1
|
Huang X, Zhang H, Luo Y, Yi X, Zhou Z, Guo F, Yi L. Lipopolysaccharide-induced active telocyte exosomes alleviate lipopolysaccharide-induced vascular barrier disruption and acute lung injury via the activation of the miRNA-146a-5p/caspase-3 signaling pathway in endothelial cells. BURNS & TRAUMA 2025; 13:tkae074. [PMID: 39811430 PMCID: PMC11732254 DOI: 10.1093/burnst/tkae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/21/2024] [Indexed: 01/16/2025]
Abstract
Background Lipopolysaccharide (LPS)-induced apoptosis of lung microvascular endothelial cells (ECs) is the main reason of lung edema and acute lung injury (ALI) in septic conditions. Telocytes (TCs) are a distinct type of interstitial cells found around the lung microvasculature, which may protect ECs through the release of shed vesicles. However, whether TCs protect against LPS-induced EC apoptosis and ALI has not been determined. Methods The protective effects of TCs on ECs were assessed in vitro using transwell assays and flow cytometry, and in vivo using an LPS-induced mouse ALI model. RNA sequencing was used to identify miRNA-146a-5p as a key component of TC-derived exosomes. The functions of miRNA-146a-5p were further evaluated by western blotting, flow cytometry, and transendothelial electrical resistance measurements. Results We demonstrated that LPS stimulation induced the secretion of active exosomes from TCs, which inhibited LPS-mediated apoptosis of ECs and reduced ALI in mice. Moreover, miRNA-146a-5p was identified as the main bioactive molecule in TC-derived exosomes, capable of inhibiting LPS-induced caspase-3 activation and apoptosis in ECs. Conclusions Our results indicate that TCs effectively prevent LPS-induced EC apoptosis and ALI through the release of exosomes, with subsequent activation of the miRNA-146a-5p/caspase-3 signaling pathway in ECs.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| | - Haoran Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yuhong Luo
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| | - Xin Yi
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| | - Zengding Zhou
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Xuhui District, Shanghai, 200235, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Second Ruijin Road, Huangpu District, Shanghai, 200025, China
| |
Collapse
|
2
|
Purelku M, Sahin H, Erkanli Senturk G, Tanriverdi G. Distribution and morphologic characterization of telocytes in rat ovary and uterus: insights from ultrastructural and immunohistochemical analysis. Histochem Cell Biol 2024; 162:373-384. [PMID: 39078438 PMCID: PMC11393091 DOI: 10.1007/s00418-024-02313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Telocytes (TCs) are characterized by a small oval-shaped cell body with long prolongations that are called telopods (Tps). PDGFR-β and c-kit markers may assist for the immunohistochemical identification of TCs; however, by these means they cannot be identified with absolute specificity. Transmission electron microscopy (TEM) is considered as a gold standard method for TCs observation. Studies on TCs in the female reproductive system are limited, and there is a lack of awareness regarding TCs in rat ovaries. We aimed to demonstrate the existence and morphology of TCs in rat ovaries, alongside previously studied TCs in rat uteri. Thus, ovaries and uteri from young adult Sprague-Dawley female rats (n = 8) with regular estrous cycles were collected. Then, left ovaries and uteri were proccessed for TEM analysis, while the right ones were used for immunohistochemistry. As a result, TCs were seen throughout the rat's ovarian stroma with their characteristic cell bodies, Tps, podomes (Pds) and podomers (Pdms). Tps were situated within the thecal layer of the follicles, surrounding the corpus luteum and blood vessels. Ovarian TCs were recognized to have relationship with other TCs/stromal cells. Subsequently, TCs were seen in stroma of endometrium with surrounding blood vessels and uterine glands, myometrium and perimetrium in rat uteri. There was also no statistical significance between the number of c-kit+ and PDGFR-β+ telocyte-like cells in both rat ovarian (p = 0.137) and endometrial stroma (p = 0.450). Further investigation of the roles and functions of TCs in the female reproductive system is needed.
Collapse
Affiliation(s)
- Merjem Purelku
- Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hakan Sahin
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Gozde Erkanli Senturk
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Dama G, Xue C, Zhang Y, Li D, Fan J, Qiao L, Xu Z, Yang C, Liu Y, Abdullah MFILB, Lin J. CD34 + stromal cells/telocytes and their role in mouse lung development: Light microscopy, immunofluorescence, ultrastructural and scanning electron microscopy evidence. Cell Biol Int 2024; 48:1680-1697. [PMID: 39099163 DOI: 10.1002/cbin.12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Telocytes (TCs), a novel type of mesenchymal or interstitial cell with specific, very long and thin cellular prolongations, have been found in various mammalian organs and have potential biological functions. However, their existence during lung development is poorly understood. This study aimed to investigate the existence, morphological features, and role of CD34+ SCs/TCs in mouse lungs from foetal to postnatal life using primary cell culture, double immunofluorescence, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The immunofluorescence double staining profiles revealed positive expression of CD34 and PDGFR-α, Sca-1 or VEGFR-3, and the expression of these markers differed among the age groups during lung development. Intriguingly, in the E18.5 stage of development, along with the CD34+ SCs/TCs, haematopoietic stem cells and angiogenic factors were also significantly increased in number compared with those in the E14.5, E16.5, P0 and P7. Subsequently, TEM confirmed that CD34+ SCs/TCs consisted of a small cell body with long telopodes (Tps) that projected from the cytoplasm. Tps consisted of alternating thin and thick segments known as podomers and podoms. TCs contain abundant endoplasmic reticulum, mitochondria and secretory vesicles and establish close connections with neighbouring cells. Furthermore, SEM revealed characteristic features, including triangular, oval, spherical, or fusiform cell bodies with extensive cellular prolongations, depending on the number of Tps. Our findings provide evidence for the existence of CD34+ SCs/TCs, which contribute to vasculogenesis, the formation of the air‒blood barrier, tissue organization during lung development and homoeostasis.
Collapse
Affiliation(s)
- Ganesh Dama
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Community Health, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Chengxu Xue
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yangxia Zhang
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dezhuang Li
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinyu Fan
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liang Qiao
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhihao Xu
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ciqing Yang
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | | | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
4
|
Qi Y, Yuan L, Zeng J, Wang X, Ma L, Lv J. Morphological identification and distribution comparison of telocytes in pituitary gland between normal and cryptorchid yaks. BMC Vet Res 2024; 20:463. [PMID: 39394144 PMCID: PMC11468414 DOI: 10.1186/s12917-024-04307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Telocytes (TCs) is a novel type of interstitial cells in many mammals organs, which participate in the organizational metabolism, mechanical support, immunomodulation and other aspects. The aim of this study was to explore the organizational chemical characteristics of TCs in pituitary gland and their changes in cryptorchid yaks. METHODS Transmission electron microscopy (TEM), toluidine blue staining, immunofluorescence, qRT-PCR, and Western blotting may enable us to understand TCs distribution characteristics and biological functions. RESULT TEM confirmed the presence of TCs in the pituitary gland with small bodies and moniliform telopodes (Tps). The Tps extending out from the cell body to the peri-sinusoidal vessels spaces, the number of Tps is closely related to the morphology of the nucleus. The most obvious changes of TCs in the pituitary gland of cryptorchid yaks is the Tps are relatively shorter and decreased secretory vesicles. H.E. and toluidine blue staining revealed that TCs not only distributed between the sinusoidal blood vessels and the glandular cell clusters, but also present on the surface of vascular endothelial cells. The co-expression of TCs biomarkers, such as Vimentin/CD34, CD117/CD34 and α-SMA/CD34, were evaluated by immunofluorescence to further determine the phenotypic characteristics of TCs. Besides, we analyzed the mRNA and protein expression of these biomarkers to determine the characteristics of TCs changes and possible biological roles. Both the mRNA and protein expression of CD117 were significantly higher in the pituitary gland of cryptorchid yaks than in the normal (p < 0.01), the protein expression of CD34 in the cryptorchid yaks was significantly higher than the normal (p < 0.01). There were no significant difference in mRNA expression of Vimentin and α-SMA (p>0.05), while the protein expression were significantly increased in the normal yaks (p < 0.05). CONCLUSIONS In summary, this study reports for the first time that the biological characteristics of TCs in yak pituitary gland. Although there is no significant change in the distribution characteristics, the changes in biological features of TCs in cryptorchid yaks are clear, suggesting that TCs participated in alteration in the local microenvironment of the pituitary gland. Therefore, our study provides clues for further investigating the role of TCs in the pituitary gland during the occurrence of cryptorchidism in yaks.
Collapse
Affiliation(s)
- Yumei Qi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaofen Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Long Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinghan Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
5
|
Sasso-Cerri E, Martinelli VD, de Oliveira SA, da Silva AAS, de Moraes JCG, Cerri PS. Submandibular Gland Pathogenesis Following SARS-CoV-2 Infection and Implications for Xerostomia. Int J Mol Sci 2024; 25:6820. [PMID: 38999930 PMCID: PMC11241347 DOI: 10.3390/ijms25136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1β were detected by immunofluorescence, and the Egfr and Muc5b expression was evaluated. In the infected animals, significant acinar hypertrophy was observed in contrast to ductal atrophy. Nucleocapsid proteins and/or viral particles were detected in the SMG cells, mainly in the nuclear membrane-derived vesicles, confirming the nuclear role in the viral formation. The acinar cells showed intense TNF-α and IL-1β immunoexpression, and the EGF-EGFR signaling increased, together with Muc5b upregulation. This finding explains mucin hypersecretion and acinar hypertrophy, which compress the ducts. Dying MECs and actin reduction were also observed, indicating failure of contraction and acinar support, favoring acinar hypertrophy. Viral assembly was found in the dying telocytes, pointing to these intercommunicating cells as viral transmitters in SMGs. Therefore, EGF-EGFR-induced mucin hypersecretion was triggered by SARS-CoV-2 in acinar cells, likely mediated by cytokines. The damage to telocytes and MECs may have favored the acinar hypertrophy, leading to ductal obstruction, explaining xerostomia in COVID-19 patients. Thus, acinar cells, telocytes and MECs may be viral targets, which favor replication and cell-to-cell viral transmission in the SMG, corroborating the high viral load in saliva of infected individuals.
Collapse
Affiliation(s)
- Estela Sasso-Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| | - Vitor Dallacqua Martinelli
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| | - Salmo Azambuja de Oliveira
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo 04023-900, Brazil; (S.A.d.O.); (A.A.S.d.S.)
| | - André Acácio Souza da Silva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo 04023-900, Brazil; (S.A.d.O.); (A.A.S.d.S.)
| | - Juliana Cerini Grassi de Moraes
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School–São Paulo State University (UNESP), Araraquara 14801-903, Brazil; (V.D.M.); (J.C.G.d.M.)
| |
Collapse
|
6
|
Rivera-Torruco G, Muench MO, Valle-Rios R. Exploring extramedullary hematopoiesis: unraveling the hematopoietic microenvironments. FRONTIERS IN HEMATOLOGY 2024; 3:1371823. [PMID: 39668982 PMCID: PMC11636351 DOI: 10.3389/frhem.2024.1371823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Hematopoiesis is a process by which all blood cells are formed. The mechanisms controlling it have been studied for decades. Surprisingly, while hematopoietic stem cells are among the most extensively studied stem cell types, the complete understanding of how they are regulated during development, adulthood, or in non-homeostatic conditions remains elusive. In this review, our primary focus is on research findings that explore where hematopoietic precursors are found in adults outside their primary niches in the bone marrow. This phenomenon is termed extramedullary hematopoiesis (EMH). Early in development hematopoietic stem cells migrate through different regions within and outside the embryo and later the fetus. Although, the primary home for hematopoietic progenitors is the adult bone marrow, it is now recognized that other adult organs may act as hematopoietic progenitor reservoirs both in mice and humans. The first reports about this topic were principally originated from clinical observations, in cases where the bone marrow was malfunctioning, leading to an aberrant hematopoiesis outside the bone marrow. It is worth highlighting that those extramedullary organs, like the small intestine or fat tissue, contain subsets of fully functioning hematopoietic progenitors demonstrated by both in vitro and in vivo studies. Nonetheless, there are still some unanswered questions regarding the source of these cells, how they differ in function compared to their counterparts in the bone marrow, and the specific roles they play within the tissues where they are located.
Collapse
Affiliation(s)
- Guadalupe Rivera-Torruco
- Cell Therapy Core, Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, Medical Center, University of California, San Francisco, San Francisco, CA, United States
| | - Marcus O. Muench
- Cell Therapy Core, Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, Medical Center, University of California, San Francisco, San Francisco, CA, United States
| | - Ricardo Valle-Rios
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
7
|
Massoud D, Abd-Elhafeez HH, Emeish WFA, Fouda M, Shaldoum F, Alrashdi BM, Hassan M, Soliman SA. A transmission electron microscopy investigation suggests that telocytes, skeletal muscles, myoblasts, and stem cells in common carp (Cyprinus carpio) respond to salinity challenges. BMC Vet Res 2024; 20:73. [PMID: 38402164 PMCID: PMC10893627 DOI: 10.1186/s12917-024-03916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Telocytes are modified interstitial cells that communicate with other types of cells, including stem cells. Stemness properties render them more susceptible to environmental conditions. The current morphological investigation examined the reactions of telocytes to salt stress in relation to stem cells and myoblasts. The common carp are subjected to salinity levels of 0.2, 6, and 10 ppt. The gill samples were preserved and prepared for TEM. RESULTS The present study observed that telocytes undergo morphological change and exhibit enhanced secretory activities in response to changes in salinity. TEM can identify typical telocytes. This research gives evidence for the communication of telocytes with stem cells, myoblasts, and skeletal muscles. Telocytes surround stem cells. Telopodes made planar contact with the cell membrane of the stem cell. Telocytes and their telopodes surrounded the skeletal myoblast. These findings show that telocytes may act as nurse cells for skeletal stem cells and myoblasts, which undergo fibrillogenesis. Not only telocytes undergo morphological alternations, but also skeletal muscles become hypertrophied, which receive telocyte secretory vesicles in intercellular compartments. CONCLUSION In conclusion, the activation of telocytes is what causes stress adaptation. They might act as important players in intercellular communication between cells. It is also possible that reciprocal interaction occurs between telocytes and other cells to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf, 72341, Saudi Arabia.
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Walaa F A Emeish
- Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Maged Fouda
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf, 72341, Saudi Arabia
| | - Fayez Shaldoum
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf, 72341, Saudi Arabia
| | - Barakat M Alrashdi
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf, 72341, Saudi Arabia
| | - Mervat Hassan
- Department of Theriogenology, Faculty of Veterinary Medicine, New Valley University, El Kharga, Egypt
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, Qena, Egypt
| |
Collapse
|
8
|
Borges LF, Manetti M. Telocytes and Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:305-337. [DOI: 10.1016/b978-0-443-15289-4.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Zhang Y, Tian H. Telocytes and inflammation: A review. Medicine (Baltimore) 2023; 102:e35983. [PMID: 37986278 PMCID: PMC10659634 DOI: 10.1097/md.0000000000035983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Telocytes are a new type of interstitial cell with a diverse morphology and important functions, such as mechanical support, signal transduction, immune regulation, and tissue repair. In this paper, the origin and physiological and pathological functions of telocytes as well as their role in inflammation will be discussed, and the functions and targets of telocytes in inflammation will be fully reviewed, which may contribute to a new therapeutic strategy for inflammatory diseases in the future.
Collapse
Affiliation(s)
- Yuhua Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hu Tian
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Key Laboratory of Metabolism and Gastrointestinal Tumor, Jinan, Shandong, China
| |
Collapse
|
10
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
11
|
Abd-Elhafeez HH, Rutland CS, Soliman SA. Morphology of migrating telocytes and their potential role in stem cell differentiation during cartilage development in catfish (Clarias gariepinus). Microsc Res Tech 2023; 86:1108-1121. [PMID: 37337938 DOI: 10.1002/jemt.24374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Telocytes (TCs) are present in a broad range of species and regulate processes including homeostasis, tissue regeneration and immunosurveillance. This novel study describes the morphological features of migrating TCs and their role during cartilage development within the air-breathing organ in Clarias gariepinus, the African sharptooth catfish. Light microscopy (LM), transmission electron microscopy (TEM), and immunohistochemistry (IHC) were used to examine the TCs. TCs had a cell body and telopodes which formed 3D networks in the cartilage canals and extended their telopodes to become the foremost cellular elements penetrating the cartilage matrix. The TCs were also rich in lysosomes that secreted products to the extracellular matrix (ECM). In addition, TCs formed a homocellular synaptic-like structure that had a synaptic cleft, and the presynaptic portion consisted of a slightly expanded terminal of the telopodes which contained intermediate filaments and secretory vesicles. Gap junctions were also identified between TCs, which also connected to mesenchymal stem cells, differentiating chondrogenic cells, macrophages, apoptotic cells, and endothelial cells. In addition to describing the basic morphology of TCs, the current study also investigated migrating TCs. The TC telopodes acquired an irregular contour when migrating rather than exhibiting an extended profile. Migrating TCs additionally had ill-defined cell bodies, condensed chromatin, thickened telopodes, and podoms which were closely attached to the cell body. The TCs also expressed markers for MMP-9, CD117, CD34 and RhoA. In conclusion, TCs may play multiple roles during development and maturation, including promoting angiogenesis, cell migration, and regulating stem cell differentiation. RESEARCH HIGHLIGHTS: Clarias gariepinus telocytes form 3D networks, extend their telopodes and contain lysosomes. Telocytes form a homocellular synaptic-like structure including clefts and a slightly expanded terminal of the telopodes which contains intermediate filaments and secretory vesicles. Gap junctions form between telocytes, which also connect to mesenchymal stem cells, differentiating chondrogenic cells, macrophages, apoptotic cells, and endothelial cells. Migrating telocytes were discovered which had ill-defined cell bodies, condensed chromatin, thickened telopodes exhibiting irregular contours, and podoms which were closely attached to the cell body.
Collapse
Affiliation(s)
- Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, UK
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
12
|
Fu H, Liu X, Shi L, Wang L, Fang H, Wang X, Song D. Regulatory roles of Osteopontin in lung epithelial inflammation and epithelial-telocyte interaction. Clin Transl Med 2023; 13:e1381. [PMID: 37605313 PMCID: PMC10442477 DOI: 10.1002/ctm2.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Lung epithelial cells play important roles in lung inflammation and injury, although mechanisms remain unclear. Osteopontin (OPN) has essential roles in epithelial damage and repair and in lung cancer biological behaviours. Telocyte (TC) is a type of interstitial cell that interacts with epithelial cells to alleviate acute inflammation and lung injury. The present studies aim at exploring potential mechanisms by which OPN regulates the epithelial origin lung inflammation and the interaction of epithelial cells with TCs in acute and chronic lung injury. METHODS The lung disease specificity of OPN and epithelial inflammation were defined by bioinformatics. We evaluated the regulatory roles of OPN in OPN-knockdown or over-expressed bronchial epithelia (HBEs) challenged with cigarette smoke extracts (CSE) or in animals with genome OPN knockout (gKO) or lung conditional OPN knockout (cKO). Acute lung injury and chronic obstructive pulmonary disease (COPD) were induced by smoking or lipopolysaccharide (LPS). Effects of OPN on PI3K subunits and ERK were assessed using the inhibitors. Spatialization and distribution of OPN, OPN-positive epithelial subtypes, and TCs were defined by spatial transcriptomics. The interaction between HBEs and TCs was assayed by the co-culture system. RESULTS Levels of OPN expression increased in smokers, smokers with COPD, and smokers with COPD and lung cancer, as compared with healthy nonsmokers. LPS and/or CSE induced over-production of cytokines from HBEs, dependent upon the dysfunction of OPN. The severity of lung inflammation and injury was significantly lower in OPN-gKO or OPN-cKO mice. HBEs transferred with OPN enhanced the expression of phosphoinositide 3-kinase (PI3K)CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, PIK3CG/p110γ, PIK3R1, PIK3R2 or PIK3R3. Spatial locations of OPN and OPN-positive epithelial subtypes showed the tight contact of airway epithelia and TCs. Epithelial OPN regulated the epithelial communication with TCs, and the down-regulation of OPN induced more alterations in transcriptomic profiles than the up-regulation. CONCLUSION Our data evidenced that OPN regulated lung epithelial inflammation, injury, and cell communication between epithelium and TCs in acute and chronic lung injury. The conditional control of lung epithelial OPN may be an alternative for preventing and treating epithelial-origin lung inflammation and injury.
Collapse
Affiliation(s)
- Huirong Fu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xuanqi Liu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Lin Shi
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Lingyan Wang
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Department of AnesthesiologyShanghai Geriatric Medical CenterShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Carrasco JL, Madrid JF, Díaz-Flores L. Telocytes/CD34+ Stromal Cells in the Normal, Hyperplastic, and Adenomatous Human Parathyroid Glands. Int J Mol Sci 2023; 24:12118. [PMID: 37569493 PMCID: PMC10419317 DOI: 10.3390/ijms241512118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Telocytes/CD34+ stromal cells (TCs/CD34+ SCs) have been studied in numerous organs and tissues, but their presence and characteristics in the parathyroid glands have not been explored. Using immunological and ultrastructural procedures, we assess the location, arrangement, and behavior of TCs/CD34+ SCs in normal human parathyroids, during their development and in their most frequent pathologic conditions. In normal parathyroids, TCs/CD34+ SCs show a small somatic body and long thin processes with a moniliform aspect, form labyrinthine systems, connect other neighboring TCs/CD34+ SCs, vessels, adipocytes, and parenchymal cells directly or by extracellular vesicles, and associate with collagen I. TCs/CD34+ SCs and collagen I are absent around vessels and adipocytes within parenchymal clusters. In developing parathyroids, TCs/CD34+ SC surround small parenchymal nests and adipocytes. In hyperplastic parathyroids, TCs/CD34+ SCs are prominent in some thickened internodular septa and surround small extraglandular parenchymal cell nests. TCs/CD34+ SCs are present in delimiting regions with compressed parathyroids and their capsule in adenomas but absent in most adenomatous tissue. In conclusion, TCs/CD34+ SCs are an important cellular component in the human parathyroid stroma, except around vessels within parenchymal nests. They show typical characteristics, including those of connecting cells, are present in developing parathyroids, and participate in the most frequent parathyroid pathology, including hyperplastic and adenomatous parathyroids.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
- Canary Biomedical Technology Institute, University of La Laguna, 38071 La Laguna, Spain
| | - Maria del Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 La Laguna, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain;
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| |
Collapse
|
14
|
Abedin Zadeh M, Alany RG, Satarian L, Shavandi A, Abdullah Almousa M, Brocchini S, Khoder M. Maillard Reaction Crosslinked Alginate-Albumin Scaffolds for Enhanced Fenofibrate Delivery to the Retina: A Promising Strategy to Treat RPE-Related Dysfunction. Pharmaceutics 2023; 15:pharmaceutics15051330. [PMID: 37242572 DOI: 10.3390/pharmaceutics15051330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
There are limited treatments currently available for retinal diseases such as age-related macular degeneration (AMD). Cell-based therapy holds great promise in treating these degenerative diseases. Three-dimensional (3D) polymeric scaffolds have gained attention for tissue restoration by mimicking the native extracellular matrix (ECM). The scaffolds can deliver therapeutic agents to the retina, potentially overcoming current treatment limitations and minimizing secondary complications. In the present study, 3D scaffolds made up of alginate and bovine serum albumin (BSA) containing fenofibrate (FNB) were prepared by freeze-drying technique. The incorporation of BSA enhanced the scaffold porosity due to its foamability, and the Maillard reaction increased crosslinking degree between ALG with BSA resulting in a robust scaffold with thicker pore walls with a compression modulus of 13.08 KPa suitable for retinal regeneration. Compared with ALG and ALG-BSA physical mixture scaffolds, ALG-BSA conjugated scaffolds had higher FNB loading capacity, slower release of FNB in the simulated vitreous humour and less swelling in water and buffers, and better cell viability and distribution when tested with ARPE-19 cells. These results suggest that ALG-BSA MR conjugate scaffolds may be a promising option for implantable scaffolds for drug delivery and retinal disease treatment.
Collapse
Affiliation(s)
- Maria Abedin Zadeh
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames KT1 2EE, UK
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames KT1 2EE, UK
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Leila Satarian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | | | - Steve Brocchini
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames KT1 2EE, UK
| |
Collapse
|
15
|
Tang L, Song D, Qi R, Zhu B, Wang X. Roles of pulmonary telocytes in airway epithelia to benefit experimental acute lung injury through production of telocyte-driven mediators and exosomes. Cell Biol Toxicol 2023; 39:451-465. [PMID: 34978009 PMCID: PMC8720540 DOI: 10.1007/s10565-021-09670-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Telocytes (TCs) are experimentally evidenced as an alternative of cell therapies for organ tissue injury and repair. The aims of the present studies are to explore direct roles of TCs and the roles of TC-derived exosomes in support of experimental acute lung injury (ALI) in vivo or in vitro. MATERIALS AND METHODS The roles of TCs in experimental ALI were firstly estimated. Phosphoinositide 3-kinase (PI3K) p110δ and α/δ/β isoform inhibitors were used in study dynamic alterations of bio-behaviors, and in expression of functional factors of TCs per se and TC-co-cultured airway epithelial cells during the activation with lipopolysaccharide (LPS). TC-driven exosomes were furthermore characterized for intercellular communication by which activated or non-activated TCs interacted with epithelia. RESULTS Our results showed that TCs mainly prevented from lung tissue edema and hemorrhage and decreased the levels of VEGF-A and MMP9 induced by LPS. Treatment with CAL101 (PI3K p110δ inhibitor) and LY294002 (PI3Kα/δ/β inhibitor) could inhibit TC movement and differentiation and increase the number of dead TCs. The expression of Mtor, Hif1α, Vegf-a, or Mmp9 mRNA increased in TCs challenged with LPS, while Mtor, Hif1α, and Vegf-a even more increased after adding CAL101 or Mtor after adding LY. The rate of epithelial cell proliferation was higher in co-culture of human bronchial epithelial (HBE) and TCs than that in HBE alone under conditions with or without LPS challenge or when cells were treated with LPS and CAL101 or LY294002. The levels of mTOR, HIF1α, or VEGF-A significantly increased in mono-cultured or co-cultured cells, challenged with LPS as compared with those with vehicle. LPS-pretreated TC-derived exosomes upregulated the expression of AKT, p-AKT, HIF1α, and VEGF-A protein of HBE. CONCLUSION The present study demonstrated that intraperitoneal administration of TCs ameliorated the severity of lung tissue edema accompanied by elevated expression of VEGF-A. TCs could nourish airway epithelial cells through nutrients produced from TCs, increasing epithelial cell proliferation, and differentiation as well as cell sensitivity to LPS challenge and PI3K p110δ and α/δ/β inhibitors, partially through exosomes released from TCs.
Collapse
Affiliation(s)
- Li Tang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Dongli Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.
| | - Ruixue Qi
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital; Institute for Clinical Science Shanghai Institute of Clinical Bioinformatics Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
16
|
Zhang X, Lu P, Shen X. Morphologies and potential roles of telocytes in nervous tissue. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 01/03/2025]
Abstract
AbstractStructurally similar cells have been found and termed telocytes (TCs) since the first characterisation of interstitial Cajal‐like cells in 1911. TCs are a novel and peculiar interstitial cell type with a small cellular body, markedly long cell processes named telopodes and a wide distribution in numerous tissues throughout the body. Besides specific morphological characteristics and immunohistochemical profiles, TCs build three‐dimensional mixed networks through homocellular (connection to each other) and/or heterocellular contacts (connection with other cell types), interaction with extracellular matrix and their vicinity to nerve endings, and thus might play, as part of an integrated system, roles in maintaining organ/tissue function. In this mini‐review, we summarise physical properties, general characteristics and distribution of TCs in diverse organs and tissues, focusing on their potential functions in nervous tissue and current challenges in investigating TCs as a distinct cell type.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| | - Ping Lu
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| | - Xiaorong Shen
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| |
Collapse
|
17
|
Ahmed AM, Hussein MR. Telocytes in Cutaneous Biology: A Reappraisal. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T229-T239. [PMID: 36690154 DOI: 10.1016/j.ad.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 01/22/2023] Open
Abstract
The telocytes (TCs) are novel interstitial cells that have been overlooked for a long time due to their histologic similarity to other stromal cells. TCs can be separated from the stromal cells based on their distinct immunohistochemical, ultrastructural, and molecular features. Functionally, TCs are involved in the tissue renewal, mechanical support, and immune modulation. These cells are also involved in the signal transduction either through their direct interactions with the neighboring cells or through the paracrine signaling via extracellular vesicles. TCs are damaged in several inflammatory and fibrotic conditions such as ulcerative colitis, Crohn's disease, hepatic fibrosis, psoriasis, and systemic sclerosis. The transplantation of TCs in the damaged tissue can promote tissue regeneration. Therefore, enhancing tissue TCs either by their transplantation or by promoting their survival and growth using novel medications represents novel therapeutic strategy in the future. In this review, we addressed several aspects of TCs including their origin, distribution, morphologic features, and functions. We also discussed their involvement of the cutaneous TCs in the development various pathologic conditions.
Collapse
Affiliation(s)
- A M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egipto
| | - M R Hussein
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egipto.
| |
Collapse
|
18
|
Telocytes in Cutaneous Biology: A Reappraisal. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:229-239. [PMID: 36332689 DOI: 10.1016/j.ad.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022] Open
Abstract
The telocytes (TCs) are novel interstitial cells that have been overlooked for a long time due to their histologic similarity to other stromal cells. TCs can be separated from the stromal cells based on their distinct immunohistochemical, ultrastructural, and molecular features. Functionally, TCs are involved in the tissue renewal, mechanical support, and immune modulation. These cells are also involved in the signal transduction either through their direct interactions with the neighboring cells or through the paracrine signaling via extracellular vesicles. TCs are damaged in several inflammatory and fibrotic conditions such as ulcerative colitis, Crohn's disease, hepatic fibrosis, psoriasis, and systemic sclerosis. The transplantation of TCs in the damaged tissue can promote tissue regeneration. Therefore, enhancing tissue TCs either by their transplantation or by promoting their survival and growth using novel medications represents novel therapeutic strategy in the future. In this review, we addressed several aspects of TCs including their origin, distribution, morphologic features, and functions. We also discussed their involvement of the cutaneous TCs in the development various pathologic conditions.
Collapse
|
19
|
Xu T, Zhang H, Zhu Z. Telocytes and endometriosis. Arch Gynecol Obstet 2023; 307:39-49. [PMID: 35668319 DOI: 10.1007/s00404-022-06634-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/14/2022] [Indexed: 02/02/2023]
Abstract
Endometriosis involving the presence and growth of glands and stroma outside the uterine cavity is a common, inflammatory, benign gynecologic disease. Nevertheless, no single theory can exactly account for the pathogenesis of endometriosis. Telocytes, a kind of novel mesenchymal cells, have been suggested to be crucial in promoting angiogenesis and increasing the activity of endometrial interstitial cells and inflammatory cells. Given above roles, telocytes may be considered as the possible pathogenesis of endometriosis. We reviewed the current literature on telocytes. The following aspects were considered: (A) the telocytes' typical characteristics, function, and morphological changes in endometriosis; (B) the potential role of telocytes in endometriosis by impacting the inflammation, invasion, and angiogenesis; (C) telocytes as the potential treatment options for endometriosis.
Collapse
Affiliation(s)
- Ting Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.128, Shenyang Road, Shanghai, 200090, China
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhiling Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.128, Shenyang Road, Shanghai, 200090, China.
| |
Collapse
|
20
|
Manole CG, Gherghiceanu M, Ceafalan LC, Hinescu ME. Dermal Telocytes: A Different Viewpoint of Skin Repairing and Regeneration. Cells 2022; 11:3903. [PMID: 36497161 PMCID: PMC9736852 DOI: 10.3390/cells11233903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Fifteen years after their discovery, telocytes (TCs) are yet perceived as a new stromal cell type. Their presence was initially documented peri-digestively, and gradually throughout the interstitia of many (non-)cavitary mammalian, human, and avian organs, including skin. Each time, TCs proved to be involved in diverse spatial relations with elements of interstitial (ultra)structure (blood vessels, nerves, immune cells, etc.). To date, transmission electron microscopy (TEM) remained the single main microscopic technique able to correctly and certainly attest TCs by their well-acknowledged (ultra)structure. In skin, dermal TCs reiterate almost all (ultra)structural features ascribed to TCs in other locations, with apparent direct implications in skin physiology and/or pathology. TCs' uneven distribution within skin, mainly located in stem cell niches, suggests involvement in either skin homeostasis or dermatological pathologies. On the other hand, different skin diseases involve different patterns of disruption of TCs' structure and ultrastructure. TCs' cellular cooperation with other interstitial elements, their immunological profile, and their changes during remission of diseases suggest their role(s) in tissue regeneration/repair processes. Thus, expanding the knowledge on dermal TCs could offer new insights into the natural skin capacity of self-repairing. Moreover, it would become attractive to consider that augmenting dermal TCs' presence/density could become an attractive therapeutic alternative for treating various skin defects.
Collapse
Affiliation(s)
- Catalin G. Manole
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
21
|
Zhao J, Birjandi AA, Ahmed M, Redhead Y, Olea JV, Sharpe P. Telocytes regulate macrophages in periodontal disease. eLife 2022; 11:e72128. [PMID: 36193890 PMCID: PMC9576272 DOI: 10.7554/elife.72128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Telocytes (TCs) or interstitial cells are characterised in vivo by their long projections that contact other cell types. Although telocytes can be found in many different tissues including the heart, lung, and intestine, their tissue-specific roles are poorly understood. Here we identify a specific cell signalling role for telocytes in the periodontium whereby telocytes regulate macrophage activity. We performed scRNA-seq and lineage tracing to identify telocytes and macrophages in mouse periodontium in homeostasis and periodontitis and carried out hepatocyte growth factor (HGF) signalling inhibition experiments using tivantinib. We show that telocytes are quiescent in homeostasis; however, they proliferate and serve as a major source of HGF in periodontitis. Macrophages receive telocyte-derived HGF signals and shift from an M1 to an M1/M2 state. Our results reveal the source of HGF signals in periodontal tissue and provide new insights into the function of telocytes in regulating macrophage behaviour in periodontitis through HGF/Met cell signalling, which may provide a novel approach in periodontitis treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
- Department of Oral and Maxillofacial Implantology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Anahid A Birjandi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Yushi Redhead
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Jose Villagomez Olea
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| |
Collapse
|
22
|
Aschacher T, Aschacher O, Schmidt K, Enzmann FK, Eichmair E, Winkler B, Arnold Z, Nagel F, Podesser BK, Mitterbauer A, Messner B, Grabenwöger M, Laufer G, Ehrlich MP, Bergmann M. The Role of Telocytes and Telocyte-Derived Exosomes in the Development of Thoracic Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms23094730. [PMID: 35563123 PMCID: PMC9099883 DOI: 10.3390/ijms23094730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022] Open
Abstract
A hallmark of thoracic aortic aneurysms (TAA) is the degenerative remodeling of aortic wall, which leads to progressive aortic dilatation and resulting in an increased risk for aortic dissection or rupture. Telocytes (TCs), a distinct type of interstitial cells described in many tissues and organs, were recently observed in the aortic wall, and studies showed the potential regulation of smooth muscle cell (SMC) homeostasis by TC-released shed vesicles. The purpose of the present work was to study the functions of TCs in medial degeneration of TAA. During aneurysmal formation an increase of aortic TCs was identified in human surgical specimens of TAA-patients, compared to healthy thoracic aortic (HTA)-tissue. We found the presence of epithelial progenitor cells in the adventitial layer, which showed increased infiltration in TAA samples. For functional analysis, HTA- and TAA-telocytes were isolated, characterized, and compared by their protein levels, mRNA- and miRNA-expression profiles. We detected TC and TC-released exosomes near SMCs. TAA-TC-exosomes showed a significant increase of the SMC-related dedifferentiation markers KLF-4-, VEGF-A-, and PDGF-A-protein levels, as well as miRNA-expression levels of miR-146a, miR-221 and miR-222. SMCs treated with TAA-TC-exosomes developed a dedifferentiation-phenotype. In conclusion, the study shows for the first time that TCs are involved in development of TAA and could play a crucial role in SMC phenotype switching by release of extracellular vesicles.
Collapse
Affiliation(s)
- Thomas Aschacher
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
- Correspondence: ; Tel.: +43-1-277-00-74316
| | - Olivia Aschacher
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Florian K. Enzmann
- Department of Vascular Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Eva Eichmair
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Bernhard Winkler
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
| | - Zsuzsanna Arnold
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
| | - Felix Nagel
- Department of Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (F.N.); (B.K.P.)
| | - Bruno K. Podesser
- Department of Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (F.N.); (B.K.P.)
| | - Andreas Mitterbauer
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.); (M.B.)
| | - Barbara Messner
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Martin Grabenwöger
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
| | - Günther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Marek P. Ehrlich
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Michael Bergmann
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.); (M.B.)
| |
Collapse
|
23
|
Zhu X, Wang Q, Pawlicki P, Wang Z, Pawlicka B, Meng X, Feng Y, Yang P. Telocytes and Their Structural Relationships With the Sperm Storage Tube and Surrounding Cell Types in the Utero-Vaginal Junction of the Chicken. Front Vet Sci 2022; 9:852407. [PMID: 35400114 PMCID: PMC8987988 DOI: 10.3389/fvets.2022.852407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Telocytes (TCs) are a new type of mesenchymal cells that have been discovered recently in many organs and tissues. However, studies of TCs in the avian reproductive system are still at the beginning. Chickens are one of the world's most popular domesticated animals, providing inexpensive but valuable proteins and nutrients from chickens and eggs to nourish the human bodies. Chickens have important scientific value; thus, understanding the reproductive system regulations seems to be important. The utero-vaginal junction is involved in the regulation of sperm storage. The sperm storage tube (SST) in the utero-vaginal junction stores sperm. The purpose of this study was to investigate the existence of TCs in the utero-vaginal junction of the chicken, and their structural relationships with the sperm storage tube and surrounding cell types. We studied the morphology, ultrastructure, and immune characterization of TCs.
Collapse
Affiliation(s)
- Xudong Zhu
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Ziyu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bernadetta Pawlicka
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Xiangfei Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongchao Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ping Yang
| |
Collapse
|
24
|
Klein M, Csöbönyeiová M, Danišovič Ľ, Lapides L, Varga I. Telocytes in the Female Reproductive System: Up-to-Date Knowledge, Challenges and Possible Clinical Applications. Life (Basel) 2022; 12:267. [PMID: 35207554 PMCID: PMC8874826 DOI: 10.3390/life12020267] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
From their initial description in 2005 to this day, telocytes (TCs) have been described in the ovary, uterine tubes, uterus, vagina, mammary gland, and placenta. Their morphological features, immunophenotype, physiological functions, and roles in disease have been thoroughly documented in both animal models and human subjects. TCs, with their extremely long cytoplasmic processes called telopodes, play a pivotal role in the morphological and functional interconnection of all the components of the interstitial compartment, but also with constituents of the parenchyma. Although there is no specific immunohistochemical marker for their identification, the most cited are CD 117, CD 34, platelet-derived growth factor receptor (PDGFR), vimentin, and specific markers typical for the female reproductive system (FRS)-estrogen and progesterone receptors (ER and PR). This immunophenotype provides important clues to their physiological roles. Their main functions include the regulation of hormone-dependent processes, intercellular signaling, immune surveillance, microenvironmental maintenance, and the nursing of stem cells. In a situation where TCs are functionally or morphologically decimated, many disease entities may develop, including premature ovarian failure, endometriosis, ectopic pregnancy, infertility, preeclampsia, or even breast cancer. The common denominator of many of these conditions is that their etiopathogenesis is either partially known or completely obscure. Even though the exact role of TCs in these conditions is yet to be revealed, multiple lines of research indicate that their future clinical application may enrich diagnostic-therapeutic strategies of countless conditions. TCs are also heavily debated in terms of their possible use in regenerative medicine and tissue engineering. Some of the concepts related to TC research are strongly substantiated by experimental data, while others are highly speculative. Only future research endeavors will clearly distinguish dead-end lines of research from genuine contributions to the field.
Collapse
Affiliation(s)
- Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Mária Csöbönyeiová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Lenka Lapides
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
- ISCARE, Reproduction Clinic, Gynaecology & Urology, 821 09 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| |
Collapse
|
25
|
Mohamedien D, Awad M. Pulmonary Guardians and Special Regulatory Devices in the Lung of Nile Monitor Lizard ( Varanus niloticus) with Special Attention to the Communication Between Telocyte, Pericyte, and Immune Cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:281-287. [PMID: 34955118 DOI: 10.1017/s143192762101388x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monitor lizards are acclimatized to a variety of environments. Most of the monitor species are terrestrial, although there are arboreal and semiaquatic monitors. Such accommodation requires unique cellular structure and regulatory devices in various organs, particularly their lungs. This study aimed to report the pulmonary guardians and special regulatory devices that may guard and promote the function of the lungs of the Nile monitor lizards (Varanus niloticus). Specially structured vessels were recorded in the pulmonary tissue involving atypical glomus vessels, vessels with variable wall thickness, and a venule with specialized internal elastic membrane. Moreover, numerous lung resident guardians could be identified including both alveolar and interstitial macrophages, dendritic cells, mast cells, and B- and T-lymphocytes. Pericytes were demonstrated surrounding the capillary endothelium with a characteristic direct hetero-cellular junction with telocytes. Telocytes established a microenvironment through an indirect hetero-cellular junction with the interstitial macrophage, dendritic cells, and pneumocyte type II. Collectively, these data indicate a significant role played by the specially structured vessels and the resident immune cells in guarding the pulmonary tissue of the Nile monitor lizards and promoting its function. Telocytes are suggested to play a key role in angiogenesis and cellular communication to promote the function of the immune cells.
Collapse
Affiliation(s)
- Dalia Mohamedien
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena83523, Egypt
| | - Mahmoud Awad
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena83523, Egypt
| |
Collapse
|
26
|
Lineage Tracing of FOXL1+ Cells in the Tunica Muscularis Suggests Mutual Origin for Telocytes and Smooth Muscle Cells. Life (Basel) 2022; 12:life12020176. [PMID: 35207464 PMCID: PMC8874610 DOI: 10.3390/life12020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
We recently identified a FOXL1+ intestinal subepithelial network of telocytes (TCs) without which epithelial stem and progenitor cells cannot proliferate and support regeneration. In addition to FOXL1 lineage cell distribution along the intestinal epithelium, we also observed their presence within the muscle layers. Here, we characterized FOXL1+ lineage cells along the muscle layers of the duodenum in order to understand their progeny and relation to interstitial Cajal cells (ICCs), smooth muscle cells (SMCs) and the previously reported PDGFRa+ TCs. Using a FOXL1-Cre transgenic line in conjunction with genetic lineage labeling using the Rosa26-mTmG allele, in which Cre-marked cells produce a membrane-targeted version of green fluorescent protein (GFP), we found that within the muscle layers FOXL1 lineage GFP+ cells had two main progeny; (i) elongated multinucleated SMA+ SMCs, intermingled in parallel or perpendicular to muscle fibers. (ii) TCs displaying small cell body with multiple cell processes, expressing PDGFRa and CD34. These findings may suggest a mutual origin for TCs and SMCs.
Collapse
|
27
|
An itch for things remote: The journey of Wnts. Curr Top Dev Biol 2022; 150:91-128. [DOI: 10.1016/bs.ctdb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Wei XJ, Chen TQ, Yang XJ. Telocytes in Fibrosis Diseases: From Current Findings to Future Clinical Perspectives. Cell Transplant 2022; 31:9636897221105252. [PMID: 35748420 PMCID: PMC9235300 DOI: 10.1177/09636897221105252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Telocytes (TCs), a distinct type of interstitial (stromal) cells, have been discovered in many organs of human and mammal animals. TCs, which have unique morphological characteristics and abundant paracrine substance, construct a three-dimensional (3D) interstitial network within the stromal compartment by homocellular and heterocellular communications which are important for tissue homeostasis and normal development. Fibrosis-related diseases remain a common but challenging problem in the field of medicine with unclear pathogenesis and limited therapeutic options. Recently, increasing evidences suggest that where TCs are morphologically or numerically destructed, many diseases continuously develop, finally lead to irreversible interstitial fibrosis. It is not difficult to find that TCs are associated with chronic inflammation and fibrosis. This review mainly discusses relationship between TCs and the occurrence of fibrosis in various diseases. We analyzed in detail the potential roles and speculated mechanisms of TCs in onset and progression of systemic fibrosis diseases, as well as providing the most up-to-date research on the current therapeutic roles of TCs and involved related pathways. Only through continuous research and exploration in the future can we uncover its magic veil and provide strategies for treatment of fibrosis-related disease.
Collapse
Affiliation(s)
- Xiao-jiao Wei
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Tian-quan Chen
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Xiao-jun Yang
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| |
Collapse
|
29
|
Cardiac Telocytes 16 Years on-What Have We Learned So Far, and How Close Are We to Routine Application of the Knowledge in Cardiovascular Regenerative Medicine? Int J Mol Sci 2021; 22:ijms222010942. [PMID: 34681601 PMCID: PMC8535888 DOI: 10.3390/ijms222010942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
The regeneration of a diseased heart is one of the principal challenges of modern cardiovascular medicine. There has been ongoing research on stem-cell-based therapeutic approaches. A cell population called telocytes (TCs) described only 16 years ago largely contributed to the research area of cardiovascular regeneration. TCs are cells with small bodies and extremely long cytoplasmic projections called telopodes, described in all layers of the heart wall. Their functions include cell-to-cell signaling, stem-cell nursing, mechanical support, and immunoregulation, to name but a few. The functional derangement or quantitative loss of TCs has been implicated in the pathogenesis of myocardial infarction, heart failure, arrhythmias, and many other conditions. The exact pathomechanisms are still unknown, but the loss of regulative, integrative, and nursing functions of TCs may provide important clues. Therefore, a viable avenue in the future modern management of these conditions is TC-based cell therapy. TCs have been previously transplanted into a mouse model of myocardial infarction with promising results. Tandem transplantation with stem cells may provide additional benefit; however, many underresearched areas need to be addressed in future research before routine application of TC-based cell therapy in human subjects. These include the standardization of protocols for isolation, cultivation, and transplantation, quantitative optimization of TC transplants, cost-effectivity analysis, and many others.
Collapse
|
30
|
Chen X, Zeng J, Huang Y, Gong M, Ye Y, Zhao H, Chen Z, Zhang H. Telocytes and their structural relationships with surrounding cell types in the skin of silky fowl by immunohistochemistrical, transmission electron microscopical and morphometric analysis. Poult Sci 2021; 100:101367. [PMID: 34325111 PMCID: PMC8334741 DOI: 10.1016/j.psj.2021.101367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
Telocytes (TCs), a novel type of interstitial cells, were identified in various animals. Since TCs have not observed in avian skin, hence, we carried out immunohistochemistrical and transmission electron microscopical studies in the skin of the silky fowl to investigate the TCs. TCs appear as CD34, c-Kit, and PDGFRα immunopositive. The elongated TCs with 2 long and thin telopodes (Tps) are located in the dermis. Generally, a TC possesses a fusiform, ovoid and polygonal cell body with 2 Tps (lengths = 5.27-21.85 μm), which are uneven in thickness including thick sections - podoms (diameters = 0.40-0.47 μm) and thin sections - podomers (diameters = 0.03-0.04 μm). TCs/Tps are observed frequently in close proximity to neighboring cell types/structures, such as adipocytes, collagen fibers, and capillaries. Under a magnified field, homocellular TCs/Tps contacts are observed through gap junctions (distances = 0.01-0.05 μm), whereas some of TCs/Tps have heterocellular close contacts by point contacts with surrounding cells, including stem cells and melanocytes. The multivisicular bodies, especially exosomes (diameters = 0.09-0.23 μm) releasing from TCs/Tps are observed in close proximity to TCs/Tps. Our results illustrated that the novel type of interstitial cells - TCs are present in the dermis of the silky fowl, and they have special structural relationships with surrounding cell types. The study provides histological evidence for TCs involvement in intercellular communication, skin regeneration, and pigmentogenesis in avian skin.
Collapse
Affiliation(s)
- Xianshu Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yujie Huang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Meiling Gong
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yaqiong Ye
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Haiquan Zhao
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhisheng Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hui Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
31
|
Rosa I, Marini M, Manetti M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J Histochem Cytochem 2021; 69:795-818. [PMID: 34165348 DOI: 10.1369/00221554211025489] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telocytes (TCs) are newly identified interstitial cells characterized by thin and long cytoplasmic processes, called telopodes, which exhibit a distinctive moniliform shape and, often, a sinuous trajectory. Telopodes typically organize in intricate networks within the stromal space of most organs, where they communicate with neighboring cells by means of specialized cell-to-cell junctions or shedding extracellular vesicles. Hence, TCs are generally regarded as supporting cells that help in the maintenance of local tissue homeostasis, with an ever-increasing number of studies trying to explore their functions both in physiological and pathological conditions. Notably, TCs appear to be part of stem cell (SC) niches in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Indeed, growing evidence points toward a possible implication of TCs in the regulation of the activity of tissue-resident SCs and in shaping the SC niche microenvironment, thus contributing to tissue renewal and repair. Here, we review how the introduction of TCs into the scientific literature has deepened our knowledge of the stromal architecture focusing on the intestine and skeletal muscle, two organs in which the recently unveiled unique relationship between TCs and SCs is currently in the spotlight as potential target for tissue regenerative purposes.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Ghose D, Jacobs K, Ramirez S, Elston T, Lew D. Chemotactic movement of a polarity site enables yeast cells to find their mates. Proc Natl Acad Sci U S A 2021; 118:e2025445118. [PMID: 34050026 PMCID: PMC8179161 DOI: 10.1073/pnas.2025445118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
How small eukaryotic cells can interpret dynamic, noisy, and spatially complex chemical gradients to orient growth or movement is poorly understood. We address this question using Saccharomyces cerevisiae, where cells orient polarity up pheromone gradients during mating. Initial orientation is often incorrect, but polarity sites then move around the cortex in a search for partners. We find that this movement is biased by local pheromone gradients across the polarity site: that is, movement of the polarity site is chemotactic. A bottom-up computational model recapitulates this biased movement. The model reveals how even though pheromone-bound receptors do not mimic the shape of external pheromone gradients, nonlinear and stochastic effects combine to generate effective gradient tracking. This mechanism for gradient tracking may be applicable to any cell that searches for a target in a complex chemical landscape.
Collapse
Affiliation(s)
- Debraj Ghose
- Computational Biology and Bioinformatics, Duke University, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Katherine Jacobs
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Samuel Ramirez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
33
|
Abstract
Since its entry into biomedical research in the first half of the twentieth century, electron microscopy has been a valuable tool for lung researchers to explore the lung's delicate ultrastructure. Among others, it proved the existence of a continuous alveolar epithelium and demonstrated the surfactant lining layer. With the establishment of serial sectioning transmission electron microscopy, as the first "volume electron microscopic" technique, electron microscopy entered the third dimension and investigations of the lung's three-dimensional ultrastructure became possible. Over the years, further techniques, ranging from electron tomography over serial block-face and focused ion beam scanning electron microscopy to array tomography became available. All techniques cover different volumes and resolutions, and, thus, different scientific questions. This review gives an overview of these techniques and their application in lung research, focusing on their fields of application and practical implementation. Furthermore, an introduction is given how the output raw data are processed and the final three-dimensional models can be generated.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
34
|
Xu Y, Tian H, Qiao G, Zheng W. Telocytes in the atherosclerotic carotid artery: Immunofluorescence and TEM evidence. Acta Histochem 2021; 123:151681. [PMID: 33493960 DOI: 10.1016/j.acthis.2021.151681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Telocytes, which possess distinct body shapes and long telopodes, are allocated in the vascular wall. As a fundamental cell type, telocytes construct a three-dimensional network to form a support structure for the artery. This study aims to characterize the morphology and ultrastructure of telocytes in atherosclerotic arteries. ApoE gene-deficient mice were selected as the atherosclerosis animal model and fed a high-fat diet for at least 12 weeks, and immunofluorescence assays and transmission electron microscopy techniques were used to observe changes in telocytes in atherosclerotic arteries. By immunofluorescence staining, CD34, CD117 and PDGFR-α were positive compared with negative CD28/vimentin in telocytes in the atherosclerotic carotid artery, and they were distributed in the tunica intima and tunica adventitia. Under transmission electron microscopy, the bodies of telocytes became larger, while telopodes became shorter compared with their normal condition, and a mass of lipidosomes was present during the progression of atherosclerosis. These results demonstrate that immunofluorescence with TEM is the critical method for identifying TCs and that steatosis of TCs is a reason for atherosclerotic artery dysfunction.
Collapse
|
35
|
Miyashita N, Horie M, Suzuki HI, Saito M, Mikami Y, Okuda K, Boucher RC, Suzukawa M, Hebisawa A, Saito A, Nagase T. FOXL1 Regulates Lung Fibroblast Function via Multiple Mechanisms. Am J Respir Cell Mol Biol 2021; 63:831-842. [PMID: 32946266 DOI: 10.1165/rcmb.2019-0396oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fibroblasts provide a structural framework for multiple organs and are essential for wound repair and fibrotic processes. Here, we demonstrate functional roles of FOXL1 (forkhead box L1), a transcription factor that characterizes the pulmonary origin of lung fibroblasts. We detected high FOXL1 transcripts associated with DNA hypomethylation and super-enhancer formation in lung fibroblasts, which is in contrast with fibroblasts derived from other organs. RNA in situ hybridization and immunohistochemistry in normal lung tissue indicated that FOXL1 mRNA and protein are expressed in submucosal interstitial cells together with airway epithelial cells. Transcriptome analysis revealed that FOXL1 could control a broad array of genes that potentiate fibroblast function, including TAZ (transcriptional coactivator with PDZ-binding motif)/YAP (Yes-associated protein) signature genes and PDGFRα (platelet-derived growth factor receptor-α). FOXL1 silencing in lung fibroblasts attenuated cell growth and collagen gel contraction capacity, underscoring the functional importance of FOXL1 in fibroproliferative reactions. Of clinical importance, increased FOXL1 mRNA expression was found in fibroblasts of idiopathic pulmonary fibrosis lung tissue. Our observations suggest that FOXL1 regulates multiple functional aspects of lung fibroblasts as a key transcription factor and is involved in idiopathic pulmonary fibrosis pathogenesis.
Collapse
Affiliation(s)
- Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, and
| | - Masafumi Horie
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Minako Saito
- Department of Respiratory Medicine, Graduate School of Medicine, and
| | - Yu Mikami
- Department of Respiratory Medicine, Graduate School of Medicine, and.,Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Kenichi Okuda
- Department of Respiratory Medicine, Graduate School of Medicine, and.,Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Hebisawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, and.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, and
| |
Collapse
|
36
|
Condrat CE, Barbu MG, Thompson DC, Dănilă CA, Boboc AE, Suciu N, Crețoiu D, Voinea SC. Roles and distribution of telocytes in tissue organization in health and disease. TISSUE BARRIERS IN DISEASE, INJURY AND REGENERATION 2021:1-41. [DOI: 10.1016/b978-0-12-818561-2.00001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Carrasco JL, Alvarez-Argüelles H, Díaz-Flores L. Telocytes/CD34+ Stromal Cells in Pathologically Affected White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21249694. [PMID: 33353193 PMCID: PMC7767010 DOI: 10.3390/ijms21249694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
We studied telocytes/CD34+ stromal cells (TCs/CD34+SCs) in pathologically affected white adipose tissue after briefly examining them in normal fat. To this aim, we reviewed pathological processes, including original contributions, in which TCs/CD34+SCs are conserved, increased, and lost, or acquire a specific arrangement. The pathologic processes in which TCs/CD34+SCs are studied in adipose tissue include inflammation and repair through granulation tissue, iatrogenic insulin-amyloid type amyloidosis, non-adipose tissue components (nerve fascicles and fibres in neuromas and hyperplastic neurogenic processes) and tumours (signet ring carcinoma with Krukenberg tumour and colon carcinoma) growing in adipose tissue, adipose tissue tumours (spindle cell lipoma, dendritic fibromyxolipoma, pleomorphic lipoma, infiltrating angiolipoma of skeletal muscle and elastofibrolipoma), lipomatous hypertrophy of the interatrial septum, nevus lipomatosus cutaneous superficialis of Hoffman–Zurhelle and irradiated adipose tissue of the perirectal and thymic regions. Two highly interesting issues emerged: (1) whether the loss of CD34 expression in TCs/CD34+SCs is by changes in marker expression or the disappearance of these cells (the findings suggest the first possibility) and (2) whether in some invasive and metastatic malignant tumours, TCs/CD34+SCs that completely surround neoplastic cells act as nurse and/or isolating cells. Further studies are required on adipose tissue TCs/CD34+SCs, mainly in lipomatosis and obesity.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Ma Pino García
- Department of Pathology, Eurofins® Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Jose Luís Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Hugo Alvarez-Argüelles
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 3071 Tenerife, Spain; (R.G.); (M.G.-G.); (J.L.C.); (H.A.-A.); (L.D.-F.J.)
| |
Collapse
|
38
|
Abd-Elhafeez HH, Abdo W, Kamal BM, Soliman SA. Fish telocytes and their relation to rodlet cells in ruby-red-fin shark (rainbow shark) Epalzeorhynchos frenatum (Teleostei: Cyprinidae). Sci Rep 2020; 10:18907. [PMID: 33144597 PMCID: PMC7641163 DOI: 10.1038/s41598-020-75677-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Telocytes comprise the major constituents of the supportive interstitial framework within the various organs. They form a 3D network between different types of stromal and non-stromal cells, which makes them distinctively vital. We have previously explored the origin of the peculiar rodlet cells, especially on their differential stages in aquatic species. The current study aimed at highlighting the relation of telocytes with different rodlet stages. Samples of fish, olfactory organs, and gills were processed for semi thin sections, transmission electron microscopy, and immunohistochemistry. It was evident in the study that telocytes formed a 3D interstitial network, entrapping stem cells and differentiating rodlet cells, to establish direct contact with stem cells. Differentiated stem cells and rodlet progenitor cells, practically in the granular and transitional stages, also formed ultrastructure junctional modifications, by which nanostructures are formed to establish cell contact with telocytes. Telocytes in turn also connected with macrophage progenitor cells. Telocytes (TCs) expressed CD34, CD117, VEGF, and MMP-9. In conclusion, telocytes established direct contact with the stem and rodlet cells in various differential stages. Telocytes may vitally influence stem/progenitor cell differentiation, regulate rodlet cell function, and express MPP-9 that may regulate immune cells functions especially, including movement and migration ability.
Collapse
Affiliation(s)
- Hanan H Abd-Elhafeez
- Department of Anatomy, Embryology and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, 33516, Egypt
| | - Basma Mohamed Kamal
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
39
|
Mustafa FEZA, Abdel-Maksoud FM, Hassan AHS, Mokhtar DM. Melatonin induces a stimulatory action on the scrotal skin components of Soay ram in the non-breeding season. Sci Rep 2020; 10:10154. [PMID: 32576871 PMCID: PMC7311388 DOI: 10.1038/s41598-020-67103-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
Fifteen adult Soay rams were employed in this study to investigate the effect of melatonin on the scrotal skin using histological, histochemical, and morphometrical analysis. The results revealed that the melatonin treated group showed a significant increase in the thickness of the epidermis, the cross-sectional area of blood capillaries and nerve fibers compared with the control one. In addition, obvious hypertrophy and hyperplasia were detected in the sebaceous glands in association with a significant increase in the number and diameter of apocrine sweat glands with well-developed secretory activity. S100 protein and cytokeratin-19 strongly stained the basal cells of sebaceous glands in the melatonin treated group incomparable to the control group. Moreover, the nerve fibers were intensively immunoreacted for S100 and cytokeratin proteins in the melatonin treated group in contrast to the control one. A high number of telocytes (TCs) could be identified in the treated group around the nerve fibers and blood vessels in the dermis. The number of Langerhans cells showed a significant increase in the melatonin groups that were identified by MHC II and PGP 9.5 within the epidermal layer. Furthermore, a significant increase in the number of dendritic cells was identified in the melatonin group, which were distributed within the dermis, around hair follicles, sebaceous glands, and sweat glands and were strongly expressed PGP-9.5, MHC-II, VAMP, SNAP, keratin-5, and cytokeratin-19 immunoreactivity. Notably, Merkel cells showed a significant increase in the number in the melatonin group that could be stained against nestin, SNAP, and VAMP. On the other hand, the secretory granules in sweat glands were exhibited a strong positive reactivity for synaptophysin in melatonin group. The current study showed that the administration of melatonin induced a stimulatory effect on keratinocytes, non-keratinocytes, sebaceous and sweat glands, hair follicles, as well as the vascular, neuronal, and cellular constituents of the dermis.
Collapse
Affiliation(s)
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt.
| | - A H S Hassan
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
40
|
Telocytes in the Normal and Pathological Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21124320. [PMID: 32560571 PMCID: PMC7352954 DOI: 10.3390/ijms21124320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
We studied telocytes/CD34+ stromal cells in the normal and pathological peripheral nervous system (PNS), for which we reviewed the literature and contributed our observations under light and electron microscopy in this field. We consider the following aspects: (A) general characteristics of telocytes and the terminology used for these cells (e.g., endoneurial stromal cells) in PNS; (B) the presence, characteristics and arrangement of telocytes in the normal PNS, including (i) nerve epi-perineurium and endoneurium (e.g., telopodes extending into the endoneurial space); (ii) sensory nerve endings (e.g., Meissner and Pacinian corpuscles, and neuromuscular spindles); (iii) ganglia; and (iv) the intestinal autonomic nervous system; (C) the telocytes in the pathologic PNS, encompassing (i) hyperplastic neurogenic processes (neurogenic hyperplasia of the appendix and gallbladder), highly demonstrative of telocyte characteristics and relations, (ii) PNS tumours, such as neurofibroma, schwannoma, granular cell tumour and nerve sheath myxoma, and interstitial cell of Cajal-related gastrointestinal stromal tumour (GIST), (iii) tumour-invaded nerves and (iv) traumatic, metabolic, degenerative or genetic neuropathies, in which there are fewer studies on telocytes, e.g., neuroinflammation and nerves in undescended testicles (cryptorchidism), Klinefelter syndrome, crush injury, mucopolysaccharidosis II (Hunter’s syndrome) and Charcot–Marie–Tooth disease.
Collapse
|
41
|
Mustafa FEZA, El-Desoky SMM. Architecture and Cellular Composition of the Spleen in the Japanese Quail ( Coturnix japonica). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:589-598. [PMID: 32393414 DOI: 10.1017/s143192762000152x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The spleen is considered a key player in birds' immunity. The stroma and the parenchyma of the spleen of the adult quail were demonstrated histologically, histochemically, and ultrastructurally. A thin capsule and the absence of trabeculae were the most characteristics of spleen stroma. The demarcation between white pulp and red pulp was not observed in the quail. White pulp formed from the periarterial lymphatic sheath and the periellipsoidal lymphatic sheath, both of which were surrounded by arteriole and ellipsoid, respectively. Ellipsoids appeared more numerous and were characterized by cuboidal lining of the epithelium and supporting cells. Red pulp consisted of sinuses and cords. White pulp and red pulp of the quail spleen contained various cells, such as red blood cells, macrophages, heterophils with characteristic granules, lymphocytes of different sizes, dendritic cells, plasma cells, and telocytes. In addition, closed circulation and open circulation established the blood flow on the spleen.
Collapse
Affiliation(s)
- Fatma El-Zahraa A Mustafa
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Sara M M El-Desoky
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
42
|
Identification of Telocytes in the Pancreas of Turtles-A role in Cellular Communication. Int J Mol Sci 2020; 21:ijms21062057. [PMID: 32192184 PMCID: PMC7139993 DOI: 10.3390/ijms21062057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
The existence of telocytes (TCs) has not yet been established in the pancreases of aquatic reptiles. Here, we report TCs in the exocrine pancreas of Pelodiscus sinensis using transmission electron microscope (TEM), immunohistochemistry (IHC), and immunofluorescence (IF) techniques. TCs surrounded the acini and ducts of the connective tissue of the exocrine pancreas and between lobules and gland cells. The cells were located preferably close to the blood vessels, interlobular ducts, and nerve fibers. Ultrastructurally, TCs exhibited small and large bodies with thick and thin portions, podoms, and podomers, and prolongations that form dichotomous branching with hetero-cellular and homo-cellular junctions. The podom (thick) portions showed caveolae, mitochondria, rough endoplasmic reticulum, and vesicles. The nucleus carries heterochromatin and is irregular in shape. The shape of TCs depends on the number of telopodes (Tps) bearing long, short, spindle, triangular, and "beads on a string" shapes with twisted, tortuous prolongations and ramifications. Shed extracellular vesicles and exosomes were found frequently released from projections and Tps within connective tissue in the vicinity of the acini and collagen fibers. IHC and IF results showed CD34+, α-SMA+, and vimentin+, long and triangle-shaped TCs, consistent with the TEM findings. The presence of shaded vesicles from TCs might implicate their possible role in immune surveillance, tissue regeneration as well as regulatory functions in the reptilian pancreas.
Collapse
|
43
|
Hussein MT, Mokhtar DM, Hassan AHS. Melatonin activates the vascular elements, telocytes, and neuroimmune communication in the adrenal gland of Soay rams during the non-breeding season. PROTOPLASMA 2020; 257:353-369. [PMID: 31637525 DOI: 10.1007/s00709-019-01441-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The adrenal glands of 15 adult Soay rams were used to study the effect of melatonin on their vascular elements and cellular organization. A significant increase in the cross-sectional area of the blood sinusoids was demonstrated after melatonin administration. The vimentin-expressing mesenchymal cells were increased in the melatonin-treated group. Intensive S-100 protein expression was observed in the sustentacular cells and telocytes (TCs) of the treated groups. Moreover, S-100 protein expressed intensively in the dendritic cells that distributed around the blood sinusoids. Dendritic cells showed positive immunoreactivity for CD8 and CD103. Many dendritic cells with well-defined processes were observed close to the nerve fibers after melatonin administration. A significant increase in the number and diameter of dendritic cells after melatonin treatment was demonstrated. Many highly active TCs were observed in the medulla of the treated group, which were characterized by long telopodes (Tps) containing abundant secretory vesicles that released into the extracellular milieu and towards the dendritic cells. In the melatonin-treated groups, the nerve fibers showed a significant increase in their cross-sectional area accompanied by an increase in the activity of Schwann cells and neighboring dendritic cells. In the treated group, TCs and DCs appear to contribute to angiogenesis. A planner contact between Tps and the stem cell was demonstrated in the treated group. Melatonin induced a stimulatory action on the vascular and neuronal elements of the adrenal gland. Moreover, it enhances the activity of a variety of cells including telocytes, dendritic, sustentacular, and Schwann cells.
Collapse
Affiliation(s)
- Manal T Hussein
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, 71526, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, 71526, Egypt.
| | - A H S Hassan
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
44
|
Lv L, Liao Z, Luo J, Chen H, Guo H, Yang J, Huang R, Pu Q, Zhao H, Yuan Z, Feng S, Qi X, Cai D. Cardiac telocytes exist in the adult Xenopus tropicalis heart. J Cell Mol Med 2020; 24:2531-2541. [PMID: 31930692 PMCID: PMC7028868 DOI: 10.1111/jcmm.14947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Recent research has revealed that cardiac telocytes (CTs) play an important role in cardiac physiopathology and the regeneration of injured myocardium. Recently, we reported that the adult Xenopus tropicalis heart can regenerate perfectly in a nearly scar‐free manner after injury via apical resection. However, whether telocytes exist in the X tropicalis heart and are affected in the regeneration of injured X tropicalis myocardium is still unknown. The present ultrastructural and immunofluorescent double staining results clearly showed that CTs exist in the X tropicalis myocardium. CTs in the X tropicalis myocardium were mainly twined around the surface of cardiomyocyte trabeculae and linked via nanocontacts between the ends of the telopodes, forming a three‐dimensional network. CTs might play a role in the regeneration of injured myocardium.
Collapse
Affiliation(s)
- Luocheng Lv
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Zhaofu Liao
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiali Luo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hongyi Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hongyan Guo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jifeng Yang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Ruijin Huang
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany.,Department of Anatomy and Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Qin Pu
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany
| | - Hui Zhao
- Stem Cell and Regeneration TRP, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Ziqiang Yuan
- Department of Medical Oncology, Cancer Institute of New Jersey, Robert Wood Johnson of Medical School, New Brunswick, NJ, USA
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China.,International Base of Collaboration for Science and Technology (JNU), Ministry of Science and Technology, Guangdong Province, Guangzhou, China.,Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Awad M, Gaber W, Ibrahim D. Onset of Appearance and Potential Significance of Telocytes in the Developing Fetal Lung. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1246-1256. [PMID: 31524125 DOI: 10.1017/s1431927619014922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CD34, vimentin, and vascular endothelial growth factor immunohistochemical analysis and electron microscopic tools were employed to record the initial appearance of telocytes (TCs) and stage-by-stage variations in TC localizations in the developing rabbit lung. TCs could not be identified in the primitive embryonic lung until day 18 of gestation. In the pseudoglandular lung, CD34+ TCs had been recorded under the cartilage of the main bronchus, in the wall of large-sized pulmonary vessels and large epithelial tubes. In the canalicular phase, TCs could be demonstrated in the smooth muscle layer of the bronchioles including the terminal ones. The strength of CD34 immunoreactive signals had been amplified by age until the day of parturition. Ultrastructurally, TCs consisted of a tiny body and exceptionally long telopodes (Tps). The Tp consisted of alternating thin segments (podomers) and dilated ones (podoms). The Tp sometimes branched with a dichotomous pattern. TCs interconnected in a network either by homocellular junctions with neighboring TCs or by heterocellular junctions with smooth muscle cells and alveolar cells. Collectively, early detection of TCs in pulmonary vessels suggests a potential role for TCs in their angiogenesis. For the lung tissue, TCs seem to be involved in the regulation of lung histogenesis.
Collapse
Affiliation(s)
- Mahmoud Awad
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Wafaa Gaber
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Dalia Ibrahim
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| |
Collapse
|
46
|
Roles of TGFβ1 in the expression of phosphoinositide 3-kinase isoform genes and sensitivity and response of lung telocytes to PI3K inhibitors. Cell Biol Toxicol 2019; 36:51-64. [PMID: 31522336 DOI: 10.1007/s10565-019-09487-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mouse lung telocyte cell line (TCSV40) recently established provides further opportunities to learn TC biology and functions. The present study aims at investigating regulatory roles of phosphoinositide 3-kinase (PI3K) isoforms in TC proliferation and movement and in TGFβ1-induced sensitivity and response of lung TCs to PI3K inhibitors. MATERIALS AND METHODS Network and molecular interactions of genes coding PI3K family or TGFβ family proteins in mouse primary TCs were defined. Mouse lung TCSV40 proliferation, apoptosis, cell cycle, and dynamical bio-behaviors were measured with or without TGFβ1 stimulation or PI3K catalytic isoform protein (PI3K/mTOR, PI3Kα/δ/β, PI3K p110δ, or pan-PI3K) inhibitions. RESULTS The present study showed the difference of network characteristics and interactions of genes coding PI3K isoform proteins or TGFβ family proteins in primary lung telocytes from mouse lungs compared to those of other cells residing in the lung. TGFβ1 had diverse effects on TC proliferation with altered TC number in G2 or S phase, independent upon the administered dose of TGFβ1. PI3Kα/δ/β, PI3K/mTOR, and PI3K p110δ were involved in TC proliferation, of which PI3Kα/δ/β was more sensitive. The effects of pan-PI3K inhibitor indicate that more PI3K isoforms were stimulated by the administering of external TGFβ1 and contributed to TGFβ1-induced TC proliferation. PI3K p110δ upregulated TC proliferation and movement dynamically without TGFβ1, and downregulated TC proliferation with TGFβ1 stimulation, but not TC movement. PI3Kα/δ/β and PI3K/mTOR were more active in TGFβ1-induced S phase accumulation and had similar dynamic effects to PI3K p110δ. Gene expression of PI3K isoforms in TCs was upregulated after TGFβ1 stimulation. The expression of PIK3CA coding p110-α or PIK3CG coding p110-γ were up- or downregulated in TCs without TGFβ1, respectively, when PI3K/mTOR, PI3Kα/δ/β, PI3K p110δ, or pan-PI3K were inhibited. TGFβ1 upregulated the expression of PIK3CA and PIK3CB, while downregulated the expression of PIK3CD and PIK3CG. CONCLUSION Our data imply that TGFβ1 plays divergent roles in the expression of PI3K isoform genes in lung TCs and can alter the sensitivity and response of lung TCs to PI3K inhibitors.
Collapse
|
47
|
Rusu MC, Hostiuc S, Fildan AP, Tofolean DE. Critical Review: What Cell Types Are the Lung Telocytes? Anat Rec (Hoboken) 2019; 303:1280-1292. [PMID: 31443120 DOI: 10.1002/ar.24237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/11/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Telocytes (TCs) are stromal cells defined by peculiar long, thin, moniliform prolongations known as telopodes. When isolated, their morphology often lacks the specificity for the proper definition of a particular cell type. Recent studies have linked TCs with different functions and different cell lineages. Although some authors have studied pulmonary TCs, their research has important limitations that we will attempt to summarize in this article. We will focus our analysis on the following: the culture methods used to study them, the lack of proper discrimination of TCs from lymphatic endothelial cells (LECs), whose ultrastructures are very similar, and the immune phenotype of TCs, which may appear in other cell types such as those related to the endothelial lineage or stem/progenitor cells. In conclusion, the cellular diagnosis of lung TCs should be considered with caution until properly designed studies can positively identify these cells and differentiate them from other cell types such as LECs and stem/progenitor cells. Anat Rec, 303:1280-1292, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Mugurel C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Sorin Hostiuc
- Department of Legal Medicine and Bioethics, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ariadna P Fildan
- Internal Medicine Department, Faculty of Medicine, Ovidius University of Constanţa, Constatnţa, Romania
| | - Doina E Tofolean
- Internal Medicine Department, Faculty of Medicine, Ovidius University of Constanţa, Constatnţa, Romania
| |
Collapse
|
48
|
Abstract
Since the first description of 'interstitial cells of Cajal' in the mammalian gut in 1911, scientists have found structurally similar cells, now termed telocytes, in numerous tissues throughout the body. These cells have recently sparked renewed interest, facilitated through the development of a molecular handle to genetically manipulate their function in tissue homeostasis and disease. In this Primer, we discuss the discovery of telocytes, their physical properties, distribution and function, focusing on recent developments in the functional analysis of Foxl1-positive telocytes in the intestinal stem cell niche, and, finally, the current challenges of studying telocytes as a distinct cell type.
Collapse
Affiliation(s)
- Ayano Kondo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
An Immunohistochemical Study of Gastric Mucosa and Critical Review Indicate that the Subepithelial Telocytes are Prelymphatic Endothelial Cells. ACTA ACUST UNITED AC 2019; 55:medicina55070316. [PMID: 31252668 PMCID: PMC6680827 DOI: 10.3390/medicina55070316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
Background and Objectives: There are only a few studies regarding gut subepithelial telocytes (TCs). The telopodes, namely peculiar TCs’ prolongations described on two-dimensional cuts, are not enough to differentiate this specific cell type. Subepithelial TCs were associated with the intestinal stem niche but a proper differential diagnosis with lymphatic endothelial cells (LECs) was not performed. In this study, we will also critically review studies suggesting that distinctive TCs could be positioned within the lamina propria. Materials and Methods: We performed an immunohistochemical study of human gastric mucosa to test the expression of D2-40, the lymphatic marker, as well as that of CD31, CD34, CD44, CD117/c-kit, α-smooth muscle actin (α-SMA) and vimentin in the gastric subepithelial niche. Results: The results support the poorly investigated anatomy of intramural gastric lymphatics, with circumferential collectors located on both sides of the muscularis mucosae (mucosal and then submucosal) and myenteric collectors in the muscularis propria. We also found superficial epithelial prelymphatic channels bordered by D2-40+ but CD31–TC-like cells. Deep epithelial lymphatic collectors drain in collectors within the lamina propria. Blood endothelial cells expressed CD31, CD34, CD44, and vimentin. Conclusions: Therefore, the positive diagnosis of TC for subepithelial CD34+ cells should be regarded with caution, as they could also be artefacts, resulting from the two-dimensional examination of three dimensional structures, or as LECs. Lymphatic markers should be routinely used to discriminate TCs from LECs.
Collapse
|
50
|
Liang Y, Wang S, An T, Tarique I, Vistro WA, Liu Y, Wang Z, Zhang H, Shi Y, Haseeb A, Gandahi NS, Iqba A, Yang H, Chen Q, Yang P. Telocytes as a Novel Structural Component in the Muscle Layers of the Goat Rumen. Cell Transplant 2019; 28:955-966. [PMID: 31023066 PMCID: PMC6719488 DOI: 10.1177/0963689719842514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Telocytes (TCs) have been identified as a distinct type of interstitial cells, but have not yet been reported in the gastrointestinal tract (GIT) of ruminants. In this study, we used transmission electron microscopy (TEM) and double-labelling immunofluorescence (IF) (antibodies: CD34, vimentin and PGP9.5) to seek TCs and investigate their potential functions in the muscle layers of the goat rumen. TCs were distributed widely in the myenteric plexus (TC-MYs) between the circular and longitudinal muscle layers, within circular muscle layers (TC-CMs) as well as in longitudinal muscle layers (TC-LMs). Ultrastructurally, TCs displayed small cell bodies with several long prolongations—telopodes—harboring alternate thin segments (podomers) and dilated segments (podoms). The podoms contained mitochondria, rough endoplasmic reticulum, and caveolae. Telopodes frequently established close physical interactions with near telopodes, collagen fibers (CFs), nerve fibers (NFs), smooth muscle cells (SMCs), nerve tracts, and smooth muscle bundles, as well as with blood vessels (BVs). Furthermore, both homo- and heterotypic connections were observed. In addition, telopodes were capable of releasing extracellular vesicles (EVs). IF analyses proved that TCs were reliably labeled as CD34+/vimentin+ cells, displaying spindle- or triangle-shaped bodies with long prolongations, consistent with TEM results. Specifically, podoms were visible as obvious bright spots. These positive cells covered entire muscular layers, surrounding ganglions, intermuscular BVs as well as entire smooth muscle bundles, forming a network. TC-MYs were distributed as clusters in the external ganglion, encompassing the entire ganglion and spreading to the muscle layers where TC-CMs and TC-LMs seemingly surround whole smooth muscle bundles. TC-MYs were also scattered within the interior of the ganglion, surrounding each ganglionic neuron, following the glial cells layer. We speculate that TCs support the muscle layer structure of the goat rumen and facilitate intercellular signaling directly or indirectly via the TC network.
Collapse
Affiliation(s)
- Yu Liang
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Siyi Wang
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Tianci An
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Imran Tarique
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Waseem Ail Vistro
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Yifei Liu
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Ziyu Wang
- 2 College of Animal Science & Technology, Nanjing Agricultural University, Jiangsu, China
| | - Haiyan Zhang
- 3 School of Biological Engineering, Wuhu Institute of Technology, Anhui, China
| | - YongHong Shi
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China.,4 Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Abdul Haseeb
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Noor Samad Gandahi
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Adeela Iqba
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Huan Yang
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Qiusheng Chen
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Ping Yang
- 1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China.,2 College of Animal Science & Technology, Nanjing Agricultural University, Jiangsu, China
| |
Collapse
|