1
|
Cabezas-Cruz A, Bermúdez-Humarán LG. Exploring the relationship between Faecalibacterium duncaniae and Escherichia coli in inflammatory bowel disease (IBD): Insights and implications. Comput Struct Biotechnol J 2024; 23:1-9. [PMID: 38094217 PMCID: PMC10716368 DOI: 10.1016/j.csbj.2023.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 03/04/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders characterized by an inflammation of the gastrointestinal tract (GIT) and represents a major social and economic burden. Despite ongoing research into the etiology and pathophysiology of this multifactorial disease, treatment options remain limited. From this perspective, the gut microbiota has emerged as a potential player in the pathogenesis of IBD, and animal and human studies support this hypothesis. Indeed, the human gut is one of the most complex ecological communities (composed of 1013-1014 microorganisms) that plays a critical role in human health by influencing normal physiology and disease susceptibility through its collective metabolic activities and host interactions. In addition, live probiotic bacteria present in some food products (which transit through the GIT) have been shown to interact with the host immune system and confer several health benefits. The aim of this review is to provide an overview of the link between Faecalibacterium duncaniae and Escherichia coli and IBD, highlighting the main areas of research in this field. An ecological perspective on the gut microbiota may offer new insights for the development of clinical therapies targeting this bacterial community to improve human health.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | | |
Collapse
|
2
|
Wu Y, Shen J. Unraveling the intricacies of neutrophil extracellular traps in inflammatory bowel disease: Pathways, biomarkers, and promising therapies. Cytokine Growth Factor Rev 2024; 80:156-167. [PMID: 39438227 DOI: 10.1016/j.cytogfr.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The development of inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, involves various factors and is characterized by persistent inflammation of the mucosal lining. However, the role of neutrophils in this process remains controversial. Neutrophil extracellular traps (NETs), which consist of chromatin, antimicrobial proteins, and oxidative enzymes, are released by neutrophils to trap pathogens. They are also involved in various immune-mediated and vascular diseases. NETs act as a vital defense mechanisms at the gut-mucosal interface and are frequently exposed to bacterial, viral, and fungal threats. However, they can also contribute to inflammation and worsen imbalances in the gut bacteria. Recent studies have suggested that NETs have a significant impact on IBD development. Previous studies have shown increased levels of NETs in tissue and blood samples from patients with IBD, as well as in experimental colitis mouse models. Therefore, this review discusses how NETs are formed and their role in the pathophysiology of IBD. It discusses how NETs may lead to tissue damage and contribute to IBD-associated complications. Moreover, non-invasive biomarkers are needed to replace invasive procedures such as endoscopy to better evaluate the disease status. Given the crucial role of NETs in IBD progression, this review focuses on potential NET biomarkers that can help predict the evolution of IBD. Furthermore, this review identifies potential therapeutic targets for regulating NET production, which could expand the range of available treatment options for IBD.
Collapse
Affiliation(s)
- Yilin Wu
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China.
| |
Collapse
|
3
|
Kammoun S, Rekik M, Dlensi A, Aloulou S, Smaoui W, Sellami S, Trigui K, Gargouri R, Chaari I, Sellami H, Elatoui D, Khemakhem N, Hadrich I, Neji S, Abdelmoula B, Bouayed Abdelmoula N. The gut-eye axis: the retinal/ocular degenerative diseases and the emergent therapeutic strategies. Front Cell Neurosci 2024; 18:1468187. [PMID: 39391760 PMCID: PMC11464360 DOI: 10.3389/fncel.2024.1468187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The interplay between human microbiota and various physiological systems has garnered significant attention in recent years. The gut microbiota plays a critical role in maintaining physiological homeostasis and influences various aspects of human health, particularly via the gut brain axis. Since 2017, the challenging concept of the gut-retina axis has emerged thanks to a network analysis emphasizing the potential role of the gut microbiota disruption in the development of the age-related macular degeneration and further retinal damages. Many other ocular disorders have been linked to the dysbiosis of the gut microbiota, including uveitis and glaucoma. It has been shown that age related macular degeneration can be prevented or reversed using a diet that induces changes in the gut microbiota. The potential link between the gut microbiota as well as others types of microbiota such as the ocular surface microbiota and the development/progression of age related as well as inherited retinal degenerations and other degenerative eye diseases, has recently been broadened. Therefore, the pathogenesis of several eye diseases has recently been associated with a larger perception called the gut eye axis. This mini-review examines the potential mechanisms underlying the gut eye axis and suggests implications for the management of eye diseases. By understanding the modulation of the gut microbiota and its impact on eye disease, this mini-review provides insight into potential therapeutic interventions and avenues for future research.
Collapse
Affiliation(s)
- Sonda Kammoun
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Mona Rekik
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Aryj Dlensi
- Ophthalmology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Samir Aloulou
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Medical Carcinology Department, Faculty of Medicine, Mohamed Ben Sassi University Hospital of Gabes, University of Sfax, Sfax, Tunisia
| | - Walid Smaoui
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Urology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Sahla Sellami
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Khaled Trigui
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Rahma Gargouri
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
| | - Imen Chaari
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
| | - Hayet Sellami
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
- Parasitology and Mycology Department, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Dhawia Elatoui
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
| | - Nahed Khemakhem
- Fungal and Parasitic Molecular Biology Laboratory LR05ES11 FMS, University of Sfax, Sfax, Tunisia
| | - Ines Hadrich
- Fungal and Parasitic Molecular Biology Laboratory LR05ES11 FMS, University of Sfax, Sfax, Tunisia
| | - Sourour Neji
- Parasitology and Mycology Department, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Fungal and Parasitic Molecular Biology Laboratory LR05ES11 FMS, University of Sfax, Sfax, Tunisia
| | - Balkiss Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Nouha Bouayed Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Feakins RM. Inflammatory disorders of the large intestine. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2024:709-857. [DOI: 10.1002/9781119423195.ch35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S. Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yang W, Guo G, Sun C. Therapeutic potential of rifaximin in liver diseases. Biomed Pharmacother 2024; 178:117283. [PMID: 39126775 DOI: 10.1016/j.biopha.2024.117283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
Rifaximin, derived from rifamycin, is a broad-spectrum antibiotic by inhibiting bacterial RNA synthesis. Rifaximin has a very low intestinal absorption and exerts its antimicrobial activity primarily in the intestinal tract. It regulates the gut microbiota with limited side effects systemically. Rifaximin has been recommended for the treatment of hepatic encephalopathy but some studies shed light on its medicinal effects in many other diseases. For instance, rifaximin may suppress the progression of liver fibrosis and its related complications, and ameliorate metabolic dysfunction-associated steatotic liver disease and alcohol-associated liver disease, etc. Rifaximin can also mediate anti-inflammation, antiproliferation, and proapoptotic events by activating pregnane X receptor, which is efficious in cancers such as colon cancer. In addition, some investigations have shown rifaximin may play a therapeutic role in various autoimmune and neurological disorders. However, these findings still need more real-world practices and in-depth investigations to obtain more precise indications and fully elucidate the multifaceted potentials of rifaximin.
Collapse
Affiliation(s)
- Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
7
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
8
|
Gholamzad A, Khakpour N, Hashemi SMA, Goudarzi Y, Ahmadi P, Gholamzad M, Mohammadi M, Hashemi M. Exploring the virome: An integral part of human health and disease. Pathol Res Pract 2024; 260:155466. [PMID: 39053136 DOI: 10.1016/j.prp.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The human microbiome is a complex network of microorganisms that includes viruses, bacteria, and fungi. The gut virome is an essential component of the immune system, which is responsible for regulating the growth and responses of the host's immune system. The virome maintains a crucial role in the development of numerous diseases, including inflammatory bowel disease (IBD), Crohn's disease, and neurodegenerative disorders. The human virome has emerged as a promising biomarker and therapeutic target. This comprehensive review summarizes the present understanding of the virome and its implications in matters of health and disease, with a focus on the Human Microbiome Project.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yalda Goudarzi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology ,Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Giordano MV, Crisi PE, Gramenzi A, Cattaneo D, Corna L, Sung CH, Tolbert KM, Steiner JM, Suchodolski JS, Boari A. Fecal microbiota and concentrations of long-chain fatty acids, sterols, and unconjugated bile acids in cats with chronic enteropathy. Front Vet Sci 2024; 11:1401592. [PMID: 38933703 PMCID: PMC11199873 DOI: 10.3389/fvets.2024.1401592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Feline chronic enteropathies (FCE) are common causes of chronic gastrointestinal signs in cats and include different diseases such as food-responsive enteropathy (FRE), inflammatory bowel diseases (IBD), and low-grade intestinal T-cell lymphoma (LGITL). Although changes in intestinal microbiota and fecal metabolites have been reported in dogs and humans with chronic enteropathy, research in cats has been limited. Therefore, this study aimed to evaluate the fecal microbiota and lipid-related fecal metabolites in cats with FCE to a clinically healthy comparison group (CG). A total of 34 cats with FCE (13 FRE, 15 IBD, and 6 LGITL) and 27 cats in the CG were enrolled in this study. The fecal microbiota was evaluated by the qPCR-based feline Dysbiosis Index (DI). The feline DI in cats with CE (median: 1.3, range: -2.4 to 3.8) was significantly higher (p < 0.0001) compared to CG (median: - 2.3, Range: -4.3 to 2.3), with no difference found among the FCE subgroups. The fecal abundances of Faecalibacterium (p < 0.0001), Bacteroides (p < 0.0001), Fusobacterium (p = 0.0398), Bifidobacterium (p = 0.0004), and total bacteria (p = 0.0337) significantly decreased in cats with FCE. Twenty-seven targeted metabolites were measured by gas chromatography-mass spectrometry, including long-chain fatty acids (LCFAs), sterols, and bile acids (BAs). Fecal concentrations of 5 of 12 LCFAs were significantly increased in cats with FCE compared to CG. Fecal concentrations of zoosterol (p = 0.0109), such as cholesterol (p < 0.001) were also significantly increased in cats with FCE, but those of phytosterols were significantly decreased in this group. No differences in fecal BAs were found between the groups. Although no differences were found between the four groups, the fecal metabolomic pattern of cats with FRE was more similar to that of the CG than to those with IBD or LGITL. This could be explained by the mild changes associated with FRE compared to IBD and LGITL. The study showed changes in intestinal microbiota and alteration of fecal metabolites in FCE cats compared to the CG. Changes in fecal lipids metabolites suggest a dysmetabolism of lipids, including LCFAs, sterols, and unconjugated BAs in cats with CE.
Collapse
Affiliation(s)
| | - Paolo Emidio Crisi
- Department of Veterinary Medicine, University of Teramo, Piano D’Accio, Teramo, Italy
| | - Alessandro Gramenzi
- Department of Veterinary Medicine, University of Teramo, Piano D’Accio, Teramo, Italy
| | | | - Luca Corna
- Endovet Professional Association, Rome, Italy
| | - Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Katherine M. Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Andrea Boari
- Department of Veterinary Medicine, University of Teramo, Piano D’Accio, Teramo, Italy
| |
Collapse
|
10
|
Ariaee A, Koentgen S, Wardill HR, Hold GL, Prestidge CA, Armstrong HK, Joyce P. Prebiotic selection influencing inflammatory bowel disease treatment outcomes: a review of the preclinical and clinical evidence. EGASTROENTEROLOGY 2024; 2:e100055. [PMID: 39944472 PMCID: PMC11731074 DOI: 10.1136/egastro-2023-100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2025]
Abstract
Inflammatory bowel disease (IBD) is characterised by chronic inflammation in the gastrointestinal tract, with unclear aetiology but with known factors contributing to the disease, including genetics, immune responses, environmental factors and dysbiosis of the gut microbiota. Existing pharmacotherapies mainly target the inflammatory symptoms of disease, but recent research has highlighted the capacity for microbial-accessible carbohydrates that confer health benefits (ie, prebiotics) to selectively stimulate the growth of beneficial gut bacteria for improved IBD management. However, since prebiotics vary in source, chemical composition and microbiota effects, there is a clear need to understand the impact of prebiotic selection on IBD treatment outcomes. This review subsequently explores and contrasts the efficacy of prebiotics from various sources (β-fructans, galacto-oligosaccharides, xylo-oligosaccharides, resistant starch, pectin, β-glucans, glucomannans and arabinoxylans) in mitigating IBD symptomatology, when used as either standalone or adjuvant therapies. In preclinical animal colitis models, prebiotics have revealed type-dependent effects in positively modulating gut microbiota composition and subsequent attenuation of disease indicators and proinflammatory responses. While prebiotics have demonstrated therapeutic potential in animal models, clinical evidence for their precise efficacy remains limited, stressing the need for further investigation in human patients with IBD to facilitate their widespread clinical translation as microbiota-targeting IBD therapies.
Collapse
Affiliation(s)
- Amin Ariaee
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sabrina Koentgen
- University of New South Wales, Sydney, New South Wales, Australia
| | - Hannah R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Georgina L Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Heather K Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Manitoba Multiple Sclerosis Research Centre, Winnipeg, Manitoba, Canada
- Children’s Health Research Institute Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Chen J, Jiang F, Xu N, Dong G, Jiang J, Wang M, Li C, Li R. Anthocyanin Extracted from Purple Sweet Potato Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice by Suppressing Pyroptosis and Altering Intestinal Flora Structure. J Med Food 2024; 27:110-122. [PMID: 38181190 DOI: 10.1089/jmf.2023.k.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
The objective of this study was to examine the impact and underlying mechanisms of pelargonidin-3-galactoside (Pg3gal) produced from purple sweet potatoes on colonic inflammation induced by dextran sulfate sodium (DSS) in a murine model of ulcerative colitis (UC). C57BL/6J mice were categorized into four groups (n = 6 per group): DSS+Pg3gal, control, control+Pg3gal, and DSS. Colitis was induced by providing free access to 3% DSS for 10 days. The DSS+Pg3gal model mice received DSS concurrently with intragastric Pg3gal (25 mg/kg). The health of the mice was carefully monitored on a regular basis, and scores for the Disease Activity Index (DAI) were documented. A histological assessment was conducted using hematoxylin and eosin staining to evaluate the extent of mucosal injury present. The expression levels of IL-6, NLRP3, ASC, cleaved-Caspase-1, TNF-α, N-GSDMS, and cleaved-IL-1β proteins were evaluated by Western blot analysis. The process of 16S rRNA sequencing was carried out to examine the composition and relative abundance of gut microbiotas within the intestines of the mice. The DAI results revealed that Pg3gal significantly attenuated the DSS-induced UC in mice. In addition, it successfully alleviated the decline in colon size, improved the condition of colonic tissue, and significantly inhibited the production of proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the colon tissues. Additionally, Pg3gal modulated the DSS-induced imbalanced gut microbiota, as evidenced by decreased Proteobacteria and Deferribacteres and simultaneous elevation in Firmicutes, Bacteroidetes, and Verrucomicrobia. In summary, Pg3gal alleviated DSS-induced UC by inhibiting pyroptosis in intestinal epithelial cells and enhancing the structural integrity of the gut microbiota.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fei Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nana Xu
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Guokai Dong
- Jiangsu Medical Engineering Research Center of Gene Detection and Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Jiebang Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng Wang
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, China
| | - Cong Li
- Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rongpeng Li
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
12
|
Getachew B, Hauser SR, Bennani S, El Kouhen N, Sari Y, Tizabi Y. Adolescent alcohol drinking interaction with the gut microbiome: implications for adult alcohol use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:11881. [PMID: 38322648 PMCID: PMC10846679 DOI: 10.3389/adar.2024.11881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Reciprocal communication between the gut microbiota and the brain, commonly referred to as the "gut-brain-axis" is crucial in maintaining overall physiological homeostasis. Gut microbiota development and brain maturation (neuronal connectivity and plasticity) appear to be synchronized and to follow the same timeline during childhood (immature), adolescence (expansion) and adulthood (completion). It is important to note that the mesolimbic reward circuitry develops early on, whereas the maturation of the inhibitory frontal cortical neurons is delayed. This imbalance can lead to increased acquirement of reward-seeking and risk-taking behaviors during adolescence, and consequently eventuate in heightened risk for substance abuse. Thus, there is high initiation of alcohol drinking in early adolescence that significantly increases the risk of alcohol use disorder (AUD) in adulthood. The underlying causes for heightened AUD risk are not well understood. It is suggested that alcohol-associated gut microbiota impairment during adolescence plays a key role in AUD neurodevelopment in adulthood. Furthermore, alcohol-induced dysregulation of microglia, either directly or indirectly through interaction with gut microbiota, may be a critical neuroinflammatory pathway leading to neurodevelopmental impairments and AUD. In this review article, we highlight the influence of adolescent alcohol drinking on gut microbiota, gut-brain axis and microglia, and eventual manifestation of AUD. Furthermore, novel therapeutic interventions via gut microbiota manipulations are discussed briefly.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
13
|
Hembach N, Drechsel V, Sobol M, Kaster AK, Köhler HR, Triebskorn R, Schwartz T. Effect of glyphosate, its metabolite AMPA, and the glyphosate formulation Roundup ® on brown trout ( Salmo trutta f. fario) gut microbiome diversity. Front Microbiol 2024; 14:1271983. [PMID: 38298542 PMCID: PMC10829098 DOI: 10.3389/fmicb.2023.1271983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Glyphosate is used worldwide as a compound of pesticides and is detectable in many environmental compartments. It enters water bodies primarily through drift from agricultural areas so that aquatic organisms are exposed to this chemical, especially after rain events. Glyphosate is advertised and sold as a highly specific herbicide, which interacts with the EPSP synthase, an enzyme of the shikimate metabolism, resulting in inhibition of the synthesis of vital aromatic amino acids. However, not only plants but also bacteria can possess this enzyme so that influences of glyphosate on the microbiomes of exposed organisms cannot be excluded. Those influences may result in subtle and long-term effects, e.g., disturbance of the symbiotic interactions of bionts with microorganisms of their microbiomes. Mechanisms how the transformation product aminomethylphosphonic acid (AMPA) of glyphosate might interfere in this context have not understood so far. In the present study, molecular biological fingerprinting methods showed concentration-dependent effects of glyphosate and AMPA on fish microbiomes. In addition, age-dependent differences in the composition of the microbiomes regarding abundance and diversity were detected. Furthermore, the effect of exposure to glyphosate and AMPA was investigated for several fish pathogens of gut microbiomes in terms of their gene expression of virulence factors associated with pathogenicity. In vitro transcriptome analysis with the fish pathogen Yersinia ruckeri revealed that it is questionable whether the observed effect on the microbiome is caused by the intended mode of action of glyphosate, such as the inhibition of EPSP synthase activity.
Collapse
Affiliation(s)
- N. Hembach
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Karlsruhe, Germany
| | - V. Drechsel
- Institute of Evolution and Ecology, Animal Physiological Ecology, University of Tübingen, Tübingen, Germany
| | - M. Sobol
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces, Karlsruhe, Germany
| | - A.-K. Kaster
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces, Karlsruhe, Germany
| | - H.-R. Köhler
- Institute of Evolution and Ecology, Animal Physiological Ecology, University of Tübingen, Tübingen, Germany
| | - R. Triebskorn
- Institute of Evolution and Ecology, Animal Physiological Ecology, University of Tübingen, Tübingen, Germany
| | - T. Schwartz
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Karlsruhe, Germany
| |
Collapse
|
14
|
Amara J, Itani T, Hajal J, Bakhos JJ, Saliba Y, Aboushanab SA, Kovaleva EG, Fares N, Mondragon AC, Miranda JM. Circadian Rhythm Perturbation Aggravates Gut Microbiota Dysbiosis in Dextran Sulfate Sodium-Induced Colitis in Mice. Nutrients 2024; 16:247. [PMID: 38257139 PMCID: PMC10819604 DOI: 10.3390/nu16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm disruption is increasingly considered an environmental risk factor for the development and exacerbation of inflammatory bowel disease. We have reported in a previous study that nychthemeral dysregulation is associated with an increase in intestinal barrier permeability and inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. To investigate the effect of circadian rhythm disruption on the composition and diversity of the gut microbiota (GM), sixty male C57BL/6J mice were initially divided to two groups, with the shifted group (n = 30) exposed to circadian shifts for three months and the non-shifted group (n = 30) kept under a normal light-dark cycle. The mice of the shifted group were cyclically housed for five days under the normal 12:12 h light-dark cycle, followed by another five days under a reversed light-dark cycle. At the end of the three months, a colitis was induced by 2% DSS given in the drinking water of 30 mice. Animals were then divided into four groups (n = 15 per group): sham group non-shifted (Sham-NS), sham group shifted (Sham-S), DSS non-shifted (DSS-NS) and DSS shifted (DSS-S). Fecal samples were collected from rectal content to investigate changes in GM composition via DNA extraction, followed by high-throughput sequencing of the bacterial 16S rRNA gene. The mouse GM was dominated by three phyla: Firmicutes, Bacteroidetes and Actinobacteria. The Firmicutes/Bacteroidetes ratio decreased in mice with induced colitis. The richness and diversity of the GM were reduced in the colitis group, especially in the group with inverted circadian rhythm. Moreover, the GM composition was modified in the inverted circadian rhythm group, with an increase in Alloprevotella, Turicibacter, Bacteroides and Streptococcus genera. Circadian rhythm inversion exacerbates GM dysbiosis to a less rich and diversified extent in a DSS-induced colitis model. These findings show possible interplay between circadian rhythm disruption, GM dynamics and colitis pathogenesis.
Collapse
Affiliation(s)
- Joseph Amara
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Tarek Itani
- Laboratoire de Microbiologie, Faculté de Pharmacie, Université Saint Joseph, Beirut 1104 2020, Lebanon;
| | - Joelle Hajal
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Jules-Joel Bakhos
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Youakim Saliba
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Saied A. Aboushanab
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, Yekaterinburg 620002, Russia; (S.A.A.); (E.G.K.)
| | - Elena G. Kovaleva
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, Yekaterinburg 620002, Russia; (S.A.A.); (E.G.K.)
| | - Nassim Fares
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Alicia C. Mondragon
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain;
| | - Jose Manuel Miranda
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
15
|
Szemes K, Farkas N, Sipos Z, Bor R, Fabian A, Szepes Z, Farkas K, Molnar T, Schafer E, Szamosi T, Salamon A, Vincze A, Sarlos P. Co-Administration of Proton Pump Inhibitors May Negatively Affect the Outcome in Inflammatory Bowel Disease Treated with Vedolizumab. Biomedicines 2024; 12:158. [PMID: 38255263 PMCID: PMC10813460 DOI: 10.3390/biomedicines12010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Concomitant medications may alter the effect of biological therapy in inflammatory bowel disease. The aim was to investigate the effect of proton pump inhibitors on remission rates in patients with inflammatory bowel disease treated with the gut-selective vedolizumab. Patients from the Hungarian nationwide, multicenter vedolizumab cohort were selected for post hoc analysis. Primary outcomes were the assessment of clinical response and endoscopic and clinical remission at weeks 14 and 54. Secondary outcomes were the evaluation of the combined effect of concomitant steroid therapy and other factors, such as smoking, on remission. A total of 108 patients were identified with proton pump inhibitor data from 240 patients in the original cohort. Patients on steroids without proton pump inhibitors were more likely to have a clinical response at week 14 than patients on concomitant PPI (95% vs. 67%, p = 0.005). Non-smokers with IBD treated with VDZ were more likely to develop a clinical response at week 14 than smokers, particularly those not receiving PPI compared with patients on co-administered PPI therapy (81% vs. 53%, p = 0.041, and 92% vs. 74%, p = 0.029, respectively). We found that the use of PPIs in patients treated with VDZ may impair the achievement of response in certain subgroups. Unnecessary PPI prescriptions should be avoided.
Collapse
Affiliation(s)
- Kata Szemes
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, 13 Ifjúság Street, 7624 Pecs, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pecs, Hungary
| | - Zoltan Sipos
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pecs, Hungary
| | - Renata Bor
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Anna Fabian
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Zoltan Szepes
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Klaudia Farkas
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Tamas Molnar
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Eszter Schafer
- Department of Gastroenterology, Hungarian Defence Forces Military Hospital, 1134 Budapest, Hungary
| | - Tamas Szamosi
- Department of Gastroenterology, Hungarian Defence Forces Military Hospital, 1134 Budapest, Hungary
| | | | - Aron Vincze
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, 13 Ifjúság Street, 7624 Pecs, Hungary
| | - Patricia Sarlos
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, 13 Ifjúság Street, 7624 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pecs, Hungary
| |
Collapse
|
16
|
Yang J, Lin J, Gu T, Sun Q, Xu W, Peng Y. Chicoric Acid Effectively Mitigated Dextran Sulfate Sodium (DSS)-Induced Colitis in BALB/c Mice by Modulating the Gut Microbiota and Fecal Metabolites. Int J Mol Sci 2024; 25:841. [PMID: 38255916 PMCID: PMC10815209 DOI: 10.3390/ijms25020841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Chicoric acid (CA) has been reported to exhibit biological activities; it remains unclear, however, whether CA could regulate colitis via modulation of the gut microbiota and metabolites. This study aimed to assess CA's impact on dextran sulfate sodium (DSS)-induced colitis, the gut microbiota, and metabolites. Mice were induced with 2.5% DSS to develop colitis over a 7-day period. CA was administered intragastrically one week prior to DSS treatment and continued for 14 days. The microbial composition in the stool was determined using 16S rRNA sequencing, while non-targeted metabolomics was employed to analyze the metabolic profiles of each mouse group. The results show that CA effectively alleviated colitis, as evidenced by an increased colon length, lowered disease activity index (DAI) and histological scores, and decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels. CA intervention restored the structure of gut microbiota. Specifically, it decreased the abundance of Bacteroidetes and Cyanobacteria at the phylum level and Bacteroides, Rosiarcus, and unclassified Xanthobacteraceae at the genus level, and increased the abundance of unclassified Lachnospiraceae at the genus level. Metabolomic analysis revealed that CA supplementation reversed the up-regulation of asymmetric dimethylarginine, N-glycolylneuraminic acid, and N-acetylneuraminic acid, as well as the down-regulation of phloroglucinol, thiamine, 4-methyl-5-thiazoleethanol, lithocholic acid, and oxymatrine induced by DSS. Our current research provides scientific evidence for developing CA into an anti-colitis functional food ingredient. Further clinical trials are warranted to elucidate the efficacy and mechanism of CA in treating human inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Jiani Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jie Lin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
17
|
Oba PM, De La Guardia Hidrogo VM, Kelly J, Saunders-Blades J, Steelman AJ, Swanson KS. Effects of diets supplemented with bioactive peptides on nutrient digestibility, immune cell responsiveness, and fecal characteristics, microbiota, and metabolites of adult cats. J Anim Sci 2024; 102:skae104. [PMID: 38587063 PMCID: PMC11067789 DOI: 10.1093/jas/skae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/06/2024] [Indexed: 04/09/2024] Open
Abstract
Bioactive peptides (BP) are recognized for their ability to function as antioxidants and maintain lipid stability. They may have positive health effects, including antihypertensive, anti-inflammatory, antimicrobial, osteoprotective, gut health, and immunomodulatory properties, but are poorly tested in cats. Our primary objective was to determine the apparent total tract digestibility (ATTD) of BP-containing kibble diets and assess how the fecal characteristics, metabolites, and microbiota were affected in adult cats. Our secondary objective was to test whether BP could impact blood oxidative stress markers and cytokine concentrations following transport stress. Twelve adult cats (4.83 ± 0.37 yr; 4.76 ± 0.14 kg) were used in a replicated 4 × 4 Latin square design to test four extruded kibble diets: Control (no BP), Chicken (4% chicken BP), Marine1 (2% marine BP), and Marine2 (4% marine BP). Each experimental period lasted 28 d, with a 20-d adaptation phase, 5 d for fecal collection, 2 d for blood collection, and 1 d for transport stress testing (driven in vehicle in individual carriers for 45 min). Salivary cortisol and blood oxidative stress markers and cytokines were measured after transport. Fecal microbiota data were evaluated using 16S rRNA gene amplicon sequencing and QIIME2. All other data were analyzed using the Mixed Models procedure of SAS, with P < 0.05 being considered significant and P < 0.10 considered trends. No differences were observed in animal health outcomes, with all cats remaining healthy and serum metabolites remaining within reference ranges. Cats fed the Marine2 diet had higher (P < 0.05) ATTD of dry matter (84.5% vs. 80.9%) and organic matter (88.3% vs. 85.8%) than those fed the control diet. The ATTD of protein and energy tended to be higher (P < 0.10) for cats fed the Marine2 diet. Fecal characteristics, metabolites, and bacterial alpha and beta diversity measures were not affected by treatment. However, the relative abundances of six bacterial genera were different (P < 0.05) and two bacterial genera tended to be different (P < 0.10) across treatments. Treatment did not alter salivary cortisol, blood oxidative stress markers, or blood cytokines after transport stress. Our data suggest that BP inclusion may increase nutrient digestibility and modify fecal microbiota and immune measures. More testing is required, however, to determine whether BP may provide additional benefits to cats.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Janelle Kelly
- Champion Petfoods Holding, Inc., Edmonton, AB T5S 2W6, Canada
| | | | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Ren Y, Hou S, He J, Chang N, Zhang Z, Zhou Y. Total flavones from Sonchus arvensis L. ameliorate colitis by adjusting the gut microbiota. Ann Med 2023; 55:2292246. [PMID: 38091956 PMCID: PMC10880571 DOI: 10.1080/07853890.2023.2292246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE Sonchus arvensis L. is traditional Chinese food and medicine. We investigated protective effects of flavones from Sonchus arvensis L. (SAF) on colitis induced by dextran sulfate sodium (DSS) in mice by regulating gut microbiota (GM). METHOD C57BL/6 mice were divided randomly: control group (CL); DSS group (ML); positive control + DSS group (AN); SAF + DSS (FE) group. The protective effects of SAF on ulcerative colitis (UC) were estimated by food intake, water intake, bodyweight loss, diarrhea, blood in stools, colon length, histology, disease activity index (DAI) score, and blood parameters. The sequencing of 16S rRNA gene was detected to investigate effect of SAF on GM. RESULTS SAF attenuate bodyweight loss significantly. The DAI score was lower in FE group than that in ML group. Colon length was improved significantly in ML group. Pathologic changes could be ameliorated after SAF was administered to UC mice. SAF improved blood parameters of model mice. 16S rRNA sequencing revealed that it was very important to ameliorate colitis with bacteria of the phylum Verrucomicrobiota, class Verrucomicrobiae, order Verrucomicrobiales, family Akkermansiaceae, and genus Akkermansia. CONCLUSION The SAF protective effect against colitis induced by DSS in mice may have a connection with GM diversity.
Collapse
Affiliation(s)
- Yachao Ren
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Harbin Medical University-Daqing, Daqing, China
| | | | - Jing He
- Harbin Medical University-Daqing, Daqing, China
| | | | - Zecai Zhang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
19
|
Yu Y, Wang W, Zhang F. The Next Generation Fecal Microbiota Transplantation: To Transplant Bacteria or Virome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301097. [PMID: 37914662 PMCID: PMC10724401 DOI: 10.1002/advs.202301097] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/02/2023] [Indexed: 11/03/2023]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for dysbiosis-related diseases. However, the clinical practice of crude fecal transplants presents limitations in terms of acceptability and reproductivity. Consequently, two alternative solutions to FMT are developed: transplanting bacteria communities or virome. Advanced methods for transplanting bacteria mainly include washed microbiota transplantation and bacteria spores treatment. Transplanting the virome is also explored, with the development of fecal virome transplantation, which involves filtering the virome from feces. These approaches provide more palatable options for patients and healthcare providers while minimizing research heterogeneity. In general, the evolution of the next generation of FMT in global trends is fecal microbiota components transplantation which mainly focuses on transplanting bacteria or virome.
Collapse
Affiliation(s)
- You Yu
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Weihong Wang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive DiseasesThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
- Department of Microbiota MedicineSir Run Run HospitalNanjing Medical UniversityNanjing211166China
| |
Collapse
|
20
|
Do KH, Ko SH, Kim KB, Seo K, Lee WK. Comparative Study of Intestinal Microbiome in Patients with Ulcerative Colitis and Healthy Controls in Korea. Microorganisms 2023; 11:2750. [PMID: 38004761 PMCID: PMC10673479 DOI: 10.3390/microorganisms11112750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Ulcerative colitis (UC) poses a contemporary medical challenge, with its exact cause still eluding researchers. This is due to various factors, such as the rising incidence, diagnostic complexities, and difficulties associated with its management. We compared the intestinal microbiome of patients with UC to that of healthy controls to determine the qualitative and quantitative changes associated with UC that occur in the intestinal microbiota. The intestinal bacterial abundance in 40 Korean patients with UC and 25 healthy controls was assayed using via next-generation sequencing. There were five major phyla in both groups: Firmicutes (UC patients: 51.12%; healthy controls: 46.90%), Bacteroidota (UC patients: 37.04%; healthy controls: 40.34%), Proteobacteria (UC patients: 6.01%; healthy controls: 11.05%), Actinobacteriota (UC patients: 5.71%; healthy controls: 1.56%), and Desulfobacteriota (UC patients: 0.13%; healthy controls: 0.14%). Firmicutes was more prevalent in patients with UC (51.12%) compared to that of healthy controls (46.90%). Otherwise, Bacteroidota was more prevalent in healthy controls (40.34%) compared to patients with UC (37.04%). Although there was no significant difference, our results showed a substantially lower gut microbiome diversity in patients with UC (mean: 16.5; 95% confidence interval (CI) = 14.956-18.044) than in healthy controls (mean: 17.84; 95% CI = 15.989-19.691), the beta diversity and the flora structure of the microbiome in patients with UC differed from those in healthy controls. This will be helpful for the development of new treatment options and lay the groundwork for future research on UC. To understand the disease mechanism, it is essential to define the different types of microbes in the guts of patients with UC.
Collapse
Affiliation(s)
- Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Seung-Hyun Ko
- GutBiomeTech Co., Ltd., Cheongju 28644, Republic of Korea
| | - Ki Bae Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Kwangwon Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
- GutBiomeTech Co., Ltd., Cheongju 28644, Republic of Korea
| |
Collapse
|
21
|
Mörschbächer AP, Pappen E, Henriques JAP, Granada CE. Effects of probiotic supplementation on the gut microbiota composition of adults: a systematic review of randomized clinical trials. AN ACAD BRAS CIENC 2023; 95:e20230037. [PMID: 37878913 DOI: 10.1590/0001-3765202320230037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/19/2023] [Indexed: 10/27/2023] Open
Abstract
Researchers have associated the therapeutic potential of probiotics with its ability to modulate gut microbiota, which is considered an "invisible organ" of the human body. The present study investigates the effects of probiotic supplementation on the gut microbiota composition of adults. The authors conducted a systematic review of the literature published in six different databases. The search followed PRISMA guidelines and aimed to identify randomized clinical trials on probiotic supplementation. All relevant publications indexed up to May 28, 2021, were retrieved. Then, the authors defined the inclusion and exclusion criteria. Two independent reviewers performed study screening, data extraction, and quality assessment. A total of 2,404 publications were retrieved, and eight studies met the eligibility criteria. The included randomized clinical trials were published between 2015 to 2020. The worldwide studies included adults aged from 18 to 79 years, most of whom were women (66.5%). Only one of the included studies observed significant effects on fecal microbiota composition in the relative abundance of Bacteroidetes and Firmicutes phyla in comparison with the placebo treatment. Overall, this systematic review could not draw consistent conclusions on the effects of probiotic supplementation on the gut microbiota composition of adults.
Collapse
Affiliation(s)
- Ana Paula Mörschbächer
- University of Taquari Valley (Univates), Avelino Talini Avenue, 171, 95914-014 Lajeado, RS, Brazil
| | - Emelin Pappen
- University of Taquari Valley (Univates), Avelino Talini Avenue, 171, 95914-014 Lajeado, RS, Brazil
| | - João Antonio P Henriques
- University of Taquari Valley (Univates), Avelino Talini Avenue, 171, 95914-014 Lajeado, RS, Brazil
| | - Camille E Granada
- University of Taquari Valley (Univates), Avelino Talini Avenue, 171, 95914-014 Lajeado, RS, Brazil
| |
Collapse
|
22
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
23
|
Sujaya IN, Dharmika IAGW, Suwardana GNR, Mariadi IK, Arijana IGKN, Winaya IBO, Nocianitri KA, Ramona Y, Fatmawati NND. Weissella confusa F213 ameliorated inflammation and maintained intestinal mucosa integrity in chemically induced colitis rats. BMC Res Notes 2023; 16:178. [PMID: 37608379 PMCID: PMC10463849 DOI: 10.1186/s13104-023-06456-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
OBJECTIVE This study was performed to investigate the potential effects of Weissella confusa F213 (WCF213) on chemically-induced colitis rats. Twelve male Wistar rats were divided into three groups: T1 (saline sterile), T2 (2.5% dextran sulfate sodium (DSS)- for 7 days), and T3 (WCF213 for 14 days, continued with 2.5% DSS for 7 days). The disease activity index (DAI) was monitored. After sacrificing the rats, the colon was collected for length measurement, local TNF-α level, HE staining for histology, and ZO-1 expression by using immunohistochemistry. RESULTS WCF213 administration prevented weight loss and haematochezia, maintained average colon length and alleviated the clinical symptom of colitis, such as diarrhoea, albeit statistically non-significant (p < 0.05) compared with the T2 group. The histopathology of WCF213-treated colitis rats showed better architecture and less inflammatory cell infiltration into colon tissue. WCF213 significantly maintained the expression of ZO-1 in the mucosa (p < 0.001) and markedly reduced mucosal TNF-α concentration (p < 0.001) compared with the DSS group. Hence, these findings suggested that WCF213 attenuated clinical symptoms and inflammation and maintained mucosal integrity in DSS-induced colitis in vivo.
Collapse
Grants
- B/136-11/UN14.4. A/PT.01.05/2021 Ministry of Education, Culture, Research, and Technology, Republic of Indonesia, and the Institute of Research and Community Services, Udayana University (LPPM UNUD)
- B/136-11/UN14.4. A/PT.01.05/2021 Ministry of Education, Culture, Research, and Technology, Republic of Indonesia, and the Institute of Research and Community Services, Udayana University (LPPM UNUD)
- B/136-11/UN14.4. A/PT.01.05/2021 Ministry of Education, Culture, Research, and Technology, Republic of Indonesia, and the Institute of Research and Community Services, Udayana University (LPPM UNUD)
Collapse
Affiliation(s)
- I Nengah Sujaya
- School of Public Health, Faculty of Medicine, Udayana University, Bali, Indonesia
| | | | | | - I Ketut Mariadi
- Division Gastroenterohepatology, Department of Internal Medicine, Udayana University/Professor Dr. I.G.N.G. Ngoerah Hospital, Denpasar, Bali, Indonesia
| | | | - Ida Bagus Oka Winaya
- Pathology Anatomy Laboratory, Faculty of Veterinary, Udayana University, Bali, Indonesia
| | - Komang Ayu Nocianitri
- School of Food Technology, Faculty of Agricultural Technology, Udayana University, Bali, Indonesia
| | - Yan Ramona
- School of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Bali, Indonesia
| | | |
Collapse
|
24
|
Singh G, Brim H, Haileselassie Y, Varma S, Habtezion A, Rashid M, Sinha SR, Ashktorab H. Microbiomic and Metabolomic Analyses Unveil the Protective Effect of Saffron in a Mouse Colitis Model. Curr Issues Mol Biol 2023; 45:5558-5574. [PMID: 37504267 PMCID: PMC10378474 DOI: 10.3390/cimb45070351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
Despite the existence of effective drugs used to treat inflammatory bowel disease (IBD), many patients fail to respond or lose response over time. Further, many drugs can carry serious adverse effects, including increased risk of infections and malignancies. Saffron (Crocus sativus) has been reported to have anti-inflammatory properties. Its protective role in IBD and how the microbiome and metabolome play a role has not been explored extensively. We aimed to establish whether saffron treatment modulates the host microbiome and metabolic profile in experimental colitis. Colitis was induced in C57BL/6 mice with 3% DSS and treated with either saffron in a dose of 20 mg/kg body weight or vehicle through daily gavage. On day 10, stool pellets from mice were collected and analyzed to assess saffron's effect on fecal microbiota and metabolites through 16S rRNA sequencing and untargeted primary metabolite analysis. Saffron treatment maintained gut microbiota homeostasis by counter-selecting pro-inflammatory bacteria and maintained Firmicutes/Bacteroides ratio, which was otherwise disturbed by DSS treatment. Several metabolites (uric acid, cholesterol, 2 hydroxyglutaric acid, allantoic acid, 2 hydroxyhexanoic acid) were altered significantly with saffron treatment in DSS-treated mice, and this might play a role in mediating saffron's colitis-mitigating effects. These data demonstrate saffron's therapeutic potential, and its protective role is modulated by gut microbiota, potentially acting through changes in metabolites.
Collapse
Affiliation(s)
- Gulshan Singh
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Yeneneh Haileselassie
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Sudhir Varma
- Hithru Analytics LLC, Silver Spring, MD 20877, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Mudasir Rashid
- Department of Pathology and Cancer Center, College of Medicine, Howard University College of Medicine, Washington, DC 20059, USA
| | - Sidhartha R. Sinha
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Hassan Ashktorab
- Department of Pathology and Cancer Center, College of Medicine, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
25
|
Jawhara S. Healthy Diet and Lifestyle Improve the Gut Microbiota and Help Combat Fungal Infection. Microorganisms 2023; 11:1556. [PMID: 37375058 DOI: 10.3390/microorganisms11061556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Western diets are rapidly spreading due to globalization, causing an increase in obesity and diseases of civilization. These Western diets are associated with changes in the gut microbiota related to intestinal inflammation. This review discusses the adverse effects of Western diets, which are high in fat and sugar and low in vegetable fiber, on the gut microbiota. This leads to gut dysbiosis and overgrowth of Candida albicans, which is a major cause of fungal infection worldwide. In addition to an unhealthy Western diet, other factors related to disease development and gut dysbiosis include smoking, excessive alcohol consumption, lack of physical activity, prolonged use of antibiotics, and chronic psychological stress. This review suggests that a diversified diet containing vegetable fiber, omega-3 polyunsaturated fatty acids, vitamins D and E, as well as micronutrients associated with probiotic or prebiotic supplements can improve the biodiversity of the microbiota, lead to short-chain fatty acid production, and reduce the abundance of fungal species in the gut. The review also discusses a variety of foods and plants that are effective against fungal overgrowth and gut dysbiosis in traditional medicine. Overall, healthy diets and lifestyle factors contribute to human well-being and increase the biodiversity of the gut microbiota, which positively modulates the brain and central nervous system.
Collapse
Affiliation(s)
- Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, F-59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|
26
|
Zarenezhad E, Abdulabbas HT, Kareem AS, Kouhpayeh SA, Barbaresi S, Najafipour S, Mazarzaei A, Sotoudeh M, Ghasemian A. Protective role of flavonoids quercetin and silymarin in the viral-associated inflammatory bowel disease: an updated review. Arch Microbiol 2023; 205:252. [PMID: 37249707 DOI: 10.1007/s00203-023-03590-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammation of the gastrointestinal tract (GIT). IBD patients are susceptible to various infections such as viral infections due to the long-term consumption of immunosuppressive drugs and biologics. The antiviral and IBD protective traits of flavonoids have not been entirely investigated. This study objective included an overview of the protective role of flavonoids quercetin and silymarin in viral-associated IBD. Several viral agents such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), varicella zoster virus (VZV) and enteric viruses can be reactivated and thus develop or exacerbate the IBD conditions or eventually facilitate the disease remission. Flavonoids such as quercetin and silymarin are non-toxic and safe bioactive compounds with remarkable anti-oxidant, anti-inflammatory and anti-viral effects. Mechanisms of anti-inflammatory and antiviral effects of silymarin and quercetin mainly include immune modulation and inhibition of caspase enzymes, viral binding and replication, RNA synthesis, viral proteases and viral assembly. In the nutraceutical sector, natural flavonoids low bioavailability and solubility necessitate the application of delivery systems to enhance their efficacy. This review study provided an updated understanding of the protective role of quercetin and silymarin against viral-associated IBD.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Al Muthanna, Iraq
| | - Ahmed Shayaa Kareem
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Silvia Barbaresi
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdulbaset Mazarzaei
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mitra Sotoudeh
- Department of Nutrition, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
27
|
Koshida K, Ito M, Yakabe K, Takahashi Y, Tai Y, Akasako R, Kimizuka T, Takano S, Sakamoto N, Haniuda K, Ogawa S, Kimura S, Kim YG, Hase K, Harada Y. Dysfunction of Foxp3 + Regulatory T Cells Induces Dysbiosis of Gut Microbiota via Aberrant Binding of Immunoglobulins to Microbes in the Intestinal Lumen. Int J Mol Sci 2023; 24:8549. [PMID: 37239894 PMCID: PMC10218244 DOI: 10.3390/ijms24108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Foxp3+ regulatory T (Treg) cells prevent excessive immune responses against dietary antigens and commensal bacteria in the intestine. Moreover, Treg cells contribute to the establishment of a symbiotic relationship between the host and gut microbes, partly through immunoglobulin A. However, the mechanism by which Treg cell dysfunction disturbs the balanced intestinal microbiota remains unclear. In this study, we used Foxp3 conditional knockout mice to conditionally ablate the Foxp3 gene in adult mice and examine the relationship between Treg cells and intestinal bacterial communities. Deletion of Foxp3 reduced the relative abundance of Clostridia, suggesting that Treg cells have a role in maintaining Treg-inducing microbes. Additionally, the knockout increased the levels of fecal immunoglobulins and immunoglobulin-coated bacteria. This increase was due to immunoglobulin leakage into the gut lumen as a result of loss of mucosal integrity, which is dependent on the gut microbiota. Our findings suggest that Treg cell dysfunction leads to gut dysbiosis via aberrant antibody binding to the intestinal microbes.
Collapse
Affiliation(s)
- Kouhei Koshida
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
| | - Mitsuki Ito
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Kyosuke Yakabe
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan;
| | - Yoshimitsu Takahashi
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Yuki Tai
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Ryouhei Akasako
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Tatsuki Kimizuka
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan;
| | - Shunsuke Takano
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
| | - Natsumi Sakamoto
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Kei Haniuda
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuhei Ogawa
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Japan;
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan;
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima 960-1296, Japan
| | - Yohsuke Harada
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| |
Collapse
|
28
|
Wang L, Lei J, Zhao Z, Jia J, Wang L. Therapeutic effects of paeoniflorin on irritable bowel syndrome in rats. J Vet Sci 2023; 24:e23. [PMID: 37271501 PMCID: PMC10244138 DOI: 10.4142/jvs.22083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional bowel disorder (FBD). OBJECTIVES To assess the therapeutic effects of paeoniflorin (PF) on IBS in rats. METHOD Sixty male Sprague-Dawley rats were randomly divided into normal, model, positive drug, low-dose PF, medium-dose PF and high-dose PF groups (n = 10). After gavage for 2 consecutive weeks, the effect of PF on abdominal pain symptoms was assessed based on the abdominal withdrawal reflex (AWR) score, fecal water content and pathological changes in colon tissues. D-lactate, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, and phosphorylated nuclear factor kappa B (p-NF-κB) p65 was detected by Western blotting. The abundance and diversity changes of intestinal flora were explored using 16S ribosomal RNA sequencing. RESULT In PF groups, the mucosal morphology of colon tissues was intact, and the glands were arranged neatly and structured clearly, without obvious inflammatory cell infiltration. Compared with the model group, PF groups had significantly elevated pain threshold, and mRNA and protein levels of zonula occludens-1 (ZO-1) and occludin, decreased AWR score at 20 mmHg pressure, fecal water content, mRNA levels of IL-1β, TGF-β, and TNF-α, protein level of p-NF-κB p65 and level of serum D-lactate, and reduced levels of serum IL-1β, TGF-β, and TNF-α (p < 0.05, p < 0.01). PF groups had higher abundance of Lactobacillus, Akkermansia, Alistipes, and Bacteroides, but lower abundance of Desulfovibrio, Parasutterella, and Enterococcus than those of the model group. CONCLUSIONS PF exerts therapeutic effects on IBS in rats probably by regulating the intestinal flora, and then up-regulating the expressions of ZO-1 and occludin in colon tissue while down-regulating the levels of IL-1β, TGF-β, TNF-α, D-lactate and p-NF-κB p65.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacy, Tianjin Second People's Hospital, Tianjin 300192, China
- Tianjin Institute of Hepatology, Tianjin 300192, China
| | - Jinyan Lei
- Tianjin Institute of Hepatology, Tianjin 300192, China
- Department of Integrated Chinese and Western Medicine, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Zeyu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Jianwei Jia
- Tianjin Institute of Hepatology, Tianjin 300192, China
- Department of Integrated Chinese and Western Medicine, Tianjin Second People's Hospital, Tianjin 300192, China.
| | - Li Wang
- Department of Pharmacy, Tianjin Second People's Hospital, Tianjin 300192, China
- Academy of Medical Engineering and Transnational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
29
|
Dehghani T, Gholizadeh O, Daneshvar M, Nemati MM, Akbarzadeh S, Amini P, Afkhami H, Kohansal M, Javanmard Z, Poortahmasebi V. Association Between Inflammatory Bowel Disease and Viral Infections. Curr Microbiol 2023; 80:195. [PMID: 37106245 PMCID: PMC10139670 DOI: 10.1007/s00284-023-03305-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Chronic inflammatory gastrointestinal diseases such as Crohn's disease (CD) and ulcerative colitis (UC) are known as inflammatory bowel disorders (IBD). Patients with inflammatory bowel illnesses are more susceptible to viral infections. In people with IBD, viral infections have emerged as a significant issue. Viral infections are often difficult to identify and have a high morbidity and fatality rate. We reviewed studies on viral infections and IBD, concentrating on Cytomegalovirus (CMV), SARS-CoV-2, Epstein-Barr virus (EBV), enteric viruses, and hepatitis B virus (HBV). Also, the effect of IBD on these viral infections is discussed. These data suggest that patients with IBD are more likely to get viral infections. As a result, practitioners should be aware of the increased risk of viral infections in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Tannaz Dehghani
- Internal Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mahdi Nemati
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Parya Amini
- Faculty of Medicine, Yasouj University of Medical Sciences, Yasouj, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Maryam Kohansal
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Javanmard
- Department of Medical Microbiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Oliveira ECSD, Quaglio AEV, Magro DO, Di Stasi LC, Sassaki LY. Intestinal Microbiota and miRNA in IBD: A Narrative Review about Discoveries and Perspectives for the Future. Int J Mol Sci 2023; 24:ijms24087176. [PMID: 37108339 PMCID: PMC10138604 DOI: 10.3390/ijms24087176] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC) and comprises a chronic gastrointestinal tract disorder characterized by hyperactive and dysregulated immune responses to environmental factors, including gut microbiota and dietary components. An imbalance of the intestinal microbiota may contribute to the development and/or worsening of the inflammatory process. MicroRNAs (miRNAs) have been associated with various physiological processes, such as cell development and proliferation, apoptosis, and cancer. In addition, they play an important role in inflammatory processes, acting in the regulation of pro- and anti-inflammatory pathways. Differences in the profiles of miRNAs may represent a useful tool in the diagnosis of UC and CD and as a prognostic marker in both diseases. The relationship between miRNAs and the intestinal microbiota is not completely elucidated, but recently this topic has gained prominence and has become the target of several studies that demonstrate the role of miRNAs in the modulation of the intestinal microbiota and induction of dysbiosis; the microbiota, in turn, can regulate the expression of miRNAs and, consequently, alter the intestinal homeostasis. Therefore, this review aims to describe the interaction between the intestinal microbiota and miRNAs in IBD, recent discoveries, and perspectives for the future.
Collapse
Affiliation(s)
- Ellen Cristina Souza de Oliveira
- Department of Internal Medicine, Medical School, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-970, Brazil
| | - Ana Elisa Valencise Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-689, Brazil
| | - Daniéla Oliveira Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo CEP 13083-970, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-689, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, Medical School, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-970, Brazil
| |
Collapse
|
31
|
Thriene K, Michels KB. Human Gut Microbiota Plasticity throughout the Life Course. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1463. [PMID: 36674218 PMCID: PMC9860808 DOI: 10.3390/ijerph20021463] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/02/2023]
Abstract
The role of the gut microbiota in human health and disease has garnered heightened attention over the past decade. A thorough understanding of microbial variation over the life course and possible ways to influence and optimize the microbial pattern is essential to capitalize on the microbiota's potential to influence human health. Here, we review our current understanding of the concept of plasticity of the human gut microbiota throughout the life course. Characterization of the plasticity of the microbiota has emerged through recent research and suggests that the plasticity in the microbiota signature is largest at birth when the microbial colonization of the gut is initiated and mode of birth imprints its mark, then decreases postnatally continuously and becomes less malleable and largely stabilized with advancing age. This continuing loss of plasticity has important implication for the impact of the exposome on the microbiota and health throughout the life course and the identification of susceptible 'windows of opportunity' and methods for interventions.
Collapse
Affiliation(s)
- Kerstin Thriene
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79110 Freiburg, Germany
| | - Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79110 Freiburg, Germany
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Liu J, Lin H, Cao M, Lin T, Lin A, Xu W, Wang H, He J, Li Y, Tang H, Zhang B. Shifts and importance of viable bacteria in treatment of DSS-induced ulcerative colitis mice with FMT. Front Cell Infect Microbiol 2023; 13:1124256. [PMID: 36814445 PMCID: PMC9939747 DOI: 10.3389/fcimb.2023.1124256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background and Aims Ulcerative colitis (UC) has become a global public health concern, and is in urgent need of novel therapies. Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of UC. Despite its recent successes, it is still largely unknown how FMT functionally modulates the gut microbiota and improves the disease. Methods We prospectively collected fecal samples from the 40 mice (30 mice for dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided equally into 3 groups, which were transplanted with original donor microbiota (DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota transplantation (FMT) with viable microbiota. Results We demonstrated that the community structure of viable bacteria was significantly different from fecal bacteria based on total DNA. Furthermore, the intestinal viable microbiota and colonic mucosal structure of mice were significantly changed by DSS induction. The histological analysis showed that only the mice treated with original donor microbiota group (HF) achieved a significant improvement. Compared with inactivated donor microbiota group (IF) and saline (NF), Lactobacillus and Halomonas were significantly enriched in the HF group. Conclusion We inferred that only live bacteria from human donor reversed the histopathology and symptoms of UC in mice and altered the gut microbiota. The activity of gut microbiota in donor samples should be considered in FMT and that detailed analysis of viable microbiota is essential to understand the mechanisms by which FMT produces therapeutic effects in the future.
Collapse
Affiliation(s)
- Jinglong Liu
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hao Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Man Cao
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tan Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Aiqiang Lin
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Wei Xu
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Han Wang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Yuantao Li
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Hailing Tang
- Division of Gastroenterology, Xi’an Central Hospital, Xi’an, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Bangzhou Zhang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| |
Collapse
|
33
|
Wiredu Ocansey DK, Hang S, Yuan X, Qian H, Zhou M, Valerie Olovo C, Zhang X, Mao F. The diagnostic and prognostic potential of gut bacteria in inflammatory bowel disease. Gut Microbes 2023; 15:2176118. [PMID: 36794838 PMCID: PMC9980661 DOI: 10.1080/19490976.2023.2176118] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The gut microbiome serves as a signaling hub that integrates environmental inputs with genetic and immune signals to influence the host's metabolism and immunity. Gut bacteria are intricately connected with human health and disease state, with specific bacteria species driving the characteristic dysbiosis found in gastrointestinal conditions such as inflammatory bowel disease (IBD); thus, gut bacteria changes could be harnessed to improve IBD diagnosis, prognosis, and treatment. The advancement in next-generation sequencing techniques such as 16S rRNA and whole-genome shotgun sequencing has allowed the exploration of the complexity of the gut microbial ecosystem with high resolution. Current microbiome data is promising and appears to perform better in some studies than the currently used fecal inflammation biomarker, calprotectin, in predicting IBD from healthy controls and irritable bowel syndrome (IBS). This study reviews current data on the differential potential of gut bacteria within IBD cohorts, and between IBD and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Sanhua Hang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, P.R. China
| | - Xinyi Yuan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Hua Qian
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, P.R. China
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
34
|
Qu J, Shao C, Ying Y, Wu Y, Liu W, Tian Y, Yin Z, Li X, Yu Z, Shuai J. The spring-like effect of microRNA-31 in balancing inflammatory and regenerative responses in colitis. Front Microbiol 2022; 13:1089729. [PMID: 36590397 PMCID: PMC9800619 DOI: 10.3389/fmicb.2022.1089729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders caused by the disruption of immune tolerance to the gut microbiota. MicroRNA-31 (MIR31) has been proven to be up-regulated in intestinal tissues from patients with IBDs and colitis-associated neoplasias. While the functional role of MIR31 in colitis and related diseases remain elusive. Combining mathematical modeling and experimental analysis, we systematically explored the regulatory mechanism of MIR31 in inflammatory and epithelial regeneration responses in colitis. Level of MIR31 presents an "adaptation" behavior in dextran sulfate sodium (DSS)-induced colitis, and the similar behavior is also observed for the key cytokines of p65 and STAT3. Simulation analysis predicts MIR31 suppresses the activation of p65 and STAT3 but accelerates the recovery of epithelia in colitis, which are validated by our experimental observations. Further analysis reveals that the number of proliferative epithelial cells, which characterizes the inflammatory process and the recovery of epithelia in colitis, is mainly determined by the inhibition of MIR31 on IL17RA. MIR31 promotes epithelial regeneration in low levels of DSS-induced colitis but inhibits inflammation with high DSS levels, which is dominated by the competition for MIR31 to either inhibit inflammation or promote epithelial regeneration by binding to different targets. The binding probability determines the functional transformation of MIR31, but the functional strength is determined by MIR31 levels. Thus, the role of MIR31 in the inflammatory response can be described as the "spring-like effect," where DSS, MIR31 action strength, and proliferative epithelial cell number are regarded as external force, intrinsic spring force, and spring length, respectively. Overall, our study uncovers the vital roles of MIR31 in balancing inflammation and the recovery of epithelia in colitis, providing potential clues for the development of therapeutic targets in drug design.
Collapse
Affiliation(s)
- Jing Qu
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Chunlei Shao
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongfa Ying
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Yuning Wu
- Department of Mathematics and Physics, Fujian Jiangxia University, Fuzhou, China
| | - Wen Liu
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Yuhua Tian
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyong Yin
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Xiang Li
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianwei Shuai
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), University of Chinese Academy of Sciences, Wenzhou, China
- Wenzhou Institute, Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
35
|
Haraikawa M, Shibuya T, Kurosawa T, Ito K, Nomura K, Haga K, Nomura O, Takeda T, Fukushima H, Murakami T, Ishikawa D, Hojo M, Yao T, Nagahara A. Differential diagnosis of ulcerative colitis with increased diarrhea; collagenous colitis or irritable bowel syndrome? A case report. J Int Med Res 2022; 50:3000605221140686. [PMID: 36474409 PMCID: PMC9732797 DOI: 10.1177/03000605221140686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
A 50-year-old man with a 20-year history of left-sided ulcerative colitis (UC) presented to our hospital with sudden onset of watery diarrhea. To this point, he had been treated with mesalazine 2.0 g/day for UC and had maintained remission. We considered that the UC had worsened. We immediately performed surveillance colonoscopy, which revealed a normal mucous membrane. The results of blood laboratory examinations were normal. Histopathology of colonic biopsies revealed new-onset collagenous colitis (CC), with a thickened subepithelial collagen band (SECB) and inactive UC. We herein report the importance of random colonic biopsies to diagnose CC even when the endoscopic appearance of the colon is normal in patients with inflammatory bowel disease with worsened diarrhea.
Collapse
Affiliation(s)
- Mayuko Haraikawa
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Taro Kurosawa
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kentaro Ito
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kei Nomura
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Keiichi Haga
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Nomura
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tsutomu Takeda
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hirofumi Fukushima
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Murakami
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mariko Hojo
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of
Medicine, 3-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
36
|
Wu P, Wu B, Zhuang Z, Liu J, Hong L, Ma B, Lin B, Wang J, Lin C, Chen J, Chen S. Intestinal mucosal and fecal microbiota profiles in Crohn's disease in Chinese children. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Panufnik P, Więcek M, Kaniewska M, Lewandowski K, Szwarc P, Rydzewska G. Selected Aspects of Nutrition in the Prevention and Treatment of Inflammatory Bowel Disease. Nutrients 2022; 14:nu14234965. [PMID: 36500995 PMCID: PMC9737796 DOI: 10.3390/nu14234965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Inflammatory bowel disease has become a global health problem at the turn of the 21st century. The pathogenesis of this disorder has not been fully explained. In addition to non-modifiable genetic factors, a number of modifiable factors such as diet or gut microbiota have been identified. In this paper, the authors focus on the role of nutrition in the prevention of inflammatory bowel disease as well as on the available options to induce disease remission by means of dietary interventions such as exclusive and partial enteral nutrition in Crohn's disease, the efficacy of which is reported to be comparable to that of steroid therapy. Diet is also important in patients with inflammatory bowel disease in the remission stage, during which some patients report irritable bowel disease-like symptoms. In these patients, the effectiveness of diets restricting the intake of oligo-, di-, monosaccharides, and polyols is reported.
Collapse
Affiliation(s)
- Paulina Panufnik
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
- Correspondence: (P.P.); (G.R.)
| | - Martyna Więcek
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
| | - Magdalena Kaniewska
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
| | - Konrad Lewandowski
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
| | - Paulina Szwarc
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
| | - Grażyna Rydzewska
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subunit, Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warszawa, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Correspondence: (P.P.); (G.R.)
| |
Collapse
|
38
|
Tan C, Hong G, Wang Z, Duan C, Hou L, Wu J, Qian W, Han C, Hou X. Promoting Effect of L-Fucose on the Regeneration of Intestinal Stem Cells through AHR/IL-22 Pathway of Intestinal Lamina Propria Monocytes. Nutrients 2022; 14:4789. [PMID: 36432480 PMCID: PMC9695883 DOI: 10.3390/nu14224789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The recovery of the intestinal epithelial barrier is the goal for curing various intestinal injurious diseases, especially IBD. However, there are limited therapeutics for restoring intestinal epithelial barrier function in IBD. The stemness of intestinal stem cells (ISCs) can differentiate into various mature intestinal epithelial cells, thus playing a key role in the rapid regeneration of the intestinal epithelium. IL-22 secreted by CD4+ T cells and ILC3 cells was reported to maintain the stemness of ISCs. Our previous study found that L-fucose significantly ameliorated DSS-induced colonic inflammation and intestinal epithelial injury. In this study, we discovered enhanced ISC regeneration and increased intestinal IL-22 secretion and its related transcription factor AHR in colitis mice after L-fucose treatment. Further studies showed that L-fucose promoted IL-22 release from CD4+ T cells and intestinal lamina propria monocytes (LPMCs) via activation of nuclear AHR. The coculture system of LPMCs and intestinal organoids demonstrated that L-fucose stimulated the proliferation of ISCs through an indirect manner of IL-22 from LPMCs via the IL-22R-p-STAT3 pathway, and restored TNF-α-induced organoid damage via IL-22-IL-22R signaling. These results revealed that L-fucose helped to heal the epithelial barrier by accelerating ISC proliferation, probably through the AHR/IL-22 pathway of LPMCs, which provides a novel therapy for IBD in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
39
|
Ustianowska K, Ustianowski Ł, Machaj F, Gorący A, Rosik J, Szostak B, Szostak J, Pawlik A. The Role of the Human Microbiome in the Pathogenesis of Pain. Int J Mol Sci 2022; 23:13267. [PMID: 36362056 PMCID: PMC9659276 DOI: 10.3390/ijms232113267] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/22/2023] Open
Abstract
Understanding of the gut microbiome's role in human physiology developed rapidly in recent years. Moreover, any alteration of this microenvironment could lead to a pathophysiological reaction of numerous organs. It results from the bidirectional communication of the gastrointestinal tract with the central nervous system, called the gut-brain axis. The signals in the gut-brain axis are mediated by immunological, hormonal, and neural pathways. However, it is also influenced by microorganisms in the gut. The disturbances in the gut-brain axis are associated with gastrointestinal syndromes, but recently their role in the development of different types of pain was reported. The gut microbiome could be the factor in the central sensitization of chronic pain by regulating microglia, astrocytes, and immune cells. Dysbiosis could lead to incorrect immune responses, resulting in the development of inflammatory pain such as endometriosis. Furthermore, chronic visceral pain, associated with functional gastrointestinal disorders, could result from a disruption in the gut microenvironment. Any alteration in the gut-brain axis could also trigger migraine attacks by affecting cytokine expression. Understanding the gut microbiome's role in pain pathophysiology leads to the development of analgetic therapies targeting microorganisms. Probiotics, FODMAP diet, and fecal microbiota transplantation are reported to be beneficial in treating visceral pain.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
40
|
Liu H, Zhang B, Li F, Liu L, Li F. Shifts in the intestinal microflora of meat rabbits in response to glucocorticoids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5422-5428. [PMID: 35338488 DOI: 10.1002/jsfa.11895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/04/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND As major stress hormones, glucocorticoids can directly or indirectly affect the intestinal microflora, although few studies have focused on changes in the composition of the intestinal microflora. In this study, rabbits were randomly divided into two groups: gavage administration with saline, and the same doses of dexamethasone (1 mg kg-1 ). After 7 days, the microbial diversity of the jejunum contents was analysed. RESULTS The gut microflora richness and diversity had no significant difference between the two groups. The proportions of Firmicutes and Bacteroidetes were the most abundant in the jejunum of meat rabbits. Dexamethasone injection led to a change in the structure of the gut microflora composition, and we found that there were six biomarkers with linear discriminant analysis score >4 (Firmicutes, Caproiciproducens, Clostridiales, Clostridia, Psychrobacter, and Psychrobacter faecalis), moreover, the results of this study provide new insight into alleviating the effects of stress on meat rabbits. CONCLUSION It was concluded that glucocorticoids caused changes in the composition of intestinal microflora. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongli Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Department of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Bin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Fan Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
41
|
Lee YH, Kim H, Nam S, Chu JR, Kim JH, Lim JS, Kim SE, Sung MK. Protective Effects of High-Fat Diet against Murine Colitis in Association with Leptin Signaling and Gut Microbiome. Life (Basel) 2022; 12:life12070972. [PMID: 35888062 PMCID: PMC9323536 DOI: 10.3390/life12070972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 04/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal-tract inflammation with dysregulated immune responses, which are partly attributable to dysbiosis. Given that diet plays a critical role in IBD pathogenesis and progression, we elucidated the effects of a high-fat diet (HFD) feeding on IBD development in relation to immune dysfunction and the gut microbiota. Five-week-old male C57BL/6J mice were fed either a normal diet (ND) or HFD for 14 weeks. The animals were further divided into ND, ND+ dextran sulfate sodium (DSS), HFD, and HFD+DSS treatment groups. The HFD+DSS mice exhibited lower body weight loss, lower disease activity index, longer colon length, and increased tight-junction protein expression and goblet-cell proportions compared with the ND+DSS mice. The T helper (h)1 and Th17 cell populations and pro-inflammatory cytokines involved in colitis pathogenesis were significantly more reduced in the HFD+DSS mice than in the ND+DSS mice. The HFD+DSS mice showed significantly increased serum leptin concentrations, colonic leptin receptor expression, enhanced anti-apoptotic AKT expression, and reduced pro-apoptotic MAPK and Bax expression compared with the ND+DSS mice, suggesting the involvement of the leptin-mediated pathway in intestinal epithelial cell apoptosis. The alterations in the gut-microbiota composition in the HFD+DSS group were the opposite of those in the ND+DSS group and rather similar to those of the ND group, indicating that the protective effects of HFD feeding against DSS-induced colitis are associated with changes in gut-microbiota composition. Overall, HFD feeding ameliorates DSS-induced colitis and colonic mucosal damage by reinforcing colonic barrier function and regulating immune responses in association with changes in gut-microbiota composition.
Collapse
Affiliation(s)
- Yun-Ha Lee
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Hyeyoon Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Sorim Nam
- Division of Biological Sciences and Cellular Heterogeneity Research Center, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (S.N.); (J.-S.L.)
| | - Jae-Ryang Chu
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea;
| | - Jong-Seok Lim
- Division of Biological Sciences and Cellular Heterogeneity Research Center, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (S.N.); (J.-S.L.)
| | - Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| |
Collapse
|
42
|
Li Y, Nguepi Tsopmejio IS, Diao Z, Xiao H, Wang X, Jin Z, Song H. Aronia melanocarpa (Michx.) Elliott. attenuates dextran sulfate sodium-induced Inflammatory Bowel Disease via regulation of inflammation-related signaling pathways and modulation of the gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115190. [PMID: 35306040 DOI: 10.1016/j.jep.2022.115190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aronia melanocarpa (Michx.) Elliott. Is one of the most functional berries usually used in the preparation of juice and jams, but it has revealed its ethnopharmacological properties due to their richness in biologically active molecules with pharmaceutical and physiological effects. AIMS OF THE STUDY The aim of this study was to assess the antioxidant and anti-inflammatory effects of Aronia melanocarpa ethanol-extract as well as the possible mechanisms of action involved and the modulation of gut microbiota in Dextran Sulfate Sodium (DSS)-induced Inflammatory bowel disease in mice. MATERIALS AND METHODS Inflammatory bowel disease (IBD) were induced by DSS in drinking water for 7 days to evaluate the properties of A. melanocarpa ethanol-extract (AME) on the intestinal microflora. AME was administered orally to DSS-induced IBD mice for 21 days. Clinical, inflammatory, histopathological parameters, and different mRNA and proteins involved in its possible mechanism of action were determined as well as gut microbiota analysis via 16S high throughput sequencing. RESULTS AME improved clinical symptoms and regulated histopathological parameters, pro- and anti-inflammatory cytokines and oxidative stress factors as well as mRNA and protein expressions of transcription factors involved in maintaining the intestinal barrier integrity. In addition, AME also reversed the DSS-induced intestinal dysbiosis effects promoting the production of cecal short chain fatty acids linked to signaling pathways inhibiting IBD. CONCLUSION AME improved intestinal lesions induced by DSS suggesting that A. melanocarpa berries could have significant therapeutic potential against IBD due to their antioxidant and anti-inflammatory capacities as well as their ability to restore the gut microbiota balance.
Collapse
Affiliation(s)
- Yuting Li
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Ivan Stève Nguepi Tsopmejio
- School of Life Science, Jilin Agricultural University, Jilin, PR China; Department of Animal Biology and Physiology, University of Yaoundé I, Cameroon
| | - Zipeng Diao
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Huanwei Xiao
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Xueqi Wang
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Zhouyu Jin
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Hui Song
- School of Life Science, Jilin Agricultural University, Jilin, PR China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Changchun, PR China.
| |
Collapse
|
43
|
Sung CH, Marsilio S, Chow B, Zornow KA, Slovak JE, Pilla R, Lidbury JA, Steiner JM, Park SY, Hong MP, Hill SL, Suchodolski JS. Dysbiosis index to evaluate the fecal microbiota in healthy cats and cats with chronic enteropathies. J Feline Med Surg 2022; 24:e1-e12. [PMID: 35266809 PMCID: PMC9160961 DOI: 10.1177/1098612x221077876] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Previous studies have identified various bacterial taxa that are altered in cats with chronic enteropathies (CE) vs healthy cats. Therefore, the aim of this study was to develop a targeted quantitative molecular method to evaluate the fecal microbiota of cats. METHODS Fecal samples from 80 client-owned healthy cats and 68 cats with CE were retrospectively evaluated. A panel of quantitative PCR (qPCR) assays was used to measure the fecal abundance of total bacteria and seven bacterial taxa: Bacteroides, Bifidobacterium, Clostridium hiranonis, Escherichia coli, Faecalibacterium, Streptococcus and Turicibacter. The nearest centroid classifier algorithm was used to calculate a dysbiosis index (DI) based on these qPCR abundances. RESULTS The abundances of total bacteria, Bacteroides, Bifidobacterium, C hiranonis, Faecalibacterium and Turicibacter were significantly decreased, while those of E coli and Streptococcus were significantly increased in cats with CE (P <0.027 for all). The DI in cats with CE was significantly higher compared with healthy cats (P <0.001). When the cut-off value of the DI was set at 0, it provided 77% (95% confidence interval [CI] 66-85) sensitivity and 96% (95% CI 89-99) specificity to differentiate the microbiota of cats with CE from those of healthy cats. Fifty-two of 68 cats with CE had a DI >0. CONCLUSIONS AND RELEVANCE A qPCR-based DI for assessing the fecal microbiota of cats was established. The results showed that a large proportion of cats with CE had an altered fecal microbiota as evidenced by an increased DI. Prospective studies are warranted to evaluate the utility of this assay for clinical assessment of feline CE.
Collapse
Affiliation(s)
- Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Sina Marsilio
- UC Davis School of Veterinary Medicine, Department of Veterinary Medicine and Epidemiology, University of California-Davis, Davis, CA, USA
| | - Betty Chow
- Veterinary Specialty Hospital, San Diego, CA, USA
- VCA Animal Specialty and Emergency Center, Los Angeles, CA, USA
| | | | | | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - So Young Park
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Min-Pyo Hong
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Steve L Hill
- Veterinary Specialty Hospital, San Diego, CA, USA
- Flagstaff Veterinary Internal Medicine Consulting, Flagstaff, AZ, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
44
|
Kitae H, Takagi T, Naito Y, Inoue R, Azuma Y, Torii T, Mizushima K, Doi T, Inoue K, Dohi O, Yoshida N, Kamada K, Uchiyama K, Ishikawa T, Konishi H, Itoh Y. Gut Microbiota Associated with Clinical Relapse in Patients with Quiescent Ulcerative Colitis. Microorganisms 2022; 10:1044. [PMID: 35630486 PMCID: PMC9144486 DOI: 10.3390/microorganisms10051044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
The microbiota associated with relapse in patients with quiescent ulcerative colitis (qUC) remains unclear. Our objective was to analyze the fecal microbiota of Japanese patients with qUC and identify the relapse-associated microbiota. In this study, 59 patients with qUC and 59 healthy controls (HCs) were enrolled (UMIN 000019486), and their fecal microbiota was compared using 16S rRNA gene amplicon sequencing. We followed their clinical course up to 3.5 years and analyzed the relapse-associated microbiota. Potential functional changes in the fecal microbiota were evaluated using PICRUSt software and the Kyoto Encyclopedia of Genes and Genomes database. There were significant differences in fecal microbiota diversity between HC and qUC subjects, with 13 taxa characterizing each subject. Despite no significant difference in variation of microbiota in a single sample (α diversity) between patients in sustained remission and relapsed patients, the variation in microbial communities between samples (β diversity) was significantly different. Prevotella was more abundant in the sustained remission patients, whereas Faecalibacterium and Bifidobacterium were more abundant in the relapsed patients. We clustered the entire cohort into four clusters, and Kaplan-Meier analysis revealed the subsequent clinical course of each cluster was different. We identified 48 metabolic pathways associated with each cluster using linear discriminant analysis effect size. We confirmed the difference in microbiota between patients with qUC and HCs and identified three genera associated with relapse. We found that the clusters based on these genera had different subsequent clinical courses and activated different metabolic pathways.
Collapse
Affiliation(s)
- Hiroaki Kitae
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
- Department for Medical Innovation and Translational Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka 573-0101, Japan;
| | - Yuka Azuma
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Takashi Torii
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Katsura Mizushima
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Kazuhiro Kamada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Kazuhiko Uchiyama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| |
Collapse
|
45
|
Adamkova P, Hradicka P, Kupcova Skalnikova H, Cizkova V, Vodicka P, Farkasova Iannaccone S, Kassayova M, Gancarcikova S, Demeckova V. Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Vet Sci 2022; 9:238. [PMID: 35622766 PMCID: PMC9147231 DOI: 10.3390/vetsci9050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Collapse
Affiliation(s)
- Petra Adamkova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Petra Hradicka
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Veronika Cizkova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Silvia Farkasova Iannaccone
- Department of Forensic Medicine, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia;
| | - Monika Kassayova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Vlasta Demeckova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| |
Collapse
|
46
|
Aximujiang K, Kaheman K, Wushouer X, Wu G, Ahemaiti A, Yunusi K. Lactobacillus acidophilus and HKL Suspension Alleviates Ulcerative Colitis in Rats by Regulating Gut Microbiota, Suppressing TLR9, and Promoting Metabolism. Front Pharmacol 2022; 13:859628. [PMID: 35600873 PMCID: PMC9118348 DOI: 10.3389/fphar.2022.859628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease with complex pathogenesis. The intestinal flora disturbance affects the homeostasis of the intestinal environment, leading to metabolic imbalance and immune abnormalities of the host, contributing to the perpetuation of intestinal inflammation. We suggest that the combination of anti-inflammatory therapy and the regulation of intestinal flora balance may help in the treatment process. Previously, we used a combination treatment consisting of Lactobacillus acidophilus (Lac) and Chinese medicine Huan Kui Le (HKL) suspension in a UC rat model, where the combined intervention was more effective than either treatment alone. Herein, the mechanism of action of this combined treatment has been investigated using 16S rRNA sequencing, immunohistochemistry, and ELISA methods in the colon, and untargeted metabolomics profiling in serum. Colon protein expression levels of IL-13 and TGF-β were upregulated, whereas those of TLR9 and TLR4 were downregulated, consistent with an anti-inflammatory effect. In addition, gut microbiota structure changed, shown by a decrease in opportunistic pathogens correlated with intestinal inflammation, such as Klebsiella and Escherichia-Shigella, and an increase in beneficial bacteria such as Bifidobacterium. The latter correlated positively with IL-13 and TGF-β and negatively with IFN-γ. Finally, this treatment alleviated the disruption of the metabolic profile observed in UC rats by increasing short-chain fatty acid (SCFA)-producing bacteria in the colonic epithelium. This combination treatment also affected the metabolism of lactic acid, creatine, and glycine and inhibited the growth of Klebsiella. Overall, we suggest that treatment combining probiotics and traditional Chinese medicine is a novel strategy beneficial in UC that acts by modulating gut microbiota and its metabolites, TLR9, and cytokines in different pathways.
Collapse
Affiliation(s)
- Kasimujiang Aximujiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Kuerbannaimu Kaheman
- Department of Rehabilitation Medicine, First Affiliated Hospital in Xinjiang Medical University, Urumqi, China
| | - Xilinguli Wushouer
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Guixia Wu
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Abulaiti Ahemaiti
- The Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Kurexi Yunusi
- Uygur Medical College, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
47
|
Zhu T, Hu B, Ye C, Hu H, Yin M, Zhang Z, Li S, Liu Y, Liu H. Bletilla striata Oligosaccharides Improve Ulcerative Colitis by Regulating Gut Microbiota and Intestinal Metabolites in Dextran Sulfate Sodium-Induced Mice. Front Pharmacol 2022; 13:867525. [PMID: 35548331 PMCID: PMC9081565 DOI: 10.3389/fphar.2022.867525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
This study aimed to elucidate the mechanism of Bletilla striata oligosaccharides (BO) in the treatment of ulcerative colitis (UC). A UC mouse model was induced by 3% Dextran sodium sulfate (DSS), and BO (200 mg/kg/d) were administered for intervention. The results show that BO effectively inhibited the release of intestinal inflammatory cytokines such as IL-6, TNF-α, and IL-1β. Also, BO profoundly elevated the secretion of mucins and the expression of tight junction (TJ) proteins to attenuate dysfunction of the intestinal barrier. The 16S rDNA sequencing and liquid chromatography/gas chromatography-mass spectrometer (LC/GC-MS) analysis of mouse feces revealed that BO regulated the disturbance of gut microbiota and intestinal metabolites. By using the in vitro fermentation broth of BO and gut microbiota-depleted mice treated with antibiotics, we confirmed the protection of BO against UC. In conclusion, BO played a role in improving UC by modulating gut microbial composition and intestinal metabolites, which provided new therapeutic strategies for UC treatment.
Collapse
Affiliation(s)
- Tianxiang Zhu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Baifei Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Cheng Ye
- Wuhan Customs Technology Center, Wuhan, China
| | - Haiming Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhigang Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Shuiqing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanju Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Yanju Liu, ; Hongtao Liu,
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Yanju Liu, ; Hongtao Liu,
| |
Collapse
|
48
|
Bakir-Gungor B, Hacılar H, Jabeer A, Nalbantoglu OU, Aran O, Yousef M. Inflammatory bowel disease biomarkers of human gut microbiota selected via different feature selection methods. PeerJ 2022; 10:e13205. [PMID: 35497193 PMCID: PMC9048649 DOI: 10.7717/peerj.13205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
The tremendous boost in next generation sequencing and in the "omics" technologies makes it possible to characterize the human gut microbiome-the collective genomes of the microbial community that reside in our gastrointestinal tract. Although some of these microorganisms are considered to be essential regulators of our immune system, the alteration of the complexity and eubiotic state of microbiota might promote autoimmune and inflammatory disorders such as diabetes, rheumatoid arthritis, Inflammatory bowel diseases (IBD), obesity, and carcinogenesis. IBD, comprising Crohn's disease and ulcerative colitis, is a gut-related, multifactorial disease with an unknown etiology. IBD presents defects in the detection and control of the gut microbiota, associated with unbalanced immune reactions, genetic mutations that confer susceptibility to the disease, and complex environmental conditions such as westernized lifestyle. Although some existing studies attempt to unveil the composition and functional capacity of the gut microbiome in relation to IBD diseases, a comprehensive picture of the gut microbiome in IBD patients is far from being complete. Due to the complexity of metagenomic studies, the applications of the state-of-the-art machine learning techniques became popular to address a wide range of questions in the field of metagenomic data analysis. In this regard, using IBD associated metagenomics dataset, this study utilizes both supervised and unsupervised machine learning algorithms, (i) to generate a classification model that aids IBD diagnosis, (ii) to discover IBD-associated biomarkers, (iii) to discover subgroups of IBD patients using k-means and hierarchical clustering approaches. To deal with the high dimensionality of features, we applied robust feature selection algorithms such as Conditional Mutual Information Maximization (CMIM), Fast Correlation Based Filter (FCBF), min redundancy max relevance (mRMR), Select K Best (SKB), Information Gain (IG) and Extreme Gradient Boosting (XGBoost). In our experiments with 100-fold Monte Carlo cross-validation (MCCV), XGBoost, IG, and SKB methods showed a considerable effect in terms of minimizing the microbiota used for the diagnosis of IBD and thus reducing the cost and time. We observed that compared to Decision Tree, Support Vector Machine, Logitboost, Adaboost, and stacking ensemble classifiers, our Random Forest classifier resulted in better performance measures for the classification of IBD. Our findings revealed potential microbiome-mediated mechanisms of IBD and these findings might be useful for the development of microbiome-based diagnostics.
Collapse
Affiliation(s)
- Burcu Bakir-Gungor
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Hilal Hacılar
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Amhar Jabeer
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey
| | | | - Oya Aran
- TETAM, Bogazici University, Istanbul, Turkey
| | - Malik Yousef
- Zefat Academic College, Zefat, Israel,Galilee Digital Health Research Center, Zefat Academic College, Zefat, Israel
| |
Collapse
|
49
|
Spencer L, Olawuni B, Singh P. Gut Virome: Role and Distribution in Health and Gastrointestinal Diseases. Front Cell Infect Microbiol 2022; 12:836706. [PMID: 35360104 PMCID: PMC8960297 DOI: 10.3389/fcimb.2022.836706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The study of the intestinal microbiome is an evolving field of research that includes comprehensive analysis of the vast array of microbes – bacterial, archaeal, fungal, and viral. Various gastrointestinal (GI) diseases, such as Crohn’s disease and ulcerative colitis, have been associated with instability of the gut microbiota. Many studies have focused on importance of bacterial communities with relation to health and disease in humans. The role of viruses, specifically bacteriophages, have recently begin to emerge and have profound impact on the host. Here, we comprehensively review the importance of viruses in GI diseases and summarize their influence in the complex intestinal environment, including their biochemical and genetic activities. We also discuss the distribution of the gut virome as it relates with treatment and immunological advantages. In conclusion, we suggest the need for further studies on this critical component of the intestinal microbiome to decipher the role of the gut virome in human health and disease.
Collapse
|
50
|
De Francesco MA, Caruso A. The Gut Microbiome in Psoriasis and Crohn’s Disease: Is Its Perturbation a Common Denominator for Their Pathogenesis? Vaccines (Basel) 2022; 10:vaccines10020244. [PMID: 35214702 PMCID: PMC8877283 DOI: 10.3390/vaccines10020244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Psoriasis and inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), are interlinked. In fact, the prevalence of IBD is higher in patients with psoriasis, with a risk of ulcerative colitis of 1.6-times higher than in the general population. Analogously, patients with psoriasis have a greater risk of developing IBD. Furthermore, they share some clinical features and pathogenic mechanisms. Both are chronic inflammatory diseases with a relapsing-remitting condition that persists for the patient’s whole life and exhibit increased permeability of the mucosal barrier of skin and gut, allowing an increased interaction of pathogens with inflammatory receptors of the immune cells. A key element in the pathogenesis of these diseases is represented by the microbiota; in particular, the gut microbiota is an important driver of CD pathogenesis, while in psoriasis changes in gut and skin microbiota have been described without a defined pathogenic function. Furthermore, genetic predispositions or environmental factors contribute to disease manifestation, with a central role attributed to the immune responses and, in particular, to a dysregulated role played by T helper 17 cells both in psoriasis and IBD. The purpose of this review was to summarize present information about the links between psoriasis, inflammatory bowel disease, in particular Crohn’s disease, and changes in gut and/or skin microbiome.
Collapse
|