic form or not. Diagnosis is based on a combination of clinical, biological (assessment of all hormonal axes), radiological (brain and hypothalamic-pituitary MRI) and genetic factors. Treatment consists in hormonal replacement therapy, adapted according to the period of life and the deficits, which may be progressive. Comorbidities, risk of complications and acute decompensation, and the impact on fertility and quality of life all require adaptative multidisciplinary care and long-term monitoring.
Collapse
Affiliation(s)
- Sarah Castets
- Service de pédiatrie multidisciplinaire, centre de référence des maladies rares de l'hypophyse HYPO, hôpital de la Timone Enfants, Assistance publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France.
| | - Frédérique Albarel
- Service d'endocrinologie, centre de référence des maladies rares de l'hypophyse HYPO, hôpital de la Conception, Assistance publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Anne Bachelot
- IE3M, ICAN, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Sorbonne université, Paris, France
| | - Gilles Brun
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Assistance Publique Hôpitaux de Marseille, Reference Center for Rare Pituitary Diseases HYPO, Assistance-Publique des Hôpitaux de Marseille, Laboratory of Molecular Biology, Conception Hospital, Marseille, France; Hôpital Européen, Pôle imagerie médicale, 13003, Marseille, France
| | - Jérôme Bouligand
- Molecular Genetic, Pharmacogenetic and Hormonology, Kremlin-Bicêtre Hospital, Paris-Saclay University, AP-HP, Le Kremlin-Bicêtre, France
| | - Claire Briet
- Département d'endocrinologie-diabétologie nutrition, Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Endo-ERN centre for rare endocrine diseases, CHU d'Angers, 4, rue larrey, 49100 Angers, France; Laboratoire MITOVASC, UMR CNRS 6015, Inserm 1083, Université d'Angers, rue Roger Amsler, 49100 Angers, France
| | - Emmanuelle Bui Quoc
- Ophthalmology Department, Robert-Debré University Hospital, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Laure Cazabat
- Department of Endocrinology, Diabetology and Nutrition, Ambroise Paré Hospital, AP-HP, UVSQ, Boulogne-Billancourt, France
| | - Nathalie Chabbert-Buffet
- Department of Gynecology and Obstetrics, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Sophie Christin-Maitre
- Department of Endocrinology, Diabetology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement (CMERC), Centre de Compétence HYPO, Hôpital Saint-Antoine, Sorbonne University, Assistance publique-Hôpitaux de Paris, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Carine Courtillot
- IE3M, ICAN, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Thomas Cuny
- Department of Endocrinology, Diabetology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement (CMERC), Centre de Compétence HYPO, Hôpital Saint-Antoine, Sorbonne University, Assistance publique-Hôpitaux de Paris, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Gianpaolo De Filippo
- Service d'endocrinologie et diabétologie pédiatrique, centre de référence des maladies endocriniennes de la croissance et du développement, hôpital universitaire Robert-Debré, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Bruno Donadille
- Department of Endocrinology, Diabetology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement (CMERC), Centre de Compétence HYPO, Hôpital Saint-Antoine, Sorbonne University, Assistance publique-Hôpitaux de Paris, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Frédéric Illouz
- Département d'endocrinologie-diabétologie nutrition, Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Endo-ERN centre for rare endocrine diseases, CHU d'Angers, 4, rue larrey, 49100 Angers, France; Laboratoire MITOVASC, UMR CNRS 6015, Inserm 1083, Université d'Angers, rue Roger Amsler, 49100 Angers, France
| | - Isabelle Pellegrini
- Service d'endocrinologie, centre de référence des maladies rares de l'hypophyse HYPO, hôpital de la Conception, Assistance publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Yves Reznik
- Endocrinology and Diabetes Department, CHU Côte de Nacre and Unicaen, Caen Cedex, France
| | - Alexandru Saveanu
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Assistance Publique Hôpitaux de Marseille, Reference Center for Rare Pituitary Diseases HYPO, Assistance-Publique des Hôpitaux de Marseille, Laboratory of Molecular Biology, Conception Hospital, Marseille, France
| | - Natacha Teissier
- Department of Pediatric Otolaryngology, Robert Debré Hospital, AP-HP Nord, Paris, France
| | - Philippe Touraine
- Service d'endocrinologie et médecine de la reproduction, centre de maladies endocrinennes rares de la croissance et du développement, médecine-hôpital Pitié-Salpêtrière, Sorbonne université, Paris, France
| | - Marie-Christine Vantyghem
- Service d'endocrinologie, diabétologie et maladies métaboliques, CHRU de Lille, rue Polonowski, Lille cedex, France
| | - Julia Vergier
- Service de pédiatrie multidisciplinaire, centre de référence des maladies rares de l'hypophyse HYPO, hôpital de la Timone Enfants, Assistance publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Julianne Léger
- Service d'endocrinologie et diabétologie pédiatrique, centre de référence des maladies endocriniennes de la croissance et du développement, hôpital universitaire Robert-Debré, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France; Université Paris Cité, NeuroDiderot, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1141, Paris, France
| | - Thierry Brue
- Service de pédiatrie multidisciplinaire, centre de référence des maladies rares de l'hypophyse HYPO, hôpital de la Timone Enfants, Assistance publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France; Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Assistance Publique Hôpitaux de Marseille, Reference Center for Rare Pituitary Diseases HYPO, Assistance-Publique des Hôpitaux de Marseille, Laboratory of Molecular Biology, Conception Hospital, Marseille, France; Inserm, MMG, Laboratory of Molecular Biology, Hospital La Conception, Aix-Marseille University, AP-HM, Marseille, France
| | - Rachel Reynaud
- Service de pédiatrie multidisciplinaire, centre de référence des maladies rares de l'hypophyse HYPO, hôpital de la Timone Enfants, Assistance publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France; Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Assistance Publique Hôpitaux de Marseille, Reference Center for Rare Pituitary Diseases HYPO, Assistance-Publique des Hôpitaux de Marseille, Laboratory of Molecular Biology, Conception Hospital, Marseille, France; Inserm, MMG, Laboratory of Molecular Biology, Hospital La Conception, Aix-Marseille University, AP-HM, Marseille, France
| |
Collapse
|
21
|
Tenuta M, Cangiano B, Rastrelli G, Carlomagno F, Sciarra F, Sansone A, Isidori AM, Gianfrilli D, Krausz C. Iron overload disorders: Growth and gonadal dysfunction in childhood and adolescence. Pediatr Blood Cancer 2024; 71:e30995. [PMID: 38616355 DOI: 10.1002/pbc.30995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Hemochromatosis (HC) is characterized by the progressive accumulation of iron in the body, resulting in organ damage. Endocrine complications are particularly common, especially when the condition manifests in childhood or adolescence, when HC can adversely affect linear growth or pubertal development, with significant repercussions on quality of life even into adulthood. Therefore, a timely and accurate diagnosis of these disorders is mandatory, but sometimes complex for hematologists without endocrinological support. This is a narrative review focused on puberty and growth disorders during infancy and adolescence aiming to offer guidance for diagnosis, treatment, and proper follow-up. Additionally, it aims to highlight gaps in the existing literature and emphasizes the importance of collaboration among specialists, which is essential in the era of precision medicine.
Collapse
Affiliation(s)
- Marta Tenuta
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Biagio Cangiano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giulia Rastrelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andrea Sansone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
22
|
Bangalore Krishna K, Fuqua JS, Witchel SF. Hypogonadotropic Hypogonadism. Endocrinol Metab Clin North Am 2024; 53:279-292. [PMID: 38677870 DOI: 10.1016/j.ecl.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Delayed puberty is defined as absent testicular enlargement in boys or breast development in girls at an age that is 2 to 2.5 SDS later than the mean age at which these events occur in the population (traditionally, 14 years in boys and 13 years in girls). One cause of delayed/absent puberty is hypogonadotropic hypogonadism (HH), which refers to inadequate hypothalamic/pituitary function leading to deficient production of sex steroids in males and females. Individuals with HH typically have normal gonads, and thus HH differs from hypergonadotropic hypogonadism, which is associated with primary gonadal insufficiency.
Collapse
Affiliation(s)
- Kanthi Bangalore Krishna
- Division of Pediatric Endocrinology and Diabetes, UPMC Childrens Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | - John S Fuqua
- Division of Pediatric Endocrinology, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA
| | - Selma F Witchel
- Division of Pediatric Endocrinology and Diabetes, UPMC Childrens Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
23
|
Huang Z, Wang X, Yu B, Ma W, Zhang P, Wu X, Nie M, Mao J. Pulsatile gonadotropin releasing hormone therapy for spermatogenesis in congenital hypogonadotropic hypogonadism patients who had poor response to combined gonadotropin therapy. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230101. [PMID: 38739523 PMCID: PMC11156179 DOI: 10.20945/2359-4292-2023-0101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/12/2023] [Indexed: 05/16/2024]
Abstract
Objective Both pulsatile gonadotropin-releasing hormone (GnRH) and combined gonadotropin therapy are effective to induce spermatogenesis in men with congenital hypogonadotropic hypogonadism (CHH). This study aimed to evaluate the effect of pulsatile GnRH therapy on spermatogenesis in male patients with CHH who had poor response to combined gonadotropin therapy. Materials and methods Patients who had poor response to combined gonadotropin therapy ≥ 6 months were recruited and shifted to pulsatile GnRH therapy. The rate of successful spermatogenesis, the median time to achieve spermatogenesis, serum gonadotropins, testosterone, and testicular volume were used for data analysis. Results A total of 28 CHH patients who had poor response to combined gonadotropin (HCG/HMG) therapy for 12.5 (6.0, 17.75) months were recruited and switched to pulsatile GnRH therapy for 10.0 (7.25, 16.0) months. Sperm was detected in 17/28 patients (60.7%). The mean time for the appearance of sperm in semen was 12.0 (7.5, 17.5) months. Compared to those who could not achieve spermatogenesis during pulsatile GnRH therapy, the successful group had a higher level of LH60min (4.32 vs. 1.10 IU/L, P = 0.043) and FSH60min (4.28 vs. 1.90 IU/L, P = 0.021). Testicular size increased during pulsatile GnRH therapy, compared to previous HCG/ HMG therapy (P < 0.05). Conclusion For CHH patients with prior poor response to one year of HCG/ HMG therapy, switching to pulsatile GnRH therapy may induce spermatogenesis.
Collapse
Affiliation(s)
- Zhenxing Huang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning China
- The first two authors contributed equally to this work
| | - Xi Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- The first two authors contributed equally to this work
| | - Bingqing Yu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wanlu Ma
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Pengyu Zhang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueyan Wu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Min Nie
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,
| |
Collapse
|
24
|
Lillepea K, Juchnewitsch AG, Kasak L, Valkna A, Dutta A, Pomm K, Poolamets O, Nagirnaja L, Tamp E, Mahyari E, Vihljajev V, Tjagur S, Papadimitriou S, Riera-Escamilla A, Versbraegen N, Farnetani G, Castillo-Madeen H, Sütt M, Kübarsepp V, Tennisberg S, Korrovits P, Krausz C, Aston KI, Lenaerts T, Conrad DF, Punab M, Laan M. Toward clinical exomes in diagnostics and management of male infertility. Am J Hum Genet 2024; 111:877-895. [PMID: 38614076 PMCID: PMC11080280 DOI: 10.1016/j.ajhg.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
Infertility, affecting ∼10% of men, is predominantly caused by primary spermatogenic failure (SPGF). We screened likely pathogenic and pathogenic (LP/P) variants in 638 candidate genes for male infertility in 521 individuals presenting idiopathic SPGF and 323 normozoospermic men in the ESTAND cohort. Molecular diagnosis was reached for 64 men with SPGF (12%), with findings in 39 genes (6%). The yield did not differ significantly between the subgroups with azoospermia (20/185, 11%), oligozoospermia (18/181, 10%), and primary cryptorchidism with SPGF (26/155, 17%). Notably, 19 of 64 LP/P variants (30%) identified in 28 subjects represented recurrent findings in this study and/or with other male infertility cohorts. NR5A1 was the most frequently affected gene, with seven LP/P variants in six SPGF-affected men and two normozoospermic men. The link to SPGF was validated for recently proposed candidate genes ACTRT1, ASZ1, GLUD2, GREB1L, LEO1, RBM5, ROS1, and TGIF2LY. Heterozygous truncating variants in BNC1, reported in female infertility, emerged as plausible causes of severe oligozoospermia. Data suggested that several infertile men may present congenital conditions with less pronounced or pleiotropic phenotypes affecting the development and function of the reproductive system. Genes regulating the hypothalamic-pituitary-gonadal axis were affected in >30% of subjects with LP/P variants. Six individuals had more than one LP/P variant, including five with two findings from the gene panel. A 4-fold increased prevalence of cancer was observed in men with genetic infertility compared to the general male population (8% vs. 2%; p = 4.4 × 10-3). Expanding genetic testing in andrology will contribute to the multidisciplinary management of SPGF.
Collapse
Affiliation(s)
- Kristiina Lillepea
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Anna-Grete Juchnewitsch
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Laura Kasak
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Anu Valkna
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Avirup Dutta
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kristjan Pomm
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Olev Poolamets
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Erik Tamp
- Center of Pathology, Diagnostic Clinic, East Tallinn Central Hospital, 10138 Tallinn, Estonia
| | - Eisa Mahyari
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | - Stanislav Tjagur
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
| | - Antoni Riera-Escamilla
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Andrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, 08025 Barcelona, Catalonia, Spain
| | - Nassim Versbraegen
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Ginevra Farnetani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Helen Castillo-Madeen
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Mailis Sütt
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Viljo Kübarsepp
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; Department of Pediatric Surgery, Clinic of Surgery, Tartu University Hospital, 51014 Tartu, Estonia
| | - Sven Tennisberg
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Paul Korrovits
- Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, 08025 Barcelona, Catalonia, Spain; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium; Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Center for Embryonic Cell & Gene Therapy, Oregon Health & Science University, Beaverton, OR 97239, USA
| | - Margus Punab
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; Andrology Clinic, Tartu University Hospital, 50406 Tartu, Estonia; Department of Surgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia.
| | - Maris Laan
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
25
|
Dwyer AA, McDonald IR, Cangiano B, Giovanelli L, Maione L, Silveira LFG, Raivio T, Latronico AC, Young J, Quinton R, Bonomi M, Persani L, Seminara SB, Lee CS. Classes and predictors of reversal in male patients with congenital hypogonadotropic hypogonadism: a cross-sectional study of six international referral centres. Lancet Diabetes Endocrinol 2024; 12:257-266. [PMID: 38437850 PMCID: PMC10996025 DOI: 10.1016/s2213-8587(24)00028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Although some male patients with congenital hypogonadotropic hypogonadism (CHH) undergo spontaneous reversal following treatment, predictors of reversal remain elusive. We aimed to assemble the largest cohort of male patients with CHH reversal to date and identify distinct classes of reversal. METHODS This multicentre cross-sectional study was conducted in six international CHH referral centres in Brazil, Finland, France, Italy, the UK, and the USA. Adult men with CHH (ie, absent or incomplete spontaneous puberty by age 18 years, low serum testosterone concentrations, and no identifiable cause of hypothalamic-pituitary-gonadal [HPG] axis dysfunction) were eligible for inclusion. CHH reversal was defined as spontaneous recovery of HPG axis function off treatment. Centres provided common data elements on patient phenotype, clinical assessment, and genetics using a structured, harmonised data collection form developed by COST Action BM1105. Latent class mixture modelling (LCMM) was applied to establish whether at least two distinct classes of reversal could be identified and differentially predicted, and results were compared with a cohort of patients without CHH reversal to identify potential predictors of reversal. The primary outcome was the presence of at least two distinct classes of reversal. FINDINGS A total of 87 male patients with CHH reversal and 108 without CHH reversal were included in the analyses. LCMM identified two distinct reversal classes (75 [86%] in class 1 and 12 [14%] in class 2) on the basis of mean testicular volume, micropenis, and serum follicle-stimulating hormone (FSH) concentration. Classification probabilities were robust (0·998 for class 1 and 0·838 for class 2) and modelling uncertainty was low (entropy 0·90). Compared with class 1, patients in class 2 had significantly larger testicular volume (p<0·0001), no micropenis, and higher serum FSH concentrations (p=0·041), consistent with the Pasqualini syndrome (fertile eunuch) subtype of CHH. Patients without CHH reversal were more likely to have anosmia (p=0·016), cryptorchidism (p=0·0012), complete absence of puberty (testicular volume <4 cm³; p=0·0016), and two or more rare genetic variants (ie, oligogenicity; p=0·0001). Among patients who underwent genetic testing, no patients (of 75) with CHH reversal had a rare pathogenic ANOS1 variant compared with ten (11%) of 95 patients without CHH reversal. Individuals with CHH reversal had a significantly higher rate of rare variants in GNRHR than did those without reversal (nine [12%] of 75 vs three [3%] of 95; p=0·025). INTERPRETATION Applying LCMM to a large cohort of male patients with CHH reversal uncovered two distinct classes of reversal. Genetic investigation combined with careful clinical phenotyping could help surveillance of reversal after withdrawing treatment, representing the first tailored management approach for male patients with this rare endocrine disorder. FUNDING National Institutes of Health National Center for Advancing Translational Sciences; Ministry of Health, Rome, Italy; Ministry of University, Rome, Italy; National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development; and the Josiah Macy Jr Foundation. TRANSLATION For the Italian translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Andrew A Dwyer
- National Institute of Child Health and Human Development, P50 Massachusetts General Hospital Harvard Center for Reproductive Medicine, Boston, MA, USA; William F Connell School of Nursing, Boston College, Chestnut Hill, MA, USA.
| | | | - Biagio Cangiano
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Giovanelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy; Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals, Newcastle-upon-Tyne, UK
| | - Luigi Maione
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Inserm U 1185, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Leticia F G Silveira
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil; Serviço de Endocrinologia, Departamento de Clínica Médica da Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Taneli Raivio
- Children's Hospital, Pediatric Research Center, University of Helsinki-Helsinki University Hospital, Helsinki, Finland; Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Jacques Young
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Inserm U 1185, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Richard Quinton
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals, Newcastle-upon-Tyne, UK; Translational & Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK; Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Marco Bonomi
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Stephanie B Seminara
- National Institute of Child Health and Human Development, P50 Massachusetts General Hospital Harvard Center for Reproductive Medicine, Boston, MA, USA; Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher S Lee
- William F Connell School of Nursing, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
26
|
Zhang R, Yu B, Wang X, Nie M, Ma W, Ji W, Huang Q, Zhu Y, Sun B, Zhang J, Zhang W, Liu H, Mao J, Wu X. Mixed hypogonadism: a neglected combined form of hypogonadism. Endocrine 2024; 83:488-493. [PMID: 37749390 DOI: 10.1007/s12020-023-03532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Kallmann syndrome is a rare disease characterized by delayed puberty, infertility and anosmia. We report the clinical and genetic characteristics of three patients with Kallmann syndrome who presented with Klinefelter syndrome and defined this neglected combined form of hypogonadism as mixed hypogonadism. METHODS Clinical data and examinations were obtained, including laboratory examination and magnetic resonance imagination (MRI) of the olfactory structures. Congenital hypogonadotropic hypogonadism (CHH) related genes were screened by next generation sequencing (NGS). RESULTS Three patients with Kallmann syndrome were included. They had co-existence with Klinefelter syndrome and showed hypogonadotropic hypogonadism. Patient 1 was complicated with germinoma. CONCLUSION Mixed hypogonadism was defined as hypogonadotropic hypogonadism in Klinefelter syndrome or primary testicular disease. Clinicians should be alert to mixed hypogonadism when spermatogenesis induction failed in patients with CHH or gonadotropin levels decrease in patients with Klinefelter syndrome.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Bingqing Yu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
- Department of Ultrasonography, Peking University First Hospital, 100081, Beijing, China
| | - Xi Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Min Nie
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Wanlu Ma
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Wen Ji
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
- Department of Endocrinology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qibin Huang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Yiyi Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Bang Sun
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Junyi Zhang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Wei Zhang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Hongying Liu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| | - Xueyan Wu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| |
Collapse
|
27
|
Ichioka K, Yoshikawa T, Kimura H, Saito R. Additional mutation in PROKR2 and phenotypic differences in a Kallmann syndrome/normosmic congenital hypogonadotropic hypogonadism family carrying FGFR1 missense mutation. BMJ Case Rep 2024; 17:e258042. [PMID: 38272512 PMCID: PMC10826480 DOI: 10.1136/bcr-2023-258042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a genetically and clinically diverse disorder encompassing Kallmann syndrome (KS) and normosmic CHH (nCHH). Although mutations in numerous genes account for nearly 50% of CHH cases, a significant portion remains genetically uncharacterized. While most mutations follow the traditional Mendelian inheritance patterns, evidence suggests oligogenic interactions between CHH genes, acting as modifier genes to explain variable expressivity and incomplete penetrance associated with certain mutations.In this study, the proband presented with nCHH, while his son exhibited KS. We employed whole-exome sequencing (WES) to investigate the genetic differences between the two, and Sanger sequencing was used to validate the results obtained from WES.Genetic analysis revealed that both the proband and his son harboured a mutation in FGFR1 gene. Notably, an additional rare mutation in PROKR2 gene was exclusively identified in the son, which suggests the cause of the phenotypic difference between KS and nCHH.
Collapse
Affiliation(s)
- Kentaro Ichioka
- Karasumaoike Branch, Ichioka Urological Clinic, Kyoto, Japan
| | | | - Hiroko Kimura
- Mens Fertility Clinic Tokyo, Ichioka Urological Clinic Tokyo Branch, Tokyo, Japan
| | - Ryoichi Saito
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto-shi, Japan
| |
Collapse
|
28
|
Абсатарова ЮС, Андреева ЕН, Евсеева ЮС, Зеленкова-Захарчук ТА, Шереметьева ЕВ, Григорян ОР, Михеев РК. [Endocrine and psychosomatic disorders in patients with amenorrhea]. PROBLEMY ENDOKRINOLOGII 2024; 69:121-131. [PMID: 38312002 PMCID: PMC10848186 DOI: 10.14341/probl13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 02/06/2024]
Abstract
The article presents data on the relationship of pathogenetic mechanisms for the development of menstrual disorders of functional and organic origin in connection with mental disturbances from the point of view of the psychosomatic concept. According to the latter, functional disorders of the menstrual cycle are considered as psychosomatic, in which gynecological pathology develops as a result of psychopathological illness. A striking example of such a disorder is functional hypothalamic amenorrhea. At the same time, endocrinopathies, such as polycystic ovary syndrome and premature ovarian insufficiency, can also be considered in the paradigm of psychosomatic illnesses of ovarian function due to the high prevalence of anxiety and depressive disorders in this cohort of patients. This review highlights the importance of interdisciplinary collaboration between a gynecologist and a psychiatrist for the most effective reproductive rehabilitation of patients with amenorrhea. Literature search was carried out in national (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases in Russian and English. The priority was free access to the full text of articles. The choice of sources was prioritized for the period from 2018 to 2023.However, taking into account the insufficient knowledge of the chosen topic, the choice of sources dates back to 1985.
Collapse
Affiliation(s)
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии; Московский государственный медико-стоматологический университет им. А.И. Евдокимова Министерства здравоохранения Российской Федерации
| | - Ю. С. Евсеева
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | - Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
29
|
Wang T, Ren W, Fu F, Wang H, Li Y, Duan J. Digenic CHD7 and SMCHD1 inheritance Unveils phenotypic variability in a family mainly presenting with hypogonadotropic hypogonadism. Heliyon 2024; 10:e23272. [PMID: 38148819 PMCID: PMC10750161 DOI: 10.1016/j.heliyon.2023.e23272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Objectives CHARGE syndrome is a congenital hereditary condition involving multiple systems. Patients are easily misdiagnosed with idiopathic hypogonadotropic hypogonadism (IHH) due to the overlap of clinical manifestations. An accurate clinical diagnosis remains challenging when the predominant clinical manifestation resembles hypogonadotropic hypogonadism. Methods This original research is conducted based on the genetic finding and analysis of clinical cases. Whole-exome sequencing (WES) and in-silico analyse were performed on two sisters to investigate the pathogenesis in this family. Homology modelling was conducted to evaluate structural changes in the variants. Results WES and Sanger sequencing revealed two siblings carrying a nonsense mutation (NM_017780.4: c.115C > T) in exon 2 of CHD7 inherited from a mildly affected mother and a missense mutation (NM_015295.3: c.2582T > C) in exon 20 of SMCHD1 inherited from an asymptomatic father. The nonsense mutation in CHD7 was predicted to generate nonsense-mediated decay, whereas the missense mutation in SMCHD1 decreased protein stability. Conclusions We identified digenic CHD7 and SMCHD1 mutations in IHH-associated diseases for the first time and verified the synergistic role of oligogenic inheritance. It was also determined that WES is an effective tool for distinguishing diseases with overlapping features and establishing a molecular diagnosis for cases with digenic or oligogenic hereditary disorders, which is beneficial for timely treatment, and family genetic counseling.
Collapse
Affiliation(s)
- Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hairong Wang
- Wuhan KDWS Biological Technology Co.,Ltd, Wuhan, 430000, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Duan
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| |
Collapse
|
30
|
Ambar RF, Maziotis E, Simopoulou M. Sperm Concentration and Total Sperm Count. HUMAN SEMEN ANALYSIS 2024:31-60. [DOI: 10.1007/978-3-031-55337-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Ma Z, Dai Y, Jin L, Luo Y, Guo C, Qu R, He S, Liu Y, Xia Y, Liu H, Kong L, Xu M, Zhang L, Zhao Y, Suliya Y, Yuan D, Yang L. Whole-Exome Sequencing Analysis of Idiopathic Hypogonadotropic Hypogonadism: Comparison of Varicocele and Nonobstructive Azoospermia. Reprod Sci 2024; 31:222-238. [PMID: 37679557 PMCID: PMC10784340 DOI: 10.1007/s43032-023-01337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
As a rare disease leading to male infertility, idiopathic hypogonadotropic hypogonadism (IHH) has strong heterogeneity of clinical phenotype and gene mutation. At present, there is no effective diagnosis and treatment method for this disease. This study is to explore the possible new pathogenic gene of idiopathic hypogonadotrophic hypogonadism and the pathological mechanism affecting its occurrence. We performed a whole-exome sequencing on 9 patients with normosmic idiopathic hypogonadotropic hypogonadism (nIHH), 19 varicocele patients with asthenospermia, oligospermia, or azoospermia, 5 patients with simple nonobstructive azoospermia, and 13 normal healthy adult males and carried out comparative analysis, channel analysis, etc. After preliminary sequencing screening, 309-431 genes harbouring variants, including SNPs and indels, were predicted to be harmful per single patient in each group. In genetic variations of nIHH patients' analysis, variants were detected in 10 loci and nine genes in nine patients. And in co-analysis of the three patient groups, nine nIHH patients, 19 VC patients, and five SN patients shared 116 variants, with 28 variant-harbouring genes detected in five or more patients. We found that the NEFH, CCDC177, and PCLO genes and the Gene Ontology pathways GO:0051301: cell division and GO:0090066: regulation of anatomical structure size may be key factors in the pathogenic mechanism of IHH. Our results suggest that the pathogenic mechanism of IHH is not limited to the central nervous system effects of GnRH but may involve other heterogeneous pathogenic genetic variants that affect peripheral organs.
Collapse
Affiliation(s)
- Ziyang Ma
- Department of Physiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yi Dai
- Urology/Pelvic Floor Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lei Jin
- Department of Physiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yi Luo
- Urology/Pelvic Floor Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Chen Guo
- Urology/Pelvic Floor Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Rui Qu
- Urology/Pelvic Floor Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Shengyin He
- Urology/Pelvic Floor Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Yugao Liu
- Urology/Pelvic Floor Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Yu Xia
- Sichuan University, Chengdu, Sichuan, China
| | - Huan Liu
- Department of Physiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lingnan Kong
- Department of Physiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Miaomiao Xu
- Department of Physiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lanlan Zhang
- Department of Physiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zhao
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yushanjiang Suliya
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongzhi Yuan
- Department of Physiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Luo Yang
- Urology/Pelvic Floor Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Ciftel S, Ozkaya AL. Heavy Metal Levels in Males With Idiopathic Hypogonadotropic Hypogonadism. Cureus 2024; 16:e53128. [PMID: 38420092 PMCID: PMC10899717 DOI: 10.7759/cureus.53128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION The toxic effects of heavy metals on biological systems are being investigated with increasing interest day by day. Our purpose was to investigate heavy metals such as aluminum (Al), cadmium (Cd), arsenic (As), lead (Pb), and nickel (Ni) in males with idiopathic hypogonadotropic hypogonadism (IHH) and to determine whether there is a relationship between heavy metals and testosterone levels. METHODS Twenty-six male patients with IHH aged 18-50 and 22 healthy males aged 21-50 admitted to the Outpatient Department of Endocrinology for follow-up were enrolled. BMIs were calculated by measuring the height and weight of all participants. Al, Cd, As, Pb, and Ni levels were measured and compared between groups. Testosterone levels were measured to investigate whether there was a correlation with heavy metal levels. RESULTS Al, Cd, As, Pb, and Ni levels were statistically higher in the patient group compared to the control group (p<0.001). A moderately strong significant negative correlation was detected between the patients' testosterone and As levels (p=0.001, r=-0.609, R2=0.371). Decreased As and Cd levels were observed as the patients' ages increased (p=0.013, r=-0.471). CONCLUSION Heavy metals might play potential roles in IHH. We hope that investigating heavy metal levels in IHH and adding toxicity-preventive treatments to hormonal therapies will be beneficial in the multifaceted management of the disease in clinical practice.
Collapse
Affiliation(s)
- Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Health Science University, Erzurum, TUR
| | | |
Collapse
|
33
|
Xu W, Plummer L, Seminara SB, Balasubramanian R, Lippincott MF. How human genetic context can inform pathogenicity classification: FGFR1 variation in idiopathic hypogonadotropic hypogonadism. Hum Genet 2023; 142:1611-1619. [PMID: 37805574 PMCID: PMC10977353 DOI: 10.1007/s00439-023-02601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Precision medicine requires precise genetic variant interpretation, yet many disease-associated genes have unresolved variants of unknown significance (VUS). We analyzed variants in a well-studied gene, FGFR1, a common cause of Idiopathic Hypogonadotropic Hypogonadism (IHH) and examined whether regional genetic enrichment of missense variants could improve variant classification. FGFR1 rare sequence variants (RSVs) were examined in a large cohort to (i) define regional genetic enrichment, (ii) determine pathogenicity based on the American College of Medical Genetics/Association for Molecular Pathology (ACMG/AMP) variant classification framework, and (iii) characterize the phenotype of FGFR1 variant carriers by variant classification. A total of 143 FGFR1 RSVs were identified in 175 IHH probands (n = 95 missense, n = 48 protein-truncating variants). FGFR1 missense RSVs showed regional enrichment across biologically well-defined domains: D1, D2, D3, and TK domains and linker regions (D2-D3, TM-TK). Using these defined regions of enrichment to augment the ACMG/AMP classification reclassifies 37% (20/54) of FGFR1 missense VUS as pathogenic or likely pathogenic (PLP). Non-proband carriers of FGFR1 missense VUS variants that were reclassified as PLP were more likely to express IHH or IHH-associated phenotypes [anosmia or delayed puberty] than non-proband carriers of FGFR1 missense variants that remained as VUS (76.9% vs 34.7%, p = 0.035). Using the largest cohort of FGFR1 variant carriers, we show that integration of regional genetic enrichment as moderate evidence for pathogenicity improves the classification of VUS and that reclassified variants correlated with phenotypic expressivity. The addition of regional genetic enrichment to the ACMG/AMP guidelines may improve clinical variant interpretation.
Collapse
Affiliation(s)
- Wanxue Xu
- Reproductive Endocrine Unit of the Department of Medicine, Harvard Reproductive Endocrine Sciences Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Lacey Plummer
- Reproductive Endocrine Unit of the Department of Medicine, Harvard Reproductive Endocrine Sciences Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Stephanie B Seminara
- Reproductive Endocrine Unit of the Department of Medicine, Harvard Reproductive Endocrine Sciences Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit of the Department of Medicine, Harvard Reproductive Endocrine Sciences Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Margaret F Lippincott
- Reproductive Endocrine Unit of the Department of Medicine, Harvard Reproductive Endocrine Sciences Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
34
|
Sloboda N, Renard E, Lambert L, Bonnet C, Leheup B, Todosi C, Schmitt E, Feillet F, Feigerlova E, Piton A, Journeau P, Klein M, Maillard L, Chelly J, Renaud M. MAST1-related mega-corpus-callosum syndrome with central hypogonadism. Eur J Med Genet 2023; 66:104853. [PMID: 37758169 DOI: 10.1016/j.ejmg.2023.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/20/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Heterozygous variations in microtubule-associated serine/threonine kinase 1 gene (MAST1) were recently described in the mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCCCHCM, MIM 618273), revealing the importance of the MAST genes family in global brain development. To date, patients with MAST1 gene mutations were mostly young children with central nervous system involvement, impaired motor function, speech delay, and brain magnetic resonance imaging (MRI) abnormalities. Here, we report the clinical presentation of an adult patient with a rare and de novo MAST1 mutation with central hypogonadism that could extend this phenotype. METHODS A panel of 333 genes involved in epilepsy or cortical development was sequenced in the described patient. Routine biochemical analyses were performed, and hormonal status was investigated. RESULT We report a 22-year-old man with a de novo, heterozygous missense variant in MAST1 (Chr19(GRCh37):g.12975903G > A, NP_055790.1:p.Gly517Ser). He presented with an epileptic encephalopathy associated with cerebral malformations, short stature, hypogonadotropic hypogonadism, and secondary osteopenia. CONCLUSION This is the first patient with MAST1 gene mutation described with central hypogonadism, which may be associated with the phenotype of MCCCHCM syndrome.
Collapse
Affiliation(s)
- Natacha Sloboda
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France
| | - Emeline Renard
- INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France; Service de MédecineInfantile, Centre Hospitalier Régional Universitaire, Nancy, France.
| | - Laetitia Lambert
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France
| | - Céline Bonnet
- Laboratoire de Génétique, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Bruno Leheup
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France
| | - Calina Todosi
- Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Laboratoire de Génétique, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Emmanuelle Schmitt
- Service de Neuroradiologie, Centre Hospitalier Régional Universitaire, Nancy, France
| | - François Feillet
- INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France; Service de MédecineInfantile, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Eva Feigerlova
- Service d'Endocrinologie, Centre Hospitalier Régional Universitaire, Nancy, France; INSERM UMR_S 1116 - DCAC, Medical Faculty, Université de Lorraine, Nancy, France
| | - Amélie Piton
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091, Strasbourg, France
| | - Pierre Journeau
- Service de Chirurgie Orthopédique Infantile, Hôpital d'Enfants, Vandoeuvre les Nancy, France
| | - Marc Klein
- Service d'Endocrinologie, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Louis Maillard
- Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Service de Neurologie, Centre Hospitalier Régional Universitaire, Nancy, France; CNRS UMR7039,CRAN, Université de Lorraine, Nancy, France
| | - Jamel Chelly
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091, Strasbourg, France
| | - Mathilde Renaud
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France
| |
Collapse
|
35
|
Jensterle M, Janež A, Vipotnik Vesnaver T, Debeljak M, Breznik N, Trebušak Podkrajšek K, Herman R, Fliers E, Battelino T, Avbelj Stefanija M. Case Report: Multiple prolactinomas in a young man with Kallmann syndrome and familial hypocalciuric hypercalcemia. Front Endocrinol (Lausanne) 2023; 14:1248231. [PMID: 37964948 PMCID: PMC10642931 DOI: 10.3389/fendo.2023.1248231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction The occurrence of prolactinomas in sex hormone treated patients with central hypogonadism is extremely rare. Case presentation We present a Caucasian male patient who was diagnosed with Kallmann syndrome (KS) at age 15 years. Testosterone treatment was started. At age 26 the patient presented with mild headache. MRI revealed two separate pituitary adenomas along with the absence of the olfactory bulbs. Given the presence of marked hyperprolactinemia (17x upper limit of the reference range) the diagnosis prolactinoma was made and treatment with cabergoline was started which resulted in a complete biochemical response and in marked reduction of both adenomas in size. Hypogonadism persisted and testosterone replacement therapy was continued. Genetic testing of genes associated with pituitary tumors, Kallmann syndrome and idiopathic hypogonadotropic hypogonadism was negative. Mild concomitant hypercalcemia in accordance with familial hypocalciuric hypercalcemia (FHH) prompted mutation analysis of the calcium receptor (CASR) gene which yielded a pathogenic inactivating variant. Discussion/conclusion The presence of two separate prolactinomas in a patient with KS has not yet been reported in the literature. The effect of sex hormone treatment of KS patients on the possible development of prolactinoma is unknown at present. The occurance of multiple prolactinomas in our patient suggests increased susceptibility. Although CaSR is expressed in GnRH neurons in mouse brain and CaSR deficient mice have a reduced hypothalamic GnRH neuronal population, the relevance of the CASR gene variant in our patient for the KS phenotype is unclear at present.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Vipotnik Vesnaver
- Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maruša Debeljak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nika Breznik
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Institute of Biochemistry and Molecular Genetics, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Magdalena Avbelj Stefanija
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
He D, Sun H, Zhang M, Li Y, Liu F, Zhang Y, He M, Ban B. Clinical Manifestations, Genetic Variants and Therapeutic Evaluation in Sporadic Chinese Patients with Idiopathic Hypogonadotropic Hypogonadism. Int J Gen Med 2023; 16:4429-4439. [PMID: 37799300 PMCID: PMC10547821 DOI: 10.2147/ijgm.s430904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Purpose Genetic factors account for a large proportion of idiopathic hypogonadotropic hypogonadism (IHH) etiologies, although not necessarily a complete genetic basis. This study aimed to characterize the clinical presentations, genetic variants, and therapeutic outcomes of patients with sporadic IHH, which may be helpful for genetic counseling and treatment decisions. Patients and Methods Eleven Chinese patients with IHH were retrospectively analyzed. Rare genetic variants were evaluated using whole-exome sequencing and bioinformatics analysis and were further classified according to the ACMG-AMP guidelines. The therapeutic responses of patients were further evaluated. Results Six heterozygous variants of SOX10, WDR11, PROKR2, CHD7 and FGF17 were detected in five Kallmann syndrome (KS) patients, whereas two heterozygous variants of CHD7 and PROKR2 were detected in two normosmic IHH (nIHH) patients. Among these variants, a novel likely pathogenic variant in the SOX10 (c.429-1G>C) was considered to cause the KS phenotype in patient 02, and two potential variants of uncertain significance (VUS) in CHD7 (c.3344G>A and c.7391A>G) possibly contributed to the KS phenotype in patient 05 and the nIHH phenotype in patient 07, which need to be confirmed by further evidence. Additionally, long-term testosterone or estradiol replacement treatment effectively improved the development of sexual characteristics in patients with IHH. Conclusion Next-generation sequencing is a powerful tool for identifying the molecular etiology and early diagnosis of IHH. Efficient therapeutic outcomes strongly indicate a need for timely treatment.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
| | - Hailing Sun
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, 272029, People’s Republic of China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, 272029, People’s Republic of China
| | - Fupeng Liu
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
| | - Yanhong Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, 272029, People’s Republic of China
| | - Mingming He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, People’s Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, 272029, People’s Republic of China
| |
Collapse
|
37
|
Paganoni AJJ, Cannarella R, Oleari R, Amoruso F, Antal R, Ruzza M, Olivieri C, Condorelli RA, La Vignera S, Tolaj F, Cariboni A, Calogero AE, Magni P. Insulin-like Growth Factor 1, Growth Hormone, and Anti-Müllerian Hormone Receptors Are Differentially Expressed during GnRH Neuron Development. Int J Mol Sci 2023; 24:13073. [PMID: 37685880 PMCID: PMC10487694 DOI: 10.3390/ijms241713073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are key neuroendocrine cells in the brain as they control reproduction by regulating hypothalamic-pituitary-gonadal axis function. In this context, anti-Müllerian hormone (AMH), growth hormone (GH), and insulin-like growth factor 1 (IGF1) were shown to improve GnRH neuron migration and function in vitro. Whether AMH, GH, and IGF1 signaling pathways participate in the development and function of GnRH neurons in vivo is, however, currently still unknown. To assess the role of AMH, GH, and IGF1 systems in the development of GnRH neuron, we evaluated the expression of AMH receptors (AMHR2), GH (GHR), and IGF1 (IGF1R) on sections of ex vivo mice at different development stages. The expression of AMHR2, GHR, and IGF1R was assessed by immunofluorescence using established protocols and commercial antibodies. The head sections of mice were analyzed at E12.5, E14.5, and E18.5. In particular, at E12.5, we focused on the neurogenic epithelium of the vomeronasal organ (VNO), where GnRH neurons, migratory mass cells, and the pioneering vomeronasal axon give rise. At E14.5, we focused on the VNO and nasal forebrain junction (NFJ), the two regions where GnRH neurons originate and migrate to the hypothalamus, respectively. At E18.5, the median eminence, which is the hypothalamic area where GnRH is released, was analyzed. At E12.5, double staining for the neuronal marker ß-tubulin III and AMHR2, GHR, or IGF1R revealed a signal in the neurogenic niches of the olfactory and VNO during early embryo development. Furthermore, IGF1R and GHR were expressed by VNO-emerging GnRH neurons. At E14.5, a similar expression pattern was found for the neuronal marker ß-tubulin III, while the expression of IGF1R and GHR began to decline, as also observed at E18.5. Of note, hypothalamic GnRH neurons labeled for PLXND1 tested positive for AMHR2 expression. Ex vivo experiments on mouse sections revealed differential protein expression patterns for AMHR2, GHR, and IGF1R at any time point in development between neurogenic areas and hypothalamic compartments. These findings suggest a differential functional role of related systems in the development of GnRH neurons.
Collapse
Affiliation(s)
- Alyssa J. J. Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 10681, USA
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Renata Antal
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Marco Ruzza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Chiara Olivieri
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Fationa Tolaj
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (R.A.C.); (S.L.V.); (A.E.C.)
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (R.O.); (F.A.); (R.A.); (M.R.); (C.O.); (F.T.); (P.M.)
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| |
Collapse
|
38
|
Eskici N, Madhusudan S, Vaaralahti K, Yellapragada V, Gomez-Sanchez C, Kärkinen J, Almusa H, Brandstack N, Miettinen PJ, Wang Y, Raivio T. Congenital hypogonadotropic hypogonadism in a patient with a de novo POGZ mutation. Eur J Endocrinol 2023; 189:271-280. [PMID: 37619992 DOI: 10.1093/ejendo/lvad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Congenital hypogonadotropic hypogonadism (CHH) is a rare, genetically heterogeneous reproductive disorder caused by gonadotropin-releasing hormone (GnRH) deficiency. Approximately half of CHH patients also have decreased or absent sense of smell, that is, Kallmann syndrome (KS). We describe a patient with White-Sutton syndrome (developmental delay and autism spectrum disorder) and KS due to a heterozygous de novo mutation in POGZ (c.2857C>T, p.(Gln953*)), a gene encoding pogo transposable element derived with zinc finger domain, which acts as a transcriptomic regulator of neuronal networks. DESIGN AND METHODS We modeled the role of POGZ in CHH by generating 2 clonal human pluripotent stem cell lines with CRISPR/Cas9, carrying either the heterozygous patient mutation (H11 line) or a homozygous mutation (c.2803-2906del; p.E935Kfs*7 encoding a truncated POGZ protein; F6del line). RESULTS During the differentiation to GnRH neurons, neural progenitors derived from F6del line displayed severe proliferation defect, delayed wound-healing capacity, downregulation of intermediate progenitor neuron genes TBR1 and TBR2, and immature neuron markers PAX6 and TUBB3 and gave rise to fewer neurons with shorter neurites and less neurite branch points compared to the WT and H11 lines (P < .005). Both lines, however, could be successfully differentiated to GnRH neurons. CONCLUSIONS In conclusion, this is the first report on the overlap between White-Sutton syndrome and CHH. POGZ mutations do not hinder GnRH neuron formation but may cause CHH/KS by affecting the size and motility of the anterior neural progenitor pool and neurite outgrowth.
Collapse
Affiliation(s)
- Nazli Eskici
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Venkatram Yellapragada
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Celia Gomez-Sanchez
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Juho Kärkinen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki 00014, Finland
| | - Nina Brandstack
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki 00014, Finland
| | - Päivi J Miettinen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| |
Collapse
|
39
|
Naseem H, Lokman M, Fitzgerald C. Management of congenital hypogonadotropic hypogonadism in females. HUM FERTIL 2023; 26:622-631. [PMID: 34753367 DOI: 10.1080/14647273.2021.1998929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/02/2021] [Indexed: 10/19/2022]
Abstract
This review explores the challenges in the diagnosis of hypogonadotropic hypogonadism, the transition of care from paediatric to adult care and the considerable health implications of this condition. The role gynaecologists and general practitioners have in managing hormone replacement therapy and reproductive potential is also highlighted. The fertility treatment options, which include ovulation induction with gonadotrophins and in-vitro fertilisation, are discussed in detail along with highlighting the fact that anovulation and markers of low ovarian reserve prior to priming treatment may not be reflective of poor reproductive potential. The holistic management of women with hypogonadotropic hypogonadism is still not standardised and evidence for subfertility management is scarce. This review aims to highlight this concern and provide guidance by evaluating current evidence.
Collapse
Affiliation(s)
- Hafiza Naseem
- Reproductive Medicine Department, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Mariam Lokman
- Reproductive Medicine Department, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Cheryl Fitzgerald
- Reproductive Medicine Department, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
40
|
Munari EV, Amer M, Amodeo A, Bollino R, Federici S, Goggi G, Giovanelli L, Persani L, Cangiano B, Bonomi M. The complications of male hypogonadism: is it just a matter of low testosterone? Front Endocrinol (Lausanne) 2023; 14:1201313. [PMID: 37455904 PMCID: PMC10338218 DOI: 10.3389/fendo.2023.1201313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
The history of diagnosing hypogonadism and hypotestosteronemia shows us the many steps that were necessary to achieve our current knowledge and the ability to improve these patients' well-being. Moreover, so far, criteria for diagnosing hypotestosteronemia varies according to the underlying condition, and according to the consensus or guideline adopted. Furthermore, besides the many signs and symptoms, there are several complications associated with low testosterone levels such as osteoporosis, metabolic alterations, as well as cardiovascular disorders. However, data are often conflicting regarding the severity, timing or even the real clinical relevance of these complications, although these studies often lack essential information such as gonadotropin levels or the underlying cause of hypogonadism. The present review focus on the complications of male hypogonadism according to the cause of testosterone deficiency, highlighting the lack of information found in many studies investigating its effects. We thereby stress the necessity to always perform a complete evaluation of the type of hypogonadism (including at least gonadotropins and secondary causes) when investigating the effects of low testosterone levels.
Collapse
Affiliation(s)
| | - Myriam Amer
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Amodeo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ruggiero Bollino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Federici
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giovanni Goggi
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Giovanelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Biagio Cangiano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
41
|
Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, de Oliveira EM, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santon F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia R, Terao C, Riggan M, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, Vivo ID, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, et alKentistou KA, Kaisinger LR, Stankovic S, Vaudel M, de Oliveira EM, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santon F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia R, Terao C, Riggan M, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, Vivo ID, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, Hickey M, Hooning MJ, Hoppe R, Hopper JL, Hottenga JJ, Hu FB, Hübner H, Hunter DJ, ABCTB Investigators, Jernström H, John EM, Karasik D, Khusnutdinova EK, Kristensen VN, Lacey JV, Lambrechts D, Launer LJ, Lind PA, Lindblom A, Magnusson PKE, Mannermaa A, McCarthy MI, Meitinger T, Menni C, Michailidou K, Millwood IY, Milne RL, Montgomery GW, Nevanlinna H, Nolte IM, Nyholt DR, Obi N, O’Brien KM, Offit K, Oldehinkel AJ, Ostrowski SR, Palotie A, Pedersen OB, Peters A, Pianigiani G, Plaseska-Karanfilska D, Pouta A, Pozarickij A, Radice P, Rennert G, Rosendaal FR, Ruggiero D, Saloustros E, Sandler DP, Schipf S, Schmidt CO, Schmidt MK, Small K, Spedicati B, Stampfer M, Stone J, Tamimi RM, Teras LR, Tikkanen E, Turman C, Vachon CM, Wang Q, Winqvist R, Wolk A, Zemel BS, Zheng W, van Dijk KW, Alizadeh BZ, Bandinelli S, Boerwinkle E, Boomsma DI, Ciullo M, Chenevix-Trench G, Cucca F, Esko T, Gieger C, Grant SFA, Gudnason V, Hayward C, Kolčić I, Kraft P, Lawlor DA, Martin NG, Nøhr EA, Pedersen NL, Pennell CE, Ridker PM, Robino A, Snieder H, Sovio U, Spector TD, Stöckl D, Sudlow C, Timpson NJ, Toniolo D, Uitterlinden A, Ulivi S, Völzke H, Wareham NJ, Widen E, Wilson JF, The Lifelines Cohort Study, The Danish Blood Donor study, The Ovarian Cancer Association Consortium, The Breast Cancer Association Consortium, The Biobank Japan Project, The China Kadoorie Biobank Collaborative Group, Pharoah PDP, Li L, Easton DF, Njølstad P, Sulem P, Murabito JM, Murray A, Manousaki D, Juul A, Erikstrup C, Stefansson K, Horikoshi M, Chen Z, Farooqi IS, Pitteloud N, Johansson S, Day FR, Perry JRB, Ong KK. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.14.23291322. [PMID: 37503126 PMCID: PMC10371120 DOI: 10.1101/2023.06.14.23291322] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, NO-0213, Oslo, Norway
| | - Edson M de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Andrea Messina
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alexander S Busch
- Department of General Pediatrics, University of Münster, Münster, Germany
- Deptartment of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Federico Santon
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Yassine Zouaghi
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirik Bratland
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Raina Jia
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Margie Riggan
- Department of Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Jonath P Bradfield
- Quantinuum Research, Wayne, PA, USA
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Diana L Cousminer
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lude H Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giorgia Girotto
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Chunyan He
- Department of Epidemiology and Biostatistics, Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Departments of Medical Oncology and Hematology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Institute of Health Sciences, P.O.Box 5000, FI-90014 University of Oulu, Finland
- Biocenter Oulu, P.O.Box 5000, Aapistie 5A, FI-90014 University of Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O.Box 20, FI-90220 Oulu, 90029 OYS, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Aapistie 1, Box 310, FI-90101 Oulu, Finland
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Kathryn L Lunetta
- Boston University School of Public Health, Department of Biostatistics. Boston, Massachusetts 02118, USA
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St. Thomas’ Foundation Trust, London, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Augsburg, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
| | - Susan M Ring
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - Albert V Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales 2308, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - Gonneke Willemsen
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
| | - Marek Zygmunt
- Clinic of Gynaecology and Obstetrics, University Medicine Greifswald, Germany
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital Toronto, Ontario, Canada
- Department of Molecular Genetics University of Toronto Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute University of California Irvine Irvine, CA, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center Medical College of Wisconsin Milwaukee, WI, USA
| | - Catriona LK Barnes
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Amy Berrington
- Division of Genetics and Epidemiology The Institute of Cancer Research, London, UK
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Federico Canzian
- Genomic Epidemiology Group German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics Fox Chase Cancer Center Philadelphia, PA, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Healthcare, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Liana Ferreli
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Pascal Guénel
- Team “Exposome and Heredity”, CESP, Gustave Roussy INSERM, University Paris-Saclay, UVSQ Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger J Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Western Australia, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology at the University of Melbourne and The Royal Women’s Hospital, Victoria, Australia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
| | - Jouke-Jan Hottenga
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health School of Public Health, Boston, Massachusetts 02115, USA
| | - Hanna Hübner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - ABCTB Investigators
- Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine Stanford, CA, USA
- Department of Medicine, Division of Oncology Stanford Cancer Institute, Stanford University School of Medicine Stanford, CA, USA
| | - David Karasik
- Hebrew SeniorLife Institute for Aging Research, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, & Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, OX3 7LE Oxford, UK
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katie M O’Brien
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, NC, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan Kettering Cancer Center New York, NY, USA
- Clinical Genetics Service, Department of Medicine Memorial Sloan Kettering Cancer Center New York, NY, USA
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet - University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of health and medical sciences, University of Copenhagen, Denmark
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of health and medical sciences, University of Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giulia Pianigiani
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology “Georgi D. Efremov” MASA Skopje Republic of North Macedonia
| | - Anneli Pouta
- National Institute for Health and Welfare, Finland
| | - Alfred Pozarickij
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research Fondazione IRCCS, Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion, Faculty of Medicine, Haifa, Israel
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Dale P Sandler
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, NC, USA
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Kerrin Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Meir Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia Perth, Western Australia, Australia
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Population Health Sciences Weill Cornell Medicine New York, NY, USA
| | - Lauren R Teras
- Department of Population Science American Cancer Society Atlanta, GA, USA
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology Mayo Clinic Rochester, MN, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center Vanderbilt University School of Medicine Nashville, TN, USA
| | - Ko W van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
- Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Marina Ciullo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Struan FA Grant
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ellen A Nøhr
- Institute of Clinical Research, University of Southern Denmark, Department of Obstetrics & Gynecology, Odense University Hospital, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales 2308, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales 2305, Australia
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulla Sovio
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Doris Stöckl
- Gesundheitsamt Fürstenfeldbruck, Regierung von Oberbayern, Fürstenfeldbruck, Germany
| | - Cathie Sudlow
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Usher Institute, University of Edinburgh
| | - Nic J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | | | | | | | | | | | | | - Paul DP Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Pål Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Pediatrics and Adolescents, Haukeland University Hospital, NO-5021, Bergen, Norway
| | | | - Joanne M Murabito
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
- Boston University Chobanian & Avedisian School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA 02118, USA
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, RILD Level 3, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Nelly Pitteloud
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - John RB Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
42
|
Stuckey BGA, Jones TW, Ward BK, Wilson SG. Digenic Congenital Hypogonadotropic Hypogonadism Due to Heterozygous GNRH1 p.R31C and AMHR2 p.G445_L453del Variants. Genes (Basel) 2023; 14:1204. [PMID: 37372384 DOI: 10.3390/genes14061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
A 28-year-old man with congenital hypogonadotropic hypogonadism (CHH) was found to be heterozygous for the GNRH1 p.R31C mutation, reported in the literature as pathogenic and dominant. The same mutation was found in his son at birth, but the testing of the infant at 64 days confirmed the hormonal changes associated with minipuberty. This led to further genetic sequencing of the patient and his son, which found a second variant, AMHR2 p.G445_L453del, in the heterozygous form, reported as pathogenic in the patient but not in his son. This suggests a digenic cause of the patient's CHH. Together, these mutations are postulated to contribute to CHH by the lack of anti-Müllerian hormone (AMH) signalling, leading to the impaired migration of gonadotrophin releasing hormone (GnRH) neurons, the lack of the AMH effect on GnRH secretion, and altered GnRH decapeptide with reduced binding to GnRH receptors. This led us to the conclusion that the observed GNRH1 mutation in the heterozygous state is not certain to be dominant or, at least, exhibits incomplete penetrance and variable expressivity. This report also emphasises the opportunity afforded by the time window of minipuberty in assessing the inherited genetic disorders of hypothalamic function.
Collapse
Affiliation(s)
- Bronwyn G A Stuckey
- Keogh Institute for Medical Research, Nedlands, WA 6009, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Nedlands, WA 6009, Australia
| | - Timothy W Jones
- Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- Telethon Kids Institute, Nedlands, WA 6009, Australia
- Perth Children's Hospital, Nedlands, WA 6009, Australia
| | - Bryan K Ward
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Harry Perkins Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
43
|
Grande G, De Toni L, Garolla A, Milardi D, Ferlin A. Plasma metabolomics in male primary and functional hypogonadism. Front Endocrinol (Lausanne) 2023; 14:1165741. [PMID: 37334300 PMCID: PMC10273261 DOI: 10.3389/fendo.2023.1165741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 06/20/2023] Open
Abstract
Metabolomics proposes to unveil the molecular machinery involved in each specific disease by the comprehensive analysis of low-molecular-weight metabolites in a biological sample. This narrative mini-review analyzes previous studies applying ultra-high-performance liquid chromatography-high-resolution mass spectrometry (HRMS)-based metabolomics to highlight different metabolic pathways involved in male hypogonadism and testosterone replacement therapy, both in the case of insulin-sensitive patients with primary hypogonadism and in the case of insulin-resistant patients with functional hypogonadism. In functional hypogonadism, metabolomics revealed that different biochemical pathways are affected. In detail, glycolysis is the most important biochemical process involved in these patients. Glucose metabolism is fueled by amino acid degradation, and gluconeogenesis is widely stimulated. Some important pathways, including glycerol, are compromised. Furthermore, mitochondrial electron transport is influenced, namely, by a decrease in ATP production. On the contrary, beta-oxidation of short- and medium-chain fatty acids does not represent an energy source in hypogonadal patients. Both lactate and acetyl-CoA are converted into ketone bodies, which increased immensely. However, carnosine and β-alanine are greatly reduced. These metabolic changes are associated with increased fatigue and mental confusion. After testosterone replacement therapy, a complete restoration is achieved for only a part of the metabolites. It is of note that only in patients with functional hypogonadism treated with testosterone are ketone bodies produced at high levels, so the symptoms sometimes reported by these patients after the beginning of the therapy (difficulty in concentrating, depressed mood, brain fog, and memory impairment) might represent a specific "keto flu-like" syndrome, related to the metabolic ketonic state.
Collapse
Affiliation(s)
- Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Luca De Toni
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Domenico Milardi
- Division of Endocrinology, Fondazione Policlinico Universitario “Agostino Gemelli” Scientific Hospitalization and Treatment Institute (IRCCS), Rome, Italy
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Obata Y, Takayama K, Nishikubo H, Tobimatsu A, Matsuda I, Uehara Y, Maruo Y, Sho H, Kosugi M, Yasuda T. Combined pituitary hormone deficiency harboring CHD7 gene missense mutation without CHARGE syndrome: a case report. BMC Endocr Disord 2023; 23:118. [PMID: 37231428 DOI: 10.1186/s12902-023-01373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Heterozygous loss-of-function mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene cause CHARGE syndrome characterized by various congenital anomalies. A majority of patients with CHARGE syndrome present with congenital hypogonadotropic hypogonadism (HH), and combined pituitary hormone deficiency (CPHD) can also be present. Whereas CHD7 mutations have been identified in some patients with isolated HH without a diagnosis of CHARGE syndrome, it remains unclear whether CHD7 mutations can be identified in patients with CPHD who do not fulfill the criteria for CHARGE syndrome. CASE PRESENTATION A 33-year-old woman was admitted to our hospital. She had primary amenorrhea and was at Tanner stage 2 for both pubic hair and breast development. She was diagnosed with CPHD (HH, growth hormone deficiency, and central hypothyroidism), and a heterozygous rare missense mutation (c.6745G > A, p.Asp2249Asn) in the CHD7 gene was identified. Our conservation analysis and numerous in silico analyses suggested that this mutation had pathogenic potential. She had mild intellectual disability, a minor feature of CHARGE syndrome, but did not fulfill the criteria for CHARGE syndrome. CONCLUSIONS We report a rare case of CPHD harboring CHD7 mutation without CHARGE syndrome. This case provides valuable insights into phenotypes caused by CHD7 mutations. CHD7 mutations can have a continuous phenotypic spectrum depending on the severity of hypopituitarism and CHARGE features. Therefore, we would like to propose a novel concept of CHD7-associated syndrome.
Collapse
Affiliation(s)
- Yoshinari Obata
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan
| | - Kana Takayama
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan
| | - Hideyuki Nishikubo
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan
| | - Aoki Tobimatsu
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan
| | - Izumi Matsuda
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan
| | - Yuhei Uehara
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan
| | - Yumiko Maruo
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan
| | - Hiroyuki Sho
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan
| | - Motohiro Kosugi
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan
| | - Tetsuyuki Yasuda
- Department of Diabetes and Endocrinology, Osaka Police Hospital, 10-31 Kitayama-Cho, Tennojiku, Osaka, 543-0035, Japan.
| |
Collapse
|
45
|
Li X, Guo Y, Wang X, Li H, Mao J, Yan S, Luo G, Wang R, Wu X, Li Y. Seminal plasma metabolomics signatures of normosmic congenital hypogonadotropic hypogonadism. Heliyon 2023; 9:e14779. [PMID: 37025907 PMCID: PMC10070097 DOI: 10.1016/j.heliyon.2023.e14779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Background Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare disease, whose pathogenesis remains unclear. Here, we conducted untargeted metabolomics and lipidomics to identify seminal plasma signatures of nCHH, and to study the effect of LH and FSH deficiency on semen. Methods Twenty-five diagnosed patients with nCHH (HH group) and twenty-three healthy participants (HC group) were enrolled. Laboratory parameters, seminal plasma samples and patients' medical data were collected. Untargeted metabolomics and lipidomic profiling were performed using mass spectrometry (MS). Results The metabolomics profiling are altered among patients with nCHH and healthy controls. There are 160 kinds of differential metabolites and the main different lipid species are TAG, PC, SM and PE. Conclusions The metabolomics profiles in patients with nCHH changed. We hope that this work provides important insights into the pathophysiology of nCHH.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xi Wang
- National Health Commission Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiangfeng Mao
- National Health Commission Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoju Luo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Corresponding author. Department of Neurosurgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Xueyan Wu
- National Health Commission Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Corresponding authors. Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuai Fuyuan, Dong Cheng District, Beijing, 100730, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Corresponding author. Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Road, Beijing, 100730, China.
| |
Collapse
|
46
|
Giovanelli L, Quinton R. Isolated Hypogonadotropic Hypogonadism: New Insights into Relationships Between Genotype and Reproductive Phenotype. J Clin Endocrinol Metab 2023; 108:e50-e51. [PMID: 36520986 DOI: 10.1210/clinem/dgac727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Luca Giovanelli
- Department of Medical Biotechnology & Translational Medicine, University of Milan, 20095 Milan, Italy
| | - Richard Quinton
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle upon Tyne NE1 4LP, UK
| |
Collapse
|
47
|
Dwyer AA, Stamou MI, Anghel E, Hornstein S, Chen D, Salnikov KB, McDonald IR, Plummer L, Seminara SB, Balasubramanian R. Reproductive Phenotypes and Genotypes in Men With IHH. J Clin Endocrinol Metab 2023; 108:897-908. [PMID: 36268624 PMCID: PMC10211495 DOI: 10.1210/clinem/dgac615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/17/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Isolated hypogonadotropic hypogonadism (IHH) is phenotypically and genetically heterogeneous. OBJECTIVE This work aimed to determine the correlation between genotypic severity with pubertal and neuroendocrine phenotypes in IHH men. METHODS A retrospective study was conducted (1980-2020) examining olfaction (Kallmann syndrome [KS] vs normosmic IHH [nHH]), baseline testicular volume (absent vs partial puberty), neuroendocrine profiling (pulsatile vs apulsatile luteinizing hormone [LH] secretion), and genetic variants in 62 IHH-associated genes through exome sequencing (ES). RESULTS In total, 242 men (KS: n = 131 [54%], nHH: n = 111 [46%]) were included. Men with absent puberty had significantly lower gonadotropin levels (P < .001) and were more likely to have undetectable LH (P < .001). Logistic regression showed partial puberty as a statistically significant predictor of pulsatile LH secretion (R2 = 0.71, P < .001, OR: 10.8; 95% CI, 3.6-38.6). Serum LH of 2.10 IU/L had a 95% true positive rate for predicting LH pulsatility. Genetic analyses in 204 of 242 IHH men with ES data available revealed 36 of 204 (18%) men carried protein-truncating variants (PTVs) in 12 IHH genes. Men with absent puberty and apulsatile LH were enriched for oligogenic PTVs (P < .001), with variants in ANOS1 being the predominant PTV in this genotype-phenotype association. Men with absent puberty were enriched for ANOS1 PTVs compared to partial puberty counterparts (P = .002). PTVs in other IHH genes imparted more variable reproductive phenotypic severity. CONCLUSION Partial puberty and LH greater than or equal to 2.10 IU/L are proxies for pulsatile LH secretion. ANOS1 PTVs confer severe reproductive phenotypes. Variable phenotypic severity in the face of severe genetic variants in other IHH genes point to significant neuroendocrine plasticity of the HPG axis in IHH men.
Collapse
Affiliation(s)
- Andrew A Dwyer
- William F. Connell School of Nursing, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Massachusetts General Hospital—Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Maria I Stamou
- Massachusetts General Hospital—Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Ella Anghel
- Department of Measurement, Evaluation, Statistics and Assessment, Boston College Lynch School of Education and Human Development, Chestnut Hill, Massachusetts 02467, USA
| | - Shira Hornstein
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Danna Chen
- Massachusetts General Hospital—Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Kathryn B Salnikov
- Massachusetts General Hospital—Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Isabella R McDonald
- William F. Connell School of Nursing, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Lacey Plummer
- Massachusetts General Hospital—Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Stephanie B Seminara
- Massachusetts General Hospital—Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Ravikumar Balasubramanian
- Massachusetts General Hospital—Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
48
|
Cotellessa L, Marelli F, Duminuco P, Adamo M, Papadakis GE, Bartoloni L, Sato N, Lang-Muritano M, Troendle A, Dhillo WS, Morelli A, Guarnieri G, Pitteloud N, Persani L, Bonomi M, Giacobini P, Vezzoli V. Defective jagged-1 signaling affects GnRH development and contributes to congenital hypogonadotropic hypogonadism. JCI Insight 2023; 8:161998. [PMID: 36729644 PMCID: PMC10077483 DOI: 10.1172/jci.insight.161998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
In vertebrate species, fertility is controlled by gonadotropin-releasing hormone (GnRH) neurons. GnRH cells arise outside the central nervous system, in the developing olfactory pit, and migrate along olfactory/vomeronasal/terminal nerve axons into the forebrain during embryonic development. Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome are rare genetic disorders characterized by infertility, and they are associated with defects in GnRH neuron migration and/or altered GnRH secretion and signaling. Here, we documented the expression of the jagged-1/Notch signaling pathway in GnRH neurons and along the GnRH neuron migratory route both in zebrafish embryos and in human fetuses. Genetic knockdown of the zebrafish ortholog of JAG1 (jag1b) resulted in altered GnRH migration and olfactory axonal projections to the olfactory bulbs. Next-generation sequencing was performed in 467 CHH unrelated probands, leading to the identification of heterozygous rare variants in JAG1. Functional in vitro validation of JAG1 mutants revealed that 7 out of the 9 studied variants exhibited reduced protein levels and altered subcellular localization. Together our data provide compelling evidence that Jag1/Notch signaling plays a prominent role in the development of GnRH neurons, and we propose that JAG1 insufficiency may contribute to the pathogenesis of CHH in humans.
Collapse
Affiliation(s)
- Ludovica Cotellessa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Federica Marelli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Duminuco
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Michela Adamo
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Georgios E Papadakis
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lucia Bartoloni
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Naoko Sato
- Department of Pediatrics, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mariarosaria Lang-Muritano
- Department of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
| | - Amineh Troendle
- Department of Endocrinology, Diabetology, and Metabolism, Lindenhofspital, Bern, Switzerland
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Giacobini
- University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
49
|
Barnabas R, Jadhav S, Arya S, Lila AR, Sarathi V, Shah GR, Bhandare VV, Shah NS, Kunwar A, Bandgar T. Luteinizing hormone β-subunit deficiency: Report of a novel LHB likely pathogenic variant and a systematic review of the published literature. Clin Endocrinol (Oxf) 2023; 98:383-393. [PMID: 35470463 DOI: 10.1111/cen.14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022]
Abstract
CONTEXT Selective deficiency of β-subunit of luteinizing hormone (LHB) is a rare disease with scarce data on its characteristics. OBJECTIVES To describe a male with LHB deficiency and systematically review the literature. DESIGN AND PATIENTS Description of a male patient with LHB deficiency and a systematic review of LHB deficiency patients published to date (10 males and 3 females) as per PRISMA guidelines. RESULTS A 36-year-old Asian Indian male presented with infertility. On evaluation, he had sexual maturity of Tanner's stage 3, low testosterone (0.23 ng/ml), low LH (0.44 mIU/ml), high follicle-stimulating hormone (FSH, 22.4 mIU/ml), and a novel homozygous missense likely pathogenic variant (p.Cys46Arg) in LHB. In the molecular dynamics simulation study, this variant interferes with heterodimerization of alpha-beta subunits. Eleven males with pathogenic variants in LHB reported to date, presented at a median age of 29 (17-38) years, most commonly with delayed puberty. Clinical and biochemical profiles were similar to those of our patient. In the majority, testosterone monotherapy modestly increased testicular volume whereas human chorionic gonadotropin (hCG) monotherapy also improved spermatogenesis. In females, oligomenorrhoea after spontaneous menarche was the most common manifestation. Ten pathogenic/likely pathogenic variants (three in-frame deletions, three missense, two splice-site, one nonsense, and one frameshift variants) have been reported in nine index patients. CONCLUSION We report a novel likely pathogenic LHB variant in an Asian Indian patient. The typical phenotype in male patients with LHB deficiency is delayed puberty with low testosterone, low LH, and normal to high FSH and hCG monotherapy being the best therapeutic option.
Collapse
Affiliation(s)
- Rohit Barnabas
- Department of Endocrinology, Seth G. S. Medical College & KEM Hospital, Mumbai, India
| | - SwatiRamteke Jadhav
- Department of Endocrinology, Sapthagiri Institute of Medical Sciences and Research Center, Bangalore, India
| | - Sneha Arya
- Department of Endocrinology, Seth G. S. Medical College & KEM Hospital, Mumbai, India
| | - Anurag Ranjan Lila
- Department of Endocrinology, Seth G. S. Medical College & KEM Hospital, Mumbai, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | | | - Vishwambhar V Bhandare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Nalini S Shah
- Department of Endocrinology, Seth G. S. Medical College & KEM Hospital, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Tushar Bandgar
- Department of Endocrinology, Seth G. S. Medical College & KEM Hospital, Mumbai, India
| |
Collapse
|
50
|
Woolner AM, Bhattacharya S. Intergenerational trends in reproduction: Infertility and pregnancy loss. Best Pract Res Clin Obstet Gynaecol 2023; 86:102305. [PMID: 36639284 DOI: 10.1016/j.bpobgyn.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
This review article summarises the evidence for intergenerational trends observed to date within infertility and pregnancy loss. There appears to be evidence of intergenerational trends between mothers and daughters for the age at menopause, endometriosis, polycystic ovarian syndrome (PCOS), male factor infertility and miscarriage. At present, there is no evidence for a predisposition to stillbirth between mothers and daughters. One study found an association with familial predisposition for ectopic pregnancy. Very few studies have considered the potential for paternal transmission of risk of infertility or pregnancy loss. The majority of studies to date have significant limitations because of their observational design, risk of recall bias and risk of confounding. Therefore, high-quality well-designed research, with multi-centre collaboration and utilisation of registry-based data sources and individual patient data, is needed to understand whether infertility and pregnancy loss may have heritable factors. Epidemiological findings need to be followed up and investigated with translational research to determine the possible causalities as well as any implications for clinical practice.
Collapse
Affiliation(s)
- Andrea Mf Woolner
- Aberdeen Centre for Women's Health Research, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom.
| | - Siladitya Bhattacharya
- Aberdeen Centre for Women's Health Research, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom.
| |
Collapse
|