1
|
Tissink M, Radolinski J, Reinthaler D, Venier S, Pötsch EM, Schaumberger A, Bahn M. Individual Versus Combined Effects of Warming, Elevated CO 2 and Drought on Grassland Water Uptake and Fine Root Traits. PLANT, CELL & ENVIRONMENT 2025; 48:2083-2098. [PMID: 39552504 PMCID: PMC11788968 DOI: 10.1111/pce.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
Increasing warming, atmospheric CO2 and drought are expected to change the water dynamics of terrestrial ecosystems. Yet, limited knowledge exists about how the interactive effects of these factors will affect grassland water uptake, and whether adaptations in fine root production and traits will alter water uptake capacity. In a managed C3 grassland, we tested the individual and combined effects of warming (+3°C), elevated CO2 (eCO2; +300 ppm) and drought on root water uptake (RWU) as well as on fine root production, trait adaptation, and fine root-to-shoot production ratios, and their relationships with RWU capacity. High temperatures, amplified by warming, exacerbated RWU reductions under drought, with negligible water-sparing effects from eCO2. Drought, both under current and future (warming, eCO2) climatic conditions, shifted RWU towards deeper soil layers. Overall, RWU capacity related positively to fine root production and specific root length (SRL), and negatively to mean root diameters. Warming effects on traits (reduced SRL, increased diameter) and the ratio of fine root-to-shoot production (increased) were offset by eCO2. We conclude that under warmer future conditions, irrespective of shifts in water sourcing, it is particularly hot droughts that will lead to increasingly severe restrictions of grassland water dynamics.
Collapse
Affiliation(s)
- Maud Tissink
- Department of EcologyUniversität InnsbruckInnsbruckAustria
| | - Jesse Radolinski
- Department of EcologyUniversität InnsbruckInnsbruckAustria
- Department of Environmental Science and TechnologyUniversity of MarylandCollege ParkMarylandUSA
| | | | - Sarah Venier
- Department of EcologyUniversität InnsbruckInnsbruckAustria
| | - Erich M. Pötsch
- Agricultural Research and Education Centre (AREC), Raumberg‐GumpensteinIrdningAustria
| | - Andreas Schaumberger
- Agricultural Research and Education Centre (AREC), Raumberg‐GumpensteinIrdningAustria
| | - Michael Bahn
- Department of EcologyUniversität InnsbruckInnsbruckAustria
| |
Collapse
|
2
|
Furio RN, Fernández AC, Albornoz PL, Yonny ME, Toscano Adamo ML, Ruiz AI, Nazareno MA, Coll Y, Díaz-Ricci JC, Salazar SM. Mitigation strategy of saline stress in Fragaria vesca using natural and synthetic brassinosteroids as biostimulants. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23327. [PMID: 39413063 DOI: 10.1071/fp23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Bassinosteroids (BRs) can induce plant defence responses and promote plant growth. In this work, we evaluated the effect of a natural (EP24) and a synthetic (BB16) brassinosteroid on strawberry (Fragaria vesca ) plants exposed to saline stress. Treated plants showed higher shoot dry weight and root growth compared to untreated control plants. In BR-treated plants, crown diameters increased 66% and 40%, leaf area 148% and 112%, relative water content in leaves 84% and 61%, and SPAD values 24% and 26%, in response to BB16 and EP24, respectively. A marked stomatal closure, increased leaflet lignification, and a decrease in cortex thickness, root diameter and stele radius were also observed in treated plants. Treatments also reduces stress-induced damage, as plants showed a 34% decrease in malondialdehyde content and a lower proline content compared to control plants. A 22% and 15% increase in ascorbate peroxidase and total phenolic compound activities was observed in response to BB16, and a 24% increase in total flavonoid compound in response to both BRs, under stress conditions. These results allow us to propose the use of BRs as an environmentally safe crop management strategy to overcome salinity situations that severely affect crop yield.
Collapse
Affiliation(s)
- Ramiro N Furio
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Ana C Fernández
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Patricia L Albornoz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina; and Cátedra de Anatomía Vegetal, Fac. Ciencias Naturales e IML UNT, Tucumán CP4000, Argentina
| | - Melisa Evangelina Yonny
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - María Luisa Toscano Adamo
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Ana I Ruiz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina
| | - Mónica Azucena Nazareno
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Yamilet Coll
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana, Vedado CP10400, Cuba
| | - Juan C Díaz-Ricci
- Instituto de Química Biológica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, and Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán CPT4000ILI, Argentina
| | - Sergio M Salazar
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina; and Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán CP4000ACS, Argentina
| |
Collapse
|
3
|
Chandregowda MH, Tjoelker MG, Pendall E, Zhang H, Churchill AC, Power SA. Belowground carbon allocation, root trait plasticity, and productivity during drought and warming in a pasture grass. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2127-2145. [PMID: 36640126 PMCID: PMC10084810 DOI: 10.1093/jxb/erad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.
Collapse
Affiliation(s)
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Amber C Churchill
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Ecology, Evolution and Behaviour, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
4
|
Mohammed AE, Alotaibi MO, Elobeid M. Interactive influence of elevated CO 2 and arbuscular mycorrhizal fungi on sucrose and coumarin metabolism in Ammi majus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:45-54. [PMID: 35660776 DOI: 10.1016/j.plaphy.2022.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The elevated level of CO2 (eCO2) and arbuscular mycorrhizal fungi (AMF) have been known as successful eco-friendly agents for plant growth and development as well as quality enhancers. The current investigation was designed to study the influence of eCO2 (620 μmol CO2 mol-1 air) and AMF on sucrose and phenylpropanoid metabolism, including coumarins, the most important bioactive metabolite in Ammi majus. eCO2 and AMF were applied, and different parameters have been assessed in A. majus such as changes in mycorrhizal colonization, plant biomass production, photosynthesis, and levels of N, P, and Ca besides the key metabolites and enzymes in sucrose and coumarins metabolic pathways. The present outcomes revealed that eCO2 and AMF individually or combined enhanced the plant biomass and photosynthesis as well as nutrient concentrations. Furthermore, the levels of sucrose, soluble sugars, glucose, fructose, and the activities of some key enzymes in their metabolism besides phenylpropanoids metabolites in shoot and root of A. majus have been enhanced by eCO2 and AMF especially when combined. Moreover, upregulation of sucrose is linked to phenylpropanoids metabolic pathway via upregulation of phenylalanine ammonia-lyase activity suggesting high coumarin biosynthesis. Generally, the synergistic effect of both treatments was noted for most of the investigated parameters compared to the individual effect. It could be concluded that the combined application of eCO2 and AMF affects A. majus global metabolism and induces accumulation of phyto-molecules, coumarin, which might improve its medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Mudawi Elobeid
- Department of silviculture, Faculty of Forestry, University of Khartoum, Shambat, Sudan
| |
Collapse
|
5
|
Broderick CM, Wilkins K, Smith MD, Blair JM. Climate legacies determine grassland responses to future rainfall regimes. GLOBAL CHANGE BIOLOGY 2022; 28:2639-2656. [PMID: 35015919 DOI: 10.1111/gcb.16084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Climate variability and periodic droughts have complex effects on carbon (C) fluxes, with uncertain implications for ecosystem C balance under a changing climate. Responses to climate change can be modulated by persistent effects of climate history on plant communities, soil microbial activity, and nutrient cycling (i.e., legacies). To assess how legacies of past precipitation regimes influence tallgrass prairie C cycling under new precipitation regimes, we modified a long-term irrigation experiment that simulated a wetter climate for >25 years. We reversed irrigated and control (ambient precipitation) treatments in some plots and imposed an experimental drought in plots with a history of irrigation or ambient precipitation to assess how climate legacies affect aboveground net primary productivity (ANPP), soil respiration, and selected soil C pools. Legacy effects of elevated precipitation (irrigation) included higher C fluxes and altered labile soil C pools, and in some cases altered sensitivity to new climate treatments. Indeed, decades of irrigation reduced the sensitivity of both ANPP and soil respiration to drought compared with controls. Positive legacy effects of irrigation on ANPP persisted for at least 3 years following treatment reversal, were apparent in both wet and dry years, and were associated with altered plant functional composition. In contrast, legacy effects on soil respiration were comparatively short-lived and did not manifest under natural or experimentally-imposed "wet years," suggesting that legacy effects on CO2 efflux are contingent on current conditions. Although total soil C remained similar across treatments, long-term irrigation increased labile soil C and the sensitivity of microbial biomass C to drought. Importantly, the magnitude of legacy effects for all response variables varied with topography, suggesting that landscape can modulate the strength and direction of climate legacies. Our results demonstrate the role of climate history as an important determinant of terrestrial C cycling responses to future climate changes.
Collapse
Affiliation(s)
| | - Kate Wilkins
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - John M Blair
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
6
|
Harman-Ware AE, Sparks S, Addison B, Kalluri UC. Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:75. [PMID: 33743797 PMCID: PMC7981814 DOI: 10.1186/s13068-021-01892-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/27/2021] [Indexed: 05/27/2023]
Abstract
Suberin is a hydrophobic biopolymer of significance in the production of biomass-derived materials and in biogeochemical cycling in terrestrial ecosystems. Here, we describe suberin structure and biosynthesis, and its importance in biological (i.e., plant bark and roots), ecological (soil organic carbon) and economic (biomass conversion to bioproducts) contexts. Furthermore, we highlight the genomics and analytical approaches currently available and explore opportunities for future technologies to study suberin in quantitative and/or high-throughput platforms in bioenergy crops. A greater understanding of suberin structure and production in lignocellulosic biomass can be leveraged to improve representation in life cycle analysis and techno-economic analysis models and enable performance improvements in plant biosystems as well as informed crop system management to achieve economic and environmental co-benefits.
Collapse
Affiliation(s)
- Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Samuel Sparks
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Udaya C Kalluri
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
7
|
Terletskaya NV, Lee TE, Altayeva NA, Kudrina NO, Blavachinskaya IV, Erezhetova U. Some Mechanisms Modulating the Root Growth of Various Wheat Species under Osmotic-Stress Conditions. PLANTS 2020; 9:plants9111545. [PMID: 33187339 PMCID: PMC7696822 DOI: 10.3390/plants9111545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
The role of the root in water supply and plant viability is especially important if plants are subjected to stress at the juvenile stage. This article describes the study of morphophysiological and cytological responses, as well as elements of the anatomical structure of primary roots of three wheat species, Triticum monococcum L., Triticum dicoccum Shuebl., and Triticum aestivum L., to osmotic stress. It was shown that the degree of plasticity of root morphology in water deficit affected the growth and development of aboveground organs. It was found that in conditions of osmotic stress, the anatomical root modulations were species-specific. In control conditions the increase in absolute values of root diameter was reduced with the increase in the ploidy of wheat species. Species-specific cytological responses to water deficit of apical meristem cells were also shown. The development of plasmolysis, interpreted as a symptom of reduced viability apical meristem cells, was revealed. A significant increase in enzymatic activity of superoxide dismutase under osmotic stress was found to be one of the mechanisms that could facilitate root elongation in adverse conditions. The tetraploid species T. dicoccum Shuebl. were confirmed as a source of traits of drought tolerant primary root system for crosses with wheat cultivars.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan; (I.V.B.); (U.E.)
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, Almaty 050040, Kazakhstan;
- Correspondence: (N.V.T.); (T.E.L.); (N.O.K.); Tel.: +7-(777)-2993335 (N.V.T.); +7-(707)-6844924 (T.E.L.); +7-(705)-1811440 (N.O.K.)
| | - Tamara E. Lee
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, Almaty 050040, Kazakhstan;
- Correspondence: (N.V.T.); (T.E.L.); (N.O.K.); Tel.: +7-(777)-2993335 (N.V.T.); +7-(707)-6844924 (T.E.L.); +7-(705)-1811440 (N.O.K.)
| | - Nazira A. Altayeva
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, Almaty 050040, Kazakhstan;
| | - Nataliya O. Kudrina
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan; (I.V.B.); (U.E.)
- Central Laboratory for Biocontrol, Certification and Preclinical Trials, Al-Farabi av., 93, Almaty 050040, Kazakhstan
- Correspondence: (N.V.T.); (T.E.L.); (N.O.K.); Tel.: +7-(777)-2993335 (N.V.T.); +7-(707)-6844924 (T.E.L.); +7-(705)-1811440 (N.O.K.)
| | - Irina V. Blavachinskaya
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan; (I.V.B.); (U.E.)
- Central Laboratory for Biocontrol, Certification and Preclinical Trials, Al-Farabi av., 93, Almaty 050040, Kazakhstan
| | - Ulzhan Erezhetova
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan; (I.V.B.); (U.E.)
| |
Collapse
|
8
|
Wang P, Huang K, Hu S. Distinct fine-root responses to precipitation changes in herbaceous and woody plants: a meta-analysis. THE NEW PHYTOLOGIST 2020; 225:1491-1499. [PMID: 31610024 DOI: 10.1111/nph.16266] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Precipitation is one of the most important factors that determine productivity of terrestrial ecosystems. Precipitation across the globe is predicted to change more intensively under future climate change scenarios, but the resulting impact on plant roots remains unclear. Based on 154 observations from experiments in which precipitation was manipulated in the field and root biomass was measured, we investigated responses in fine-root biomass of herbaceous and woody plants to alterations in precipitation. We found that root biomass of herbaceous and woody plants responded differently to precipitation change. In particular, precipitation increase consistently enhanced fine-root biomass of woody plants but had variable effects on herb roots in arid and semi-arid ecosystems. In contrast, precipitation decrease reduced root biomass of herbaceous plants but not woody plants. In addition, with precipitation alteration, the magnitude of root responses was greater in dry areas than in wet areas. Together, these results indicate that herbaceous and woody plants have different rooting strategies to cope with altered precipitation regimes, particularly in water-limited ecosystems. These findings suggest that root responses to precipitation change may critically influence root productivity and soil carbon dynamics under future climate change scenarios.
Collapse
Affiliation(s)
- Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Kailing Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
9
|
Maček I, Clark DR, Šibanc N, Moser G, Vodnik D, Müller C, Dumbrell AJ. Impacts of long-term elevated atmospheric CO 2 concentrations on communities of arbuscular mycorrhizal fungi. Mol Ecol 2019; 28:3445-3458. [PMID: 31233651 PMCID: PMC6851679 DOI: 10.1111/mec.15160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
The ecological impacts of long-term elevated atmospheric CO2 (eCO2 ) levels on soil microbiota remain largely unknown. This is particularly true for the arbuscular mycorrhizal (AM) fungi, which form mutualistic associations with over two-thirds of terrestrial plant species and are entirely dependent on their plant hosts for carbon. Here, we use high-resolution amplicon sequencing (Illumina, HiSeq) to quantify the response of AM fungal communities to the longest running (>15 years) free-air carbon dioxide enrichment (FACE) experiment in the Northern Hemisphere (GiFACE); providing the first evaluation of these responses from old-growth (>100 years) semi-natural grasslands subjected to a 20% increase in atmospheric CO2 . eCO2 significantly increased AM fungal richness but had a less-pronounced impact on the composition of their communities. However, while broader changes in community composition were not observed, more subtle responses of specific AM fungal taxa were with populations both increasing and decreasing in abundance in response to eCO2 . Most population-level responses to eCO2 were not consistent through time, with a significant interaction between sampling time and eCO2 treatment being observed. This suggests that the temporal dynamics of AM fungal populations may be disturbed by anthropogenic stressors. As AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in population densities in response to eCO2 may significantly impact terrestrial plant communities and their productivity. Thus, predictions regarding future terrestrial ecosystems must consider changes both aboveground and belowground, but avoid relying on broad-scale community-level responses of soil microbes observed on single occasions.
Collapse
Affiliation(s)
- Irena Maček
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT)University of PrimorskaKoperSlovenia
| | - Dave R. Clark
- School of Biological SciencesUniversity of EssexColchesterUK
| | - Nataša Šibanc
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT)University of PrimorskaKoperSlovenia
- Slovenian Forestry InstituteLjubljanaSlovenia
| | - Gerald Moser
- Department of Plant EcologyJustus‐Liebig University GiessenGiessenGermany
| | - Dominik Vodnik
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Christoph Müller
- Department of Plant EcologyJustus‐Liebig University GiessenGiessenGermany
- School of Biology and Environmental Science and Earth InstituteUniversity College DublinDublinIreland
| | | |
Collapse
|
10
|
Andresen LC, Yuan N, Seibert R, Moser G, Kammann CI, Luterbacher J, Erbs M, Müller C. Biomass responses in a temperate European grassland through 17 years of elevated CO 2. GLOBAL CHANGE BIOLOGY 2018; 24:3875-3885. [PMID: 28370878 DOI: 10.1111/gcb.13705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 05/15/2023]
Abstract
Future increase in atmospheric CO2 concentrations will potentially enhance grassland biomass production and shift the functional group composition with consequences for ecosystem functioning. In the "GiFACE" experiment (Giessen Free Air Carbon dioxide Enrichment), fertilized grassland plots were fumigated with elevated CO2 (eCO2 ) year-round during daylight hours since 1998, at a level of +20% relative to ambient concentrations (in 1998, aCO2 was 364 ppm and eCO2 399 ppm; in 2014, aCO2 was 397 ppm and eCO2 518 ppm). Harvests were conducted twice annually through 23 years including 17 years with eCO2 (1998 to 2014). Biomass consisted of C3 grasses and forbs, with a small proportion of legumes. The total aboveground biomass (TAB) was significantly increased under eCO2 (p = .045 and .025, at first and second harvest). The dominant plant functional group grasses responded positively at the start, but for forbs, the effect of eCO2 started out as a negative response. The increase in TAB in response to eCO2 was approximately 15% during the period from 2006 to 2014, suggesting that there was no attenuation of eCO2 effects over time, tentatively a consequence of the fertilization management. Biomass and soil moisture responses were closely linked. The soil moisture surplus (c. 3%) in eCO2 manifested in the latter years was associated with a positive biomass response of both functional groups. The direction of the biomass response of the functional group forbs changed over the experimental duration, intensified by extreme weather conditions, pointing to the need of long-term field studies for obtaining reliable responses of perennial ecosystems to eCO2 and as a basis for model development.
Collapse
Affiliation(s)
- Louise C Andresen
- Department of Plant Ecology, Justus Liebig University of Giessen, Giessen, Germany
| | - Naiming Yuan
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Giessen, Germany
| | - Ruben Seibert
- Department of Plant Ecology, Justus Liebig University of Giessen, Giessen, Germany
| | - Gerald Moser
- Department of Plant Ecology, Justus Liebig University of Giessen, Giessen, Germany
| | - Claudia I Kammann
- Department of Plant Ecology, Justus Liebig University of Giessen, Giessen, Germany
- Department of Soil Science and Plant Nutrition, WG Climate Change Research for Special Crops, Hochschule Geisenheim University, Geisenheim, Germany
| | - Jürg Luterbacher
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University of Giessen, Giessen, Germany
- Centre for International Development and Environmental Research, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Erbs
- Department of Plant Ecology, Justus Liebig University of Giessen, Giessen, Germany
| | - Christoph Müller
- Department of Plant Ecology, Justus Liebig University of Giessen, Giessen, Germany
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Carrillo Y, Dijkstra F, LeCain D, Blumenthal D, Pendall E. Elevated CO2
and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecol Lett 2018; 21:1639-1648. [DOI: 10.1111/ele.13140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/30/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yolima Carrillo
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith 2570 NSW Australia
| | - Feike Dijkstra
- Centre for Carbon, Water and Food; School of Life and Environmental Sciences; The University of Sydney; Camden 2570 NSW Australia
| | - Dan LeCain
- Rangeland Resources & Systems Research Unit; Agricultural Research Service; United States Department of Agriculture; Fort Collins Colorado 80526 USA
| | - Dana Blumenthal
- Rangeland Resources & Systems Research Unit; Agricultural Research Service; United States Department of Agriculture; Fort Collins Colorado 80526 USA
| | - Elise Pendall
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith 2570 NSW Australia
| |
Collapse
|
12
|
Yu H, Deng Y, He Z, Van Nostrand JD, Wang S, Jin D, Wang A, Wu L, Wang D, Tai X, Zhou J. Elevated CO 2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers. Front Microbiol 2018; 9:1790. [PMID: 30154760 PMCID: PMC6102351 DOI: 10.3389/fmicb.2018.01790] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
As two central issues of global climate change, the continuous increase of both atmospheric CO2 concentrations and global temperature has profound effects on various terrestrial ecosystems. Microbial communities play pivotal roles in these ecosystems by responding to environmental changes through regulation of soil biogeochemical processes. However, little is known about the effect of elevated CO2 (eCO2) and global warming on soil microbial communities, especially in semiarid zones. We used a functional gene array (GeoChip 3.0) to measure the functional gene composition, structure, and metabolic potential of soil microbial communities under warming, eCO2, and eCO2 + warming conditions in a semiarid grassland. The results showed that the composition and structure of microbial communities was dramatically altered by multiple climate factors, including elevated CO2 and increased temperature. Key functional genes, those involved in carbon (C) degradation and fixation, methane metabolism, nitrogen (N) fixation, denitrification and N mineralization, were all stimulated under eCO2, while those genes involved in denitrification and ammonification were inhibited under warming alone. The interaction effects of eCO2 and warming on soil functional processes were similar to eCO2 alone, whereas some genes involved in recalcitrant C degradation showed no significant changes. In addition, canonical correspondence analysis and Mantel test results suggested that NO3-N and moisture significantly correlated with variations in microbial functional genes. Overall, this study revealed the possible feedback of soil microbial communities to multiple climate change factors by the suppression of N cycling under warming, and enhancement of C and N cycling processes under either eCO2 alone or in interaction with warming. These findings may enhance our understanding of semiarid grassland ecosystem responses to integrated factors of global climate change.
Collapse
Affiliation(s)
- Hao Yu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhili He
- Environmental Microbiome Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, The University of Oklahoma, Norman, OK, United States
| | - Shang Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Liyou Wu
- Institute for Environmental Genomics, The University of Oklahoma, Norman, OK, United States
| | - Daohan Wang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Xin Tai
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, The University of Oklahoma, Norman, OK, United States.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Suseela V, Tharayil N. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry. GLOBAL CHANGE BIOLOGY 2018; 24:1428-1451. [PMID: 28986956 DOI: 10.1111/gcb.13923] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
Decomposition of plant litter is a fundamental ecosystem process that can act as a feedback to climate change by simultaneously influencing both the productivity of ecosystems and the flux of carbon dioxide from the soil. The influence of climate on decomposition from a postsenescence perspective is relatively well known; in particular, climate is known to regulate the rate of litter decomposition via its direct influence on the reaction kinetics and microbial physiology on processes downstream of tissue senescence. Climate can alter plant metabolism during the formative stage of tissues and could shape the final chemical composition of plant litter that is available for decomposition, and thus indirectly influence decomposition; however, these indirect effects are relatively poorly understood. Climatic stress disrupts cellular homeostasis in plants and results in the reprogramming of primary and secondary metabolic pathways, which leads to changes in the quantity, composition, and organization of small molecules and recalcitrant heteropolymers, including lignins, tannins, suberins, and cuticle within the plant tissue matrix. Furthermore, by regulating metabolism during tissue senescence, climate influences the resorption of nutrients from senescing tissues. Thus, the final chemical composition of plant litter that forms the substrate of decomposition is a combined product of presenescence physiological processes through the production and resorption of metabolites. The changes in quantity, composition, and localization of the molecular construct of the litter could enhance or hinder tissue decomposition and soil nutrient cycling by altering the recalcitrance of the lignocellulose matrix, the composition of microbial communities, and the activity of microbial exo-enzymes via various complexation reactions. Also, the climate-induced changes in the molecular composition of litter could differentially influence litter decomposition and soil nutrient cycling. Compared with temperate ecosystems, the indirect effects of climate on litter decomposition in the tropics are not well understood, which underscores the need to conduct additional studies in tropical biomes. We also emphasize the need to focus on how climatic stress affects the root chemistry as roots contribute significantly to biogeochemical cycling, and on utilizing more robust analytical approaches to capture the molecular composition of tissue matrix that fuel microbial metabolism.
Collapse
Affiliation(s)
- Vidya Suseela
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Nishanth Tharayil
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
14
|
Piñeiro J, Ochoa-Hueso R, Delgado-Baquerizo M, Dobrick S, Reich PB, Pendall E, Power SA. Effects of elevated CO 2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: A global assessment. Sci Rep 2017; 7:15355. [PMID: 29127358 PMCID: PMC5681551 DOI: 10.1038/s41598-017-15728-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/31/2017] [Indexed: 11/08/2022] Open
Abstract
Plant roots play a crucial role in regulating key ecosystem processes such as carbon (C) sequestration and nutrient solubilisation. Elevated (e)CO2 is expected to alter the biomass of fine, coarse and total roots to meet increased demand for other resources such as water and nitrogen (N), however, the magnitude and direction of observed changes vary considerably between ecosystems. Here, we assessed how climate and soil properties mediate root responses to eCO2 by comparing 24 field-based CO2 experiments across the globe including a wide range of ecosystem types. We calculated response ratios (i.e. effect size) and used structural equation modelling (SEM) to achieve a system-level understanding of how aridity, mean annual temperature and total soil nitrogen simultaneously drive the response of total, coarse and fine root biomass to eCO2. Models indicated that increasing aridity limits the positive response of fine and total root biomass to eCO2, and that fine (but not coarse or total) root responses to eCO2 are positively related to soil total N. Our results provide evidence that consideration of factors such as aridity and soil N status is crucial for predicting plant and ecosystem-scale responses to future changes in atmospheric CO2 concentrations, and thus feedbacks to climate change.
Collapse
Affiliation(s)
- Juan Piñeiro
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia.
| | - Raúl Ochoa-Hueso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Manuel Delgado-Baquerizo
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Silvan Dobrick
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
15
|
van Groenigen KJ, Osenberg CW, Terrer C, Carrillo Y, Dijkstra FA, Heath J, Nie M, Pendall E, Phillips RP, Hungate BA. Faster turnover of new soil carbon inputs under increased atmospheric CO 2. GLOBAL CHANGE BIOLOGY 2017; 23:4420-4429. [PMID: 28480591 DOI: 10.1111/gcb.13752] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/13/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Rising levels of atmospheric CO2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (<1 year), these effects do not persist in the longer term (1-4 years). Elevated CO2 does not affect the decomposition or the size of the old soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO2 concentrations may be smaller than previously assumed.
Collapse
Affiliation(s)
- Kees Jan van Groenigen
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | | | - César Terrer
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Feike A Dijkstra
- Centre for Carbon, Water and Food, School of Life and Environmental Sciences, The University of Sydney, Eveleigh, NSW, Australia
| | - James Heath
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ming Nie
- Ministry of Education Key Lab for Biodiversity Science and Ecological Engineering, The Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Bruce A Hungate
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
16
|
De Kauwe MG, Medlyn BE, Walker AP, Zaehle S, Asao S, Guenet B, Harper AB, Hickler T, Jain AK, Luo Y, Lu X, Luus K, Parton WJ, Shu S, Wang YP, Werner C, Xia J, Pendall E, Morgan JA, Ryan EM, Carrillo Y, Dijkstra FA, Zelikova TJ, Norby RJ. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO 2 Enrichment experiment. GLOBAL CHANGE BIOLOGY 2017; 23:3623-3645. [PMID: 28145053 DOI: 10.1111/gcb.13643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m-2 yr-1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2 -induced water savings to extend the growing season length. Observed interactive (CO2 × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.
Collapse
Affiliation(s)
- Martin G De Kauwe
- Department of Biological Science, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - Sönke Zaehle
- Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Shinichi Asao
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523-1499, USA
| | - Bertrand Guenet
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Anna B Harper
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt, Germany
- Department of Physical Geography, Geosciences, Goethe-University, Altenhöferallee 1, 60438, Frankfurt, Germany
| | - Atul K Jain
- Department of Atmospheric Sciences, University of Illinois, 105 South Gregory Street, Urbana, IL, 61801-3070, USA
| | - Yiqi Luo
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Xingjie Lu
- CSIRO Oceans and Atmosphere, Private Bag #1, Aspendale, Vic., 3195, Australia
| | - Kristina Luus
- Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - William J Parton
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523-1499, USA
| | - Shijie Shu
- Department of Atmospheric Sciences, University of Illinois, 105 South Gregory Street, Urbana, IL, 61801-3070, USA
| | - Ying-Ping Wang
- CSIRO Oceans and Atmosphere, Private Bag #1, Aspendale, Vic., 3195, Australia
| | - Christian Werner
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Jianyang Xia
- Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jack A Morgan
- Rangeland Resources Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| | - Edmund M Ryan
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Feike A Dijkstra
- Centre for Carbon, Water and Food, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tamara J Zelikova
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| |
Collapse
|
17
|
Ryan EM, Ogle K, Peltier D, Walker AP, De Kauwe MG, Medlyn BE, Williams DG, Parton W, Asao S, Guenet B, Harper AB, Lu X, Luus KA, Zaehle S, Shu S, Werner C, Xia J, Pendall E. Gross primary production responses to warming, elevated CO 2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland. GLOBAL CHANGE BIOLOGY 2017; 23:3092-3106. [PMID: 27992952 DOI: 10.1111/gcb.13602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (Amax ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R2 = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tairant ) and vapor pressure deficit (VPDant ) effects on Amax (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs.
Collapse
Affiliation(s)
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Drew Peltier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Martin G De Kauwe
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - William Parton
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523-1499, USA
| | - Shinichi Asao
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523-1499, USA
| | - Bertrand Guenet
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Anna B Harper
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK
| | - Xingjie Lu
- CSIRO Ocean and Atmosphere, PBM #1, Aspendale, Vic., 3195, Australia
| | - Kristina A Luus
- Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Sönke Zaehle
- Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Shijie Shu
- Department of Atmospheric Sciences, University of Illinois, 105 South Gregory Street, Urbana, IL, 61801-3070, USA
| | - Christian Werner
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Jianyang Xia
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Research Center for Global Change and Ecological Forecasting, East China Normal University, Shanghai, 200062, China
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Botany, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
18
|
Fine Root Growth and Vertical Distribution in Response to Elevated CO2, Warming and Drought in a Mixed Heathland–Grassland. Ecosystems 2017. [DOI: 10.1007/s10021-017-0131-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Wang Z, Ding L, Wang J, Zuo X, Yao S, Feng J. Effects of root diameter, branch order, root depth, season and warming on root longevity in an alpine meadow. Ecol Res 2016. [DOI: 10.1007/s11284-016-1385-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Mueller KE, Blumenthal DM, Pendall E, Carrillo Y, Dijkstra FA, Williams DG, Follett RF, Morgan JA. Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecol Lett 2016; 19:956-66. [PMID: 27339693 DOI: 10.1111/ele.12634] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 05/15/2016] [Indexed: 12/28/2022]
Abstract
It is unclear how elevated CO2 (eCO2 ) and the corresponding shifts in temperature and precipitation will interact to impact ecosystems over time. During a 7-year experiment in a semi-arid grassland, the response of plant biomass to eCO2 and warming was largely regulated by interannual precipitation, while the response of plant community composition was more sensitive to experiment duration. The combined effects of eCO2 and warming on aboveground plant biomass were less positive in 'wet' growing seasons, but total plant biomass was consistently stimulated by ~ 25% due to unique, supra-additive responses of roots. Independent of precipitation, the combined effects of eCO2 and warming on C3 graminoids became increasingly positive and supra-additive over time, reversing an initial shift toward C4 grasses. Soil resources also responded dynamically and non-additively to eCO2 and warming, shaping the plant responses. Our results suggest grasslands are poised for drastic changes in function and highlight the need for long-term, factorial experiments.
Collapse
Affiliation(s)
- K E Mueller
- Rangeland Resources Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| | - D M Blumenthal
- Rangeland Resources Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| | - E Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Y Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - F A Dijkstra
- Centre for Carbon, Water and Food, Faculty of Agriculture and Environment, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - D G Williams
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - R F Follett
- Soil Plant and Nutrient Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| | - J A Morgan
- Rangeland Resources Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| |
Collapse
|
21
|
Balogianni VG, Wilson SD, Farrell RE, MacDougall AS. Rapid Root Decomposition Decouples Root Length from Increased Soil C Following Grassland Invasion. Ecosystems 2015. [DOI: 10.1007/s10021-015-9900-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Ryan EM, Ogle K, Zelikova TJ, LeCain DR, Williams DG, Morgan JA, Pendall E. Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO 2 and warming. GLOBAL CHANGE BIOLOGY 2015; 21:2588-2602. [PMID: 25711935 DOI: 10.1111/gcb.12910] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/17/2014] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Terrestrial plant and soil respiration, or ecosystem respiration (Reco ), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007-2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applied a semi-mechanistic temperature-response model to simultaneously evaluate the response of Reco to three treatment factors (elevated CO2 , warming, and soil water manipulation) and their interactions with antecedent soil conditions [e.g., past soil water content (SWC) and temperature (SoilT)] and aboveground factors (e.g., vapor pressure deficit, photosynthetically active radiation, vegetation greenness). The model fits the observed Reco well (R2 = 0.77). We applied the model to estimate annual (March-October) Reco , which was stimulated under elevated CO2 in most years, likely due to the indirect effect of elevated CO2 on SWC. When aggregated from 2007 to 2012, total six-year Reco was stimulated by elevated CO2 singly (24%) or in combination with warming (28%). Warming had little effect on annual Reco under ambient CO2 , but stimulated it under elevated CO2 (32% across all years) when precipitation was high (e.g., 44% in 2009, a 'wet' year). Treatment-level differences in Reco can be partly attributed to the effects of antecedent SoilT and vegetation greenness on the apparent temperature sensitivity of Reco and to the effects of antecedent and current SWC and vegetation activity (greenness modulated by VPD) on Reco base rates. Thus, this study indicates that the incorporation of both antecedent environmental conditions and aboveground vegetation activity are critical to predicting Reco at multiple timescales (subdaily to annual) and under a future climate of elevated CO2 and warming.
Collapse
Affiliation(s)
- Edmund M Ryan
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kiona Ogle
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | | | | | | | - Elise Pendall
- Department of Botany, University of Wyoming, Laramie, WY, USA
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, Australia
| |
Collapse
|