1
|
Fu Y, Timp W, Sedlazeck FJ. Computational analysis of DNA methylation from long-read sequencing. Nat Rev Genet 2025:10.1038/s41576-025-00822-5. [PMID: 40155770 DOI: 10.1038/s41576-025-00822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/01/2025]
Abstract
DNA methylation is a critical epigenetic mechanism in numerous biological processes, including gene regulation, development, ageing and the onset of various diseases such as cancer. Studies of methylation are increasingly using single-molecule long-read sequencing technologies to simultaneously measure epigenetic states such as DNA methylation with genomic variation. These long-read data sets have spurred the continuous development of advanced computational methods to gain insights into the roles of methylation in regulating chromatin structure and gene regulation. In this Review, we discuss the computational methods for calling methylation signals, contrasting methylation between samples, analysing cell-type diversity and gaining additional genomic insights, and then further discuss the challenges and future perspectives of tool development for DNA methylation research.
Collapse
Affiliation(s)
- Yilei Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Arlen MT, Patterson SJ, Page MK, Liu R, Caruana V, Wilson ET, Laporte SA, Goniewicz ML, Harris CS, Eidelman DH, Baglole CJ. Cannabis vaping elicits transcriptomic and metabolomic changes involved in inflammatory, oxidative stress, and cancer pathways in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L478-L496. [PMID: 39823205 DOI: 10.1152/ajplung.00131.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants. A bioluminescence resonance energy transfer (BRET)-based biosensor detected the receptor-mediated activity of the extracts, primarily driven by Δ9-tetrahydrocannabinol (Δ9-THC) concentration. RNA-sequencing showed both CaSE and CaVE induced similar transcriptional responses, significantly upregulating genes within pathways related to inflammation, cancer, and cellular stress. This was paralleled by downregulation of pathways related to lipid synthesis and metabolism from both CaSE and CaVE. Targeted metabolomics revealed significant changes in metabolites involved in lipid and membrane metabolism, energy production, nucleotide/DNA/RNA pathways, and oxidative stress response, suggesting potential impairment of lung epithelial cell repair and function. In addition, the upregulation of 5-hydroxymethylcytosine (5hmC) indicates epigenetic changes potentially contributing to inflammation, oxidative stress, and an increased risk of cancer. These findings challenge the notion that cannabis vaping is risk-free, highlighting an urgent need for comprehensive research into its respiratory health effects. This comparison of cannabis consumption methods offers insights that could inform public health policies and raise consumer awareness regarding the potential risks of inhaling cannabis aerosol.NEW & NOTEWORTHY Cannabis use is increasing worldwide amid broad acceptance and legalization. The prevalence of traditional smoking is diminishing in favor of vaping dry flower. This is the first study to provide initial evidence that cannabis aerosol contains carcinogenic, teratogenic, and respiratory toxicants that induce transcriptional responses in epithelial cells analogous to those from cannabis smoke, suggesting potential adverse pulmonary effects.
Collapse
Affiliation(s)
- Maddison T Arlen
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Stephanie J Patterson
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Michelle K Page
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States
| | - Rui Liu
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vincenza Caruana
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Emily T Wilson
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Stéphane A Laporte
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States
| | - Cory S Harris
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Nikolopoulos T, Bochalis E, Chatzilygeroudi T, Chondrou V, Dereki I, Athanasopoulou K, Zafeiropoulos J, Bourikas K, Patrinos GP, Symeonidis A, Sgourou A. Integrating advanced analytical methods to assess epigenetic marks affecting response to hypomethylating agents in higher risk myelodysplastic syndrome. Mol Med 2025; 31:59. [PMID: 39953389 PMCID: PMC11829487 DOI: 10.1186/s10020-025-01123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Patients with higher-risk (HR) myelodysplastic syndrome (MDS), ineligible for allogeneic hematopoietic stem cell transplantation (alloHSCT), require prompt therapeutic interventions, such as treatment with hypomethylating agents (HMAs) to restore normal DNA methylation patterns, mainly of oncosuppressor genes, and consequently to delay disease progression and increase overall survival (OS). However, response assessment to HMA treatment relies on conventional methods with limited capacity to uncover a wide spectrum of underlying molecular events. METHODS We implemented liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess 5' methyl-2' deoxycytidine (5mdC), 5' hydroxy-methyl-2'-deoxycytidine (5hmdC) levels and global adenosine/thymidine ([dA]/[T]) ratio in bone marrow aspirates from twenty-one HR MDS patients, pre- and post-HMA treatment. Additionally, targeted methylation analysis was performed by interpretation of NGS-methylation (MeD-seq) data obtained from the same patient cohort. RESULTS LC/MS-MS analysis revealed a significant hypomethylation status in responders (Rs), already established at baseline and a trend for further DNA methylation reduction post-HMA treatment. Non-responders (NRs) reached statistical significance for DNA hypomethylation only post-HMA treatment. The 5hmdC epigenetic mark was approximately detected at 37.5-40% among NRs and Rs, implying the impairment of the natural active demethylation pathway, mediated by the ten-eleven (TET) 5mdC dioxygenases. R and NR subgroups displayed a [dA]/[T] ratio < 1 (0.727 - 0.633), supporting high frequences of 5mdC transition to thymidine. Response to treatment, according to whole genome MeD-seq data analysis, was associated with specific, scattered hypomethylated DMRs, rather than presenting a global effect across genome. MeD-seq analysis identified divergent epigenetic effects along chromosomes 7, 9, 12, 16, 18, 21, 22, X and Y. Within statistically significant selected chromosomal bins, genes encoding for proteins and non-coding RNAs with reversed methylation profiles between Rs and NRs, were highlighted. CONCLUSIONS Implementation of powerful analytical tools to identify the dynamic DNA methylation changes in HR MDS patients undergoing HMA therapy demonstrated that LC-MS/MS exerts high efficiency as a broad-based but rapid and cost-effective methodology (compared to MeD-seq) to decode different perspectives of the epigenetic background of HR MDS patients and possess discriminative efficacy of the response phenotype to HMA treatment.
Collapse
Affiliation(s)
- Theodoros Nikolopoulos
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Eleftherios Bochalis
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Theodora Chatzilygeroudi
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Irene Dereki
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - John Zafeiropoulos
- Chemistry Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Kyriakos Bourikas
- Chemistry Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Inaffiliationidualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Clinical Bioinformatics Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Argiris Symeonidis
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece.
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece.
| |
Collapse
|
4
|
O'Geen H, Mihalovits A, Brophy BD, Yang H, Miller MW, Lee CJ, Segal DJ, Tomkova M. De-novo DNA Methylation of Bivalent Promoters Induces Gene Activation through PRC2 Displacement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636872. [PMID: 39975160 PMCID: PMC11839071 DOI: 10.1101/2025.02.07.636872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Promoter DNA methylation is a key epigenetic mark, commonly associated with gene silencing. However, we noticed that a positive association between promoter DNA methylation and expression is surprisingly common in cancer. Here, we use hit-and-run CRISPR/dCas9 epigenome editing to evaluate how deposition of DNA methylation can regulate gene expression dependent on pre-existing chromatin environment. While the predominant effect of DNA methylation in non-bivalent promoters is gene repression, we show that in bivalent promoters this often leads to gene activation. We demonstrate that gain of DNA methylation leads to reduced MTF2 binding and eviction of H3K27me3, a repressive mark that guards bivalent genes against activation. Our cancer patient data analyses reveal that in cancer, this mechanism likely leads to activation of a large group of transcription factors regulating pluripotency, apoptosis, and senescence signalling. In conclusion, our study uncovers an activating role of DNA methylation in bivalent promoters, with broad implications for cancer and development.
Collapse
|
5
|
Kalra A, Meltzer SJ. The Role of DNA Methylation in Gastrointestinal Disease: An Expanded Review of Malignant and Nonmalignant Gastrointestinal Diseases. Gastroenterology 2025; 168:245-266. [PMID: 38971197 PMCID: PMC11698954 DOI: 10.1053/j.gastro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Esophageal, colorectal, pancreatic, hepatocellular, and gastric cancer together impact millions of patients worldwide each year, with high overall mortality rates, and are increasing in incidence. Additionally, premalignant gastrointestinal diseases, such as Barrett's esophagus and inflammatory bowel disease, are also increasing in incidence. However, involvement of aberrant DNA methylation in these diseases is incompletely understood, especially given recent research advancements in this field. Here, we review knowledge of this epigenetic mechanism in gastrointestinal preneoplasia and neoplasia, considering mechanisms of action, genetic and environmental factors, and 5'-C-phosphate-G-3' island methylator phenotype. We also highlight developments in translational research, focusing on genomic-wide data, methylation-based biomarkers and diagnostic tests, machine learning, and therapeutic epigenetic strategies.
Collapse
Affiliation(s)
- Andrew Kalra
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen J Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
6
|
Chen X, Xu H, Shu X, Song CX. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ 2025; 32:56-65. [PMID: 37658169 PMCID: PMC11742697 DOI: 10.1038/s41418-023-01213-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
Collapse
Affiliation(s)
- Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Xiao Shu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
7
|
Luo Z, Li W, Zheng W, Shi Y, Ye M, Guo X, Fu K, Yan C, Wang B, Lv B, Mo S, Zhang H, Zhang J, He C, Luo F, Zhang W, Liu J. Elucidating epigenetic landscape of gastric premalignant lesions through genome-wide mapping of 5-hydroxymethylcytosines: A 12-year median follow-up study. Clin Transl Med 2024; 14:e70114. [PMID: 39625179 PMCID: PMC11613102 DOI: 10.1002/ctm2.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Epigenetic modifications are crucial in tumourigenesis, yet the changes in novel epigenetic regulators like 5-hydroxymethylcytosines (5hmC) during the evolution of gastric premalignant lesions remain poorly understood. This study aims to investigate the implications of 5hmC in the progression from gastric premalignant lesions to gastric adenocarcinoma (GAC). METHODS To our knowledge, we conducted the largest and longest longitudinal study of a Chinese population with gastric precursor lesions, involving 29,176 patients with gastritis who underwent gastroscopy and biopsy between 2001 and 2015, with follow-up until 1 August, 2022. The median follow-up time was 12.2 years, and the overall GAC incidence rate was 0.82%. Genome-wide mapping of 5hmC in gastric premalignant lesions from a subset of individuals was performed using the 5hmC-Seal assay, including 21 samples that progressed to GAC during follow-up and 48 non-progressed age- and sex-matched controls. RESULTS We identified 213 differentially modified gene bodies, primarily concentrated in pathways related to cell division, cell cycle, energy metabolism, inflammation and tumourigenesis. An exploratory study was conducted to summarize a 5hmC-based epigenetic model for predicting cancer progression using multivariable logistic regression and machine learning. The nine-gene model showed an area under the curve of 87.5% (95% confidence interval: 72%-100%) in the validation samples (one of three), which were set aside before model training. CONCLUSIONS This study is the first to explore the 5hmC molecular landscape in gastric premalignant lesions, suggesting relevant pathways implicated in their evolution to GAC as well as the feasibility of exploiting genome-wide 5hmC mapping in assessing the risk of future cancer progression. KEY POINTS A largest longitudinal follow-up study of gastric precursor lesions in Chinese patients. Revealing novel 5hmC molecular landscape linked to gastric premalignant lesions. The feasibility of an innovative 5hmC-based predictive model for assessing gastric cancer progression risk.
Collapse
Affiliation(s)
- Zhongguang Luo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Wenshuai Li
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Wanwei Zheng
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Yixiang Shi
- Bionova (Shanghai) Medical Technology Co., Ltd.ShanghaiChina
| | - Maolin Ye
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Xiangyu Guo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Kaiyi Fu
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Changsheng Yan
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Bowen Wang
- Bionova (Shanghai) Medical Technology Co., Ltd.ShanghaiChina
| | - Bin Lv
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Shaocong Mo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Hongyang Zhang
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Jun Zhang
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Chuan He
- Department of Chemistry and The Howard Hughes Medical InstituteThe University of ChicagoChicagoIllinoisUSA
| | - Feifei Luo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Centre for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Wei Zhang
- Department of Preventive Medicine and The Robert h. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jie Liu
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Centre for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Mulet I, Grueso-Cortina C, Cortés-Cano M, Gerovska D, Wu G, Iakab SA, Jimenez-Blasco D, Curtabbi A, Hernansanz-Agustín P, Ketchum H, Manjarrés-Raza I, Wunderlich FT, Bolaños JP, Dawlaty MM, Hopf C, Enríquez JA, Araúzo-Bravo MJ, Tapia N. TET3 regulates terminal cell differentiation at the metabolic level. Nat Commun 2024; 15:9749. [PMID: 39557858 PMCID: PMC11573987 DOI: 10.1038/s41467-024-54044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
TET-family members play a critical role in cell fate commitment. Indeed, TET3 is essential to postnatal development due to yet unknown reasons. To define TET3 function in cell differentiation, we have profiled the intestinal epithelium at single-cell level from wild-type and Tet3 knockout mice. We have found that Tet3 is mostly expressed in differentiated enterocytes. In the absence of TET3, enterocytes exhibit an aberrant differentiation trajectory and do not acquire a physiological cell identity due to an impairment in oxidative phosphorylation, specifically due to an ATP synthase assembly deficiency. Moreover, spatial metabolomics analysis has revealed that Tet3 knockout enterocytes exhibit an unphysiological metabolic profile when compared with their wild-type counterparts. In contrast, no metabolic differences have been observed between both genotypes in the stem cell compartment where Tet3 is mainly not expressed. Collectively, our findings suggest a mechanism by which TET3 regulates mitochondrial function and, thus, terminal cell differentiation at the metabolic level.
Collapse
Affiliation(s)
- Isabel Mulet
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Carmen Grueso-Cortina
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Mireia Cortés-Cano
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastián, Spain
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou, China
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stefania Alexandra Iakab
- Center for Mass Spectrometry and Optical Spectroscopy, Manheim University of Applied Sciences, Mannheim, Germany
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | - Andrea Curtabbi
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pablo Hernansanz-Agustín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Harmony Ketchum
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Resarch, Albert Einstein College of Medicine, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Israel Manjarrés-Raza
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | | | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, Spanish National Research Council, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Resarch, Albert Einstein College of Medicine, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy, Manheim University of Applied Sciences, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - José Antonio Enríquez
- Center of Biomedical Networking Research for Frailty and Healthy Ageing, Madrid, Spain
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Natalia Tapia
- Stem Cell Molecular Genetics Unit, Institute of Biomedicine of Valencia, Spanish National Research Council, Valencia, Spain.
| |
Collapse
|
9
|
Wang R, Liao G, Tang DD. TET1 Regulates Nestin Expression and Human Airway Smooth Muscle Proliferation. Am J Respir Cell Mol Biol 2024; 71:420-429. [PMID: 38861343 PMCID: PMC11450309 DOI: 10.1165/rcmb.2024-0139oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
Asthma is characterized by aberrant airway smooth muscle (ASM) proliferation, which increases the thickness of the ASM layer within the airway wall and exacerbates airway obstruction during asthma attacks. The mechanisms that drive ASM proliferation in asthma are not entirely elucidated. Ten-eleven translocation methylcytosine dioxygenase (TET) is an enzyme that participates in the regulation of DNA methylation by catalyzing the hydroxylation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). The generation of 5-hmC disinhibits the gene silencing effect of 5-mC. In this study, TET1 activity and protein were enhanced in asthmatic human ASM cell cultures. Moreover, the concentration of 5-hmC was higher in asthmatic ASM cells than in nonasthmatic ASM cells. Knockdown (KD) of TET1, but not TET2, reduced the concentration of 5-hmC in asthmatic cells. Because the cytoskeletal protein nestin controls cell proliferation by modulating mTOR, we evaluated the effects of TET1 KD on this pathway. TET1 KD reduced nestin expression in ASM cells. In addition, TET1 inhibition alleviated the platelet-derived growth factor-induced phosphorylation of p70S6K, 4E-BP, S6, and Akt. TET1 inhibition also attenuated the proliferation of ASM cells. Taken together, these results suggest that TET1 drives ASM proliferation via the nestin-mTOR axis.
Collapse
Affiliation(s)
- Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
10
|
An HR, Kim WG, Lee YM, Sung TY, Song DE. Comparison of TERT and 5-Hydroxymethylcytocine immunohistochemistry in various thyroid carcinomas. Ann Diagn Pathol 2024; 71:152290. [PMID: 38552304 DOI: 10.1016/j.anndiagpath.2024.152290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 06/09/2024]
Abstract
Telomerase reverse transcriptase (TERT) promoter mutation is associated with an aggressive clinical course in thyroid carcinomas. Therefore, detection of TERT promoter mutation is essential for proper patient management. 5-Hydroxymethylcytosine (5hmC) is an epigenetic marker involved in the DNA demethylation pathway, and its loss has been observed in various tumors. Loss of 5hmC has also been reported in thyroid carcinomas and is presented as a possible predictive biomarker for TERT promoter mutation and worse prognosis. This study evaluated the expression of TERT and 5hmC by immunohistochemistry (IHC) in 105 patients (44 in the TERT mutant group and 61 in the TERT wild group) with various thyroid carcinomas. H-scores were calculated using an image analyzer. The median H-scores of TERT IHC were significantly higher in the TERT mutant group than in the TERT wild group (47.15 vs. 9.80). The sensitivity and specificity of TERT IHC for predicting TERT promoter mutations were 65.9 and 65.7 %, respectively. Regardless of TERT promoter mutation status, the 5hmC H-scores were markedly lower in all subtypes of thyroid carcinomas compared to those in their normal counterparts. Significant differences in 5hmC H-scores were observed between N0 and N1 in total thyroid carcinomas, but not within the papillary thyroid carcinoma subgroup. In conclusion, TERT and 5hmC IHC have limitations in predicting the presence of TERT promoter mutations. The expression of 5hmC was downregulated in various thyroid carcinomas compared to that in normal and benign lesions, but comprehensive further studies are required to elucidate the role of 5hmC in thyroid carcinomas.
Collapse
Affiliation(s)
- Hyeong Rok An
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Won Gu Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Yu-Mi Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Tae-Yon Sung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Dong Eun Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
11
|
Uddin IA, Stec E, Papadantonakis GA. Ionization Patterns and Chemical Reactivity of Cytosine-Guanine Watson-Crick Pairs. Chemphyschem 2024; 25:e202300946. [PMID: 38381922 DOI: 10.1002/cphc.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Gas-phase and aqueous vertical ionization potentials, vIPgas and vIPaq respectively and measurements of the molecular electrostatic and local ionization maps calculated at the DFT/B3LYP-D3/ 6-311+G** level of theory and the C-PCM reaction field model for single- and double-stranded CpG and 5MeCpG pairs show that the vIPaq for single- and double-stranded pairs of C-G and 5MeC-G are practically the same, in the range of 5.79 to 5.81 eV. The aqueous adiabatic ionization potentials for single-stranded CpG and 5MeCpG are 5.52 eV and 5.51 eV respectively and they reflect the nuclear reorganization that takes place after the abstraction of the electron. The aqueous adiabatic ionization energy values that correspond to the CpG+. radical cation and the hydrated electron, e-,, being at infinite distance, adIPaq+Vo, are 3.92 eV and 3.91 eV respectively with (Vo=-1.6 eV) Analysis of data suggest that the HOMO-LUMO energy gap in the hard/soft-acid/base (HSAB) concept cannot be used a priori to determine the effect of cytosine methylation on the guanine enhanced oxidative damage in DNA.
Collapse
Affiliation(s)
- Ismihan A Uddin
- University of Illinois Chicago, Department of Chemistry, 845 W. Taylor St. Room 4506 SES, Chicago, IL. 60607
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
| | - Ewa Stec
- University of Illinois Chicago, Department of Chemistry, 845 W. Taylor St. Room 4506 SES, Chicago, IL. 60607
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
| | - George A Papadantonakis
- University of Illinois Chicago, Department of Chemistry, 845 W. Taylor St. Room 4506 SES, Chicago, IL. 60607
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
| |
Collapse
|
12
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
13
|
Moshi JM, Ummelen M, Smedts F, Ramaekers FCS, Hopman AHN. Inhibition of cytosine 5-hydroxymethylation during progression of cancer precursor lesions in the uterine cervix. PLoS One 2024; 19:e0297008. [PMID: 38635731 PMCID: PMC11025792 DOI: 10.1371/journal.pone.0297008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/27/2023] [Indexed: 04/20/2024] Open
Abstract
Methylation and hydroxymethylation of cytosine moieties in CpG islands of specific genes are epigenetic processes shown to be involved in the development of cervical (pre)neoplastic lesions. We studied global (hydroxy)methylation during the subsequent steps in the carcinogenic process of the uterine cervix by using immunohistochemical protocols for the detection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in paraffin-embedded tissues of the normal epithelia and (pre)malignant lesions. This approach allowed obtaining spatially resolved information of (epi)genetic alterations for individual cell populations in morphologically heterogeneous tissue samples. The normal ectocervical squamous epithelium showed a high degree of heterogeneity for both modifications, with a major positivity for 5-mC in the basal and parabasal layers in the ectocervical region, while 5-hmC immunostaining was even more restricted to the cells in the basal layer. Immature squamous metaplasia, characterized by expression of SOX17, surprisingly showed a decrease of 5-hmC in the basal compartments and an increase in the more superficial layers of the epithelium. The normal endocervical glandular epithelium showed a strong immunostaining reactivity for both modifications. At the squamocolumnar junctions, a specific 5-hmC pattern was observed in the squamous epithelium, resembling that of metaplasia, with the typical weak to negative reaction for 5-hmC in the basal cell compartment. The reserve cells underlying the glandular epithelium were also largely negative for 5-hmC but showed immunostaining for 5-mC. While the overall methylation status remained relatively constant, about 20% of the high-grade squamous lesions showed a very low immunostaining reactivity for 5-hmC. The (pre)malignant glandular lesions, including adenocarcinoma in situ (AIS) and adenocarcinoma showed a progressive decrease of hydroxymethylation with advancement of the lesion, resulting in cases with regions that were negative for 5-hmC immunostaining. These data indicate that inhibition of demethylation, which normally follows cytosine hydroxymethylation, is an important epigenetic switch in the development of cervical cancer.
Collapse
Affiliation(s)
- Jobran M. Moshi
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Monique Ummelen
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Frank Smedts
- Department of Pathology, Cork University Hospital, Cork, Ireland
| | - Frans C. S. Ramaekers
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Anton H. N. Hopman
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
14
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
15
|
Yang Q, Dang H, Liu J, Wang X, Wang J, Lan X, Ji M, Xing M, Hou P. Hypoxia switches TET1 from being tumor-suppressive to oncogenic. Oncogene 2023; 42:1634-1648. [PMID: 37020036 PMCID: PMC10181935 DOI: 10.1038/s41388-023-02659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/07/2023]
Abstract
The classical oxidizing enzymatic activity of Ten Eleven Translocation 1 (TET1) and its tumor suppressor role are well known. Here, we find that high TET1 expression is associated with poor patient survival in solid cancers often having hypoxia, which is inconsistent with its tumor suppressor role. Through a series of in vitro and in vivo studies, using thyroid cancer as a model, we demonstrate that TET1 plays a tumor suppressor function in normoxia and, surprisingly, an oncogenic function in hypoxia. Mechanistically, TET1 mediates HIF1α-p300 interaction by acting as a co-activator of HIF1α to promote CK2B transcription under hypoxia, which is independent of its enzymatic activity; CK2 activates the AKT/GSK3β signaling pathway to promote oncogenesis. Activated AKT/GSK3β signaling in turn maintains HIF1α at elevated levels by preventing its K48-linked ubiquitination and degradation, creating a feedback loop to enhance the oncogenicity of TET1 in hypoxia. Thus, this study uncovers a novel oncogenic mechanism in which TET1 promotes oncogenesis and cancer progression through a non-enzymatic interaction between TET1 and HIF1α in hypoxia, providing novel therapeutic targeting implications for cancer.
Collapse
Affiliation(s)
- Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Hui Dang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jiaxin Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xingye Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jingyuan Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xinhui Lan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Mingzhao Xing
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, PR China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
16
|
Moshi JM, Ummelen M, Broers JLV, Ramaekers FCS, Hopman AHN. Impact of antigen retrieval protocols on the immunohistochemical detection of epigenetic DNA modifications. Histochem Cell Biol 2023:10.1007/s00418-023-02187-4. [PMID: 37010548 DOI: 10.1007/s00418-023-02187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 04/04/2023]
Abstract
This study compares three different pretreatment protocols for the immunohistochemical detection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in nuclear DNA. The human biological samples analyzed included formalin-fixed and paraffin-embedded (FFPE) normal squamous epithelium, ethanol-fixed cultured cells, and metaphase chromosomes. The antigen retrieval methods included low pH Citrate and high pH Tris-ethylenediaminetetraacetic acid (EDTA) protocols, as well as a method using Pepsin pretreatment combined with HCl for DNA denaturation. A gradual increase in the detection levels of 5-mC and 5-hmC was observed when going from Citrate via Tris/EDTA to Pepsin/HCl retrieval. While the Citrate retrieval protocol was the least efficient for the detection of 5-mC and 5-hmC, it did preserve nuclear morphology and enabled visualization of differences in intra- and internuclear distribution patterns in tissue and cell culture samples by single- and double-fluorescence detection. Quantification of (hydroxy)methylation levels in FFPE material demonstrated a significant heterogeneity and differences in 5-mC and 5-hmC levels within and between nuclei in the different compartments of normal squamous epithelium. It was concluded that immunohistochemical detection of 5-mC and 5-hmC enables the correlation of these DNA modifications with histomorphological features in heterogeneous tissues, but this is influenced by different pretreatment protocols that must be carefully chosen to allow an appropriate interpretation of these epigenetic switches.
Collapse
Affiliation(s)
- Jobran M Moshi
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Monique Ummelen
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jos L V Broers
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Frans C S Ramaekers
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Anton H N Hopman
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Ouyang W, Wang MD, Wang WY, Li C, Yao LQ, Zhu H, Yang T. Hydroxymethylation and Epigenetic Drugs: New Insights into the Diagnosis and Treatment in Epigenetics of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:5449443. [PMID: 36816356 PMCID: PMC9934982 DOI: 10.1155/2023/5449443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 02/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal and heterogeneous malignancy with multiple genetic alternations and complex signaling pathways. The complexity and multifactorial nature of HCC pose a tremendous challenge regarding its diagnosis and treatment. Emerging evidence has indicated an important regulatory role of epigenetic modifications in HCC initiation and progression. Epigenetic modifications are stably heritable gene expression traits caused by changing the accessibility of chromatin structure and genetic activity without alteration in the DNA sequence and have been gradually recognized as a hallmark of cancer. In addition, accumulating data suggest a potential value of altered hydroxymethylation in epigenetic modifications and therapeutics targeting the epigenetically mediated regulation. As such, probing the epigenetic field in the era of precision oncology is a valid avenue for promoting the accuracy of early diagnosis and improving the oncological prognosis of HCC patients. This review focuses on the diagnostic performance and clinical utility of 5-hydroxymethylated cytosine, the primary intermediate product of the demethylation process, for early HCC diagnosis and discusses the promising applications of epigenetic-based therapeutic regimens for HCC.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China
| | - Wan-Yin Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China
| | - Lan-Qing Yao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Hong Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, China
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Zhang X, Lu M, Zhu J, Zhang C, Wang M. Altered genome‑wide hydroxymethylation analysis for neoadjuvant chemoradiotherapy followed by surgery in esophageal cancer. Exp Ther Med 2022; 25:29. [PMID: 36561617 PMCID: PMC9748644 DOI: 10.3892/etm.2022.11728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Esophageal cancer has high incidence rate in China. Neoadjuvant chemoradiotherapy (nCRT) has become the standard treatment for esophageal squamous cell carcinoma (ESCC). However, there are few reliable epigenetic parameters for patients with ESCC undergoing neoadjuvant therapy. Genomic extract from tumor tissue was amplified and sequenced using the Illumina HiSeq4000 to quantify genes associated methylation or hydromethylation in 12 patients with ESCC undergoing nCRT. The genome-wide hydroxymethylation were analyzed by methylated and hydroxymethylated DNA immunoprecipitation sequencing by MACS2 software and UCSC RefSeq database. Abnormal DNA methylation was statistically different between nCRT-well (showed a pathological complete response to nCRT) and nCRT-poor (showed incomplete pathological response to nCRT) patients. Levels of ten-eleven translocation 1, 2 and 3 mRNA and protein were higher in tumor tissue in nCRT-well group patients than in nCRT-poor group patients. Illumina HiSeq 4000 sequencing identified 2925 hypo-differentially hydroxymethylated region (DhMRs) and 292 hyper-DhMRs in promoter between nCRT-well and nCRT-poor patients. Biological processes associated with hyper-DhMRs included 'snRNA processing', 'hormone-mediated signaling pathway' and 'cellular response'. Metabolic processes were associated with hypo-DhMRs. These data may explain the functional response to nCRT in patients with abnormal promoter of methylation gene-associated mRNA expression. The present results implied that hyper-DhMRs and hypo-DhMRs affect molecular pathways, such as hippo and Notch signaling pathways, highlighting epigenetic modifications associated with clinical response to nCRT in patients with esophageal cancer.
Collapse
Affiliation(s)
- Xianjing Zhang
- The Second Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mingzhu Lu
- Department of Pathology, Changzhou Cancer Hospital, Soochow University, Changzhou, Jiangsu 213032, P.R. China
| | - Jing Zhu
- Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Changsong Zhang
- Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China,Correspondence to: Dr Changsong Zhang, Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, 1 Lijiang Road, Suzhou, Jiangsu 215153, P.R. China
| | - Meihua Wang
- Department of Pathology, Changzhou Cancer Hospital, Soochow University, Changzhou, Jiangsu 213032, P.R. China,Correspondence to: Dr Changsong Zhang, Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, 1 Lijiang Road, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
19
|
Gianni C, Palleschi M, Merloni F, Di Menna G, Sirico M, Sarti S, Virga A, Ulivi P, Cecconetto L, Mariotti M, De Giorgi U. Cell-Free DNA Fragmentomics: A Promising Biomarker for Diagnosis, Prognosis and Prediction of Response in Breast Cancer. Int J Mol Sci 2022; 23:14197. [PMID: 36430675 PMCID: PMC9695769 DOI: 10.3390/ijms232214197] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
Identifying novel circulating biomarkers predictive of response and informative about the mechanisms of resistance, is the new challenge for breast cancer (BC) management. The integration of omics information will gradually revolutionize the clinical approach. Liquid biopsy is being incorporated into the diagnostic and decision-making process for the treatment of BC, in particular with the analysis of circulating tumor DNA, although with some relevant limitations, including costs. Circulating cell-free DNA (cfDNA) fragmentomics and its integrity index may become a cheaper, noninvasive biomarker that could provide significant additional information for monitoring response to systemic treatments in BC. The purpose of our review is to focus on the available research on cfDNA integrity and its features as a biomarker of diagnosis, prognosis and response to treatments in BC, highlighting new perspectives and critical issues for future applications.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandra Virga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Marita Mariotti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
20
|
Zhang C, Zhou W, Tan Y, Tian D, Zhong C. 5-Hydroxymethylcytosines in circulating cell-free DNA reveal a diagnostic biomarker for glioma. Heliyon 2022; 8:e11022. [PMID: 36281400 PMCID: PMC9587273 DOI: 10.1016/j.heliyon.2022.e11022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Gliomas typically have unfavorable prognosis, due to late detection and interventions. However, effective biomarkers for early glioma diagnosis based on 5-hydroxymethylcytosines (5 hm C) in circulating cell-free DNA (cfDNA) are not currently available. 5 hm C profiles in GSE132118 set were subjected for establishment of diagnostic model using the LASSO (least absolute shrinkage and selection operator) algorithm. The 5 hm C-based models demonstrated great potency in differentiating healthy subjects from gliomas, with area under the curves (AUCs) > 0.91 in the training and validation sets. Moreover, the indicator performed well in combination with clinicopathological characteristics to differentiate glioblastomas (GBMs) from lower grade glioma (LGGs). Enrichment analysis on 5 hm C profiles displayed great correlation with glioma pathophysiology. The 5 hm C-derived biomarker might act as an effective and non-invasive measure in glioma screening.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China,Department of Neurosurgery, Huzhou Central Hospital, Huzhou 313099, Zhejiang Province, China
| | - Wei Zhou
- Department of Anesthesiology, Huzhou Central Hospital, Huzhou 313099, Zhejiang Province, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430060, Hubei Province, China
| | - Daofeng Tian
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan 430060, Hubei Province, China,Corresponding author.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China,Corresponding author.
| |
Collapse
|
21
|
Birknerova N, Mancikova V, Paul ED, Matyasovsky J, Cekan P, Palicka V, Parova H. Circulating Cell-Free DNA-Based Methylation Pattern in Saliva for Early Diagnosis of Head and Neck Cancer. Cancers (Basel) 2022; 14:4882. [PMID: 36230805 PMCID: PMC9563959 DOI: 10.3390/cancers14194882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Head and neck cancer (HNC) remains one of the leading causes of mortality worldwide due to tumor diagnosis at a late stage, loco-regional aggression, and distant metastases. A standardized diagnostic procedure for HNC is a tissue biopsy that cannot faithfully portray the in-depth tumor dynamics. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for cancer detection and follow-up. A saliva-based liquid biopsy allows convenient, non-invasive, and painless collection of high volumes of this biofluid, with the possibility of repetitive sampling, all enabling real-time monitoring of the disease. No approved clinical test for HNC has yet been established. However, epigenetic changes in saliva circulating cell-free DNA (cfDNA) have the potential for a wide range of clinical applications. Therefore, the aim of this review is to present an overview of cfDNA-based methylation patterns in saliva for early detection of HNC, with particular attention to circulating tumor DNA (ctDNA). Due to advancements in isolation and detection technologies, as well as next- and third-generation sequencing, recent data suggest that salivary biomarkers may be successfully applied for early detection of HNC in the future, but large prospective clinical trials are still warranted.
Collapse
Affiliation(s)
- Natalia Birknerova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Veronika Mancikova
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Evan David Paul
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Jan Matyasovsky
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Pavol Cekan
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Vladimir Palicka
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
22
|
Bisht D, Arora A, Sachan M. Role of DNA De-methylation intermediate '5-hydroxymethylcytosine' in ovarian cancer management: A comprehensive review. Biomed Pharmacother 2022; 155:113674. [PMID: 36099791 DOI: 10.1016/j.biopha.2022.113674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer remains the most eminent silent killer, with high morbidity and mortality among all gynaecological cancers. The advanced-stage patient's diagnosis has a low survival rate caused by its asymptomatic progression and diverse histopathological sub-types, wherefore in poor prognosis and highly recurring malignancy with multidrug resistance towards chemotherapy. Epigenetic biomarkers open promising avenues of intriguing research to combat OC malignancy, furthermore a tool for its early diagnosis. 5-hydroxymethycytosine (5-hmC), alias the sixth base of the genome, is an intermediate formed during the recently established DNA demethylation process and catalysed via ten-eleven translocation (TET) family of enzymes. It plays a significant role in regulating gene expression and has sparked interest in various cancer types. This review summarizes the role of active DNA demethylation process, its enzymes and intermediate 5-hmC in epigenetic landscape of ovarian cancer as a potent biomarker for clinical translation in identification of therapeutic targets, diagnostic and prognostic evaluation.
Collapse
Affiliation(s)
- Deepa Bisht
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Assam, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
23
|
Moravveji SS, Khoshbakht S, Mokhtari M, Salimi M, Lanjanian H, Nematzadeh S, Torkamanian-Afshar M, Masoudi-Nejad A. Impact of 5HydroxyMethylCytosine (5hmC) on reverse/direct association of cell-cycle, apoptosis, and extracellular matrix pathways in gastrointestinal cancers. BMC Genom Data 2022; 23:49. [PMID: 35768769 PMCID: PMC9241275 DOI: 10.1186/s12863-022-01061-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant levels of 5-hydroxymethylcytosine (5-hmC) can lead to cancer progression. Identification of 5-hmC-related biological pathways in cancer studies can produce better understanding of gastrointestinal (GI) cancers. We conducted a network-based analysis on 5-hmC levels extracted from circulating free DNAs (cfDNA) in GI cancers including colon, gastric, and pancreatic cancers, and from healthy donors. The co-5-hmC network was reconstructed using the weighted-gene co-expression network method. The cancer-related modules/subnetworks were detected. Preservation of three detected 5-hmC-related modules was assessed in an external dataset. The 5-hmC-related modules were functionally enriched, and biological pathways were identified. The relationship between modules was assessed using the Pearson correlation coefficient (p-value < 0.05). An elastic network classifier was used to assess the potential of the 5-hmC modules in distinguishing cancer patients from healthy individuals. To assess the efficiency of the model, the Area Under the Curve (AUC) was computed using five-fold cross-validation in an external dataset. RESULTS The main biological pathways were the cell cycle, apoptosis, and extracellular matrix (ECM) organization. Direct association between the cell cycle and apoptosis, inverse association between apoptosis and ECM organization, and inverse association between the cell cycle and ECM organization were detected for the 5-hmC modules in GI cancers. An AUC of 92% (0.73-1.00) was observed for the predictive model including 11 genes. CONCLUSION The intricate association between biological pathways of identified modules may reveal the hidden significance of 5-hmC in GI cancers. The identified predictive model and new biomarkers may be beneficial in cancer detection and precision medicine using liquid biopsy in the early stages.
Collapse
Affiliation(s)
- Sayyed Sajjad Moravveji
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Samane Khoshbakht
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Majid Mokhtari
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Lanjanian
- Molecular Biology and Genetics Department, Engineering and Natural Science Faculty, Istinye University, Istanbul, Turkey
| | - Sajjad Nematzadeh
- Computer Engineering Department, Architecture and Engineering Faculty, Nisantasi University, Istanbul, Turkey
| | - Mahsa Torkamanian-Afshar
- Computer Engineering Department, Architecture and Engineering Faculty, Nisantasi University, Istanbul, Turkey
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
24
|
Sagvekar P, Shinde G, Mangoli V, Desai SK, Mukherjee S. Evidence for TET-mediated DNA demethylation as an epigenetic alteration in cumulus granulosa cells of women with polycystic ovary syndrome. Mol Hum Reprod 2022; 28:6595033. [PMID: 35640568 DOI: 10.1093/molehr/gaac019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral and tissue-specific alterations in global DNA methylation (5mC) and hydroxymethylation (5hmC) profiles have been charted as biomarkers for disease prediction and as hallmarks of dysregulated localized gene networks. Global and gene-specific epigenetic alterations in the 5mC profiles have shown widespread implications in etiology of polycystic ovary syndrome (PCOS). However, there has been no study in PCOS that integrates the quantification of 5mC and 5hmC signatures alongside the expression levels of DNA methylating and demethylating enzymes as respective indicators of methylation and demethylation pathways. Having previously shown that the 5mC signatures are not greatly altered in PCOS, we assessed the global 5hmC levels in peripheral blood leukocytes (PBLs) and cumulus granulosa cells (CGCs) of 40 controls and 40 women with PCOS. This analysis revealed higher 5hmC levels in CGCs of PCOS women, indicating a more dominant demethylation pathway. Further, we assessed the transcript and protein expression levels of DNA demethylating and methylating enzymes, i.e. ten-eleven translocation methylcytosine dioxygenases (TET1, TET2, TET3) and DNA methyltransferases (DNMT1, DNMT3A and DNMT3B), respectively, in CGCs. The relative transcript and protein expression levels of all three TETs were found to be higher in women with PCOS; and the TET mRNA expression profiles were positively correlated with 5hmC levels in CGCs. Also, all three DNMT genes showed altered transcript expression in PCOS, although only the downregulated DNMT3A transcript was correlated with decreasing 5mC levels. At the protein level, the expression of DNMT1 (maintenance methylation enzyme) was higher, while that of DNMT3A (denovo methylation enzyme) was found to be lower in PCOS compared to controls. Overall, these results indicate that DNA methylation changes in CGCs of PCOS women may arise partly due to intrinsic alterations in the transcriptional regulation of TETs and DNMT3A.
Collapse
Affiliation(s)
- Pooja Sagvekar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| | - Gayatri Shinde
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai-, 400007, Maharashtra, India
| | - Sadhana K Desai
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai-, 400007, Maharashtra, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| |
Collapse
|
25
|
Lack of Major Genome-Wide DNA Methylation Changes in Succinate-Treated Human Epithelial Cells. Int J Mol Sci 2022; 23:ijms23105663. [PMID: 35628470 PMCID: PMC9147453 DOI: 10.3390/ijms23105663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
The tricarboxylic acid (TCA) metabolite, succinate, is a competitive inhibitor of dioxygenase enzymes that require alpha ketoglutarate as a cofactor. One family of dioxygenases are the ten-eleven translocation (TET) proteins, which oxidize 5-methylcytosine to promote DNA demethylation. Inhibition of DNA demethylation is expected to lead to DNA hypermethylation, at least at genomic regions at which TET proteins are engaged. We treated human bronchial epithelial cells with succinate for five days and confirmed its effect on TET protein function by observing diminished formation of 5-hydroxymethylcytosine, the first oxidation product of the TET enzymatic reaction. We then analyzed global DNA methylation patterns by performing whole-genome bisulfite sequencing. Unexpectedly, we did not observe differentially methylated regions (DMRs) that reached genome-wide statistical significance. We observed a few regions of clustered DNA hypomethylation, which was also not expected based on the proposed mechanisms. We discuss potential explanations for our observations and the implications of these findings for tumorigenesis.
Collapse
|
26
|
Domingo-Relloso A, Bozack A, Kiihl S, Rodriguez-Hernandez Z, Rentero-Garrido P, Casasnovas JA, Leon-Latre M, Garcia-Barrera T, Gomez-Ariza JL, Moreno B, Cenarro A, de Marco G, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Navas-Acien A, Gamble M, Tellez-Plaza M. Arsenic exposure and human blood DNA methylation and hydroxymethylation profiles in two diverse populations from Bangladesh and Spain. ENVIRONMENTAL RESEARCH 2022; 204:112021. [PMID: 34516978 PMCID: PMC8734953 DOI: 10.1016/j.envres.2021.112021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Associations of arsenic (As) with the sum of 5-mC and 5-hmC levels have been reported; however, As exposure-related differences of the separated 5-mC and 5-hmC markers have rarely been studied. METHODS In this study, we evaluated the association of arsenic exposure biomarkers and 5-mC and 5-hmC in 30 healthy men (43-55 years) from the Aragon Workers Health Study (AWHS) (Spain) and 31 healthy men (31-50 years) from the Folic Acid and Creatinine Trial (FACT) (Bangladesh). We conducted 5-mC and 5-hmC profiling using Infinium MethylationEPIC arrays, on paired standard and modified (ox-BS in AWHS and TAB in FACT) bisulfite converted blood DNA samples. RESULTS The median for the sum of urine inorganic and methylated As species (ΣAs) (μg/L) was 12.5 for AWHS and 89.6 for FACT. The median of blood As (μg/L) was 8.8 for AWHS and 10.2 for FACT. At a statistical significance p-value cut-off of 0.01, the differentially methylated (DMP) and hydroxymethylated (DHP) positions were mostly located in different genomic sites. Several DMPs and DHPs were consistently found in AWHS and FACT both for urine ΣAs and blood models, being of special interest those attributed to the DIP2C gene. Three DMPs (annotated to CLEC12A) for AWHS and one DHP (annotated to NPLOC4) for FACT remained statistically significant after false discovery rate (FDR) correction. Pathways related to chronic diseases including cardiovascular, cancer and neurological were enriched. CONCLUSIONS While we identified common 5-hmC and 5-mC signatures in two populations exposed to varying levels of inorganic As, differences in As-related epigenetic sites across the study populations may additionally reflect low and high As-specific associations. This work contributes a deeper understanding of potential epigenetic dysregulations of As. However, further research is needed to confirm biological consequences associated with DIP2C epigenetic regulation and to investigate the role of 5-hmC and 5-mC separately in As-induced health disorders at different exposure levels.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Statistics and Operations Research, University of Valencia, Spain
| | - Anne Bozack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Samara Kiihl
- Department of Statistics, State University of Campinas, Brazil
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, Biomedical Research Institute Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - J Antonio Casasnovas
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Montserrat Leon-Latre
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Tamara Garcia-Barrera
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - J Luis Gomez-Ariza
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - Belen Moreno
- Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Griselda de Marco
- Genomics Area, Foundation for the Promotion of Health and Biomedical Research of the Valencian Region (FISABIO), Valencia, Spain
| | - Faruque Parvez
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Mary Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
27
|
Armstrong N, Storey CM, Noll SE, Margulis K, Soe MH, Xu H, Yeh B, Fishbein L, Kebebew E, Howitt BE, Zare RN, Sage J, Annes JP. SDHB knockout and succinate accumulation are insufficient for tumorigenesis but dual SDHB/NF1 loss yields SDHx-like pheochromocytomas. Cell Rep 2022; 38:110453. [PMID: 35235785 PMCID: PMC8939053 DOI: 10.1016/j.celrep.2022.110453] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Inherited pathogenic succinate dehydrogenase (SDHx) gene mutations cause the hereditary pheochromocytoma and paraganglioma tumor syndrome. Syndromic tumors exhibit elevated succinate, an oncometabolite that is proposed to drive tumorigenesis via DNA and histone hypermethylation, mitochondrial expansion, and pseudohypoxia-related gene expression. To interrogate this prevailing model, we disrupt mouse adrenal medulla SDHB expression, which recapitulates several key molecular features of human SDHx tumors, including succinate accumulation but not 5hmC loss, HIF accumulation, or tumorigenesis. By contrast, concomitant SDHB and the neurofibromin 1 tumor suppressor disruption yields SDHx-like pheochromocytomas. Unexpectedly, in vivo depletion of the 2-oxoglutarate (2-OG) dioxygenase cofactor ascorbate reduces SDHB-deficient cell survival, indicating that SDHx loss may be better tolerated by tissues with high antioxidant capacity. Contrary to the prevailing oncometabolite model, succinate accumulation and 2-OG-dependent dioxygenase inhibition are insufficient for mouse pheochromocytoma tumorigenesis, which requires additional growth-regulatory pathway activation.
Collapse
Affiliation(s)
- Neali Armstrong
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Claire M Storey
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Myat Han Soe
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Haixia Xu
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | | | - Lauren Fishbein
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Justin P Annes
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA; Endocrine Oncology Program, Stanford University, Stanford, CA, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Sharma AE, Olivas A, Parilla M, Yassan L, Wang H, Zhang SS, Weber C, Keutgen XM, Hart J, Krausz T, Setia N. Epigenetic Dysregulation of 5-hydroxymethylcytosine in Well-Differentiated Pancreatic Neuroendocrine Tumors. Appl Immunohistochem Mol Morphol 2022; 30:e11-e15. [PMID: 34711739 DOI: 10.1097/pai.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Dysregulation of epigenetic mechanisms, reflected by loss of expression of 5-hydroxymethylcytosine (5-hmC) is being increasingly recognized as a marker of aggressive behavior in several neoplasms; however, the role of such epigenetic modifiers in pancreatic neuroendocrine tumors (PanNETs) has not been studied. Annotated cohort of 60 PanNETs was evaluated for 5-hmC expression using immunohistochemistry. Univariable and multivariable analyses were performed. To determine intratumor heterogeneity of 5-hmC expression, 26 additional synchronous metastatic deposits of PanNETs from 8 patients were evaluated for 5-hmC expression. 5-hmC level showed significant association with the presence of distant metastases (P=0.02), female sex (P=0.04), and Ki-67 proliferation index (P=0.002). A multivariate model created using the stepwise logistic regression analysis showed the presence of nodal metastases (odds ratio=6.15), lymphovascular invasion (odds ratio=4.07) and lack of 5-hmC expression (odds ratio=5.34) were predictive of the risk of distant metastasis in PanNETs with a c-statistic of 0.845. Epigenetic intratumoral heterogeneity of 5-hmC expression was seen in 37.5% cases (3/8). Our work provides evidence that epigenetic regulators are involved in the pathobiology of PanNETs and immunohistochemical analysis of 5-hmC may be able to refine prognostic evaluation of these tumors.
Collapse
Affiliation(s)
| | | | - Megan Parilla
- Department of Pathology, Loyola University, Chicago, IL
| | | | - Hanlin Wang
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles
| | | | | | - Xavier M Keutgen
- Division of General Surgery and Surgical Oncology, Endocrine and Neuroendocrine Surgery Research Program, Department of Surgery, University of Chicago Medical Center
| | | | | | | |
Collapse
|
29
|
Zhang Z, Lee MK, Perreard L, Kelsey KT, Christensen BC, Salas LA. Navigating the hydroxymethylome: experimental biases and quality control tools for the tandem bisulfite and oxidative bisulfite Illumina microarrays. Epigenomics 2022; 14:139-152. [PMID: 35029129 PMCID: PMC8914583 DOI: 10.2217/epi-2021-0490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: Tandem bisulfite (BS) and oxidative bisulfite (oxBS) conversion on DNA followed by hybridization to Infinium HumanMethylation BeadChips allows nucleotide resolution of 5-hydroxymethylcytosine genome-wide. Here, the authors compared data quality acquired from BS-treated and oxBS-treated samples. Materials & methods: Raw BeadArray data from 417 pairs of samples across 12 independent datasets were included in the study. Probe call rates were compared between paired BS and oxBS treatments controlling for technical variables. Results: oxBS-treated samples had a significantly lower call rate. Among technical variables, DNA-specific extraction kits performed better with higher call rates after oxBS conversion. Conclusion: The authors emphasize the importance of quality control during oxBS conversion to minimize information loss and recommend using a DNA-specific extraction kit for DNA extraction and an oxBSQC package for data preprocessing.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, 03756 NH, USA
| | - Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, 03756 NH, USA
| | - Laurent Perreard
- Department of Molecular & Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, 03756 NH, USA
| | - Karl T Kelsey
- Department of Epidemiology, Department of Pathology & Laboratory Medicine, Brown University School of Public Health, Providence, 02912 RI, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, 03756 NH, USA,Department of Molecular & Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, 03756 NH, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, 03756 NH, USA,Department of Molecular & Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, 03756 NH, USA,Author for correspondence: Tel.: 603 646 5496;
| |
Collapse
|
30
|
Hu X, Luo K, Shi H, Yan X, Huang R, Zhao B, Zhang J, Xie D, Zhang W. Integrated 5-hydroxymethylcytosine and fragmentation signatures as enhanced biomarkers in lung cancer. Clin Epigenetics 2022; 14:15. [PMID: 35073982 PMCID: PMC8787948 DOI: 10.1186/s13148-022-01233-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Background Lung cancer is one of most common cancers worldwide, with a 5-year survival rate of less than 20%, which is mainly due to late-stage diagnosis. Noninvasive methods using 5-hydroxymethylation of cytosine (5hmC) modifications and fragmentation profiles from 5hmC cell-free DNA (cfDNA) sequencing provide an opportunity for lung cancer detection and management. Results A total of 157 lung cancer patients were recruited to generate the largest lung cancer cfDNA 5hmC dataset, which mainly consisted of 62 lung adenocarcinoma (LUAD), 48 lung squamous cell carcinoma (LUSC) and 25 small cell lung cancer (SCLC) patients, with most patients (131, 83.44%) at advanced tumor stages. A 37-feature 5hmC model was constructed and validated to distinguish lung cancer patients from healthy controls, with areas under the curve (AUCs) of 0.8938 and 0.8476 (sensitivity = 87.50% and 72.73%, specificity = 83.87% and 80.60%) in two distinct validation sets. Furthermore, fragment profiles of cfDNA 5hmC datasets were first explored to develop a 48-feature fragmentation model with good performance (AUC = 0.9257 and 0.822, sensitivity = 87.50% and 78.79%, specificity = 80.65% and 76.12%) in the two validation sets. Another diagnostic model integrating 5hmC signals and fragment profiles improved AUC to 0.9432 and 0.8639 (sensitivity = 87.50% and 83.33%, specificity = 90.30% and 77.61%) in the two validation sets, better than models based on either of them alone and performing well in different stages and lung cancer subtypes. Several 5hmC markers were found to be associated with overall survival (OS) and disease-free survival (DFS) based on gene expression data from The Cancer Genome Atlas (TCGA). Conclusions Both the 5hmC signal and fragmentation profiles in 5hmC cfDNA data are sensitive and effective in lung cancer detection and could be incorporated into the diagnostic model to achieve good performance, promoting research focused on clinical diagnostic models based on cfDNA 5hmC data. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01233-7.
Collapse
|
31
|
Stapińska-Syniec A, Grabiec M, Rylski M, Acewicz A, Sobstyl M. DNA hydroxymethylation in high-grade gliomas. J Neurol Surg A Cent Eur Neurosurg 2021; 83:568-572. [PMID: 34872125 DOI: 10.1055/a-1713-7699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Background and Study Aims Since the new WHO classification of nervous system tumors (2016 revised 4th edition) has been released, gliomas are classified depending on molecular and genetic markers in connection with histopathology, instead of histopathology itself as it was in the previous classification. Over the last years, epigenetic analysis has taken on increased importance in the diagnosis and treatment of different cancers. Multiple studies confirmed that DNA methylation and hydroxymethylation play an important role in the regulation of gene expression during carcinogenesis. In this review, we aim to present the current state of knowledge on DNA hydroxymethylation in human high-grade gliomas (WHO grade III and IV). Results The correlation of DNA hydroxymethylation and survival in glioblastoma patients was evaluated by different studies. The majority of them showed that the expression of 5-hydroxymethylcytosine (5-hmC) and Ten-eleven translocation (TET) enzymes were significantly reduced, sometimes almost undetectable in high-grade gliomas in comparison with the control brain. A decreased level of 5-hmC was associated with poor survival in patients, but high expression of the TET3 enzyme was related to a better prognosis for GBM patients. This points to the relevance of DNA hydroxymethylation in molecular diagnostics of human gliomas, including survival estimation or differentiating patients in terms of response to the treatment. Conclusion Future studies may shed some more light on this epigenetic mechanism involved in the pathogenesis of human high-grade gliomas and help to develop new targeted therapies.
Collapse
Affiliation(s)
| | - Marta Grabiec
- Department of Clinical Cytology, Centrum Medyczne Ksztalcenia Podyplomowego, Warszawa, Poland
| | - Marcin Rylski
- Department of Clinical Cytology, Centrum Medyczne Ksztalcenia Podyplomowego, Warszawa, Poland.,Department of Neuroradiology, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| | - Albert Acewicz
- Department of Neuropathology, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| | - Michał Sobstyl
- Department of Neurosurgery, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| |
Collapse
|
32
|
Tissue-specific 5-hydroxymethylcytosine landscape of the human genome. Nat Commun 2021; 12:4249. [PMID: 34253716 PMCID: PMC8275684 DOI: 10.1038/s41467-021-24425-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark that regulates gene expression. Charting the landscape of 5hmC in human tissues is fundamental to understanding its regulatory functions. Here, we systematically profiled the whole-genome 5hmC landscape at single-base resolution for 19 types of human tissues. We found that 5hmC preferentially decorates gene bodies and outperforms gene body 5mC in reflecting gene expression. Approximately one-third of 5hmC peaks are tissue-specific differentially-hydroxymethylated regions (tsDhMRs), which are deposited in regions that potentially regulate the expression of nearby tissue-specific functional genes. In addition, tsDhMRs are enriched with tissue-specific transcription factors and may rewire tissue-specific gene expression networks. Moreover, tsDhMRs are associated with single-nucleotide polymorphisms identified by genome-wide association studies and are linked to tissue-specific phenotypes and diseases. Collectively, our results show the tissue-specific 5hmC landscape of the human genome and demonstrate that 5hmC serves as a fundamental regulatory element affecting tissue-specific gene expression programs and functions.
Collapse
|
33
|
Kim H, Kang Y, Li Y, Chen L, Lin L, Johnson ND, Zhu D, Robinson MH, McSwain L, Barwick BG, Yuan X, Liao X, Zhao J, Zhang Z, Shu Q, Chen J, Allen EG, Kenney AM, Castellino RC, Van Meir EG, Conneely KN, Vertino PM, Jin P, Li J. Ten-eleven translocation protein 1 modulates medulloblastoma progression. Genome Biol 2021; 22:125. [PMID: 33926529 PMCID: PMC8082834 DOI: 10.1186/s13059-021-02352-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant pediatric brain tumor that originates in the cerebellum and brainstem. Frequent somatic mutations and deregulated expression of epigenetic regulators in MB highlight the substantial role of epigenetic alterations. 5-hydroxymethylcytosine (5hmC) is a highly abundant cytosine modification in the developing cerebellum and is regulated by ten-eleven translocation (TET) enzymes. RESULTS We investigate the alterations of 5hmC and TET enzymes in MB and their significance to cerebellar cancer formation. We show total abundance of 5hmC is reduced in MB, but identify significant enrichment of MB-specific 5hmC marks at regulatory regions of genes implicated in stem-like properties and Nanog-binding motifs. While TET1 and TET2 levels are high in MBs, only knockout of Tet1 in the smoothened (SmoA1) mouse model attenuates uncontrolled proliferation, leading to a favorable prognosis. The pharmacological Tet1 inhibition reduces cell viability and platelet-derived growth factor signaling pathway-associated genes. CONCLUSIONS These results together suggest a potential key role of 5hmC and indicate an oncogenic nature for TET1 in MB tumorigenesis, suggesting it as a potential therapeutic target for MBs.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Li Chen
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Li Lin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas D Johnson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dan Zhu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - M Hope Robinson
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Leon McSwain
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinbin Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiang Shu
- The Children's Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianjun Chen
- Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, 91010, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna M Kenney
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Robert C Castellino
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Paula M Vertino
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Jian Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
34
|
Wu SL, Zhang X, Chang M, Huang C, Qian J, Li Q, Yuan F, Sun L, Yu X, Cui X, Jiang J, Cui M, Liu Y, Wu HW, Liang ZY, Wang X, Niu Y, Tong WM, Jin F. Genome-wide 5-hydroxymethylcytosine Profiling Analysis Identifies MAP7D1 as A Novel Regulator of Lymph Node Metastasis in Breast Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:64-79. [PMID: 33716151 PMCID: PMC8498923 DOI: 10.1016/j.gpb.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 11/28/2022]
Abstract
Although DNA 5-hydroxymethylcytosine (5hmC) is recognized as an important epigenetic mark in cancer, its precise role in lymph node metastasis remains elusive. In this study, we investigated how 5hmC associates with lymph node metastasis in breast cancer. Accompanying with high expression of TET1 and TET2 proteins, large numbers of genes in the metastasis-positive primary tumors exhibit higher 5hmC levels than those in the metastasis-negative primary tumors. In contrast, the TET protein expression and DNA 5hmC decrease significantly within the metastatic lesions in the lymph nodes compared to those in their matched primary tumors. Through genome-wide analysis of 8 sets of primary tumors, we identified 100 high-confidence metastasis-associated 5hmC signatures, and it is found that increased levels of DNA 5hmC and gene expression of MAP7D1 associate with high risk of lymph node metastasis. Furthermore, we demonstrate that MAP7D1, regulated by TET1, promotes tumor growth and metastasis. In conclusion, the dynamic 5hmC profiles during lymph node metastasis suggest a link between DNA 5hmC and lymph node metastasis. Meanwhile, the role of MAP7D1 in breast cancer progression suggests that the metastasis-associated 5hmC signatures are potential biomarkers to predict the risk for lymph node metastasis, which may serve as diagnostic and therapeutic targets for metastatic breast cancer.
Collapse
Affiliation(s)
- Shuang-Ling Wu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China; Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaoyi Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Mengqi Chang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Changcai Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jun Qian
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Fang Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Beijing 100005, China
| | - Xinmiao Yu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Xinmiao Cui
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Jiayi Jiang
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Mengyao Cui
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Ye Liu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Huan-Wen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences. Beijing 100005, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences. Beijing 100005, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China; Center for Experimental Animal Research, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Beijing 100005, China.
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
35
|
Rithidech KN, Jangiam W, Tungjai M, Reungpatthanaphong P, Gordon C, Honikel L. Early- and late-occurring damage in bone marrow cells of male CBA/Ca mice exposed whole-body to 1 GeV/n 48Ti ions. Int J Radiat Biol 2021; 97:517-528. [PMID: 33591845 DOI: 10.1080/09553002.2021.1884312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine the early- and late-occurring damage in the bone marrow (BM) and peripheral blood cells of male CBA/Ca mice after exposure to 0, 0.1, 0.25, or 0.5 Gy of 1 GeV/n titanium (48Ti) ions (one type of space radiation). METHOD We used the mouse in vivo blood-erythrocyte micronucleus (MN) assay for evaluating the cytogenetic effects of various doses of 1 GeV/n 48Ti ions. The MN assay was coupled with the characterization of epigenetic alterations (the levels of global 5-methylcytosine and 5-hydroxymethylcytosine) in DNA samples isolated from BM cells. These analyses were performed in samples collected at an early time-point (1 week) and a late time-point (6 months) post-irradiation. RESULTS Our results showed that 48Ti ions induced genomic instability in exposed mice. Significant dose-dependent loss of global 5-hydroxymethylcytosine was found but there were no changes in global 5-methylcytosine levels. CONCLUSION Since persistent genomic instability and loss of global 5-hydroxymethylcytosine are linked to cancer, our findings suggest that exposure to 48Ti ions may pose health risks.
Collapse
Affiliation(s)
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Paiboon Reungpatthanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
| | - Chris Gordon
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
36
|
Kato M, Onoyama I, Kawakami M, Yoshida S, Kawamura K, Kodama K, Hori E, Cui L, Matsumura Y, Yagi H, Asanoma K, Yahata H, Itakura A, Takeda S, Kato K. Downregulation of 5-hydroxymethylcytosine is associated with the progression of cervical intraepithelial neoplasia. PLoS One 2020; 15:e0241482. [PMID: 33141854 PMCID: PMC7608920 DOI: 10.1371/journal.pone.0241482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Around the world, cervical cancer is one of the most common neoplastic diseases among women, and the prognosis of patients in an advanced stage remains poor. To reduce the mortality rate of cervical cancer, early diagnosis and treatment are essential. DNA methylation is an important aspect of gene regulation, and aberrant DNA methylation contributes to carcinogenesis and cancer progression in various cancers. Although 5-methylcytosine (5mC) has been analyzed intensively, the function of 5-hydroxymethylcytosine (5hmC) has not been clarified. The purpose of our study was to identify the molecular biomarkers for early diagnosis of cervical tumors due to epigenetic alterations. To assess the clinical relevance of DNA methylation, we used immunohistochemistry (IHC) to characterize the level of 5hmC in 102 archived human cervical intraepithelial neoplasia (CIN) samples and cervical cancer specimens. The level of 5hmC was significantly decreased between CIN2 and CIN3. The progression of cervical tumors is caused by a reduction of TP53 and RB1 because of HPV infection. We observed that Tp53 and Rb1 were knocked down in mouse embryonic fibroblasts (MEF), a model of normal cells. The level of 5hmC was reduced in Tp53-knockdown cells, and the expression levels of DNA methyltransferase 1 (DNMT1) and ten-eleven translocation methylcytosine dioxygenase 1 (TET1) were induced. In contrast, there was no significant change in Rb1-knockdown cells. Mechanistically, we focused on apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) 3B (A3B) as a cause of 5hmC reduction after TP53 knockdown. In the human cell line HHUA with a wild-type TP53 gene, A3B was induced in TP53-knockdown cells, and A3B knockdown recovered 5hmC levels in TP53-knockdown cells. These data indicate that TP53 suppression leads to 5hmC reduction in part through A3B induction. Moreover, IHC showed that expression levels of A3B in CIN3 were significantly higher than those in both normal epithelium and in CIN2. In conclusion, 5hmC levels are decreased between CIN2 and CIN3 through the TP53-A3B pathway. Since A3B could impair genome stability, 5hmC loss might increase the chances of accumulating mutations and of progressing from CIN3 to cervical cancer. Thus, these epigenetic changes could predict whether CINs are progressing to cancer or disappearing.
Collapse
Affiliation(s)
- Masaya Kato
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, School of Medical Sciences, Juntendo University, Tokyo, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Yoshida
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kawamura
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, School of Medical Sciences, Juntendo University, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, School of Medical Sciences, Juntendo University, Tokyo, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Alberge JB, Magrangeas F, Wagner M, Denié S, Guérin-Charbonnel C, Campion L, Attal M, Avet-Loiseau H, Carell T, Moreau P, Minvielle S, Sérandour AA. DNA hydroxymethylation is associated with disease severity and persists at enhancers of oncogenic regions in multiple myeloma. Clin Epigenetics 2020; 12:163. [PMID: 33138842 PMCID: PMC7607866 DOI: 10.1186/s13148-020-00953-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Background Multiple myeloma (MM) is a heterogeneous plasma cell malignancy that remains challenging to cure. Global hypomethylation correlates with an aggressive phenotype of the disease, while hypermethylation is observed at particular regions of myeloma such as B cell-specific enhancers. The recently discovered active epigenetic mark 5-hydroxymethylCytosine (5hmC) may also play a role in tumor biology; however, little is known about its level and distribution in myeloma. In this study, we investigated the global level and the genomic localization of 5hmC in myeloma cells from 40 newly diagnosed patients, including paired relapses, and of control individuals.
Results Compared to normal plasma cells, we found global 5hmC levels to be lower in myeloma (P < 0.001). Higher levels of 5hmC were found in lower grades of the International Staging System prognostic index (P < 0.05) and tend to associate with a longer overall survival (P < 0.1). From the hydroxymethylome data, we observed that the remaining 5hmC is organized in large domains overlapping with active chromatin marks and chromatin opening. We discovered that 5hmC strongly persists at key oncogenic genes such as CCND1, CCND2 and MMSET and characterized domains that are specifically hydroxymethylated in myeloma subgroups. Novel 5hmC-enriched domains were found at putative enhancers of CCND2 and MYC in newly diagnosed patients. Conclusions 5hmC level is associated with clinical aspects of MM. Mapping 5hmC at a genome-wide level provides insights into the disease biology directly from genomic DNA, which makes it a potent mark to study epigenetics on large patient cohorts.
Collapse
Affiliation(s)
- Jean-Baptiste Alberge
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France
| | - Florence Magrangeas
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France.,Hematology Department, University Hospital, Nantes, France
| | - Mirko Wagner
- Ludwig Maximilian Universität München, Munich, Germany
| | - Soline Denié
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | - Catherine Guérin-Charbonnel
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France.,Institut de cancérologie de L'Ouest Site René-Gauducheau, Saint-Herblain, France
| | - Loïc Campion
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France.,Institut de cancérologie de L'Ouest Site René-Gauducheau, Saint-Herblain, France
| | - Michel Attal
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche Médicale U1037, Toulouse, France.,Unit for Genomics in Myeloma, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, Toulouse, France
| | - Hervé Avet-Loiseau
- Centre de Recherche en Cancérologie de Toulouse, Institut National de la Santé et de la Recherche Médicale U1037, Toulouse, France.,Unit for Genomics in Myeloma, Institut Universitaire du Cancer de Toulouse-Oncopole, University Hospital, Toulouse, France
| | - Thomas Carell
- Ludwig Maximilian Universität München, Munich, Germany
| | - Philippe Moreau
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France.,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France.,Hematology Department, University Hospital, Nantes, France
| | - Stéphane Minvielle
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France. .,Site de Recherche Intégrée Sur Le Cancer (SIRIC) ILIAD, INCA-DGOS-Inserm 12558, Nantes, France. .,Hematology Department, University Hospital, Nantes, France.
| | - Aurélien A Sérandour
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France. .,École Centrale de Nantes, Nantes, France.
| |
Collapse
|
38
|
Dey AS, Ayon NJ, Bhattacharya C, Gutheil WG, Mukherji M. Positive/negative ion-switching-based LC-MS/MS method for quantification of cytosine derivatives produced by the TET-family 5-methylcytosine dioxygenases. Biol Methods Protoc 2020; 5:bpaa019. [PMID: 33376805 PMCID: PMC7751006 DOI: 10.1093/biomethods/bpaa019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 01/07/2023] Open
Abstract
Cytosine methylation at carbon-5 (5mC) in DNA plays crucial roles in epigenetic transcriptional regulation during metazoan development. The iron (II), 2-oxoglutarate-dependent Ten-Eleven Translocation (TET)-family dioxygenases initiate active demethylation of 5mC. TET2 oxidizes 5mC in nucleic acids into 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine by iterative oxidation. Mutations in the TET2 gene are frequently detected in myeloid malignancies. Despite the established and emerging roles of TET oxygenases in health and diseases, in vitro characterization of these enzymes and their mutants is still in rudimentary stages. Here, we describe an improved positive/negative ion-switching-based liquid chromatography-tandem mass spectrometry (LC–MS/MS) method that can separate and quantify modified cytosine bases produced by TET-family 5-methylcytosine dioxygenases. This method will help in further elucidate the function of epigenetically important cytosine modifications. To the best of our knowledge, this is the first study reporting ion-switching-based LC–MS/MS method to analyse cytosine variants produced in TET catalysed reactions.
Collapse
Affiliation(s)
- Aninda Sundar Dey
- Division of Pharmacology & Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Navid J Ayon
- Division of Pharmacology & Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Chayan Bhattacharya
- Division of Pharmacology & Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - William G Gutheil
- Division of Pharmacology & Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Mridul Mukherji
- Division of Pharmacology & Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
39
|
Siref A, McCormack C, Huang Q, Lim W, Alkan S. Diminished expression of 5hmc in Reed-Sternberg cells in classical Hodgkin lymphoma is a common epigenetic marker. Leuk Res 2020; 96:106408. [PMID: 32659407 DOI: 10.1016/j.leukres.2020.106408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
Loss of the epigenetic marker 5-hydroxymethylcytosine (5hmC) has been demonstrated in a variety of neoplasms. Several recent studies have shown epigenetic alteration in Classical Hodgkin lymphoma (CHL), which may impact treatment. We demonstrate near universal depletion of 5hmC in the neoplastic Hodgkin Reed-Sternberg (H/RS) cells in all cases of CHL (49/49). We hypothesized that the addition of vitamin C-a cofactor for the ten-eleven translocation (TET) enzymes which oxidize 5-methylcytosine (5mC) to 5hmC - may replenish levels of 5hmC. The CHL cell line L428 was grown in optimal conditions and then subjected to vitamin C treatment, which demonstrated reduced cell viability as well as caspase activation and increased concentration of 5hmC. A more detailed understanding of the epigenetic landscape of CHL may help guide future therapies.
Collapse
Affiliation(s)
- Andrew Siref
- Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine, 8700 Beverly Blvd., Room #4711, Los Angeles, CA 90048-1804, United States
| | - Colin McCormack
- Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine, 8700 Beverly Blvd., Room #4711, Los Angeles, CA 90048-1804, United States
| | - Qin Huang
- Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine, 8700 Beverly Blvd., Room #4711, Los Angeles, CA 90048-1804, United States
| | - Washington Lim
- Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine, 8700 Beverly Blvd., Room #4711, Los Angeles, CA 90048-1804, United States
| | - Serhan Alkan
- Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine, 8700 Beverly Blvd., Room #4711, Los Angeles, CA 90048-1804, United States.
| |
Collapse
|
40
|
He Y, Jang HS, Xing X, Li D, Vasek MJ, Dougherty JD, Wang T. DeepH&M: Estimating single-CpG hydroxymethylation and methylation levels from enrichment and restriction enzyme sequencing methods. SCIENCE ADVANCES 2020; 6:6/27/eaba0521. [PMID: 32937429 PMCID: PMC7458459 DOI: 10.1126/sciadv.aba0521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/18/2020] [Indexed: 05/02/2023]
Abstract
Increased appreciation of 5-hydroxymethylcytosine (5hmC) as a stable epigenetic mark, which defines cell identity and disease progress, has engendered a need for cost-effective, but high-resolution, 5hmC mapping technology. Current enrichment-based technologies provide cheap but low-resolution and relative enrichment of 5hmC levels, while single-base resolution methods can be prohibitively expensive to scale up to large experiments. To address this problem, we developed a deep learning-based method, "DeepH&M," which integrates enrichment and restriction enzyme sequencing methods to simultaneously estimate absolute hydroxymethylation and methylation levels at single-CpG resolution. Using 7-week-old mouse cerebellum data for training the DeepH&M model, we demonstrated that the 5hmC and 5mC levels predicted by DeepH&M were in high concordance with whole-genome bisulfite-based approaches. The DeepH&M model can be applied to 7-week-old frontal cortex and 79-week-old cerebellum, revealing the robust generalizability of this method to other tissues from various biological time points.
Collapse
Affiliation(s)
- Yu He
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hyo Sik Jang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Vasek
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
41
|
Szabó B, Németh K, Mészáros K, Szücs N, Czirják S, Reiniger L, Rajnai H, Krencz I, Karászi K, Krokker L, Patócs A, Butz H. Demethylation Status of Somatic DNA Extracted From Pituitary Neuroendocrine Tumors Indicates Proliferative Behavior. J Clin Endocrinol Metab 2020; 105:5813957. [PMID: 32232382 DOI: 10.1210/clinem/dgaa156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/27/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cytosine intermediaries 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), epigenetic hallmarks, have never been investigated in pituitary neuroendocrine tumors (PitNET). OBJECTIVE To examine methylation-demethylation status of global deoxyribonucleic acid (DNA) in PitNET tissues and to assess its correlation with clinical and biological parameters. MATERIALS AND METHODS Altogether, 57 PitNET and 25 corresponding plasma samples were collected. 5mC and 5hmC were investigated using liquid chromatography-tandem mass spectrometry. Expression of DNA methyltransferase 1 (DNMT1); tet methylcytosine dioxygenase 1 through 3 (TET1-3); and ubiquitin-like, containing PHD and RING finger domains 1 and 2 (UHRF1-2) were measured by reverse transcription-polymerase chain reaction. Levels of 5hmC and UHRF1-2 were explored by immunohistochemistry. Effect of demethylating agent decitabine was tested on pituitary cell lines. RESULTS 5hmC/5mC ratio was higher in less differentiated PitNET samples. A negative correlation between Ki-67 proliferation index and 5hmC, 5hmC to 5mC ratio were revealed. Higher 5mC was observed in SF-1 + gonadotroph adenomas with a higher Ki-67 index. Expressions of TET2 and TET3 were significantly higher in adenomas with higher proliferation rate. UHRF1 showed gradually increased expression in higher proliferative adenoma samples, and a significant positive correlation was detected between UHRF2 expression and 5hmC level. Decitabine treatment significantly decreased 5mC and increased 5hmC levels in both cell lines, accompanied with decreased cell viability and proliferation. CONCLUSION The demethylation process negatively correlated with proliferation rate and the ratio of 5hmC to 5mC was higher in less differentiated adenomas. Therefore, epigenetic markers can be potential biomarkers for PitNET behavior. Altering the epigenome in adenoma cells by decitabine decreased proliferation, suggesting that this treatment might be a novel medical treatment for PitNET.
Collapse
Affiliation(s)
- Borbála Szabó
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Kinga Németh
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Katalin Mészáros
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Nikolette Szücs
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Sándor Czirják
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Lilla Reiniger
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Karászi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lilla Krokker
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology
| | - Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology
| |
Collapse
|
42
|
Zhang W, Klinkebiel D, Barger CJ, Pandey S, Guda C, Miller A, Akers SN, Odunsi K, Karpf AR. Global DNA Hypomethylation in Epithelial Ovarian Cancer: Passive Demethylation and Association with Genomic Instability. Cancers (Basel) 2020; 12:cancers12030764. [PMID: 32213861 PMCID: PMC7140107 DOI: 10.3390/cancers12030764] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
A hallmark of human cancer is global DNA hypomethylation (GDHO), but the mechanisms accounting for this defect and its pathological consequences have not been investigated in human epithelial ovarian cancer (EOC). In EOC, GDHO was associated with advanced disease and reduced overall and disease-free survival. GDHO (+) EOC tumors displayed a proliferative gene expression signature, including FOXM1 and CCNE1 overexpression. Furthermore, DNA hypomethylation in these tumors was enriched within genomic blocks (hypomethylated blocks) that overlapped late-replicating regions, lamina-associated domains, PRC2 binding sites, and the H3K27me3 histone mark. Increased proliferation coupled with hypomethylated blocks at late-replicating regions suggests a passive hypomethylation mechanism. This hypothesis was further supported by our observation that cytosine DNA methyltransferases (DNMTs) and UHRF1 showed significantly reduced expression in GDHO (+) EOC after normalization to canonical proliferation markers, including MKI67. Finally, GDHO (+) EOC tumors had elevated chromosomal instability (CIN), and copy number alterations (CNA) were enriched at the DNA hypomethylated blocks. Together, these findings implicate a passive DNA demethylation mechanism in ovarian cancer that is associated with genomic instability and poor prognosis.
Collapse
Affiliation(s)
- Wa Zhang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.Z.); (C.J.B.)
| | - David Klinkebiel
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.K.); (C.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carter J. Barger
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.Z.); (C.J.B.)
| | - Sanjit Pandey
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Chittibabu Guda
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.K.); (C.G.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Austin Miller
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Stacey N. Akers
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.A.); (K.O.)
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.A.); (K.O.)
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Adam R. Karpf
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.Z.); (C.J.B.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.K.); (C.G.)
- Correspondence: ; Tel.: +1-402-559-6115; Fax: +1-402-599-4651
| |
Collapse
|
43
|
Mahmood AM, Dunwell JM. Evidence for novel epigenetic marks within plants. AIMS GENETICS 2019; 6:70-87. [PMID: 31922011 PMCID: PMC6949463 DOI: 10.3934/genet.2019.4.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/07/2019] [Indexed: 12/21/2022]
Abstract
Variation in patterns of gene expression can result from modifications in the genome that occur without a change in the sequence of the DNA; such modifications include methylation of cytosine to generate 5-methylcytosine (5mC) resulting in the generation of heritable epimutation and novel epialleles. This type of non-sequence variation is called epigenetics. The enzymes responsible for generation of such DNA modifications in mammals are named DNA methyltransferases (DNMT) including DNMT1, DNMT2 and DNMT3. The later stages of oxidations to these modifications are catalyzed by Ten Eleven Translocation (TET) proteins, which contain catalytic domains belonging to the 2-oxoglutarate dependent dioxygenase family. In various mammalian cells/tissues including embryonic stem cells, cancer cells and brain tissues, it has been confirmed that these proteins are able to induce the stepwise oxidization of 5-methyl cytosine to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and finally 5-carboxylcytosine (5caC). Each stage from initial methylation until the end of the DNA demethylation process is considered as a specific epigenetic mark that may regulate gene expression. This review discusses controversial evidence for the presence of such oxidative products, particularly 5hmC, in various plant species. Whereas some reports suggest no evidence for enzymatic DNA demethylation, other reports suggest that the presence of oxidative products is followed by the active demethylation and indicate the contribution of possible TET-like proteins in the regulation of gene expression in plants. The review also summarizes the results obtained by expressing the human TET conserved catalytic domain in transgenic plants.
Collapse
Affiliation(s)
- Asaad M Mahmood
- Department of Biology, College of Education, University of Garmian, Kalar, KRG/Iraq
| | - Jim M Dunwell
- School of School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
44
|
Abstract
Abstract
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. This can be achieved by leveraging omics information for accurate molecular characterization of tumors. Tumor tissue biopsies are currently the main source of information for molecular profiling. However, biopsies are invasive and limited in resolving spatiotemporal heterogeneity in tumor tissues. Alternative non-invasive liquid biopsies can exploit patient’s body fluids to access multiple layers of tumor-specific biological information (genomes, epigenomes, transcriptomes, proteomes, metabolomes, circulating tumor cells, and exosomes). Analysis and integration of these large and diverse datasets using statistical and machine learning approaches can yield important insights into tumor biology and lead to discovery of new diagnostic, predictive, and prognostic biomarkers. Translation of these new diagnostic tools into standard clinical practice could transform oncology, as demonstrated by a number of liquid biopsy assays already entering clinical use. In this review, we highlight successes and challenges facing the rapidly evolving field of cancer biomarker research.
Lay Summary
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. The discovery of biomarkers for precision oncology has been accelerated by high-throughput experimental and computational methods, which can inform fine-grained characterization of tumors for clinical decision-making. Moreover, advances in the liquid biopsy field allow non-invasive sampling of patient’s body fluids with the aim of analyzing circulating biomarkers, obviating the need for invasive tumor tissue biopsies. In this review, we highlight successes and challenges facing the rapidly evolving field of liquid biopsy cancer biomarker research.
Collapse
|
45
|
Zeng C, Zhang Z, Wang J, Chiu BCH, Hou L, Zhang W. Application of the High-throughput TAB-Array for the Discovery of Novel 5-Hydroxymethylcytosine Biomarkers in Pancreatic Ductal Adenocarcinoma. EPIGENOMES 2019; 3:16. [PMID: 31413874 PMCID: PMC6693877 DOI: 10.3390/epigenomes3030016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The clinical outcomes of pancreatic ductal adenocarcinoma (PDAC) remain dismal, with an estimated five-year survival rate less than 5%. Early detection and prognostic approaches, including robust biomarkers for PDAC are critical for improving patient survival. Our goal was to explore the biomarker potential of 5-hydroxymethylcytosines (5hmC), an emerging epigenetic marker with a distinct role in cancer pathobiology, yet under-investigated due largely to technical constraints, for PDAC. We used the TAB-Array assay, a state-of-the-art technology to directly profile 5hmC at single base resolution with the Illumina EPIC array (~850,000 cytosine modification sites) in 17 pairs of tumor/adjacent tissue samples from US patients collected at the University of Chicago Medical Center. The TAB-Array data were analyzed to explore the genomic distribution of 5hmC and evaluate whether 5hmC markers were differentially modified between tumors and adjacent tissues. We demonstrated distinctive distribution patterns of 5hmC in tissue samples from PDAC patients relative to gene regulatory elements (e.g., histone modification marks for enhancers), indicating their potential gene regulatory relevance. Substantial differences in 5hmC-modified CpG sites, involving those genes related to cancer pathobiology, were detected between tumors and adjacent tissues. The detected 5hmC-contaning marker genes also showed prognostic value for patient survival in the US patients with PDAC from the Cancer Genome Atlas Project. This study demonstrated the technical feasibility of the TAB-Array approach in cancer biomarker discovery and the biomarker potential of 5hmC for PDAC. Future studies using tissues and/or liquid biopsies may include 5hmC as potential epigenetic biomarker targets for PDAC.
Collapse
Affiliation(s)
- Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jun Wang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian C-H Chiu
- Department of Public Health Sciences, the University of Chicago, Chicago, IL 60637, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
46
|
Misawa K, Yamada S, Mima M, Nakagawa T, Kurokawa T, Imai A, Mochizuki D, Morita K, Ishikawa R, Endo S, Misawa Y. 5-Hydroxymethylcytosine and ten-eleven translocation dioxygenases in head and neck carcinoma. J Cancer 2019; 10:5306-5314. [PMID: 31602281 PMCID: PMC6775623 DOI: 10.7150/jca.34806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Ten-eleven translocation (TET) enzymes are implicated in DNA demethylation through dioxygenase activity, which converts 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC). However, the specific roles of TET enzymes and 5-hmC levels in head and neck squamous cell carcinoma (HNSCC) have not yet been evaluated. In this study, we analyzed 5-hmC levels and TET mRNA expression in a well-characterized dataset of 117 matched pairs of HNSCC tissues and normal tissues. 5-hmC levels and TET mRNA expression were examined via enzyme-linked immunosorbent assay and quantitative real-time PCR, respectively. 5-hmC levels were evaluated according to various clinical characteristics and prognostic implications. Notably, we found that 5-hmC levels were significantly correlated with tumor stage (P = 0.032) and recurrence (P = 0.018). Univariate analysis revealed that low levels of 5-hmC were correlated with poor disease-free survival (DFS; log-rank test, P = 0.038). The expression of TET family genes was not associated with outcomes. In multivariate analysis, low levels of 5-hmC were evaluated as a significant independent prognostic factor of DFS (hazard ratio: 2.352, 95% confidence interval: 1.136-4.896; P = 0.021). Taken together, our findings showed that reduction of TET family gene expression and subsequent low levels of 5-hmC may affect the development of HNSCC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kotaro Morita
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shiori Endo
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
47
|
Xiong J, Ye TT, Ma CJ, Cheng QY, Yuan BF, Feng YQ. N 6-Hydroxymethyladenine: a hydroxylation derivative of N6-methyladenine in genomic DNA of mammals. Nucleic Acids Res 2019; 47:1268-1277. [PMID: 30517733 PMCID: PMC6379677 DOI: 10.1093/nar/gky1218] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/04/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022] Open
Abstract
In addition to DNA cytosine methylation (5-methyl-2′-deoxycytidine, m5dC), DNA adenine methylation (N6-methyl-2′-deoxyadenosine, m6dA) is another DNA modification that has been discovered in eukaryotes. Recent studies demonstrated that the content and distribution of m6dA in genomic DNA of vertebrates and mammals exhibit dynamic regulation, indicating m6dA may function as a potential epigenetic mark in DNA of eukaryotes besides m5dC. Whether m6dA undergoes the further oxidation in a similar way to m5dC remains elusive. Here, we reported the existence of a new DNA modification, N6-hydroxymethyl-2′-deoxyadenosine (hm6dA), in genomic DNA of mammalian cells and tissues. We found that hm6dA can be formed from the hydroxylation of m6dA by the Fe2+- and 2-oxoglutarate-dependent ALKBH1 protein in genomic DNA of mammals. In addition, the content of hm6dA exhibited significant increase in lung carcinoma tissues. The increased expression of ALKBH1 in lung carcinoma tissues may contribute to the increase of hm6dA in DNA. Taken together, our study reported the existence and formation of hm6dA in genomic DNA of mammals.
Collapse
Affiliation(s)
- Jun Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Tian-Tian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Cheng-Jie Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Qing-Yun Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
48
|
Okamura K, Nakabayashi K, Kawai T, Suzuki T, Sano T, Hata K, Nohara K. DNA methylation changes involved in the tumor increase in F2 males born to gestationally arsenite-exposed F1 male mice. Cancer Sci 2019; 110:2629-2642. [PMID: 31215104 PMCID: PMC6676110 DOI: 10.1111/cas.14104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 01/08/2023] Open
Abstract
Multigenerational adverse effects from the environment such as nutrition and chemicals are among important concerns in environmental health issues. Previously, we have found that arsenite exposure of only F0 females during their pregnancy increases hepatic tumors in the F2 males in C3H mice. In the current study, we investigated the association of DNA methylation with the hepatic tumor increase in the F2 males of the arsenite group. Reduced-representation bisulfite sequencing analysis newly identified that DNA methylation levels of regions around the transcriptional start sites of Tmem54 and Cd74 were decreased and the expression of these genes were significantly increased in the hepatic tumors of F2 males of the arsenite group. The associations between DNA methylation in these regions and gene expression changes were confirmed by treatment of murine hepatoma cell lines and hepatic stellate cell line with 5-aza-2'-deoxycytidine. Overexpression of Cd74 in Hepa1c1c7 cells increased Trib3 expression and suppressed the expression of tumor suppressor genes Id3 and Atoh8. Human database analysis using the Cancer Genome Atlas indicated that TMEM54, CD74, and TRIB3 were significantly increased and that ATOH8 was decreased in hepatocellular carcinoma. The data also showed that high expression of TMEM54 and TRIB3 and low expression of ATOH8 were associated with poor survival. These results suggested that an increase in Tmem54 and Cd74 expression via DNA methylation reduction was involved in the tumor increase in the F2 male offspring by gestational arsenite exposure of F0 females. This study also suggested that genes downstream of Cd74 were involved in tumorigenesis.
Collapse
Affiliation(s)
- Kazuyuki Okamura
- Center for Health and Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Kazuhiko Nakabayashi
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentSetagaya, TokyoJapan
| | - Tomoko Kawai
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentSetagaya, TokyoJapan
| | - Takehiro Suzuki
- Center for Health and Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Tomoharu Sano
- Center for Environmental Measurement and AnalysisNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Kenichiro Hata
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentSetagaya, TokyoJapan
| | - Keiko Nohara
- Center for Health and Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaIbarakiJapan
| |
Collapse
|
49
|
5-hydroxymethylcytosine Marks Mammalian Origins Acting as a Barrier to Replication. Sci Rep 2019; 9:11065. [PMID: 31363131 PMCID: PMC6667497 DOI: 10.1038/s41598-019-47528-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
In most mammalian cells, DNA replication occurs once, and only once between cell divisions. Replication initiation is a highly regulated process with redundant mechanisms that prevent errant initiation events. In lower eukaryotes, replication is initiated from a defined consensus sequence, whereas a consensus sequence delineating mammalian origin of replication has not been identified. Here we show that 5-hydroxymethylcytosine (5hmC) is present at mammalian replication origins. Our data support the hypothesis that 5hmC has a role in cell cycle regulation. We show that 5hmC level is inversely proportional to proliferation; indeed, 5hmC negatively influences cell division by increasing the time a cell resides in G1. Our data suggest that 5hmC recruits replication-licensing factors, then is removed prior to or during origin firing. Later we propose that TET2, the enzyme catalyzing 5mC to 5hmC conversion, acts as barrier to rereplication. In a broader context, our results significantly advance the understating of 5hmC involvement in cell proliferation and disease states.
Collapse
|
50
|
A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci Rep 2019; 9:7466. [PMID: 31097753 PMCID: PMC6522494 DOI: 10.1038/s41598-019-43922-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/02/2019] [Indexed: 12/30/2022] Open
Abstract
The normal mammary microenvironment can suppress tumorigenesis and redirect cancer cells to adopt a normal mammary epithelial cell fate in vivo. Understanding of this phenomenon offers great promise for novel treatment and detection strategies in cancer, but current model systems make mechanistic insights into the process difficult. We have recently described a low-cost bioprinting platform designed to be accessible for basic cell biology laboratories. Here we report the use of this system for the study of tumorigenesis and microenvironmental redirection of breast cancer cells. We show our bioprinter significantly increases tumoroid formation in 3D collagen gels and allows for precise generation of tumoroid arrays. We also demonstrate that we can mimic published in vivo findings by co-printing cancer cells along with normal mammary epithelial cells to generate chimeric organoids. These chimeric organoids contain cancer cells that take part in normal luminal formation. Furthermore, we show for the first time that cancer cells within chimeric structures have a significant increase in 5-hydroxymethylcytosine levels as compared to bioprinted tumoroids. These results demonstrate the capacity of our 3D bioprinting platform to study tumorigenesis and microenvironmental control of breast cancer and highlight a novel mechanistic insight into the process of microenvironmental control of cancer.
Collapse
|