1
|
Zhang Q, Ye H, Liu C, Zhou H, He M, Liang X, Zhou Y, Wang K, Qin Y, Li Z, Chen M. PABP-driven secondary condensed phase within RSV inclusion bodies activates viral mRNAs for ribosomal recruitment. Virol Sin 2024; 39:235-250. [PMID: 38072230 PMCID: PMC11074649 DOI: 10.1016/j.virs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
Inclusion bodies (IBs) of respiratory syncytial virus (RSV) are formed by liquid-liquid phase separation (LLPS) and contain internal structures termed "IB-associated granules" (IBAGs), where anti-termination factor M2-1 and viral mRNAs are concentrated. However, the mechanism of IBAG formation and the physiological function of IBAGs are unclear. Here, we found that the internal structures of RSV IBs are actual M2-1-free viral messenger ribonucleoprotein (mRNP) condensates formed by secondary LLPS. Mechanistically, the RSV nucleoprotein (N) and M2-1 interact with and recruit PABP to IBs, promoting PABP to bind viral mRNAs transcribed in IBs by RNA-recognition motif and drive secondary phase separation. Furthermore, PABP-eIF4G1 interaction regulates viral mRNP condensate composition, thereby recruiting specific translation initiation factors (eIF4G1, eIF4E, eIF4A, eIF4B and eIF4H) into the secondary condensed phase to activate viral mRNAs for ribosomal recruitment. Our study proposes a novel LLPS-regulated translation mechanism during viral infection and a novel antiviral strategy via targeting on secondary condensed phase.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hanzhe Ye
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Cong Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haiwu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingbin He
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaodong Liang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kun Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
2
|
Jobe F, Kelly JT, Simpson J, Wells J, Armstrong SD, Spick M, Lacey E, Logan L, Geifman N, Hawes P, Bailey D. Viral PIC-pocketing: RSV sequestration of translational preinitiation complexes into bi-phasic biomolecular condensates. J Virol 2024; 98:e0015324. [PMID: 38421168 PMCID: PMC10949503 DOI: 10.1128/jvi.00153-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.
Collapse
Affiliation(s)
| | | | | | - Joanna Wells
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Stuart D. Armstrong
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Matt Spick
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Emily Lacey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Leanne Logan
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Dalan Bailey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| |
Collapse
|
3
|
Risso-Ballester J, Rameix-Welti MA. Spatial resolution of virus replication: RSV and cytoplasmic inclusion bodies. Adv Virus Res 2023; 116:1-43. [PMID: 37524479 DOI: 10.1016/bs.aivir.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.
Collapse
Affiliation(s)
| | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Paris, France.
| |
Collapse
|
4
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Figueroa F, Vega-Gibson A, Catrileo J, Gaete-Argel A, Riquelme-Barrios S, Alonso-Palomares LA, Tapia LI, Valiente-Echeverría F, Soto-Rifo R, Acevedo ML. N 6 -Methyladenosine Negatively Regulates Human Respiratory Syncytial Virus Replication. Front Cell Dev Biol 2021; 9:739445. [PMID: 34671602 PMCID: PMC8521026 DOI: 10.3389/fcell.2021.739445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification described in eukaryotic mRNA and several viral RNA including human respiratory syncytial virus (HRSV). Here, we evaluated the impact of m6A writers, erasers and readers on HRSV genomic RNA accumulation and inclusion bodies assembly during viral replication. We observed that the METTL3/METTL14 m6A writer complex plays a negative role in HRSV protein synthesis and viral titers, while m6A erasers FTO and ALKBH5 had the opposite effect. We also observed that m6A readers YTHDF1-3 bind to the viral genomic RNA inducing a decrease in its intracellular levels and thus, inhibiting viral replication. Finally, we observed that overexpression of YTHDFs proteins caused a decrease in the size of inclusion bodies (IBs), accompanied by an increase in their number. METTL3 knockdown cells showed an opposite effect indicating that the dynamics of IBs assembly and coalescence are strongly affected by m6A readers in a mechanism dependent on m6A writers. Taken together, our results demonstrated that the m6A modification negatively affects HRSV replication, possibly through a mechanism involving the assembly of inclusion bodies, the main factories of viral genomic RNA synthesis.
Collapse
Affiliation(s)
- Fabian Figueroa
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alonso Vega-Gibson
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Joseline Catrileo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastian Riquelme-Barrios
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luis Antonio Alonso-Palomares
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena I Tapia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Hospital Roberto del Río, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Monica L Acevedo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Dolnik O, Gerresheim GK, Biedenkopf N. New Perspectives on the Biogenesis of Viral Inclusion Bodies in Negative-Sense RNA Virus Infections. Cells 2021; 10:cells10061460. [PMID: 34200781 PMCID: PMC8230417 DOI: 10.3390/cells10061460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies. Biomolecular condensates are highly dynamic structures formed by liquid-liquid phase separation (LLPS). Key drivers for LLPS in cells are multivalent protein:protein and protein:RNA interactions leading to specialized areas in the cell that recruit molecules with similar properties, while other non-similar molecules are excluded. These typical features of cellular biomolecular condensates are also a common characteristic in the biogenesis of viral inclusion bodies. Viral IBs are predominantly induced by the expression of the viral nucleoprotein (N, NP) and phosphoprotein (P); both are characterized by a special protein architecture containing multiple disordered regions and RNA-binding domains that contribute to different protein functions. P keeps N soluble after expression to allow a concerted binding of N to the viral RNA. This results in the encapsidation of the viral genome by N, while P acts additionally as a cofactor for the viral polymerase, enabling viral transcription and replication. Here, we will review the formation and function of those viral inclusion bodies upon infection with NSVs with respect to their nature as biomolecular condensates.
Collapse
|
7
|
Braun MR, Noton SL, Blanchard EL, Shareef A, Santangelo PJ, Johnson WE, Fearns R. Respiratory syncytial virus M2-1 protein associates non-specifically with viral messenger RNA and with specific cellular messenger RNA transcripts. PLoS Pathog 2021; 17:e1009589. [PMID: 34003848 PMCID: PMC8162694 DOI: 10.1371/journal.ppat.1009589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/28/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in infants and the elderly. RSV is a non-segmented negative strand RNA virus. The viral M2-1 protein plays a key role in viral transcription, serving as an elongation factor to enable synthesis of full-length mRNAs. M2-1 contains an unusual CCCH zinc-finger motif that is conserved in the related human metapneumovirus M2-1 protein and filovirus VP30 proteins. Previous biochemical studies have suggested that RSV M2-1 might bind to specific virus RNA sequences, such as the transcription gene end signals or poly A tails, but there was no clear consensus on what RSV sequences it binds. To determine if M2-1 binds to specific RSV RNA sequences during infection, we mapped points of M2-1:RNA interactions in RSV-infected cells at 8 and 18 hours post infection using crosslinking immunoprecipitation with RNA sequencing (CLIP-Seq). This analysis revealed that M2-1 interacts specifically with positive sense RSV RNA, but not negative sense genome RNA. It also showed that M2-1 makes contacts along the length of each viral mRNA, indicating that M2-1 functions as a component of the transcriptase complex, transiently associating with nascent mRNA being extruded from the polymerase. In addition, we found that M2-1 binds specific cellular mRNAs. In contrast to the situation with RSV mRNA, M2-1 binds discrete sites within cellular mRNAs, with a preference for A/U rich sequences. These results suggest that in addition to its previously described role in transcription elongation, M2-1 might have an additional role involving cellular RNA interactions.
Collapse
Affiliation(s)
- Molly R. Braun
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Afzaal Shareef
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - W. Evan Johnson
- Division of Computational Biomedicine and Bioinformatics Program and Department of Biostatistics, Boston University, Boston, Massachusetts, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Ravi LI, Tan TJ, Tan BH, Sugrue RJ. Virus-induced activation of the rac1 protein at the site of respiratory syncytial virus assembly is a requirement for virus particle assembly on infected cells. Virology 2021; 557:86-99. [PMID: 33677389 DOI: 10.1016/j.virol.2021.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
The distributions of the rac1, rhoA and cdc42 proteins in respiratory syncytial virus (RSV) infected cells was examined. All three rhoGTPases were detected within inclusion bodies, and while the rhoA and rac1 proteins were associated with virus filaments, only the rac1 protein was localised throughout the virus filaments. RSV infection led to increased rac1 protein activation, and using the rac1 protein inhibitor NS23766 we provided evidence that the increased rac1 activation occurred at the site of RSV assembly and facilitated F-actin remodeling during virus morphogenesis. A non-infectious virus-like particle (VLP) assay showed that the RSV VLPs formed in lipid-raft microdomains containing the rac1 protein, together with F-actin and filamin-1 (cell proteins associated with virus filaments). This provided evidence that the virus envelope proteins are trafficked to membrane microdomains containing the rac1 protein. Collectively, these data provide evidence that the rac1 protein plays a direct role in the RSV assembly process.
Collapse
Affiliation(s)
- Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Timothy J Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Boon Huan Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Defense Medical and Environment Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore; Infection and Immunity, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
9
|
de Souza Cardoso R, Viana RMM, Vitti BC, Coelho ACL, de Jesus BLS, de Paula Souza J, Pontelli MC, Murakami T, Ventura AM, Ono A, Arruda E. Human Respiratory Syncytial Virus Infection in a Human T Cell Line Is Hampered at Multiple Steps. Viruses 2021; 13:v13020231. [PMID: 33540662 PMCID: PMC7913106 DOI: 10.3390/v13020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract, and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a human CD4+ T cell line. Using flow cytometry and fluorescent focus assay, we found that A3.01 cells are susceptible but virtually not permissive to HRSV infection. Dequenching experiments revealed that the fusion process of HRSV in A3.01 cells was nearly abolished in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by RT-qPCR showed that the replication of HRSV in A3.01 cells was considerably reduced. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, using fluorescence in situ hybridization, we found that the inclusion body-associated granules (IBAGs) were almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins colocalized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments were present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, as a result of defects at several steps of the viral cycle: Fusion, genome replication, formation of inclusion bodies, recruitment of cellular proteins, virus assembly, and budding.
Collapse
Affiliation(s)
- Ricardo de Souza Cardoso
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.M.); (A.O.)
| | - Rosa Maria Mendes Viana
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Brenda Cristina Vitti
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Ana Carolina Lunardello Coelho
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Bruna Laís Santos de Jesus
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Juliano de Paula Souza
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Marjorie Cornejo Pontelli
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.M.); (A.O.)
| | - Armando Morais Ventura
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.M.); (A.O.)
| | - Eurico Arruda
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
- Correspondence:
| |
Collapse
|
10
|
Jobe F, Simpson J, Hawes P, Guzman E, Bailey D. Respiratory Syncytial Virus Sequesters NF-κB Subunit p65 to Cytoplasmic Inclusion Bodies To Inhibit Innate Immune Signaling. J Virol 2020; 94:JVI.01380-20. [PMID: 32878896 PMCID: PMC7592213 DOI: 10.1128/jvi.01380-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.
Collapse
Affiliation(s)
| | | | - Philippa Hawes
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Efrain Guzman
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| |
Collapse
|
11
|
Blanchard EL, Braun MR, Lifland AW, Ludeke B, Noton SL, Vanover D, Zurla C, Fearns R, Santangelo PJ. Polymerase-tagged respiratory syncytial virus reveals a dynamic rearrangement of the ribonucleocapsid complex during infection. PLoS Pathog 2020; 16:e1008987. [PMID: 33031461 PMCID: PMC7575074 DOI: 10.1371/journal.ppat.1008987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/20/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The ribonucleocapsid complex of respiratory syncytial virus (RSV) is responsible for both viral mRNA transcription and viral replication during infection, though little is known about how this dual function is achieved. Here, we report the use of a recombinant RSV virus with a FLAG-tagged large polymerase protein, L, to characterize and localize RSV ribonucleocapsid structures during the early and late stages of viral infection. Through proximity ligation assays and super-resolution microscopy, viral RNA and proteins in the ribonucleocapsid complex were revealed to dynamically rearrange over time, particularly between 6 and 8 hours post infection, suggesting a connection between the ribonucleocapsid structure and its function. The timing of ribonucleocapsid rearrangement corresponded with an increase in RSV genome RNA accumulation, indicating that this rearrangement is likely involved with the onset of RNA replication and secondary transcription. Additionally, early overexpression of RSV M2-2 from in vitro transcribed mRNA was shown to inhibit virus infection by rearranging the ribonucleocapsid complex. Collectively, these results detail a critical understanding into the localization and activity of RSV L and the ribonucleocapsid complex during RSV infection.
Collapse
Affiliation(s)
- Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Molly R. Braun
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Aaron W. Lifland
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Barbara Ludeke
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| |
Collapse
|
12
|
Host Retromer Protein Sorting Nexin 2 Interacts with Human Respiratory Syncytial Virus Structural Proteins and is Required for Efficient Viral Production. mBio 2020; 11:mBio.01869-20. [PMID: 32994321 PMCID: PMC7527724 DOI: 10.1128/mbio.01869-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study contributes new knowledge to understand HRSV assembly by providing evidence that nonglycosylated structural proteins M and N interact with elements of the secretory pathway, shedding light on their intracellular traffic. To the best of our knowledge, the present contribution is important given the scarcity of studies about the traffic of HRSV nonglycosylated proteins, especially by pointing to the involvement of SNX2, a retromer component, in the HRSV assembly process. Human respiratory syncytial virus (HRSV) envelope glycoproteins traffic to assembly sites through the secretory pathway, while nonglycosylated proteins M and N are present in HRSV inclusion bodies but must reach the plasma membrane, where HRSV assembly happens. Little is known about how nonglycosylated HRSV proteins reach assembly sites. Here, we show that HRSV M and N proteins partially colocalize with the Golgi marker giantin, and the glycosylated F and nonglycosylated N proteins are closely located in the trans-Golgi, suggesting their interaction in that compartment. Brefeldin A compromised the trafficking of HRSV F and N proteins and inclusion body sizes, indicating that the Golgi is important for both glycosylated and nonglycosylated HRSV protein traffic. HRSV N and M proteins colocalized and interacted with sorting nexin 2 (SNX2), a retromer component that shapes endosomes in tubular structures. Glycosylated F and nonglycosylated N HRSV proteins are detected in SNX2-laden aggregates with intracellular filaments projecting from their outer surfaces, and VPS26, another retromer component, was also found in inclusion bodies and filament-shaped structures. Similar to SNX2, TGN46 also colocalized with HRSV M and N proteins in filamentous structures at the plasma membrane. Cell fractionation showed enrichment of SNX2 in fractions containing HRSV M and N proteins. Silencing of SNX1 and 2 was associated with reduction in viral proteins, HRSV inclusion body size, syncytium formation, and progeny production. The results indicate that HRSV structural proteins M and N are in the secretory pathway, and SNX2 plays an important role in the traffic of HRSV structural proteins toward assembly sites.
Collapse
|
13
|
To assemble or not to assemble: The changing rules of pneumovirus transmission. Virus Res 2019; 265:68-73. [PMID: 30844414 DOI: 10.1016/j.virusres.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023]
Abstract
Pneumoviruses represent a major public health burden across the world. Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV), two of the most recognizable pediatric infectious agents, belong to this family. These viruses are enveloped with a non-segmented negative-sense RNA genome, and their replication occurs in specialized cytosolic organelles named inclusion bodies (IB). The critical role of IBs in replication of pneumoviruses has begun to be elucidated, and our current understanding suggests they are highly dynamic structures. From IBs, newly synthesized nucleocapsids are transported to assembly sites, potentially via the actin cytoskeleton, to be incorporated into nascent virions. Released virions, which generally contain one genome, can then diffuse in the extracellular environment to target new cells and reinitiate the process of infection. This is a challenging business for virions, which must face several risks including the extracellular immune responses. In addition, several recent studies suggest that successful infection may be achieved more rapidly by multiple, rather than single, genomic copies being deposited into a target cell. Interestingly, recent data indicate that pneumoviruses have several mechanisms that permit their transmission en bloc, i.e. transmission of multiple genomes at the same time. These mechanisms include the well-studied syncytia formation as well as the newly described formation of long actin-based intercellular extensions. These not only permit en bloc viral transmission, but also bypass assembly of complete virions. In this review we describe several aspects of en bloc viral transmission and how these mechanisms are reshaping our understanding of pneumovirus replication, assembly and spread.
Collapse
|
14
|
Preugschas HF, Hrincius ER, Mewis C, Tran GVQ, Ludwig S, Ehrhardt C. Late activation of the Raf/MEK/ERK pathway is required for translocation of the respiratory syncytial virus F protein to the plasma membrane and efficient viral replication. Cell Microbiol 2018; 21:e12955. [PMID: 30223301 DOI: 10.1111/cmi.12955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Activation of the Raf/MEK/ERK cascade is required for efficient propagation of several RNA and DNA viruses, including human respiratory syncytial virus (RSV). In RSV infection, activation of the Raf/MEK/ERK cascade is biphasic. An early induction within minutes after infection is associated with viral attachment. Subsequently, a second activation occurs with, so far, unknown function in the viral life cycle. In this study, we aimed to characterise the role of Raf/MEK/ERK-mediated signalling during ongoing RSV infection. Our data show that inhibition of the kinase MEK after the virus has been internalised results in a reduction of viral titers. Further functional investigations revealed that the late-stage activation of ERK is required for a specific step in RSV replication, namely, the secretory transport of the RSV fusion protein F. Thus, MEK inhibition resulted in impaired surface accumulation of the F protein. F protein surface expression is essential for efficient replication as it is involved in viral filament formation, cell fusion, and viral transmission. In summary, we provide detailed insights of how host cell signalling interferes with RSV replication and identified the Raf/MEK/ERK kinase cascade as potential target for novel anti-RSV strategies.
Collapse
Affiliation(s)
- Hannah F Preugschas
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Carolin Mewis
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Giao V Q Tran
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,The Graduate School of the Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany.,Section for Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Huong TN, Yan Y, Jumat MR, Lui J, Tan BH, Wang DY, Sugrue RJ. A sustained antiviral host response in respiratory syncytial virus infected human nasal epithelium does not prevent progeny virus production. Virology 2018; 521:20-32. [PMID: 29870884 DOI: 10.1016/j.virol.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 12/01/2022]
Abstract
Respiratory syncytial virus infection was examined using a human nasal epithelial cell model. Maximum levels of shed-virus were produced at between 3 and 5 days post-infection (dpi), and the infectivity of the shed-virus was stable up to 10 dpi. The highest levels of interferon signalling were recorded at 2dpi, and infection induced a widespread antivirus response in the nasal epithelium, involving both infected cells and non-infected cells. Although these cellular responses were associated with reduced levels of progeny virus production and restricted virus spread, they did not inhibit the infectivity virus that is shed early in infection. In the clinical context these data suggest that although the host cell response in the nasal epithelium may restrict the levels of progeny virus particles produced, the stability of the shed-virus in the nasal mucosa may be an important factor in both disease progression and virus transmission.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Muhammad Raihan Jumat
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Jing Lui
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Republic of Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
16
|
Richard CA, Rincheval V, Lassoued S, Fix J, Cardone C, Esneau C, Nekhai S, Galloux M, Rameix-Welti MA, Sizun C, Eléouët JF. RSV hijacks cellular protein phosphatase 1 to regulate M2-1 phosphorylation and viral transcription. PLoS Pathog 2018; 14:e1006920. [PMID: 29489893 PMCID: PMC5847313 DOI: 10.1371/journal.ppat.1006920] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/12/2018] [Accepted: 02/04/2018] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) RNA synthesis occurs in cytoplasmic inclusion bodies (IBs) in which all the components of the viral RNA polymerase are concentrated. In this work, we show that RSV P protein recruits the essential RSV transcription factor M2-1 to IBs independently of the phosphorylation state of M2-1. We also show that M2-1 dephosphorylation is achieved by a complex formed between P and the cellular phosphatase PP1. We identified the PP1 binding site of P, which is an RVxF-like motif located nearby and upstream of the M2-1 binding region. NMR confirmed both P-M2-1 and P-PP1 interaction regions in P. When the P-PP1 interaction was disrupted, M2-1 remained phosphorylated and viral transcription was impaired, showing that M2-1 dephosphorylation is required, in a cyclic manner, for efficient viral transcription. IBs contain substructures called inclusion bodies associated granules (IBAGs), where M2-1 and neo-synthesized viral mRNAs concentrate. Disruption of the P-PP1 interaction was correlated with M2-1 exclusion from IBAGs, indicating that only dephosphorylated M2-1 is competent for viral mRNA binding and hence for a previously proposed post-transcriptional function.
Collapse
Affiliation(s)
- Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Rincheval
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
| | - Safa Lassoued
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christophe Cardone
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Camille Esneau
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, Howard University, Washington, D. C., United States of America
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Anne Rameix-Welti
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
- AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
17
|
Upon Infection, Cellular WD Repeat-Containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication. J Virol 2018; 92:JVI.01726-17. [PMID: 29237839 DOI: 10.1128/jvi.01726-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5-deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication.IMPORTANCE Measles virus is a human pathogen that remains a global concern, with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here, we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus.
Collapse
|
18
|
Respiratory Syncytial Virus: Infection, Detection, and New Options for Prevention and Treatment. Clin Microbiol Rev 2017; 30:277-319. [PMID: 27903593 DOI: 10.1128/cmr.00010-16] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is a significant cause of hospitalization of children in North America and one of the leading causes of death of infants less than 1 year of age worldwide, second only to malaria. Despite its global impact on human health, there are relatively few therapeutic options available to prevent or treat RSV infection. Paradoxically, there is a very large volume of information that is constantly being refined on RSV replication, the mechanisms of RSV-induced pathology, and community transmission. Compounding the burden of acute RSV infections is the exacerbation of preexisting chronic airway diseases and the chronic sequelae of RSV infection. A mechanistic link is even starting to emerge between asthma and those who suffer severe RSV infection early in childhood. In this article, we discuss developments in the understanding of RSV replication, pathogenesis, diagnostics, and therapeutics. We attempt to reconcile the large body of information on RSV and why after many clinical trials there is still no efficacious RSV vaccine and few therapeutics.
Collapse
|
19
|
Rincheval V, Lelek M, Gault E, Bouillier C, Sitterlin D, Blouquit-Laye S, Galloux M, Zimmer C, Eleouet JF, Rameix-Welti MA. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat Commun 2017; 8:563. [PMID: 28916773 PMCID: PMC5601476 DOI: 10.1038/s41467-017-00655-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
Infection of cells by respiratory syncytial virus induces the formation of cytoplasmic inclusion bodies (IBs) where all the components of the viral RNA polymerase complex are concentrated. However, the exact organization and function of these IBs remain unclear. In this study, we use conventional and super-resolution imaging to dissect the internal structure of IBs. We observe that newly synthetized viral mRNA and the viral transcription anti-terminator M2-1 concentrate in IB sub-compartments, which we term “IB-associated granules” (IBAGs). In contrast, viral genomic RNA, the nucleoprotein, the L polymerase and its cofactor P are excluded from IBAGs. Live imaging reveals that IBAGs are highly dynamic structures. Our data show that IBs are the main site of viral RNA synthesis. They further suggest that shortly after synthesis in IBs, viral mRNAs and M2-1 transiently concentrate in IBAGs before reaching the cytosol and suggest a novel post-transcriptional function for M2-1. Respiratory syncytial virus (RSV) induces formation of inclusion bodies (IBs) sheltering viral RNA synthesis. Here, Rincheval et al. identify highly dynamic IB-associated granules (IBAGs) that accumulate newly synthetized viral mRNA and the viral M2-1 protein but exclude viral genomic RNA and RNA polymerase complexes.
Collapse
Affiliation(s)
- Vincent Rincheval
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Mickael Lelek
- Institut Pasteur Unité Imagerie et Modélisation, CNRS UMR 3691; C3BI, USR 3756, IP CNRS, Paris, 75015, France
| | - Elyanne Gault
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France.,AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, 92104, France
| | - Camille Bouillier
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Delphine Sitterlin
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Sabine Blouquit-Laye
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, 78352, France
| | - Christophe Zimmer
- Institut Pasteur Unité Imagerie et Modélisation, CNRS UMR 3691; C3BI, USR 3756, IP CNRS, Paris, 75015, France
| | - Jean-François Eleouet
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, 78352, France
| | - Marie-Anne Rameix-Welti
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France. .,AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, 92104, France.
| |
Collapse
|
20
|
Bohmwald K, Espinoza JA, Rey-Jurado E, Gómez RS, González PA, Bueno SM, Riedel CA, Kalergis AM. Human Respiratory Syncytial Virus: Infection and Pathology. Semin Respir Crit Care Med 2016; 37:522-37. [PMID: 27486734 PMCID: PMC7171722 DOI: 10.1055/s-0036-1584799] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human respiratory syncytial virus (hRSV) is by far the major cause of acute lower respiratory tract infections (ALRTIs) worldwide in infants and children younger than 2 years. The overwhelming number of hospitalizations due to hRSV-induced ALRTI each year is due, at least in part, to the lack of licensed vaccines against this virus. Thus, hRSV infection is considered a major public health problem and economic burden in most countries. The lung pathology developed in hRSV-infected individuals is characterized by an exacerbated proinflammatory and unbalanced Th2-type immune response. In addition to the adverse effects in airway tissues, hRSV infection can also cause neurologic manifestations in the host, such as seizures and encephalopathy. Although the origins of these extrapulmonary symptoms remain unclear, studies with patients suffering from neurological alterations suggest an involvement of the inflammatory response against hRSV. Furthermore, hRSV has evolved numerous mechanisms to modulate and evade the immune response in the host. Several studies have focused on elucidating the interactions between hRSV virulence factors and the host immune system, to rationally design new vaccines and therapies against this virus. Here, we discuss about the infection, pathology, and immune response triggered by hRSV in the host.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janyra A Espinoza
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emma Rey-Jurado
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto S Gómez
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas y Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Sun Q, Qi X, Zhang Y, Wu X, Liang M, Li C, Li D, Cardona CJ, Xing Z. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs. J Biol Chem 2016; 291:16138-49. [PMID: 27226560 DOI: 10.1074/jbc.m116.715599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 01/24/2023] Open
Abstract
Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection.
Collapse
Affiliation(s)
- Qiyu Sun
- From the State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing 210093, China
| | - Xian Qi
- the Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yan Zhang
- From the State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaodong Wu
- From the State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing 210093, China
| | - Mifang Liang
- the National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China, and
| | - Chuan Li
- the National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China, and
| | - Dexin Li
- the National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China, and
| | - Carol J Cardona
- the Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, St. Paul, Minnesota 55108
| | - Zheng Xing
- From the State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing 210093, China, the Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, St. Paul, Minnesota 55108
| |
Collapse
|
22
|
Cervantes-Ortiz SL, Zamorano Cuervo N, Grandvaux N. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology. Viruses 2016; 8:v8050124. [PMID: 27187445 PMCID: PMC4885079 DOI: 10.3390/v8050124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 02/08/2023] Open
Abstract
Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis.
Collapse
Affiliation(s)
- Sandra L Cervantes-Ortiz
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada.
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Natalia Zamorano Cuervo
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada.
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Nathalie Grandvaux
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada.
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
23
|
Huong TN, Iyer Ravi L, Tan BH, Sugrue RJ. Evidence for a biphasic mode of respiratory syncytial virus transmission in permissive HEp2 cell monolayers. Virol J 2016; 13:12. [PMID: 26790623 PMCID: PMC4719537 DOI: 10.1186/s12985-016-0467-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During respiratory syncytial virus (RSV) infection filamentous virus particles are formed on the cell surface. Although the virus infectivity remains cell-associated, low levels of cell-free virus is detected during advanced infection. It is currently unclear if this cell-free virus infectivity is due to a low-efficiency specific cell-release mechanism, or if it arises due to mechanical breakage following virus-induced cell damage at the advanced stage of infection. Understanding the origin of this cell-free virus is a prerequisite for understanding the mechanism of RSV transmission in permissive cells. In this study we describe a detailed examination of RSV transmission in permissive HEp2 cell monolayers. METHODS HEp2 cell monolayers were infected with RSV using a multiplicity of infection of 0.0002, and the course of infection monitored over 5 days. The progression of the virus infection within the cell monolayers was performed using bright-field microscopy to visualise the cell monolayer and immunofluorescence microscopy to detect virus-infected cells. The cell-associated and cell-free virus infectivity were determined by virus plaque assay, and the virus-induced cell cytotoxicity determined by measuring cell membrane permeability and cellular DNA fragmentation. RESULTS At 2 days-post infection (dpi), large clusters of virus-infected cells could be detected indicating localised transmission in the cell monolayer, and during this stage we failed to detect either cell-free virus or cell cytotoxicity. At 3 dpi the presence of much larger infected cell clusters correlated with the begining of virus-induced changes in cell permeability. The presence of cell-free virus correlated with continued increase in cell permeability and cytotoxicity at 4 and 5 dpi. At 5 dpi extensive cell damage, syncytial formation, and increased cellular DNA fragmentation was noted. However, even at 5 dpi the cell-free virus constituted less than 1 % of the total virus infectivity. CONCLUSIONS Our data supports a model of RSV transmission that initially involves the localised cell-to-cell spread of virus particles within the HEp2 cell monolayer. However, low levels of cell free-virus infectivity was observed at the advanced stages of infection, which correlated with a general loss in cell monolayer integrity due to virus-induced cytotoxicity.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Singapore.
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
24
|
Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology 2015; 484:395-411. [DOI: 10.1016/j.virol.2015.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2022]
|
25
|
Dimerization of matrix protein is required for budding of respiratory syncytial virus. J Virol 2015; 89:4624-35. [PMID: 25673702 DOI: 10.1128/jvi.03500-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) infects epithelial cells of the respiratory tract and is a major cause of bronchiolitis and pneumonia in children and the elderly. The virus assembles and buds through the plasma membrane, forming elongated membrane filaments, but details of how this happens remain obscure. Oligomerization of the matrix protein (M) is a key step in the process of assembly and infectious virus production. In addition, it was suggested to affect the conformation of the fusion protein, the major current target for RSV antivirals, in the mature virus. The structure and assembly of M are thus key parameters in the RSV antiviral development strategy. The structure of RSV M was previously published as a monomer. Other paramyxovirus M proteins have been shown to dimerize, and biochemical data suggest that RSV M also dimerizes. Here, using size exclusion chromatography-multiangle laser light scattering, we show that the protein is dimeric in solution. We also crystallized M in two crystal forms and show that it assembles into equivalent dimers in both lattices. Dimerization interface mutations destabilize the M dimer in vitro. To assess the biological relevance of dimerization, we used confocal imaging to show that dimerization interface mutants of M fail to assemble into viral filaments on the plasma membrane. Additionally, budding and release of virus-like particles are prevented in M mutants that fail to form filaments. Importantly, we show that M is biologically active as a dimer and that the switch from M dimers to higher-order oligomers triggers viral filament assembly and virus production. IMPORTANCE Human respiratory syncytial virus (RSV) is the most frequent cause of infantile bronchiolitis and pneumonia. The enormous burden of RSV makes it a major unmet target for a vaccine and antiviral drug therapy. Oligomerization of the matrix protein is a key step in the process of assembly and production of infectious virus, but the molecular mechanism of RSV assembly is still poorly understood. Here we show that the RSV matrix protein forms dimers in solution and in crystals; the dimer is essential for formation of higher-order oligomers. Destabilizing the dimer interface resulted in the loss of RSV filament formation and a lack of budding of virus-like particles. Importantly, our findings can potentially lead to new structure-based RSV inhibitors targeting the assembly process.
Collapse
|
26
|
Mechanism of action for respiratory syncytial virus inhibitor RSV604. Antimicrob Agents Chemother 2014; 59:1080-7. [PMID: 25451060 DOI: 10.1128/aac.04119-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children and other high-risk populations. RSV nucleoprotein (N) is essential for virus assembly and replication as part of the viral ribonucleoprotein (RNP) complex. RSV604 was a putative N inhibitor in phase 2 clinical trials whose molecular mechanism of action (MoA) was not well understood. This study investigated the cell line-dependent potency of RSV604 and demonstrated its direct binding to the N protein in vitro, providing the first evidence of direct target engagement for this class of inhibitors reported to date. The affinity of RSV604 N binding was not affected by RSV604 resistance mutations in the N protein. RSV604 engaged in two different MoAs in HeLa cells, inhibiting both RSV RNA synthesis and the infectivity of released virus. The lack of inhibition of viral RNA synthesis in some cell lines explained the cell-type-dependent potency of the inhibitor. RSV604 did not inhibit viral RNA synthesis in the RSV subgenomic replicon cells or in the cell-free RNP assay, suggesting that it might act prior to viral replication complex formation. RSV604 did not alter N protein localization in the infected cells. Taken together, these results provide new insights leading to an understanding of the MoAs of RSV604 and other similar N inhibitors.
Collapse
|
27
|
The Thr205 phosphorylation site within respiratory syncytial virus matrix (M) protein modulates M oligomerization and virus production. J Virol 2014; 88:6380-93. [PMID: 24672034 DOI: 10.1128/jvi.03856-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and pneumonia in infants and the elderly worldwide; however, there is no licensed RSV vaccine or effective drug treatment available. The RSV matrix (M) protein plays key roles in virus assembly and budding, but the protein interactions that govern budding of infectious virus are not known. In this study, we focus on M protein and identify a key phosphorylation site (Thr205) in M that is critical for RSV infectious virus production. Recombinant virus with a nonphosphorylatable alanine (Ala) residue at the site was markedly attenuated, whereas virus with a phosphomimetic aspartate (Asp) resulted in a nonviable virus which could only be recovered with an additional mutation in M (serine to asparagine at position 220), strongly implying that Thr205 is critical for viral infectivity. Experiments in vitro showed that mutation of Thr205 does not affect M stability or the ability to form dimers but implicate an effect on higher-order oligomer assembly. In transfected and infected cells, Asp substitution of Thr205 appeared to impair M oligomerization; typical filamentous structures still formed at the plasma membrane, but M assembly during the ensuing elongation process seemed to be impaired, resulting in shorter and more branched filaments as observed using electron microscopy (EM). Our data thus imply for the first time that M oligomerization, regulated by a negative charge at Thr205, may be critical to production of infectious RSV. IMPORTANCE We show here for the first time that RSV M's role in virus assembly/release is strongly dependent on threonine 205 (Thr205), a consensus site for CK2, which appears to play a key regulatory role in modulating M oligomerization and association with virus filaments. Our analysis indicates that T205 mutations do not impair M dimerization or viruslike filament formation per se but rather the ability of M to assemble in ordered fashion on the viral filaments themselves. This appears to impact in turn upon the infectivity of released virus rather than on virus production or release itself. Thus, M oligomerization would appear to be a target of interest for the development of anti-RSV agents; further, the recombinant T205-substituted mutant viruses described here would appear to be the first RSV mutants affected in viral maturation to our knowledge and hence of considerable interest for vaccine approaches in the future.
Collapse
|
28
|
Medina-Armenteros Y, Farinha-Arcieri LE, Braga CJM, Carromeu C, Tamura RE, Ventura AM. Mapping of CD8 T cell epitopes in human respiratory syncytial virus L protein. Intervirology 2014; 57:55-64. [PMID: 24480928 DOI: 10.1159/000357325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Since it has been reported that in humans there is a relationship between human respiratory syncytial virus (hRSV)-specific cytotoxic T lymphocytes and symptom reduction, and that the polymerase (structural L protein) is highly conserved among different strains, this work aimed to identify the CD8 T cell epitopes H-2(d) restricted within the L sequence for immunization purposes. METHODS We screened the hRSV strain A2 L protein sequence using two independent algorithms, SYFPEITHI and PRED/(BALB/c), to predict CD8 T cell epitopes. The selected peptides were synthesized and used to immunize BALB/c mice for the evaluation of T cell response. The production of IFN-γ from splenocytes of hRSV-infected animals stimulated by these peptides was assayed by ELISPOT. RESULTS Nine peptides showing the best binding scores to the BALB/c MHC-I molecules (H-2K(d), L(d) and D(d)) were selected. Sequence homology analysis showed that these sequences are conserved among different hRSV strains. Two of these peptides induced significant IFN-γ production by ex vivo-stimulated T cells. CONCLUSIONS Our results indicate that the hRSV L protein contains H-2(d)-restricted epitopes.
Collapse
Affiliation(s)
- Yordanka Medina-Armenteros
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Increased hydroxymethylglutaryl coenzyme A reductase activity during respiratory syncytial virus infection mediates actin dependent inter-cellular virus transmission. Antiviral Res 2013; 100:259-68. [PMID: 23994498 DOI: 10.1016/j.antiviral.2013.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/26/2013] [Accepted: 08/19/2013] [Indexed: 01/26/2023]
Abstract
We have examined the role that hydroxymethylglutaryl coenzyme A reductase (HMGCR) plays during respiratory syncytial virus (RSV) maturation. Imaging analysis indicated that virus-induced changes in F-actin structure correlated with the formation of virus filaments, and that these virus filaments played a direct role in virus cell-to-cell transmission. Treatment with cytochalasin D (CYD) prevented virus filament formation and virus transmission, but this could be reversed by removal of CYD. This observation, together with the presence of F-actin within the virus filaments suggested that newly polymerised F-actin was required for virus transmission. The virus-induced change in F-actin was inhibited by the HMGCR inhibitor lovastatin, and this correlated with the inhibition of both virus filament formation and the incorporation of F-actin in these virus structures. Furthermore, this inhibitory effect on virus filament formation correlated with a significant reduction in RSV transmission. Collectively these data suggested that HMGCR-mediated changes in F-actin structure play an important role in the inter-cellular transmission of mature RSV particles. These data also highlighted the interplay between cellular metabolism and RSV transmission, and demonstrate that this interaction can be targeted using anti-virus strategies.
Collapse
|
30
|
The respiratory syncytial virus fusion protein targets to the perimeter of inclusion bodies and facilitates filament formation by a cytoplasmic tail-dependent mechanism. J Virol 2013; 87:10730-41. [PMID: 23903836 DOI: 10.1128/jvi.03086-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) fusion (F) protein cytoplasmic tail (CT) and matrix (M) protein are key mediators of viral assembly, but the underlying mechanisms are poorly understood. A complementation assay was developed to systematically examine the role of the F protein CT in infectious virus production. The ability of F mutants with alanine substitutions in the CT to complement an F-null virus in generating infectious progeny was quantitated by flow cytometry. Two CT regions with impact on infectious progeny production were identified: residues 557 to 566 (CT-R1) and 569 to 572 (CT-R2). Substitutions in CT-R1 decreased infectivity by 40 to 85% and increased the level of F-induced cell-cell fusion but had little impact on assembly of viral surface filaments, which are believed to be virions. Substitutions in CT-R2, as well as deletion of the entire CT, abrogated infectious progeny production and impaired viral filament formation. However, CT-R2 mutations did not block but rather delayed the formation of viral filaments, which continued to form at a low rate and contained the viral M protein and nucleoprotein (N). Microscopy analysis revealed that substitutions in CT-R2 but not CT-R1 led to accumulation of M and F proteins within and at the perimeter of viral inclusion bodies (IBs), respectively. The accumulation of M and F at IBs and coincident strong decrease in filament formation and infectivity upon CT-R2 mutations suggest that F interaction with IBs is an important step in the virion assembly process and that CT residues 569 to 572 act to facilitate release of M-ribonucleoprotein complexes from IBs.
Collapse
|
31
|
Oliveira AP, Simabuco FM, Tamura RE, Guerrero MC, Ribeiro PGG, Libermann TA, Zerbini LF, Ventura AM. Human respiratory syncytial virus N, P and M protein interactions in HEK-293T cells. Virus Res 2013; 177:108-12. [PMID: 23892143 DOI: 10.1016/j.virusres.2013.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/06/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023]
Abstract
Characterization of Human Respiratory Syncytial Virus (HRSV) protein interactions with host cell components is crucial to devise antiviral strategies. Viral nucleoprotein, phosphoprotein and matrix protein genes were optimized for human codon usage and cloned into expression vectors. HEK-293T cells were transfected with these vectors, viral proteins were immunoprecipitated, and co-immunoprecipitated cellular proteins were identified through mass spectrometry. Cell proteins identified with higher confidence scores were probed in the immunoprecipitation using specific antibodies. The results indicate that nucleoprotein interacts with arginine methyl-transferase, methylosome protein and Hsp70. Phosphoprotein interacts with Hsp70 and tropomysin, and matrix with tropomysin and nucleophosmin. Additionally, we performed immunoprecipitation of these cellular proteins in cells infected with HRSV, followed by detection of co-immunoprecipitated viral proteins. The results indicate that these interactions also occur in the context of viral infection, and their potential contribution for a HRSV replication model is discussed.
Collapse
Affiliation(s)
- Andressa P Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ravi LI, Li L, Sutejo R, Chen H, Wong PS, Tan BH, Sugrue RJ. A systems-based approach to analyse the host response in murine lung macrophages challenged with respiratory syncytial virus. BMC Genomics 2013; 14:190. [PMID: 23506210 PMCID: PMC3618260 DOI: 10.1186/1471-2164-14-190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/08/2013] [Indexed: 12/22/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection in young children. The degree of disease severity is determined by the host response to infection. Lung macrophages play an important early role in the host response to infection and we have used a systems-based approach to examine the host response in RSV-infected lung-derived macrophage cells. Results Lung macrophage cells could be efficiently infected (>95%) with RSV in vitro, and the expression of several virus structural proteins could be detected. Although we failed to detect significant levels of virus particle production, virus antigen could be detected up until 96 hours post-infection (hpi). Microarray analysis indicated that 20,086 annotated genes were expressed in the macrophage cells, and RSV infection induced an 8.9% and 11.3% change in the global gene transcriptome at 4 hpi and 24 hpi respectively. Genes showing up-regulated expression were more numerous and exhibited higher changes in expression compared to genes showing down-regulated expression. Based on gene ontology, genes with cytokine, antiviral, cell death, and signal transduction functions showed the highest increases in expression, while signalling transduction, RNA binding and protein kinase genes showed the greatest reduction in expression levels. Analysis of the global gene expression profile using pathway enrichment analysis confirmed that up-regulated expression of pathways related to pathogen recognition, interferon signalling and antigen presentation occurred in the lung macrophage cells challenged with RSV. Conclusion Our data provided a comprehensive analysis of RSV-induced gene expression changes in lung macrophages. Although virus gene expression was detected, our data was consistent with an abortive infection and this correlated with the activation of several antivirus signalling pathways such as interferon type I signalling and cell death signalling. RSV infection induced a relatively large increase in pro-inflammatory cytokine expression, however the maintenance of this pro-inflammatory response was not dependent on the production of infectious virus particles. The sustained pro-inflammatory response even in the absence of a productive infection suggests that drugs that control the pro-inflammatory response may be useful in the treatment of patients with severe RSV infection.
Collapse
Affiliation(s)
- Laxmi Iyer Ravi
- Division of Molecular Genetics and Cell Biology, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | |
Collapse
|
33
|
p38 and OGT sequestration into viral inclusion bodies in cells infected with human respiratory syncytial virus suppresses MK2 activities and stress granule assembly. J Virol 2012; 87:1333-47. [PMID: 23152511 DOI: 10.1128/jvi.02263-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) forms cytoplasmic inclusion bodies (IBs) that are thought to be sites of nucleocapsid accumulation and viral RNA synthesis. The present study found that IBs also were the sites of major sequestration of two proteins involved in cellular signaling pathways. These are phosphorylated p38 mitogen-activated protein kinase (MAPK) (p38-P), a key regulator of cellular inflammatory and stress responses, and O-linked N-acetylglucosamine (OGN) transferase (OGT), an enzyme that catalyzes the posttranslational addition of OGN to protein targets to regulate cellular processes, including signal transduction, transcription, translation, and the stress response. The virus-induced sequestration of p38-P in IBs resulted in a substantial reduction in the accumulation of a downstream signaling substrate, MAPK-activated protein kinase 2 (MK2). Sequestration of OGT in IBs was associated with suppression of stress granule (SG) formation. Thus, while the RSV IBs are thought to play an essential role in viral replication, the present results show that they also play a role in suppressing the cellular response to viral infection. The sequestration of p38-P and OGT in IBs appeared to be reversible: oxidative stress resulting from arsenite treatment transformed large IBs into a scattering of smaller bodies, suggestive of partial disassembly, and this was associated with MK2 phosphorylation and OGN addition. Unexpectedly, the RSV M2-1 protein was found to localize in SGs that formed during oxidative stress. This protein was previously shown to be a viral transcription elongation factor, and the present findings provide the first evidence of possible involvement in SG activities during RSV infection.
Collapse
|
34
|
Lifland AW, Jung J, Alonas E, Zurla C, Crowe JE, Santangelo PJ. Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS. J Virol 2012; 86:8245-58. [PMID: 22623778 PMCID: PMC3421640 DOI: 10.1128/jvi.00215-12] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/14/2012] [Indexed: 12/28/2022] Open
Abstract
Currently, the spatial distribution of human respiratory syncytial virus (hRSV) proteins and RNAs in infected cells is still under investigation, with many unanswered questions regarding the interaction of virus-induced structures and the innate immune system. Very few studies of hRSV have used subcellular imaging as a means to explore the changes in localization of retinoic-acid-inducible gene-I (RIG-I)-like receptors or the mitochondrial antiviral signaling (MAVS) protein, in response to the infection and formation of viral structures. In this investigation, we found that both RIG-I and melanoma differentiation-associated gene 5 (MDA5) colocalized with viral genomic RNA and the nucleoprotein (N) as early as 6 h postinfection (hpi). By 12 hpi, MDA5 and MAVS were observed within large viral inclusion bodies (IB). We used a proximity ligation assay (PLA) and determined that the N protein was in close proximity to MDA5 and MAVS in IBs throughout the course of the infection. Similar results were found with the transient coexpression of N and the phosphoprotein (P). Additionally, we demonstrated that the localization of MDA5 and MAVS in IBs inhibited the expression of interferon β mRNA 27-fold following Newcastle disease virus infection. From these data, we concluded that the N likely interacts with MDA5, is in close proximity to MAVS, and localizes these molecules within IBs in order to attenuate the interferon response. To our knowledge, this is the first report of a specific function for hRSV IBs and of the hRSV N protein as a modulator of the innate immune response.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Birds
- Cell Line, Tumor
- Chlorocebus aethiops
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/immunology
- DEAD-box RNA Helicases/metabolism
- Genome, Viral/genetics
- Genome, Viral/immunology
- Humans
- Immunity, Innate
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/biosynthesis
- Interferon-beta/genetics
- Interferon-beta/immunology
- Intranuclear Inclusion Bodies/genetics
- Intranuclear Inclusion Bodies/immunology
- Intranuclear Inclusion Bodies/metabolism
- Intranuclear Inclusion Bodies/pathology
- Intranuclear Inclusion Bodies/virology
- Newcastle Disease/genetics
- Newcastle Disease/immunology
- Newcastle Disease/metabolism
- Newcastle Disease/pathology
- Newcastle disease virus/genetics
- Newcastle disease virus/immunology
- Newcastle disease virus/metabolism
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- Nucleoproteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/immunology
- RNA, Viral/metabolism
- Receptors, Immunologic
- Respiratory Syncytial Virus Infections/genetics
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/pathology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/metabolism
- Vero Cells
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Aaron W. Lifland
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Jeenah Jung
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Eric Alonas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - James E. Crowe
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Fix J, Galloux M, Blondot ML, Eléouët JF. The insertion of fluorescent proteins in a variable region of respiratory syncytial virus L polymerase results in fluorescent and functional enzymes but with reduced activities. Open Virol J 2011; 5:103-8. [PMID: 21966341 PMCID: PMC3178903 DOI: 10.2174/1874357901105010103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/29/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022] Open
Abstract
The respiratory syncytial virus (RSV) Large protein L is the catalytic subunit of the RNA-dependent RNA polymerase complex. Currently, no structural information is available for RSV L. Sequence alignments of L protein from human and bovine strains of RSV revealed the existence of two variable regions, VR1 and VR2. Following comparison with morbillivirus and rhabdovirus L genes, VR2, which is located between domains V and VI, was chosen as an insertion site for sequences encoding the epitope tag HA or the fluorescent proteins eGFP and mCherry. Recombinant tagged-L proteins co-localized with RSV N and P proteins in transfected cells. These recombinant polymerases were shown to be functional using a viral minigenome system assay, their activities being reduced by ~70% compared to the unmodified L polymerase. We have also shown by site-directed mutagenesis that the GDNQ motif (residues 810-813 for the Long strain of HRSV) is essential for L activity.
Collapse
Affiliation(s)
- Jenna Fix
- INRA, Unité de Virologie Immunologie Moléculaires UR892, F-78350 Jouy-en-Josas, France
| | | | | | | |
Collapse
|
36
|
Activation of protein kinase R is required for induction of stress granules by respiratory syncytial virus but dispensable for viral replication. Virology 2011; 413:103-10. [PMID: 21377708 PMCID: PMC3072468 DOI: 10.1016/j.virol.2011.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/24/2010] [Accepted: 02/08/2011] [Indexed: 11/24/2022]
Abstract
We performed experiments to determine the effect of PKR activation on respiratory syncytial virus (RSV) replication. We first determined that RSV infection activates PKR which induces the phosphorylation of eIF2α, resulting in the formation of host stress granules. We used RNA interference to decrease endogenous PKR levels. RSV replication was not altered in cells deficient for PKR expression. However, RSV-mediated stress granule formation was significantly reduced in PKR-knockdown cells. As an alternative method to block PKR activation, we used treatment with the kinase inhibitor 2-aminopurine (2-AP). We observed that 2-AP treatment significantly reduced viral replication. We also treated PKR-knockdown cells with 2-AP and inoculated with RSV. Under these conditions, 2-AP treatment diminished viral replication in the absence of PKR expression. These results suggest that PKR activation has a minimal effect on RSV replication and that the antiviral effect of 2-AP during RSV infection likely occurs via a PKR-independent mechanism.
Collapse
|
37
|
Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication. J Virol 2010; 84:12274-84. [PMID: 20844027 DOI: 10.1128/jvi.00260-10] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mammalian cell cytoplasmic RNA stress granules are induced during various conditions of stress and are strongly associated with regulation of host mRNA translation. Several viruses induce stress granules during the course of infection, but the exact function of these structures during virus replication is not well understood. In this study, we showed that respiratory syncytial virus (RSV) induced host stress granules in epithelial cells during the course of infection. We also showed that stress granules are distinct from cytoplasmic viral inclusion bodies and that the RNA binding protein HuR, normally found in stress granules, also localized to viral inclusion bodies during infection. Interestingly, we demonstrated that infected cells containing stress granules also contained more RSV protein than infected cells that did not form inclusion bodies. To address the role of stress granule formation in RSV infection, we generated a stable epithelial cell line with reduced expression of the Ras-GAP SH3 domain-binding protein (G3BP) that displayed an inhibited stress granule response. Surprisingly, RSV replication was impaired in these cells compared to its replication in cells with intact G3BP expression. In contrast, knockdown of HuR by RNA interference did not affect stress granule formation or RSV replication. Finally, using RNA probes specific for RSV genomic RNA, we found that viral RNA predominantly localized to viral inclusion bodies but a small percentage also interacted with stress granules during infection. These results suggest that RSV induces a host stress granule response and preferentially replicates in host cells that have committed to a stress response.
Collapse
|
38
|
Radhakrishnan A, Yeo D, Brown G, Myaing MZ, Iyer LR, Fleck R, Tan BH, Aitken J, Sanmun D, Tang K, Yarwood A, Brink J, Sugrue RJ. Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics 2010; 9:1829-48. [PMID: 20530633 DOI: 10.1074/mcp.m110.001651] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this study, we used imaging and proteomics to identify the presence of virus-associated cellular proteins that may play a role in respiratory syncytial virus (RSV) maturation. Fluorescence microscopy of virus-infected cells revealed the presence of virus-induced cytoplasmic inclusion bodies and mature virus particles, the latter appearing as virus filaments. In situ electron tomography suggested that the virus filaments were complex structures that were able to package multiple copies of the virus genome. The virus particles were purified, and the protein content was analyzed by one-dimensional nano-LC MS/MS. In addition to all the major virus structural proteins, 25 cellular proteins were also detected, including proteins associated with the cortical actin network, energy pathways, and heat shock proteins (HSP70, HSC70, and HSP90). Representative actin-associated proteins, HSC70, and HSP90 were selected for further biological validation. The presence of beta-actin, filamin-1, cofilin-1, HSC70, and HSP90 in the virus preparation was confirmed by immunoblotting using relevant antibodies. Immunofluorescence microscopy of infected cells stained with antibodies against relevant virus and cellular proteins confirmed the presence of these cellular proteins in the virus filaments and inclusion bodies. The relevance of HSP90 to virus infection was examined using the specific inhibitors 17-N-Allylamino-17-demethoxygeldanamycin. Although virus protein expression was largely unaffected by these drugs, we noted that the formation of virus particles was inhibited, and virus transmission was impaired, suggesting an important role for HSP90 in virus maturation. This study highlights the utility of proteomics in facilitating both our understanding of the role that cellular proteins play during RSV maturation and, by extrapolation, the identification of new potential targets for antiviral therapy.
Collapse
Affiliation(s)
- Anuradha Radhakrishnan
- Division of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yeo DSY, Chan R, Brown G, Ying L, Sutejo R, Aitken J, Tan BH, Wenk MR, Sugrue RJ. Evidence that selective changes in the lipid composition of raft-membranes occur during respiratory syncytial virus infection. Virology 2009; 386:168-82. [DOI: 10.1016/j.virol.2008.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/19/2008] [Accepted: 12/01/2008] [Indexed: 11/27/2022]
|
40
|
Li D, Jans DA, Bardin PG, Meanger J, Mills J, Ghildyal R. Association of respiratory syncytial virus M protein with viral nucleocapsids is mediated by the M2-1 protein. J Virol 2008; 82:8863-70. [PMID: 18579594 PMCID: PMC2519653 DOI: 10.1128/jvi.00343-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 06/17/2008] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic inclusions in respiratory syncytial virus-infected cells comprising viral nucleocapsid proteins (L, N, P, and M2-1) and the viral genome are sites of viral transcription. Although not believed to be necessary for transcription, the matrix (M) protein is also present in these inclusions, and we have previously shown that M inhibits viral transcription. In this study, we have investigated the mechanisms for the association of the M protein with cytoplasmic inclusions. Our data demonstrate for the first time that the M protein associates with cytoplasmic inclusions via an interaction with the M2-1 protein. The M protein colocalizes with M2-1 in the cytoplasm of cells expressing only the M and M2-1 proteins and directly interacts with M2-1 in a cell-free binding assay. Using a cotransfection system, we confirmed that the N and P proteins are sufficient to form cytoplasmic inclusions and that M2-1 localizes to these inclusions; additionally, we show that M associates with cytoplasmic inclusions only in the presence of the M2-1 protein. Using truncated mutants, we show that the N-terminal 110 amino acids of M mediate the interaction with M2-1 and the subsequent association with nucleocapsids. The interaction of M2-1 with M and, in particular, the N-terminal region of M may represent a target for novel antivirals that block the association of M with nucleocapsids, thereby inhibiting virus assembly.
Collapse
Affiliation(s)
- Dongsheng Li
- Department of Medicine, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|