1
|
Crawford MW, Abdelwahab WM, Siram K, Parkins CJ, Harrison HF, Osman SR, Schweitzer D, Evans JT, Burkhart DJ, Pinto AK, Brien JD, Smith JL, Hirsch AJ. The TLR7/8 agonist INI-4001 enhances the immunogenicity of a Powassan virus-like-particle vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.28.625832. [PMID: 39677812 PMCID: PMC11642962 DOI: 10.1101/2024.11.28.625832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Powassan virus (POWV) is a pathogenic tick-borne flavivirus that causes fatal neuroinvasive disease in humans. There are currently no approved therapies or vaccines for POWV infection. Here, we develop a POW virus-like-particle (POW-VLP) based vaccine adjuvanted with the novel synthetic Toll-like receptor 7/8 agonist INI-4001. We demonstrate that INI-4001 outperforms both alum and the Toll-like receptor 4 agonist INI-2002 in enhancing the immunogenicity of a dose-sparing POW-VLP vaccine in mice. INI-4001 increases the magnitude and breadth of the antibody response as measured by whole-virus ELISA, induces neutralizing antibodies measured by FRNT, reduces viral burden in the brain of infected mice measured by RT qPCR, and confers 100% protection from lethal challenge with both lineages of POWV. We show that the antibody response induced by INI-4001 is more durable than standard alum, and 80% of mice remain protected from lethal challenge 9-months post-vaccination. Lastly, we show that the protection elicited by INI-4001 adjuvanted POW-VLP vaccine is unaffected by either CD4+ or CD8+ T cell depletion and can be passively transferred to unvaccinated mice indicating that protection is mediated through humoral immunity. This study highlights the utility of novel synthetic adjuvants in VLP-based vaccines.
Collapse
Affiliation(s)
- Michael W. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Walid M. Abdelwahab
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - Karthik Siram
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Henry F. Harrison
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Samantha R. Osman
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Dillon Schweitzer
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - Jay T. Evans
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - David J. Burkhart
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - Amelia K. Pinto
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - James D. Brien
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jessica L. Smith
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Alec J. Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
2
|
Klontz EH, Chowdhury N, Holbrook N, Solomon IH, Telford SR, Aliota MT, Vogels CBF, Grubaugh ND, Helgager J, Hughes HR, Velez J, Piantadosi A, Chiu CY, Lemieux J, Branda JA. Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development. Viruses 2024; 16:1653. [PMID: 39599768 PMCID: PMC11599074 DOI: 10.3390/v16111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne virus that causes severe meningoencephalitis in the United States, Canada, and Russia. Serology is generally the preferred diagnostic modality, but PCR on cerebrospinal fluid, blood, or urine has an important role, particularly in immunocompromised patients who are unable to mount a serologic response. Although the perceived poor sensitivity of PCR in the general population may be due to the biology of infection and health-seeking behavior (with short viremic periods that end before hospital presentation), limitations in assay design may also contribute. Genome sequences from clinical POWV cases are extremely scarce; PCR assay design has been informed by those available, but the numbers are limited. Larger numbers of genome sequences from tick-derived POWV are available, but it is not known if POWV genomes from human infections broadly mirror genomes from tick hosts, or if human infections are caused by a subset of more virulent strains. We obtained viral genomic data from 10 previously unpublished POWV human infections and showed that they broadly mirror the diversity of genome sequences seen in ticks, including all three major clades (lineage I, lineage II Northeast, and lineage II Midwest). These newly published clinical POWV genome sequences include the first confirmed lineage I infection in the United States, highlighting the relevance of all clades in human disease. An in silico analysis of published POWV PCR assays shows that many assays were optimized against a single clade and have mismatches that may affect their sensitivity when applied across clades. This analysis serves as a launching point for improved PCR design for clinical diagnostics and environmental surveillance.
Collapse
Affiliation(s)
- Erik H. Klontz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (E.H.K.); (N.C.); (N.H.)
| | - Navid Chowdhury
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (E.H.K.); (N.C.); (N.H.)
| | - Nolan Holbrook
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (E.H.K.); (N.C.); (N.H.)
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sam R. Telford
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, MA 02155, USA;
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55455, USA;
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Jeffrey Helgager
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
| | - Holly R. Hughes
- Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA (J.V.)
| | - Jason Velez
- Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA (J.V.)
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Charles Y. Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94115, USA
| | - Jacob Lemieux
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - John A. Branda
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (E.H.K.); (N.C.); (N.H.)
| |
Collapse
|
3
|
Kartashov MY, Krivosheina EI, Kurushina VY, Moshkin AB, Khankhareev SS, Biche-Ool CR, Pelevina ON, Popov NV, Bogomazova OL, Ternovoi VA. [Prevalence and genetic diversity of the Alongshan virus (Flaviviridae) circulating in ticks in the south of Eastern Siberia]. Vopr Virusol 2024; 69:151-161. [PMID: 38843021 DOI: 10.36233/0507-4088-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Tick-borne infections are of great importance for many regions of Russia, including Eastern Siberia. This unfavorable epidemiological situation can be characterized not only by the circulation of well-known tick-borne infections, but also by the identification of new pathogens, the role of which remains little or generally unexplored. Multicomponent flavi-like viruses can cause infectious diseases in humans and pose a threat to public health. The purpose of the study was the identification and molecular genetic characterization of the Alongshanvirus (Flaviviridae, ALSV) isolates, transmitted by ticks in the south of Eastern Siberia. MATERIALS AND METHODS Total 1060 ticks were collected and analyzed from the territory of the Republics of Khakassia, Tuva, Buryatia, Irkutsk Region and Transbaikal Territory (Zabaykalsky Krai) in the spring-summer period 2023. ALSV RNA was detected by RT-PCR followed by nucleotide sequence determination and phylogenetic analysis for each segment of the genome. RESULTS The ALSV infection rate in Ixodespersulcatus ticks collected in the Republic of Khakassia was 3.3% (95% CI: 1.4-7.5); in Irkutsk Oblast - 1.0% (95% CI: 0.3-3.7); in the Republic of Tuva - 0.9% (95% CI: 0.3-3.4) and in Transbaikal Krai - 0.7% (95% CI: 0.2-3.6). Sequences of all four segments of ALSV genetic variants circulating in I. persulcatus ticks in the south of Eastern Siberia are grouped with sequences found in China and clustered into the Asian subgroup transmitted by taiga ticks. The level of difference in the nucleotide sequences of genome fragments among the identified genetic variants of ALSV ranged from 2 to 3%. CONCLUSION The article shows the widespread distribution of ALSV in I. persulcatus ticks in the Republics of Khakassia and Tyva, Irkutsk Oblast and Transbaikal Territory. The obtained data actualize monitoring of changes in the area of distribution of potentially dangerous for humans flavi-like viruses and their vectors.
Collapse
Affiliation(s)
- M Y Kartashov
- State Research Center of Virology and Biotechnology «Vector»
| | - E I Krivosheina
- State Research Center of Virology and Biotechnology «Vector»
| | - V Y Kurushina
- State Research Center of Virology and Biotechnology «Vector»
| | | | - S S Khankhareev
- Department of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare of the Republic of Buryatia
| | - C R Biche-Ool
- Center of Hygiene and Epidemiology in the Republic of Tuva
| | - O N Pelevina
- Center for Hygiene and Epidemiology in the Republic of Khakassia
| | - N V Popov
- Center for Hygiene and Epidemiology in the Irkutsk region
| | - O L Bogomazova
- Center for Hygiene and Epidemiology in the Irkutsk region
| | - V A Ternovoi
- State Research Center of Virology and Biotechnology «Vector»
| |
Collapse
|
4
|
Illarionova V, Rogova A, Tuchynskaya K, Volok V, Rogova Y, Baryshnikova V, Turchenko Y, Litov A, Kalyanova A, Siniugina A, Ishmukhametov A, Karganova G. Inapparent Tick-Borne Orthoflavivirus Infection in Macaca fascicularis: A Model for Antiviral Drug and Vaccine Research. Vaccines (Basel) 2023; 11:1754. [PMID: 38140159 PMCID: PMC10747564 DOI: 10.3390/vaccines11121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) and Powassan virus (POWV) are neurotropic tick-borne orthoflaviviruses. They cause mostly asymptomatic infections in hosts, but severe forms with CNS involvement can occur. Studying the early stages of viral infections in humans is challenging, and appropriate animal models are essential for understanding the factors determining the disease severity and for developing emergency prophylaxis and treatment options. In this work, we assessed the model of the early stages of TBEV and POWV mono- and co-infections in Macaca fascicularis. Serological, biochemical, and virological parameters were investigated to describe the infection, including its impact on animal behavior. Viremia, neutralizing antibody dynamics, and viral load in organs were chosen as the main parameters distinguishing early-stage orthoflavivirus infection. Levels of IFNα, monocyte count, and cognitive test scores were proposed as additional informative indicators. An assessment of a tick-borne encephalitis vaccine using this model showed that it provided partial protection against POWV infection in Macaca fascicularis without signs of antibody-dependent enhancement of infection.
Collapse
Affiliation(s)
- Victoria Illarionova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1 bd. 3, Moscow 119991, Russia
| | - Anastasia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Ksenia Tuchynskaya
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Viktor Volok
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Research Institute for Systems Biology and Medicine (RISBM), Laboratory of Infectious Immunology, Moscow 117246, Russia
| | - Yulia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Victoria Baryshnikova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Yuriy Turchenko
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Alexander Litov
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anna Kalyanova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Alexandra Siniugina
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Aydar Ishmukhametov
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Galina Karganova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| |
Collapse
|
5
|
Brackney DE, Vogels CBF. The known unknowns of Powassan virus ecology. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1142-1148. [PMID: 37862099 PMCID: PMC10645372 DOI: 10.1093/jme/tjad095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 10/21/2023]
Abstract
Powassan virus (POWV; Family: Flaviviridae, Genus: Flavivirus) is the sole North American member of the tick-borne encephalitis sero-complex. While associated with high rates of morbidity and mortality, POWV has historically been of little public health concern due to low incidence rates. However, over the last 20 yr, incidence rates have increased highlighting the growing epidemiological threat. Currently, there are no vaccines or therapeutics with tick habitat reduction, acaricide application, and public awareness programs being our primary means of intervention. The effectiveness of these control strategies is dependent on having a sound understanding of the virus's ecology. In this Forum, we review what is currently known about POWV ecology, identify gaps in our knowledge, and discuss prevailing and alternative hypotheses about transmission dynamics, reservoir hosts, and spatial focality.
Collapse
Affiliation(s)
- Doug E Brackney
- Department of Entomology, Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
6
|
Shah T, Li Q, Wang B, Baloch Z, Xia X. Geographical distribution and pathogenesis of ticks and tick-borne viral diseases. Front Microbiol 2023; 14:1185829. [PMID: 37293222 PMCID: PMC10244671 DOI: 10.3389/fmicb.2023.1185829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Ticks are obligatory hematophagous arthropods that harbor and transmit infectious pathogens to humans and animals. Tick species belonging to Amblyomma, Ixodes, Dermacentor, and Hyalomma genera may transmit certain viruses such as Bourbon virus (BRBV), Dhori virus (DHOV), Powassan virus (POWV), Omsk hemorrhagic fever virus (OHFV), Colorado tick fever virus (CTFV), Crimean-Congo hemorrhagic fever virus (CCHFV), Heartland virus (HRTV), Kyasanur forest disease virus (KFDV), etc. that affect humans and certain wildlife. The tick vectors may become infected through feeding on viraemic hosts before transmitting the pathogen to humans and animals. Therefore, it is vital to understand the eco-epidemiology of tick-borne viruses and their pathogenesis to optimize preventive measures. Thus this review summarizes knowledge on some medically important ticks and tick-borne viruses, including BRBV, POWV, OHFV, CTFV, CCHFV, HRTV, and KFDV. Further, we discuss these viruses' epidemiology, pathogenesis, and disease manifestations during infection.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| |
Collapse
|
7
|
Carpio KL, Thompson JK, Widen SG, Smith JK, Juelich TL, Clements DE, Freiberg AN, Barrett ADT. Differences in Genetic Diversity of Mammalian Tick-Borne Flaviviruses. Viruses 2023; 15:281. [PMID: 36851495 PMCID: PMC9959157 DOI: 10.3390/v15020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The genetic diversities of mammalian tick-borne flaviviruses are poorly understood. We used next-generation sequencing (NGS) to deep sequence different viruses and strains belonging to this group of flaviviruses, including Central European tick-borne encephalitis virus (TBEV-Eur), Far Eastern TBEV (TBEV-FE), Langat (LGTV), Powassan (POWV), Deer Tick (DTV), Kyasanur Forest Disease (KFDV), Alkhurma hemorrhagic fever (AHFV), and Omsk hemorrhagic fever (OHFV) viruses. DTV, AHFV, and KFDV had the lowest genetic diversity, while POWV strains LEIV-5530 and LB, OHFV, TBEV-Eur, and TBEV-FE had higher genetic diversities. These findings are compatible with the phylogenetic relationships between the viruses. For DTV and POWV, the amount of genetic diversity could be explained by the number of tick vector species and amplification hosts each virus can occupy, with low diversity DTV having a more limited vector and host pool, while POWV with higher genetic diversities has been isolated from different tick species and mammals. It is speculated that high genetic diversity may contribute to the survival of the virus as it encounters these different environments.
Collapse
Affiliation(s)
- Kassandra L. Carpio
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jill K. Thompson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Kholodilov IS, Belova OA, Ivannikova AY, Gadzhikurbanov MN, Makenov MT, Yakovlev AS, Polienko AE, Dereventsova AV, Litov AG, Gmyl LV, Okhezin EV, Luchinina SV, Klimentov AS, Karganova GG. Distribution and Characterisation of Tick-Borne Flavi-, Flavi-like, and Phenuiviruses in the Chelyabinsk Region of Russia. Viruses 2022; 14:v14122699. [PMID: 36560703 PMCID: PMC9780909 DOI: 10.3390/v14122699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we presented data from a two-year study of flavi-, flavi-like, and phenuiviruses circulation in the population of ixodid ticks in the Chelyabinsk region. We isolated three tick-borne encephalitis virus (TBEV) strains from I. persulcatus, which was not detected in the ticks of the genus Dermacentor. The virus prevalence ranged from 0.66% to 2.28%. The Yanggou tick virus (YGTV) is widespread in steppe and forest-steppe zones and is mainly associated with ticks of the genus Dermacentor. We isolated 26 strains from D. reticulatus, D. marginatus, and I. persulcatus ticks in the HAE/CTVM8 tick cell line. The virus prevalence ranged from 1.58% to 4.18% in D. reticulatus, ranged from 0.78% to 3.93% in D. marginatus, and was 0.66% in I. persulcatus. There was combined focus of TBEV and YGTV in the territory of the Chelyabinsk region. The Alongshan virus (ALSV) was found to be associated with I. persulcatus ticks and is spread in forest zone. We detected 12 amplicons and isolated 7 strains of ALSV in tick cells. The virus prevalence ranged from 1.13% to 6.00%. The phlebovirus Gomselga and unclassified phenuivirus Stavropol were associated with I. persulcatus and D. reticulatus ticks, respectively. Virus prevalence of the unclassified phenuivirus Stavropol in the Chelyabinsk region is lower than that in neighbouring regions.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Magomed N. Gadzhikurbanov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Marat T. Makenov
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Alexander S. Yakovlev
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alena V. Dereventsova
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Larissa V. Gmyl
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Egor V. Okhezin
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Alexander S. Klimentov
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Abstract
Powassan virus is an increasingly recognized cause of severe encephalitis that is transmitted by Ixodes ticks. Given the nonspecific clinical, laboratory, and imaging features of Powassan virus disease, providers should consider it in patients with compatible exposures and request appropriate testing.
Collapse
Affiliation(s)
- Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, AL360U.2, Boston, MA 02115, USA
| |
Collapse
|
10
|
Stone ET, Hirsch AJ, Smith JL, Brien JD, Pinto AK. Titration and neutralizing antibody quantification by focus forming assay for Powassan virus. STAR Protoc 2022; 3:101473. [PMID: 35755126 PMCID: PMC9218233 DOI: 10.1016/j.xpro.2022.101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The development of high-throughput assays measuring Powassan virus (POWV) lineage I and II represents an important step in virological and immunological studies. By adapting focus-forming assays previously optimized for West Nile virus and Zika virus, this protocol is able to determine viral load, evaluate antivirals, and measure neutralizing antibodies. Although limited by its requirement of a detection antibody, this protocol includes a rapid and high-throughput assay for measuring viral titer. By utilizing a baby hamster kidney cell line and a 96-well plate format, this protocol allows for more sensitivity in the detection of POWV lineage I. For complete details on the use and execution of this protocol, please refer to Stone et al. (2022). Powassan virus focus forming assay for evaluation of antivirals Antibody focus reduction neutralization assay (FRNT) for Powassan virus Steps describing Powassan virus lineage I and II titration
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
11
|
Hills SL, Broussard KR, Broyhill JC, Shastry LG, Cossaboom CM, White JL, Machesky KD, Kosoy O, Girone K, Klena JD, Backenson BP, Gould CV, Lind L, Hieronimus A, Gaines DN, Wong SJ, Choi MJ, Laven JJ, Staples JE, Fischer M. Tick-borne encephalitis among US travellers, 2010-20. J Travel Med 2022; 29:6421950. [PMID: 34741518 DOI: 10.1093/jtm/taab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is an arboviral disease that is focally endemic in parts of Europe and Asia. TBE cases among US travellers are rare, with previous reports of only six cases among civilian travellers through 2009 and nine military-related cases through 2020. A TBE vaccine was licenced in the USA in August 2021. Understanding TBE epidemiology and risks among US travellers can help with the counselling of travellers going to TBE-endemic areas. METHODS Diagnostic testing for TBE in the USA is typically performed at the Centers for Disease Control and Prevention (CDC) because no commercial testing is available. Diagnostic testing for TBE at CDC since 2010 was reviewed. For individuals with evidence of TBE virus infection, information was gathered on demographics, clinical presentations and risk factors for infection. RESULTS From 2010-20, six patients with TBE were identified. Cases occurred among both paediatric and adult travellers and all were male. Patients were diagnosed with meningitis (n = 2) or encephalitis (n = 4); none died. Cases had travelled to various countries in Europe or Russia. Three cases reported visiting friends or relatives. Activities reported included hiking, camping, trail running, or working outdoors, and two cases had a recognized tick bite. CONCLUSIONS TBE cases among US travellers are uncommon, with these six cases being the only known TBE cases among civilian travellers during this 11-year period. Nonetheless, given potential disease severity, pre-travel counselling for travellers to TBE-endemic areas should include information on measures to reduce the risk for TBE and other tick-borne diseases, including possible TBE vaccine use if a traveller's itinerary puts them at higher risk for infection. Clinicians should consider the diagnosis of TBE in a patient with a neurologic or febrile illness recently returned from a TBE-endemic country, particularly if a tick bite or possible tick exposure is reported.
Collapse
Affiliation(s)
- Susan L Hills
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Kelly R Broussard
- Zoonosis Control Branch, Texas Department of State Health Services, Austin, TX 78714, USA
| | - James C Broyhill
- Division of Surveillance and Investigation, Virginia Department of Health, Richmond, VA 23218, USA
| | - Lalita G Shastry
- Division of Infectious Diseases, Lehigh Valley Health Network, Allentown, PA 18103
| | - Caitlin M Cossaboom
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jennifer L White
- Bureau of Communicable Disease Control, New York State Department of Health, Albany, NY 12237, USA
| | - Kimberly D Machesky
- Bureau of Infectious Diseases, Ohio Department of Health, Columbus, OH 43215, USA
| | - Olga Kosoy
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Kyle Girone
- Division of Surveillance and Investigation, Virginia Department of Health, Richmond, VA 23218, USA
| | - John D Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Bryon P Backenson
- Bureau of Communicable Disease Control, New York State Department of Health, Albany, NY 12237, USA
| | - Carolyn V Gould
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Leah Lind
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, PA 17120, USA
| | - Arielle Hieronimus
- Disease Control and Response Unit, Delaware Public Health District, Delaware, OH 43015-0570, USA
| | - David N Gaines
- Division of Surveillance and Investigation, Virginia Department of Health, Richmond, VA 23218, USA
| | - Susan J Wong
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12237, USA
| | - Mary J Choi
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Janeen J Laven
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - J Erin Staples
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Marc Fischer
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
12
|
Yang X, Gao GF, Liu WJ. Powassan virus: A tick borne flavivirus infecting humans. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Phylogeography and Re-Evaluation of Evolutionary Rate of Powassan Virus Using Complete Genome Data. BIOLOGY 2021; 10:biology10121282. [PMID: 34943197 PMCID: PMC8698833 DOI: 10.3390/biology10121282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The evolution of human pathogenic viruses is one of the pressing problems of modern biology and directly relevant to public health. Many important aspects of virus evolution (e.g., evolutionary rate, population size, and migration history) are ‘hidden’ from the naked eye of a researcher. Modern bioinformatics methods make it possible to evaluate and visualize such evolutionary particularities of viruses. In this paper, we reconstructed the migration history and estimated the evolutionary rate of one of the most dangerous neuroinvasive and neurotropic tick-borne flaviviruses—Powassan virus (POWV)—distributed in North America and the Far East of Russia. Using the dates obtained, we hypothesized that the divergence of the most recent common ancestor of POWV into two independent genetic lineages most likely occurred because of the melting of glaciers that began at 11.72 Kya in the Holocene due to the climate warming-caused flooding of the isthmus between Eurasia and North America. Abstract In this paper, we revealed the genetic structure and migration history of the Powassan virus (POWV) reconstructed based on 25 complete genomes available in NCBI and ViPR databases (accessed in June 2021). The usage of this data set allowed us to perform a more precise assessment of the evolutionary rate of this virus. In addition, we proposed a simple Bayesian technique for the evaluation and visualization of ‘temporal signal dynamics’ along the phylogenetic tree. We showed that the evolutionary rate value of POWV is 3.3 × 10−5 nucleotide substitution per site per year (95% HPD, 2.0 × 10−5–4.7 × 10−5), which is lower than values reported in the previous studies. Divergence of the most recent common ancestor (MRCA) of POWV into two independent genetic lineages most likely occurred in the period between 2600 and 6030 years ago. We assume that the divergence of the virus lineages happened due to the melting of glaciers about 12,000 years ago, which led to the disappearance of the Bering Land Bridge between Eurasia and North America (the modern Alaskan territory) and spatial division of the viral areal into two parts. Genomic data provide evidence of the virus migrations between two continents. The mean migration rate detected from the Far East of Russia to North America was one event per 1750 years. The migration to the opposite direction occurred approximately once per 475 years.
Collapse
|
14
|
Xu L, Guo M, Hu B, Zhou H, Yang W, Hui L, Huang R, Zhan J, Shi W, Wu Y. Tick virome diversity in Hubei Province, China, and the influence of host ecology. Virus Evol 2021; 7:veab089. [PMID: 34804590 PMCID: PMC8599308 DOI: 10.1093/ve/veab089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Ticks are important vector hosts of pathogens which cause human and animal
diseases worldwide. Diverse viruses have been discovered in ticks; however,
little is known about the ecological factors that affect the tick virome
composition and evolution. Herein, we employed RNA sequencing to study the
virome diversity of the Haemaphysalis longicornis and
Rhipicephalus microplus ticks sampled in Hubei Province in
China. Twelve RNA viruses with complete genomes were identified, which belonged
to six viral families: Flaviviridae, Matonaviridae, Peribunyaviridae,
Nairoviridae, Phenuiviridae, and Rhabdoviridae.
These viruses showed great diversity in their genome organization and evolution,
four of which were proposed to be novel species. The virome diversity and
abundance of R. microplus ticks fed on cattle were evidently
high. Further ecological analyses suggested that host species and feeding status
may be key factors affecting the tick virome structure. This study described a
number of novel viral species and variants from ticks and, more importantly,
provided insights into the ecological factors shaping the virome structures of
ticks, although it clearly warrants further investigation.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Moujian Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Wei Yang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lixia Hui
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Rui Huang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jianbo Zhan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Weifeng Shi
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ying Wu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
15
|
Hassett EM, Thangamani S. Ecology of Powassan Virus in the United States. Microorganisms 2021; 9:microorganisms9112317. [PMID: 34835443 PMCID: PMC8624383 DOI: 10.3390/microorganisms9112317] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/02/2022] Open
Abstract
Zoonotic viruses threaten the lives of millions of people annually, exacerbated by climate change, human encroachment into wildlife habitats, and habitat destruction. The Powassan virus (POWV) is a rare tick-borne virus that can cause severe neurological damage and death, and the incidence of the associated disease (Powassan virus disease) is increasing in the eastern United States. The mechanisms by which POWV is maintained in nature and transmitted to humans are complex and only partly understood. This review provides an overview of what is known about the vector species, vector-host transmission dynamics, and environmental and human-driven factors that may be aiding the spread of both the vector and virus.
Collapse
|
16
|
Cimica V, Saleem S, Matuczinski E, Adams-Fish D, McMahon C, Rashid S, Stedman TT. A Virus-Like Particle-Based Vaccine Candidate against the Tick-Borne Powassan Virus Induces Neutralizing Antibodies in a Mouse Model. Pathogens 2021; 10:pathogens10060680. [PMID: 34072726 PMCID: PMC8229747 DOI: 10.3390/pathogens10060680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV) is a tick-borne flavivirus circulating in North America and the Russian Far East that can cause severe neuroinvasive diseases, including encephalitis, meningitis, and meningoencephalitis. The reported neuroinvasive case fatality is about 10%, and approximately 50% of the survivors from the neuroinfection exhibit long-lasting or permanent neurological sequelae. Currently, treatment of POWV infection is supportive, and no FDA-approved vaccines or specific therapeutics are available. A novel Powassan vaccine candidate was created using virus-like particle technology (POW-VLP) and assembled with the viral structural proteins pre-Membrane (prM) and Envelope (E). Western blot immunoassay demonstrated high antigenicity of POW-VLP structural proteins. Transmission electron microscopy indicated that the POW-VLP exhibited icosahedral morphology typical of flaviviruses. A dose-escalation study in a murine model was performed to test immunogenicity and safety. Serum antibody was tested by ELISA, demonstrating that POW-VLP afforded 100% seroconversion to the E protein. Reporter viral-particle neutralization assay demonstrated high levels of neutralizing antibodies in the serum of immunized mice. Hybridomas expressing monoclonal antibodies were produced following POW-VLP immunization. The POW-VLP vaccine candidate created in this study provides a strategy for inducing protective antibodies against Powassan neuroinvasive infection.
Collapse
|
17
|
Della-Giustina D, Duke C, Goldflam K. Underrecognized Tickborne Illnesses: Borrelia Miyamotoi and Powassan Virus. Wilderness Environ Med 2021; 32:240-246. [PMID: 33839017 DOI: 10.1016/j.wem.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Abstract
Over the past 2 decades, tickborne disease has been increasingly recognized as a threat to humans as a result of the growing geographic range of ticks. This review describes 2 tickborne diseases, Borrelia miyamotoi and Powassan virus, that likely have a significant impact on humans, yet are underdiagnosed compared to most other tickborne diseases. We performed a literature search from 2015 to 2020. Borrelia miyamotoi is a tickborne pathogen that infects and co-infects ticks along with other pathogens, including Borrelia burgdorferi. Because B miyamotoi infects the same Ixodes ticks as B burgdorferi, B miyamotoi may cover a similar geographic range. B miyamotoi infection may be underdiagnosed for 2 reasons. First, a presumptive treatment approach to Lyme disease may result in B miyamotoi infection treatment without identification of the actual cause. Second, the absence of readily available testing and diagnostic criteria makes it difficult to diagnose B miyamotoi infection. Powassan virus is a tickborne flavivirus similar to the dengue virus. Powassan virus disease appears to have an asymptomatic or minimally symptomatic presentation in most people but can cause devastating and fatal encephalitis. The Powassan virus may be transmitted in less than 15 min of tick feeding. Powassan virus disease is a difficult diagnosis because testing capabilities are limited and because there may be co-infection with other tickborne pathogens.
Collapse
Affiliation(s)
| | - Charles Duke
- Yale School of Medicine, Department of Emergency Medicine, New Haven, CT
| | - Katja Goldflam
- Yale School of Medicine, Department of Emergency Medicine, New Haven, CT
| |
Collapse
|
18
|
Hart CE, Thangamani S. Tick-virus interactions: Current understanding and future perspectives. Parasite Immunol 2021; 43:e12815. [PMID: 33368375 DOI: 10.1111/pim.12815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Ticks are the primary vector of arboviruses in temperate climates worldwide. They are both the vector of these pathogens to humans and an integral component of the viral sylvatic cycle. Understanding the tick-pathogen interaction provides information about the natural maintenance of these pathogens and informs the development of countermeasures against human infection. In this review, we discuss currently available information on tick-viral interactions within the broader scope of general tick immunology. While the tick immune response to several pathogens has been studied extensively, minimal work centres on responses to viral infection. This is largely due to the high pathogenicity of tick-borne viruses; this necessitates high-containment laboratories or low-pathogenicity substitute viruses. This has biased most research towards tick-borne flaviviruses. More work is required to fully understand the role of tick-virus interaction in sylvatic cycling and transmission of diverse tick-borne viruses.
Collapse
Affiliation(s)
- Charles Edward Hart
- Institute for Global Health and Translational Science, Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Saravanan Thangamani
- Institute for Global Health and Translational Science, Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
19
|
A novel synthetic DNA vaccine elicits protective immune responses against Powassan virus. PLoS Negl Trop Dis 2020; 14:e0008788. [PMID: 33119599 PMCID: PMC7595275 DOI: 10.1371/journal.pntd.0008788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/10/2020] [Indexed: 01/07/2023] Open
Abstract
Powassan virus (POWV) infection is a tick-borne emerging infectious disease in the United States and North America. Like Zika virus, POWV is a member of the family Flaviviridae. POWV causes severe neurological sequalae, meningitis, encephalitis, and can cause death. Although the risk of human POWV infection is low, its incidence in the U.S. in the past 16 years has increased over 300%, urging immediate attention. Despite the disease severity and its growing potential for threatening larger populations, currently there are no licensed vaccines which provide protection against POWV. We developed a novel synthetic DNA vaccine termed POWV-SEV by focusing on the conserved portions of POWV pre-membrane and envelope (prMEnv) genes. A single immunization of POWV-SEV elicited broad T and B cell immunity in mice with minimal cross-reactivity against other flaviviruses. Antibody epitope mapping demonstrated a similarity between POWV-SEV-induced immune responses and those elicited naturally in POWV-infected patients. Finally, POWV-SEV induced immunity provided protection against POWV disease in lethal challenge experiments.
Collapse
|
20
|
Kirsch JM, Mlera L, Offerdahl DK, VanSickle M, Bloom ME. Tick-Borne Flaviviruses Depress AKT Activity during Acute Infection by Modulating AKT1/2. Viruses 2020; 12:v12101059. [PMID: 32977414 PMCID: PMC7598186 DOI: 10.3390/v12101059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Tick-borne flaviviruses (TBFVs) are reemerging public health threats. To develop therapeutics against these pathogens, increased understanding of their interactions with the mammalian host is required. The PI3K-AKT pathway has been implicated in TBFV persistence, but its role during acute virus infection remains poorly understood. Previously, we showed that Langat virus (LGTV)-infected HEK 293T cells undergo a lytic crisis with a few surviving cells that become persistently infected. We also observed that AKT2 mRNA is upregulated in cells persistently infected with TBFV. Here, we investigated the virus-induced effects on AKT expression over the course of acute LGTV infection and found that total phosphorylated AKT (pAKT), AKT1, and AKT2 decrease over time, but AKT3 increases dramatically. Furthermore, cells lacking AKT1 or AKT2 were more resistant to LGTV-induced cell death than wild-type cells because they expressed higher levels of pAKT and antiapoptotic proteins, such as XIAP and survivin. The differential modulation of AKT by LGTV may be a mechanism by which viral persistence is initiated, and our results demonstrate a complicated manipulation of host pathways by TBFVs.
Collapse
|
21
|
Clark JJ, Gilray J, Orton RJ, Baird M, Wilkie G, Filipe ADS, Johnson N, McInnes CJ, Kohl A, Biek R. Population genomics of louping ill virus provide new insights into the evolution of tick-borne flaviviruses. PLoS Negl Trop Dis 2020; 14:e0008133. [PMID: 32925939 PMCID: PMC7515184 DOI: 10.1371/journal.pntd.0008133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors. Tick-borne pathogens represent a major emerging threat to public health and in recent years have been expanding into new areas. LIV is a neglected virus endemic to the UK and Ireland (though it has been detected in Scandinavia and Russia) which is closely related to the major human pathogen TBEV, but predominantly causes disease in sheep and grouse. The recent detection of TBEV in the UK, which has also emerged elsewhere in Europe, requires more detailed understanding of the spread and sequence diversity of LIV. This could be important for diagnosis and vaccination, but also to improve our understanding of the evolution and emergence of these tick-borne viruses. Here we describe the sequencing of 22 LIV isolates which have been sampled from several host species across the past century. We have utilised this dataset to investigate the evolutionary pressures that LIV is subjected to and have explored the evolution of LIV using phylogenetic analysis. Crucially we were unable to estimate a reliable molecular clock rate for LIV and found that this problem also extends to a larger phylogeny of TBEV sequences. This work highlights a previously unknown caveat of tick-borne flavivirus evolutionary analysis which may be important for understanding the evolution of these important pathogens.
Collapse
Affiliation(s)
- Jordan J. Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail: (JC); (RB)
| | - Janice Gilray
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine - University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JC); (RB)
| |
Collapse
|
22
|
Rubel F, Brugger K, Belova OA, Kholodilov IS, Didyk YM, Kurzrock L, García-Pérez AL, Kahl O. Vectors of disease at the northern distribution limit of the genus Dermacentor in Eurasia: D. reticulatus and D. silvarum. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:95-123. [PMID: 32815071 PMCID: PMC7471206 DOI: 10.1007/s10493-020-00533-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/07/2020] [Indexed: 05/07/2023]
Abstract
The two ixodid tick species Dermacentor reticulatus (Fabricius) and Dermacentor silvarum Olenev occur at the northern distribution limit of the genus Dermacentor in Eurasia, within the belt of [Formula: see text] latitude. Whilst the distribution area of D. reticulatus extends from the Atlantic coast of Portugal to Western Siberia, that of D. silvarum extends from Western Siberia to the Pacific coast. In Western Siberia, the distribution areas of the two Dermacentor species overlap. Although the two tick species are important vectors of disease, detailed information concerning the entire distribution area, climate adaptation, and proven vector competence is still missing. A dataset was compiled, resulting in 2188 georeferenced D. reticulatus and 522 D. silvarum locations. Up-to-date maps depicting the geographical distribution and climate adaptation of the two Dermacentor species are presented. To investigate the climate adaptation of the two tick species, the georeferenced locations were superimposed on a high-resolution map of the Köppen-Geiger climate classification. The frequency distribution of D. reticulatus under different climates shows two major peaks related to the following climates: warm temperate with precipitation all year round (57%) and boreal with precipitation all year round (40%). The frequency distribution of D. silvarum shows also two major peaks related to boreal climates with precipitation all year round (30%) and boreal winter dry climates (60%). Dermacentor silvarum seems to be rather flexible concerning summer temperatures, which can range from cool to hot. In climates with cool summers D. reticulatus does not occur, it prefers warm and to a lesser extent hot summers. Lists are given in this paper for cases of proven vector competence for various agents of both Dermacentor species. For the first time, the entire distribution areas of D. reticulatus and D. silvarum were mapped using georeferenced data. Their climate adaptations were quantified by Köppen profiles.
Collapse
Affiliation(s)
- Franz Rubel
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Katharina Brugger
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Oxana A Belova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia
| | - Ivan S Kholodilov
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia
| | - Yuliya M Didyk
- Institute of Zoology SAS, Bratislava, Slovakia
- Schmalhausen Institute of Zoology NAS of Ukraine, Kiev, Ukraine
| | | | | | | |
Collapse
|
23
|
VanBlargan LA, Himansu S, Foreman BM, Ebel GD, Pierson TC, Diamond MS. An mRNA Vaccine Protects Mice against Multiple Tick-Transmitted Flavivirus Infections. Cell Rep 2019; 25:3382-3392.e3. [PMID: 30566864 PMCID: PMC6353567 DOI: 10.1016/j.celrep.2018.11.082] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
Powassan virus (POWV) is an emerging tick-transmitted flavivirus that circulates in North America and Russia. Up to 5% of deer ticks now test positive for POWV in certain regions of the northern United States. Although POWV infections cause life-threatening encephalitis, there is no vaccine or countermeasure available for prevention or treatment. Here, we developed a lipid nanoparticle (LNP)-encapsulated modified mRNA vaccine encoding the POWV prM and E genes and demonstrated its immunogenicity and efficacy in mice following immunization with one or two doses. The POWV mRNA vaccine induced high titers of neutralizing antibody and sterilizing immunity against lethal challenge with different POWV strains. The mRNA vaccine also induced cross-neutralizing antibodies against multiple other tick-borne flaviviruses and protected mice against the distantly related Langat virus. These data demonstrate the utility of the LNP-mRNA vaccine platform for the development of vaccines with protective activity against multiple flaviviruses.
Collapse
Affiliation(s)
- Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sunny Himansu
- Moderna, Inc., 500 Technology Square, Cambridge, MA 02139, USA
| | - Bryant M Foreman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Gregory D Ebel
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Abstract
The tick-borne pathogen Powassan virus is a rare cause of encephalitis in North America and the Russian Far East. The number of documented cases described since the discovery of Powassan virus in 1958 may be <150, although detection of cases has increased over the past decade. In the United States, the incidence of Powassan virus infections expanded from the estimated 1 case per year prior to 2005 to 10 cases per year during the subsequent decade. The increased detection rate may be associated with several factors, including enhanced surveillance, the availability of improved laboratory diagnostic methods, the expansion of the vector population, and, perhaps, altered human activities that lead to more exposure. Nonetheless, it remains unclear whether Powassan virus is indeed an emerging threat or if enzootic cycles in nature remain more-or-less stable with periodic fluctuations of host and vector population sizes. Despite the low disease incidence, the approximately 10% to 15% case fatality rate of neuroinvasive Powassan virus infection and the temporary or prolonged sequelae in >50% of survivors make Powassan virus a medical concern requiring the attention of public health authorities and clinicians. The medical importance of Powassan virus justifies more research on developing specific and effective treatments and prevention and control measures.
Collapse
Affiliation(s)
- Gábor Kemenesi
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
25
|
Corrin T, Greig J, Harding S, Young I, Mascarenhas M, Waddell LA. Powassan virus, a scoping review of the global evidence. Zoonoses Public Health 2018; 65:595-624. [PMID: 29911344 DOI: 10.1111/zph.12485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 05/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Powassan virus (POWV), a flavivirus discovered in 1958, causes sporadic but severe cases of encephalitis in humans. Since 2007, the number of human Powassan cases diagnosed each year in the USA has steadily increased. This is in agreement with predictions that Powassan cases may increase in North America as a result of increased exposure to infected ticks. However, the increase may also reflect improved diagnostics and reporting among other factors. METHODS A scoping review was prioritized to identify and characterize the global literature on POWV. Following an a priori developed protocol, a comprehensive search strategy was implemented. Two reviewers screened titles and abstracts for relevant research and the identified full papers were used to characterize the POWV literature using a predetermined data characterization tool. RESULTS One hundred and seventy-eight articles were included. The majority of the studies were conducted in North America (88.2%) between 1958 and 2017. Both genotypes of POWV (Powassan lineage 1 and Deer Tick virus) were isolated or studied in vitro, in vectors, nonhuman hosts and human populations. To date, POWV has been reported in 147 humans in North America. The virus has also been isolated from five tick species, and several animals have tested positive for exposure to the virus. The relevant articles identified in this review cover the following eight topics: epidemiology (123 studies), pathogenesis (66), surveillance (33), virus characterization (22), POWV transmission (8), diagnostic test accuracy (8), treatment (4) and mitigation strategies (3). CONCLUSION The literature on POWV is relatively small compared with other vector-borne diseases, likely because POWV has not been prioritized due to the small number of severe sporadic human cases. With the projected impact of climate change on tick populations, increases in the number of human cases are expected. It is recommended that future research efforts focus on closing some of the important knowledge gaps identified in this scoping review.
Collapse
Affiliation(s)
- Tricia Corrin
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Judy Greig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Shannon Harding
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Ian Young
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Mariola Mascarenhas
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Lisa A Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| |
Collapse
|
26
|
Peromyscus leucopus mouse brain transcriptome response to Powassan virus infection. J Neurovirol 2017; 24:75-87. [PMID: 29147886 PMCID: PMC5790856 DOI: 10.1007/s13365-017-0596-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.
Collapse
|
27
|
Doughty CT, Yawetz S, Lyons J. Emerging Causes of Arbovirus Encephalitis in North America: Powassan, Chikungunya, and Zika Viruses. Curr Neurol Neurosci Rep 2017; 17:12. [PMID: 28229397 DOI: 10.1007/s11910-017-0724-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arboviruses are arthropod-borne viruses transmitted by the bite of mosquitoes, ticks, or other arthropods. Arboviruses are a common and an increasing cause of human illness in North America. Powassan virus, Chikungunya virus, and Zika virus are arboviruses that have all recently emerged as increasing causes of neurologic illness. Powassan virus almost exclusively causes encephalitis, but cases are rare, sporadic, and restricted to portions of North America and Russia. Chikungunya virus has spread widely across the world, causing millions of infections. Encephalitis is a rare manifestation of illness but is more common and severe in neonates and older adults. Zika virus has recently spread through much of the Americas and has been associated mostly with microcephaly and other congenital neurologic complications. Encephalitis occurring in infected adults has also been recently reported. This review will discuss the neuropathogenesis of these viruses, their transmission and geographic distribution, the spectrum of their neurologic manifestations, and the appropriate method of diagnosis.
Collapse
Affiliation(s)
- Christopher T Doughty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Division of Neurological Infections and Inflammatory Diseases, Department of Neurology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Sigal Yawetz
- Harvard Medical School, Boston, MA, USA.,Division of Infectious Disease, Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer Lyons
- Division of Neurological Infections and Inflammatory Diseases, Department of Neurology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Mansfield KL, Jizhou L, Phipps LP, Johnson N. Emerging Tick-Borne Viruses in the Twenty-First Century. Front Cell Infect Microbiol 2017; 7:298. [PMID: 28744449 PMCID: PMC5504652 DOI: 10.3389/fcimb.2017.00298] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans and are the primary vector for pathogens of livestock, companion animals, and wildlife. The role of ticks in the transmission of viruses has been known for over 100 years and yet new pathogenic viruses are still being detected and known viruses are continually spreading to new geographic locations. Partly as a result of their novelty, tick-virus interactions are at an early stage in understanding. For some viruses, even the principal tick-vector is not known. It is likely that tick-borne viruses will continue to emerge and challenge public and veterinary health long into the twenty-first century. However, studies focusing on tick saliva, a critical component of tick feeding, virus transmission, and a target for control of ticks and tick-borne diseases, point toward solutions to emerging viruses. The aim of this review is to describe some currently emerging tick-borne diseases, their causative viruses, and to discuss research on virus-tick interactions. Through focus on this area, future protein targets for intervention and vaccine development may be identified.
Collapse
Affiliation(s)
- Karen L Mansfield
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Institute of Infection and Global Health, University of LiverpoolLiverpool, United Kingdom
| | - Lv Jizhou
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Chinese Academy of Inspection and QuarantineBeijing, China
| | - L Paul Phipps
- Animal and Plant Health AgencyAddlestone, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Faculty of Health and Medicine, University of SurreyGuildford, United Kingdom
| |
Collapse
|
29
|
Hermance ME, Thangamani S. Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America. Vector Borne Zoonotic Dis 2017; 17:453-462. [PMID: 28498740 PMCID: PMC5512300 DOI: 10.1089/vbz.2017.2110] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV, Flaviviridae) is the only North American member of the tick-borne encephalitis serogroup of flaviviruses. It is transmitted to small- and medium-sized mammals by Ixodes scapularis, Ixodes cookei, and several other Ixodes tick species. Humans become infected with POWV during spillover transmission from the natural transmission cycles. In humans, POWV is the causative agent of a severe neuroinvasive illness with 50% of survivors displaying long-term neurological sequelae. POWV was recognized as a human pathogen in 1958 when a young boy died of severe encephalitis in Powassan, Ontario, and POWV was isolated from the brain autopsy of this case. Two distinct genetic lineages of POWV are now recognized: POWV (lineage I) and deer tick virus (lineage II). Since the index case in 1958, over 100 human cases of POWV have been reported, with an apparent rise in disease incidence in the past 16 years. This recent increase in cases may represent a true emergence of POWV in regions where the tick vector species are prevalent, or it could represent an increase in POWV surveillance and diagnosis. In the past 5 years, both basic and applied research for POWV disease has intensified, including phylogenetic studies, field surveillance, case studies, and animal model development. This review provides an overview of POWV, including the epidemiology, transmission, clinical disease, and diagnosis of POWV infection. Recent research developments and future priorities with regard to the disease are emphasized.
Collapse
Affiliation(s)
- Meghan E Hermance
- 1 Department of Pathology, University of Texas Medical Branch , Galveston, Texas
| | - Saravanan Thangamani
- 1 Department of Pathology, University of Texas Medical Branch , Galveston, Texas.,2 Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston, Texas.,3 Center for Tropical Diseases, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
30
|
Mlera L, Meade-White K, Saturday G, Scott D, Bloom ME. Modeling Powassan virus infection in Peromyscus leucopus, a natural host. PLoS Negl Trop Dis 2017; 11:e0005346. [PMID: 28141800 PMCID: PMC5302833 DOI: 10.1371/journal.pntd.0005346] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/10/2017] [Accepted: 01/22/2017] [Indexed: 02/07/2023] Open
Abstract
The tick-borne flavivirus, Powassan virus (POWV) causes life-threatening encephalitis in humans in North America and Europe. POWV is transmitted by ixodid tick vectors that feed on small to medium-sized mammals, such as Peromyscus leucopus mice, which may serve as either reservoir, bridge or amplification hosts. Intraperitoneal and intracranial inoculation of 4-week old Peromyscus leucopus mice with 103 PFU of POWV did not result in overt clinical signs of disease. However, following intracranial inoculation, infected mice seroconverted to POWV and histopathological examinations revealed that the mice uniformly developed mild lymphocytic perivascular cuffing and microgliosis in the brain and spinal cord from 5 to 15 days post infection (dpi), suggesting an early inflammatory response. In contrast, intracranial inoculation of 4-week old C57BL/6 and BALB/c mice was lethal by 5 dpi. Intraperitoneal inoculation was lethal in BALB/c mice, but 40% (2/5) of C57BL/6 mice survived. We concluded that Peromyscus leucopus mice infected i.c. with a lethal dose of POWV support a limited infection, restricted to the central nervous system and mount an antibody response to the virus. However, they fail to develop clinical signs of disease and are able to control the infection. These results suggest the involvement of restriction factors, and the mechanism by which Peromyscus leucopus mice restrict POWV infection remains under study.
Collapse
Affiliation(s)
- Luwanika Mlera
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Kimberly Meade-White
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Dana Scott
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Marshall E. Bloom
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| |
Collapse
|
31
|
Khasnatinov MA, Liapunov AV, Manzarova EL, Kulakova NV, Petrova IV, Danchinova GA. The diversity and prevalence of hard ticks attacking human hosts in Eastern Siberia (Russian Federation) with first description of invasion of non-endemic tick species. Parasitol Res 2015; 115:501-10. [PMID: 26443685 DOI: 10.1007/s00436-015-4766-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
Hard ticks are the vectors of many pathogens including tick-borne encephalitis virus and the Lyme disease agent Borrelia burgdorferi sensu lato. In Eastern Siberia, Ixodes persulcatus, Dermacentor nuttalli, Dermacentor silvarum and Haemaphysalis concinna are regarded as aggressive to humans. Recently, significant changes in world tick fauna have been reported and this affects the spread of tick-borne pathogens. We studied the current species diversity, population structure and prevalence of tick-borne pathogens of hard ticks (Acari: Ixodidae) that attacked humans in Eastern Siberia (Irkutsk region, Russia). In total, 31,892 individual ticks were identified and analysed during the years 2007-2014. The majority (85.4%) of victims was bitten by I. persulcatus, 14.55% of attacks on humans were caused by D. nuttalli and D. silvarum, whereas H. concinna was documented only in 15 cases (0.05%). The seasonal activity and the age/gender structure of the tick population were studied as well. Among all the studied ticks, three unconventional species, i.e. Rhipicephalus sanguineus, Dermacentor reticulatus and Amblyomma americanum, were identified. Analysis of tick bite histories indicates at least three events of invasion of non-endemic ticks into the ecosystems of northern Eurasia with harsh continental climates. Invading ticks are able to reach the adult life stage and are aggressive to the local human population. Phylogenetic analysis of mt 16S rRNA gene fragments suggests multiple independent routes of tick migration to Eastern Siberia. Possible implications to human health and epidemiology of tick-borne infections are discussed.
Collapse
Affiliation(s)
- Maxim Anatolyevich Khasnatinov
- Federal Budgetary Scientific Center for Family Health and Human Reproduction Problems (FBSC FHHRP), 3, K. Marks st., Irkutsk, Russian Federation.
| | - Alexander Valeryevich Liapunov
- Federal Budgetary Scientific Center for Family Health and Human Reproduction Problems (FBSC FHHRP), 3, K. Marks st., Irkutsk, Russian Federation.
| | - Ellina Lopsonovna Manzarova
- Federal Budgetary Scientific Center for Family Health and Human Reproduction Problems (FBSC FHHRP), 3, K. Marks st., Irkutsk, Russian Federation.
| | - Nina Viktorovna Kulakova
- Federal State Public Science Institution Limnological Institute, 4, Ulan-batorskaya st., Irkutsk, Russian Federation.
| | - Irina Viktorovna Petrova
- Federal Budgetary Scientific Center for Family Health and Human Reproduction Problems (FBSC FHHRP), 3, K. Marks st., Irkutsk, Russian Federation.
| | - Galina Anatolyevna Danchinova
- Federal Budgetary Scientific Center for Family Health and Human Reproduction Problems (FBSC FHHRP), 3, K. Marks st., Irkutsk, Russian Federation.
| |
Collapse
|
32
|
Moureau G, Cook S, Lemey P, Nougairede A, Forrester NL, Khasnatinov M, Charrel RN, Firth AE, Gould EA, de Lamballerie X. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One 2015; 10:e0117849. [PMID: 25719412 PMCID: PMC4342338 DOI: 10.1371/journal.pone.0117849] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022] Open
Abstract
To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses.
Collapse
Affiliation(s)
- Gregory Moureau
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Shelley Cook
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Antoine Nougairede
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Naomi L. Forrester
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - Maxim Khasnatinov
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, Wallingford, Oxfordshire, OX10, United Kingdom
| | - Remi N. Charrel
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Ernest A. Gould
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| |
Collapse
|
33
|
Abstract
In this chapter, we describe 73 zoonotic viruses that were isolated in Northern Eurasia and that belong to the different families of viruses with a single-stranded RNA (ssRNA) genome. The family includes viruses with a segmented negative-sense ssRNA genome (families Bunyaviridae and Orthomyxoviridae) and viruses with a positive-sense ssRNA genome (families Togaviridae and Flaviviridae). Among them are viruses associated with sporadic cases or outbreaks of human disease, such as hemorrhagic fever with renal syndrome (viruses of the genus Hantavirus), Crimean–Congo hemorrhagic fever (CCHFV, Nairovirus), California encephalitis (INKV, TAHV, and KHATV; Orthobunyavirus), sandfly fever (SFCV and SFNV, Phlebovirus), Tick-borne encephalitis (TBEV, Flavivirus), Omsk hemorrhagic fever (OHFV, Flavivirus), West Nile fever (WNV, Flavivirus), Sindbis fever (SINV, Alphavirus) Chikungunya fever (CHIKV, Alphavirus) and others. Other viruses described in the chapter can cause epizootics in wild or domestic animals: Geta virus (GETV, Alphavirus), Influenza A virus (Influenzavirus A), Bhanja virus (BHAV, Phlebovirus) and more. The chapter also discusses both ecological peculiarities that promote the circulation of these viruses in natural foci and factors influencing the occurrence of epidemic and epizootic outbreaks
Collapse
|
34
|
Abstract
This study focused on finding, culturing, and identifying the biological and genetic characteristics of three louping ill virus (LIV) strains in the south of the Russian Far East. The Primorye-155-77 and Primorye-20-79 virus strains were isolated from Ixodes persulcatus ticks, and the Primorye-185-91 strain was isolated from the blood of a person after a tick bite. According to the hemagglutination and neutralization tests, Primorye-155-77, Primorye-20-79 and Primorye-185-91 had weak reactivity with antibodies in an antiserum against tick-borne encephalitis virus. In Primorye-155-77 and Primorye-20-79, the sequences of the 5' ends of the 2456-nucleotide-long viral RNA including the 5' untranslated region (UTR) and genes of the capsid protein, prM protein and envelope E protein were determined. The complete genome sequence of Primorye-185-91 was determined. The E protein gene of the Negishi strain differed from those of three analyzed strains, as there were mutations resulting in the replacement of three amino acids: Ala163Thr, Asp193Asn and Ala313Thr. The homology of Primorye-185-91 to LIV 369/T2 was 97.57 %, and to the Penrith strain, it was 98.36 %. Phylogenetic analysis showed that Primorye-155-77, Primorye-20-79 and Primorye-185-91 are related to LI/A and LI/K strains isolated in England and Scotland and to the Negishi strain; these strains have a common progenitor. Negishi-like strains were represented by one subtype of louping ill virus, i.e. the British subtype (LIV-Brit). The possibility is discussed of a single introduction of the virus to the Far Eastern region (Japan and Primorsky Krai) from a single natural locus more than 50 years ago.
Collapse
|
35
|
Deardorff ER, Nofchissey RA, Cook JA, Hope AG, Tsvetkova A, Talbot SL, Ebel GD. Powassan virus in mammals, Alaska and New Mexico, U.S.A., and Russia, 2004-2007. Emerg Infect Dis 2014; 19:2012-6. [PMID: 24274336 PMCID: PMC3840874 DOI: 10.3201/eid1912.130319] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Powassan virus is endemic to the United States, Canada, and the Russian Far East. We report serologic evidence of circulation of this virus in Alaska, New Mexico, and Siberia. These data support further studies of viral ecology in rapidly changing Arctic environments.
Collapse
|
36
|
El Khoury MY, Camargo JF, White JL, Backenson BP, Dupuis AP, Escuyer KL, Kramer L, St. George K, Chatterjee D, Prusinski M, Wormser GP, Wong SJ. Potential role of deer tick virus in Powassan encephalitis cases in Lyme disease-endemic areas of New York, U.S.A. Emerg Infect Dis 2014; 19:1926-33. [PMID: 24274334 PMCID: PMC3840892 DOI: 10.3201/eid1912.130903] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TOC Summary: The epidemiologic pattern and limited laboratory testing indicate that this virus lineage might account for most of these illnesses. Powassan virus, a member of the tick-borne encephalitis group of flaviviruses, encompasses 2 lineages with separate enzootic cycles. The prototype lineage of Powassan virus (POWV) is principally maintained between Ixodes cookei ticks and the groundhog (Marmota momax) or striped skunk (Mephitis mephitis), whereas the deer tick virus (DTV) lineage is believed to be maintained between Ixodes scapularis ticks and the white-footed mouse (Peromyscus leucopus). We report 14 cases of Powassan encephalitis from New York during 2004–2012. Ten (72%) of the patients were residents of the Lower Hudson Valley, a Lyme disease–endemic area in which I. scapularis ticks account for most human tick bites. This finding suggests that many of these cases were caused by DTV rather than POWV. In 2 patients, DTV infection was confirmed by genetic sequencing. As molecular testing becomes increasingly available, more cases of Powassan encephalitis may be determined to be attributable to the DTV lineage.
Collapse
|
37
|
Dhama K, Pawaiya R, Chakrabort S, Tiwari R, Verma A. Powassan virus (POWV) Infection in Animals and Humans: A Review. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajava.2014.177.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Dupuis AP, Peters RJ, Prusinski MA, Falco RC, Ostfeld RS, Kramer LD. Isolation of deer tick virus (Powassan virus, lineage II) from Ixodes scapularis and detection of antibody in vertebrate hosts sampled in the Hudson Valley, New York State. Parasit Vectors 2013; 6:185. [PMID: 24016533 PMCID: PMC3711734 DOI: 10.1186/1756-3305-6-185] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/13/2013] [Indexed: 11/22/2022] Open
Abstract
Background Deer tick virus, DTV, is a genetically and ecologically distinct lineage of Powassan virus (POWV) also known as lineage II POWV. Human incidence of POW encephalitis has increased in the last 15 years potentially due to the emergence of DTV, particularly in the Hudson Valley of New York State. We initiated an extensive sampling campaign to determine whether POWV was extant throughout the Hudson Valley in tick vectors and/or vertebrate hosts. Methods More than 13,000 ticks were collected from hosts or vegetation and tested for the presence of DTV using molecular and virus isolation techniques. Vertebrate hosts of Ixodes scapularis (black-legged tick) were trapped (mammals) or netted (birds) and blood samples analyzed for the presence of neutralizing antibodies to POWV. Maximum likelihood estimates (MLE) were calculated to determine infection rates in ticks at each study site. Results Evidence of DTV was identified each year from 2007 to 2012, in nymphal and adult I. scapularis collected from the Hudson Valley. 58 tick pools were positive for virus and/or RNA. Infection rates were higher in adult ticks collected from areas east of the Hudson River. MLE limits ranged from 0.2-6.0 infected adults per 100 at sites where DTV was detected. Virginia opossums, striped skunks and raccoons were the source of infected nymphal ticks collected as replete larvae. Serologic evidence of POWV infection was detected in woodchucks (4/6), an opossum (1/6), and birds (4/727). Lineage I, prototype POWV, was not detected. Conclusions These data demonstrate widespread enzootic transmission of DTV throughout the Hudson Valley, in particular areas east of the river. High infection rates were detected in counties where recent POW encephalitis cases have been identified, supporting the hypothesis that lineage II POWV, DTV, is responsible for these human infections.
Collapse
Affiliation(s)
- Alan P Dupuis
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, 5668 State Farm Rd, Slingerlands, NY, 12159, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Revisiting the clinal concept of evolution and dispersal for the tick-borne flaviviruses by using phylogenetic and biogeographic analyses. J Virol 2012; 86:8663-71. [PMID: 22674986 DOI: 10.1128/jvi.01013-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tick-borne flaviviruses (TBF) are widely dispersed across Africa, Europe, Asia, Oceania, and North America, and some present a significant threat to human health. Seminal studies on tick-borne encephalitis viruses (TBEV), based on partial envelope gene sequences, predicted a westward clinal pattern of evolution and dispersal across northern Eurasia, terminating in the British Isles. We tested this hypothesis using all available full-length open reading frame (ORF) TBF sequences. Phylogenetic analysis was consistent with current reports. However, linear and nonlinear regression analysis of genetic versus geographic distance combined with BEAST analysis identified two separate clines, suggesting that TBEV spread both east and west from a central point. In addition, BEAST analysis suggested that TBF emerged and dispersed more than 16,000 years ago, significantly earlier than previously predicted. Thus, climatic and ecological changes may have played a greater role in TBF dispersal than humans.
Collapse
|
40
|
Subbotina EL, Loktev VB. Molecular evolution of the tick-borne encephalitis and Powassan viruses. Mol Biol 2012. [DOI: 10.1134/s0026893311060148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Pesko KN, Torres-Perez F, Hjelle BL, Ebel GD. Molecular epidemiology of Powassan virus in North America. J Gen Virol 2010; 91:2698-705. [PMID: 20631087 PMCID: PMC3052558 DOI: 10.1099/vir.0.024232-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/11/2010] [Indexed: 11/18/2022] Open
Abstract
Powassan virus (POW) is a tick-borne flavivirus distributed in Canada, the northern USA and the Primorsky region of Russia. POW is the only tick-borne flavivirus endemic to the western hemisphere, where it is transmitted mainly between Ixodes cookei and groundhogs (Marmota monax). Deer tick virus (DTV), a genotype of POW that has been frequently isolated from deer ticks (Ixodes scapularis), appears to be maintained in an enzootic cycle between these ticks and white-footed mice (Peromyscus leucopus). DTV has been isolated from ticks in several regions of North America, including the upper Midwest and the eastern seaboard. The incidence of human disease due to POW is apparently increasing. Previous analysis of tick-borne flaviviruses endemic to North America have been limited to relatively short genome fragments. We therefore assessed the evolutionary dynamics of POW using newly generated complete and partial genome sequences. Maximum-likelihood and Bayesian phylogenetic inferences showed two well-supported, reciprocally monophyletic lineages corresponding to POW and DTV. Bayesian skyline plots based on year-of-sampling data indicated no significant population size change for either virus lineage. Statistical model-based selection analyses showed evidence of purifying selection in both lineages. Positive selection was detected in NS-5 sequences for both lineages and envelope sequences for POW. Our findings confirm that POW and DTV sequences are relatively stable over time, which suggests strong evolutionary constraint, and support field observations that suggest that tick-borne flavivirus populations are extremely stable in enzootic foci.
Collapse
Affiliation(s)
- Kendra N. Pesko
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Fernando Torres-Perez
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Brian L. Hjelle
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Gregory D. Ebel
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
42
|
Pfeffer M, Dobler G. Emergence of zoonotic arboviruses by animal trade and migration. Parasit Vectors 2010; 3:35. [PMID: 20377873 PMCID: PMC2868497 DOI: 10.1186/1756-3305-3-35] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
Arboviruses are transmitted in nature exclusively or to a major extend by arthropods. They belong to the most important viruses invading new areas in the world and their occurrence is strongly influenced by climatic changes due to the life cycle of the transmitting vectors. Several arboviruses have emerged in new regions of the world during the last years, like West Nile virus (WNV) in the Americas, Usutu virus (USUV) in Central Europe, or Rift Valley fever virus (RVFV) in the Arabian Peninsula. In most instances the ways of introduction of arboviruses into new regions are not known. Infections acquired during stays in the tropics and subtropics are diagnosed with increasing frequency in travellers returning from tropical countries, but interestingly no attention is paid on accompanying pet animals or the hematophagous ectoparasites that may still be attached to them. Here we outline the known ecology of the mosquito-borne equine encephalitis viruses (WEEV, EEEV, and VEEV), WNV, USUV, RVFV, and Japanese Encephalitis virus, as well as Tick-Borne Encephalitis virus and its North American counterpart Powassan virus, and will discuss the most likely mode that these viruses could expand their respective geographical range. All these viruses have a different epidemiology as different vector species, reservoir hosts and virus types have adapted to promiscuous and robust or rather very fine-balanced transmission cycles. Consequently, these viruses will behave differently with regard to the requirements needed to establish new endemic foci outside their original geographical ranges. Hence, emphasis is given on animal trade and suitable ecologic conditions, including competent vectors and vertebrate hosts.
Collapse
Affiliation(s)
- Martin Pfeffer
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | | |
Collapse
|
43
|
Ebel GD. Update on Powassan virus: emergence of a North American tick-borne flavivirus. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:95-110. [PMID: 19961325 DOI: 10.1146/annurev-ento-112408-085446] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Powassan virus (POW) (Flaviviridae: Flavivirus) is the cause of rare but severe neuroinvasive disease in North America and Russia. The virus is transmitted among small- and medium-sized mammals by ixodid ticks. Human infections occur via spillover from the main transmission cycle(s). Since the late 1990s, the incidence of human disease seems to be increasing. In addition, POW constitutes a genetically diverse group of virus genotypes, including Deer tick virus, that are maintained in distinct enzootic transmission cycles. This review highlights recent research into POW, focusing on virus genetics and ecology and human disease. Important directions for future research are also discussed.
Collapse
Affiliation(s)
- Gregory D Ebel
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|