1
|
Jurisic L, Auerswald H, Marcacci M, Di Giallonardo F, Coetzee LM, Curini V, Averaimo D, Ortiz-Baez AS, Cammà C, Di Teodoro G, Richt JA, Holmes EC, Lorusso A. Insect-specific Alphamesonivirus-1 ( Mesoniviridae) in lymph node and lung tissues from two horses with acute respiratory syndrome. J Virol 2025; 99:e0214424. [PMID: 39853116 PMCID: PMC11852760 DOI: 10.1128/jvi.02144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Members of the RNA virus order Nidovirales infect hosts ranging from marine invertebrates to terrestrial mammals. As such, understanding the determinants of host range in this group of viruses, as well as their patterns of emergence and disease potential, is of clear importance. The Mesoniviridae are a recently documented family within the Nidovirales. To date, mesoniviruses have only been associated with the infection of arthropod species, particularly mosquitoes, and hence are regarded as insect-specific viruses (ISVs). Herein, we report the first detection of a mesonivirus-Alphamesonivirus-1 -in mammals. Specifically, we utilized genomic and histological techniques to identify Alphamesonivirus-1 in lung and lymph node tissues of two horses (a mare and its foal) from Italy that succumbed to an acute respiratory syndrome. The genome sequences of Alphamesonivirus-1 obtained from the two horses were closely related to each other and to those from a local Culex mosquito pool and an Alphamesonivirus-1 previously identified in Italy, indicative of ongoing local transmission. The discovery of Alphamesonivirus-1 in horse tissues prompts further investigation into the host range of mesoniviruses, the possible role of insect-specific viruses in mammalian disease processes, the determinants of and barriers to cross-species virus transmission, and the potential epizootic threats posed by understudied viral families. IMPORTANCE Alphamesoniviruses, members of the family Mesoniviridaeare, are considered insect-specific RNA viruses with no known association with vertebrate hosts. Herein, we report the identification of Alphamesonivirus-1 in mammals. Using detailed molecular and histological analyses, we identified Alphamesonivirus-1 in lung and lymph node tissues of two horses that presented with an acute respiratory syndrome and that was phylogenetically related to virus sequences found in local Culex mosquitoes. Hence, Alphamesoniviruses may possess a broader host range than previously believed, prompting the investigation of their possible role in mammalian disease. This work highlights the need for increased surveillance of atypical viruses in association with unexplained respiratory illness, including those commonly assumed to be insect-specific, and may have implications for epizootic disease emergence.
Collapse
Affiliation(s)
- Lucija Jurisic
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Heidi Auerswald
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | | | - Laureen M. Coetzee
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, Neudamm Campus, University of Namibia, Windhoek, Namibia
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Daniela Averaimo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | | | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Juergen A. Richt
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| |
Collapse
|
2
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
3
|
Tian F, He J, Shang S, Chen Z, Tang Y, Lu M, Huang C, Guo X, Tong Y. Survey of mosquito species and mosquito-borne viruses in residential areas along the Sino-Vietnam border in Yunnan Province in China. Front Microbiol 2023; 14:1105786. [PMID: 36910188 PMCID: PMC9996012 DOI: 10.3389/fmicb.2023.1105786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Mosquitoes are capable of carrying complex pathogens, and their feeding habits on the mammalian blood can easily mediate the spread of viruses. Surveillance of mosquito-based arbovirus enables the early prevention and control of mosquito-borne arboviral diseases. The climate and geography of Yunnan Province in China are ideal for mosquitoes. Yunnan shares borders with several other countries; therefore, there exists a high risk of international transmission of mosquito-mediated infectious diseases. Previous studies have focused more on the Sino-Laos and Sino-Myanmar borders. Therefore, we focused on the neighborhoods of Malipo and Funing counties in Wenshan Prefecture, Yunnan Province, China, which are located along the Sino-Vietnam border, to investigate the species of mosquitoes and mosquito-borne viruses in the residential areas of this region. This study collected 10,800 mosquitoes from 29 species of 8 genera and grouped to isolate mosquito-borne viruses. In total, 62 isolates were isolated and classified into 11 viral categories. We demonstrated a new distribution of mosquito-borne viruses among mosquitoes in border areas, including Tembusu and Getah viruses, which can cause animal outbreaks. In addition, Dak Nong and Sarawak viruses originating from Vietnam and Malaysia, respectively, were identified for the first time in China, highlighting the complexity of mosquito-borne viruses in the Sino-Vietnam border region. The awareness of the importance of viral surveillance and prevention measures in border areas should be further encouraged to prevent future outbreaks of potentially infectious diseases.
Collapse
Affiliation(s)
- Fengjuan Tian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jimin He
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shanlin Shang
- Malipo County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Zhongyan Chen
- Malipo County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Yumei Tang
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Man Lu
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Changzhi Huang
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases Control, Puer, Yunnan, China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Stout AE, Millet JK, Stanhope MJ, Whittaker GR. Furin cleavage sites in the spike proteins of bat and rodent coronaviruses: Implications for virus evolution and zoonotic transfer from rodent species. One Health 2021; 13:100282. [PMID: 34179330 PMCID: PMC8216856 DOI: 10.1016/j.onehlt.2021.100282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Bats and rodents comprise two of the world's largest orders of mammals and the order Chiroptera (bats) has been implicated as a major reservoir of coronaviruses in nature and a source of zoonotic transfer to humans. However, the order Rodentia (rodents) also harbors coronaviruses, with two human coronaviruses (HCoV-OC43 and HCoV-HKU1) considered to have rodent origins. The coronavirus spike protein mediates viral entry and is a major determinant of viral tropism; importantly, the spike protein is activated by host cell proteases at two distinct sites, designated as S1/S2 and S2'. SARS-CoV-2, which is considered to be of bat origin, contains a cleavage site for the protease furin at S1/S2, absent from the rest of the currently known betacoronavirus lineage 2b coronaviruses (Sarbecoviruses). This cleavage site is thought to be critical to its replication and pathogenesis, with a notable link to virus transmission. Here, we examine the spike protein across coronaviruses identified in both bat and rodent species and address the role of furin as an activating protease. Utilizing two publicly available furin prediction algorithms (ProP and PiTou) and based on spike sequences reported in GenBank, we show that the S1/S2 furin cleavage site is typically not present in bat virus spike proteins but is common in rodent-associated sequences, and suggest this may have implications for zoonotic transfer. We provide a phylogenetic history of the Embecoviruses (betacoronavirus lineage 2a), including context for the use of furin as an activating protease for the viral spike protein. From a One Health perspective, continued rodent surveillance should be an important consideration in uncovering novel circulating coronaviruses.
Collapse
Affiliation(s)
- Alison E. Stout
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352, Jouy-en-Josas, France
| | - Michael J. Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
- Master of Public Health Program, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Carvalho VL, Long MT. Insect-Specific Viruses: An overview and their relationship to arboviruses of concern to humans and animals. Virology 2021; 557:34-43. [PMID: 33631523 DOI: 10.1016/j.virol.2021.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
The group of Insect-specific viruses (ISVs) includes viruses apparently restricted to insects based on their inability to replicate in the vertebrates. Increasing numbers of ISVs have been discovered and characterized representing a diverse number of viral families. However, most studies have focused on those ISVs belonging to the family Flaviviridae, which highlights the importance of ISV study from other viral families, which allow a better understanding for the mechanisms of transmission and evolution used for this diverse group of viruses. Some ISVs have shown the potential to modulate arboviruses replication and vector competence of mosquitoes. Based on this, ISVs may be used as an alternative tool for biological control, development of vaccines, and diagnostic platforms for arboviruses. In this review, we provide an update of the general characteristics of ISVs and their interaction with arboviruses that infect vertebrates.
Collapse
Affiliation(s)
- Valéria L Carvalho
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, S/n, Ananindeua, Para, 67030-000, Brazil.
| | - Maureen T Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA.
| |
Collapse
|
6
|
Supriyono, Kuwata R, Torii S, Shimoda H, Ishijima K, Yonemitsu K, Minami S, Kuroda Y, Tatemoto K, Tran NTB, Takano A, Omatsu T, Mizutani T, Itokawa K, Isawa H, Sawabe K, Takasaki T, Yuliani DM, Abiyoga D, Hadi UK, Setiyono A, Hondo E, Agungpriyono S, Maeda K. Mosquito-borne viruses, insect-specific flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), Bogor virus (unassigned member of family Permutotetraviridae), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus) isolated from Indonesian mosquitoes. J Vet Med Sci 2020; 82:1030-1041. [PMID: 32448813 PMCID: PMC7399325 DOI: 10.1292/jvms.20-0261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mosquitoes transmit many kinds of arboviruses (arthropod-borne viruses), and numerous arboviral diseases have become serious problems in Indonesia. In this study, we conducted surveillance of mosquito-borne viruses at several sites in Indonesia during 2016-2018 for risk assessment of arbovirus infection and analysis of virus biodiversity in mosquito populations. We collected 10,015 mosquitoes comprising at least 11 species from 4 genera. Major collected mosquito species were Culex quinquefasciatus, Aedes albopictus, Culex tritaeniorhynchus, Aedes aegypti, and Armigeres subalbatus. The collected mosquitoes were divided into 285 pools and used for virus isolation using two mammalian cell lines, Vero and BHK-21, and one mosquito cell line, C6/36. Seventy-two pools showed clear cytopathic effects only in C6/36 cells. Using RT-PCR and next-generation sequencing approaches, these isolates were identified as insect flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), new permutotetravirus (designed as Bogor virus) (family Permutotetraviridae, genus Alphapermutotetravirus), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus). We believed that this large surveillance of mosquitoes and mosquito-borne viruses provides basic information for the prevention and control of emerging and re-emerging arboviral diseases.
Collapse
Affiliation(s)
- Supriyono
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Shun Torii
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kenzo Yonemitsu
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shohei Minami
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ngo Thuy Bao Tran
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ai Takano
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan
| | - Dewi Maria Yuliani
- Public Health Office of Tangerang District, Tigaraksa Subdistrict, Banten 15720, Indonesia
| | - Dimas Abiyoga
- Indonesian Research Center for Veterinary Sciences, Sesetan, Denpasar City, Bali 80223, Indonesia
| | - Upik Kesumawati Hadi
- Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Agus Setiyono
- Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Eiichi Hondo
- Department of Biological Mechanisms and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Srihadi Agungpriyono
- Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
7
|
Amoa-Bosompem M, Kobayashi D, Murota K, Faizah AN, Itokawa K, Fujita R, Osei JHN, Agbosu E, Pratt D, Kimura S, Kwofie KD, Ohashi M, Bonney JHK, Dadzie S, Sasaki T, Ohta N, Isawa H, Sawabe K, Iwanaga S. Entomological Assessment of the Status and Risk of Mosquito-borne Arboviral Transmission in Ghana. Viruses 2020; 12:v12020147. [PMID: 32012771 PMCID: PMC7077231 DOI: 10.3390/v12020147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/16/2023] Open
Abstract
Entomological surveillance is one of the tools used in monitoring and controlling vector-borne diseases. However, the use of entomological surveillance for arboviral infection vector control is often dependent on finding infected individuals. Although this method may suffice in highly endemic areas, it is not as effective in controlling the spread of diseases in low endemic and non-endemic areas. In this study, we examined the efficiency of using entomological markers to assess the status and risk of arbovirus infection in Ghana, which is considered a non-endemic country, by combining mosquito surveillance with virus isolation and detection. This study reports the presence of cryptic species of mosquitoes in Ghana, demonstrating the need to combine morphological identification and molecular techniques in mosquito surveillance. Furthermore, although no medically important viruses were detected, the importance of insect-specific viruses in understanding virus evolution and arbovirus transmission is discussed. This study reports the first mutualistic relationship between dengue virus and the double-stranded RNA Aedes aegypti totivirus. Finally, this study discusses the complexity of the virome of Aedes and Culex mosquitoes and its implication for arbovirus transmission.
Collapse
Affiliation(s)
- Michael Amoa-Bosompem
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima 891-0105, Japan;
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan;
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Esinam Agbosu
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Deborah Pratt
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Shohei Kimura
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
| | - Kofi Dadzie Kwofie
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Mitsuko Ohashi
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Joseph H. Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Nobuo Ohta
- Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka-cyo, Suzuka-shi, Mie 510-0293, Japan;
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Correspondence: (H.I.); (S.I.); Tel.: +81-3-5285-1111 (H.I.); +81-3-5803-5191 (S.I.)
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Correspondence: (H.I.); (S.I.); Tel.: +81-3-5285-1111 (H.I.); +81-3-5803-5191 (S.I.)
| |
Collapse
|
8
|
Diagne MM, Gaye A, Ndione MHD, Faye M, Fall G, Dieng I, Widen SG, Wood TG, Popov V, Guzman H, Bâ Y, Weaver SC, Diallo M, Tesh R, Faye O, Vasilakis N, Sall AA. Dianke virus: A new mesonivirus species isolated from mosquitoes in Eastern Senegal. Virus Res 2020; 275:197802. [PMID: 31697989 PMCID: PMC7075714 DOI: 10.1016/j.virusres.2019.197802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022]
Abstract
An increasing number of insect-specific viruses are found around the world. Very recently, a new group of insect-specific viruses, the Mesoniviridae family, was discovered in Africa, Asia, North America and Australia. Here we report the first detection and isolation of a new virus belonging to Mesonivirus genus in Senegal, West Africa. The so-called Dianke virus was detected in 21 species of arthropods trapped in the eastern part of the country. Male individuals were also infected, supporting vertical transmission assertion of insect specific viruses. As described for other mesoniviruses, no viral replication was observed after inoculation of mammalian cells. Viral replication in mosquito cells was blocked at a temperature of 37 °C, highlighting the importance of thermal conditions in Mesonivirus host restriction. Similar to our study, where a diverse range of arthropod vectors were found infected by the new virus, several studies have detected mesonivirus infection in mosquitoes with concerns for human health. It has been shown that dual infections in mosquito can alter viral infectivity. Due to their extensive geographic distribution and host range, as well as their use as potential disease control agents in vector populations, more studies should be done for a better knowledge of arthropod-restricted viruses prevalence and diversity.
Collapse
Affiliation(s)
- Moussa M Diagne
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal.
| | - Alioune Gaye
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Marie Henriette Dior Ndione
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal; Cheikh Anta Diop de Dakar University, Dakar, Senegal
| | - Martin Faye
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Idrissa Dieng
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal; Cheikh Anta Diop de Dakar University, Dakar, Senegal
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | - Vsevolod Popov
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Hilda Guzman
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Yamar Bâ
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Scott C Weaver
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Mawlouth Diallo
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Robert Tesh
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Ousmane Faye
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Amadou A Sall
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
9
|
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses-Transmission and Interaction. Viruses 2019; 11:v11090873. [PMID: 31533367 PMCID: PMC6784079 DOI: 10.3390/v11090873] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mosquito-specific viruses (MSVs) are a subset of insect-specific viruses that are found to infect mosquitoes or mosquito derived cells. There has been an increase in discoveries of novel MSVs in recent years. This has expanded our understanding of viral diversity and evolution but has also sparked questions concerning the transmission of these viruses and interactions with their hosts and its microbiome. In fact, there is already evidence that MSVs interact with the immune system of their host. This is especially interesting, since mosquitoes can be infected with both MSVs and arthropod-borne (arbo) viruses of public health concern. In this review, we give an update on the different MSVs discovered so far and describe current data on their transmission and interaction with the mosquito immune system as well as the effect MSVs could have on an arboviruses-co-infection. Lastly, we discuss potential uses of these viruses, including vector and transmission control.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana.
| | - Mayke Leggewie
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Mine Altinli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Esther Schnettler
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| |
Collapse
|
10
|
Zhao L, Mwaliko C, Atoni E, Wang Y, Zhang Y, Zhan J, Hu X, Xia H, Yuan Z. Characterization of a Novel Tanay Virus Isolated From Anopheles sinensis Mosquitoes in Yunnan, China. Front Microbiol 2019; 10:1963. [PMID: 31507570 PMCID: PMC6714596 DOI: 10.3389/fmicb.2019.01963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Globally, mosquitoes are known to be competent vectors to various arboviruses that cause serious and debilitating diseases to humans and animals. Conversely, mosquitoes harbor a wide array of insect specific viruses (ISVs) that are generally neglected. Extensive characterization of these ISVs is important in understanding their persistence infection effect on host behavior and arbovirus transmission. Herein, we report first time isolation of Tanay virus (TANAV) isolate YN15_103_01 in Anopheles sinensis mosquitoes from Yunnan Province, China. Phylogenetically, the isolate’s nucleotide identity had more than 14.47% variance compared to previous TANAV isolates, and it clustered into an independent branch within the genus Sandewavirus in the newly proposed taxon Negevirus. TANAV growth and high titers was attained in Aag2 cells (107 PFU/mL) but with no CPE observed up to 7 days.p.i. compared to C6/36 cells that exhibited extensive CPE at 48 h.p.i. with titers of 107 PFU/mL. Contrarywise, the viral isolate did not replicate in vertebrate cell lines. Electron microscopy analyses showed that its final maturation process takes place in the cell cytoplasm. Notably, the predicted viral proteins were verified to be corresponding to the obtained SDS-PAGE protein bands. Our findings advance forth new and vital knowledge important in understanding insect specific viruses, especially TANAV.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunzhi Zhang
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Jianbo Zhan
- Division for Viral Disease with Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
11
|
Atoni E, Zhao L, Karungu S, Obanda V, Agwanda B, Xia H, Yuan Z. The discovery and global distribution of novel mosquito-associated viruses in the last decade (2007-2017). Rev Med Virol 2019; 29:e2079. [PMID: 31410931 DOI: 10.1002/rmv.2079] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023]
Abstract
In the last decade, virus hunting and discovery has gained pace. This achievement has been driven by three major factors: (a) advancements in sequencing technologies, (b) scaled-up routine arbovirus surveillance strategies, and (c) the "hunt" for emerging pathogens and novel viruses. Many novel viruses have been discovered from a myriad of hosts, vectors, and environmental samples. To help promote understanding of the global diversity and distribution of mosquito-associated viruses and facilitate future studies, we review mosquito-associated viruses discovered between years 2007 and 2017, across the world. In the analyzed period, novel mosquito-associated viruses belonging to 25 families and a general group of unclassified viruses were categorized. The top three discovered novel mosquito-associated viruses belonged to families Flaviviridae (n=32), Rhabdoviridae (n=16), and Peribunyaviridae (n=14). Also, 67 unclassified viruses were reported. Majority of these novel viruses were identified from Culex spp, Anopheles spp, Aedes spp, and Mansonia spp mosquitoes, respectively. Notably, the number of these discovered novels is not representative of intercontinental virus diversity but rather is influenced by the number of studies done in the study period. Some of these newly discovered mosquito-associated viruses have medical significance, either directly or indirectly. For instance, in the study period, 14 novel mosquito-borne viruses that infect mammalian cells in vitro were reported. These viruses pose a danger to the global health security on emerging viral diseases. On the other hand, some of the newly discovered insect specific viruses described herein have potential application as future biocontrol and vaccine agents against known pathogenic arboviruses. Overall, this review outlines the crucial role played by mosquitoes as viral vectors in the global virosphere.
Collapse
Affiliation(s)
- Evans Atoni
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhao
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Samuel Karungu
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | | | - Han Xia
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Vasilakis N, Tesh RB, Popov VL, Widen SG, Wood TG, Forrester NL, Gonzalez JP, Saluzzo JF, Alkhovsky S, Lam SK, Mackenzie JS, Walker PJ. Exploiting the Legacy of the Arbovirus Hunters. Viruses 2019; 11:E471. [PMID: 31126128 PMCID: PMC6563318 DOI: 10.3390/v11050471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, it has become evident that a generational gap has developed in the community of arbovirus research. This apparent gap is due to the dis-investment of training for the next generation of arbovirologists, which threatens to derail the rich history of virus discovery, field epidemiology, and understanding of the richness of diversity that surrounds us. On the other hand, new technologies have resulted in an explosion of virus discovery that is constantly redefining the virosphere and the evolutionary relationships between viruses. This paradox presents new challenges that may have immediate and disastrous consequences for public health when yet to be discovered arboviruses emerge. In this review we endeavor to bridge this gap by providing a historical context for the work being conducted today and provide continuity between the generations. To this end, we will provide a narrative of the thrill of scientific discovery and excitement and the challenges lying ahead.
Collapse
Affiliation(s)
- Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Steve G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston TX 77555, USA.
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston TX 77555, USA.
| | - Naomi L Forrester
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Jean Paul Gonzalez
- Center of Excellence for Emerging & Zoonotic Animal Disease, Kansas State University, Manhattan, KS 66502, USA.
| | | | - Sergey Alkhovsky
- Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, 18 Gamaleya str., Moscow, Russia.
| | - Sai Kit Lam
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, Perth, Western Australia 6102, Australia.
| | - Peter J Walker
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
13
|
Sadeghi M, Altan E, Deng X, Barker CM, Fang Y, Coffey LL, Delwart E. Virome of > 12 thousand Culex mosquitoes from throughout California. Virology 2018; 523:74-88. [DOI: 10.1016/j.virol.2018.07.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022]
|
14
|
Kobayashi D, Isawa H, Fujita R, Murota K, Itokawa K, Higa Y, Katayama Y, Sasaki T, Mizutani T, Iwanaga S, Ohta N, Garcia-Bertuso A, Sawabe K. Isolation and characterization of a new iflavirus from Armigeres spp. mosquitoes in the Philippines. J Gen Virol 2017; 98:2876-2881. [PMID: 29048274 DOI: 10.1099/jgv.0.000929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During an entomological surveillance for arthropod-borne viruses in the Philippines, we isolated a previously unrecognized virus from female Armigeres spp. mosquitoes. Whole-genome sequencing, genetic characterization and phylogenetic analysis revealed that the isolated virus, designated Armigeres iflavirus (ArIFV), is a novel member of the iflaviruses (genus Iflavirus, family Iflaviridae) and phylogenetically related to Moku virus, Hubei odonate virus 4, slow bee paralysis virus and Graminella nigrifrons virus 1. To our knowledge, this is the first successful isolation of iflavirus from a dipteran insect. Spherical ArIFV particles of approximately 30 nm in diameter contained at least three major structural proteins. ArIFV multiplied to high titres (~109 p.f.u. ml-1) and formed clear plaques in a mosquito cell line, C6/36. Our findings provide new insights into the infection mechanism, genetic diversity and evolution of the Iflaviridae family.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.,Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryosuke Fujita
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.,Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Kita 21 Nihi 10, Sapporo 001-0021, Japan
| | - Katsunori Murota
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yukiko Higa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-1-8 Harumi, Fuchu, Tokyo 183-8509, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-1-8 Harumi, Fuchu, Tokyo 183-8509, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Nobuo Ohta
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Arlene Garcia-Bertuso
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Ermita, 1000 Manila City, Philippines
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
15
|
Isolation and characterization of a novel mesonivirus from Culex mosquitoes in China. Virus Res 2017; 240:130-139. [PMID: 28823942 PMCID: PMC7125798 DOI: 10.1016/j.virusres.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 12/01/2022]
Abstract
A new insect nidovirus (named Yichang virus) from the family Mesoniviridae was isolated, identified, and characterized from Culex mosquitoes in Hubei, China. Results showed a high number of viral RNA copies (up to 1011 copies/ml) within 48 h in C6/36 cells. In addition, the titers of the Yichang virus reached maximal levels of 107 PFU/mL at 6 d post-infection (dpi). The virus produced moderate cytopathic effects when the multiplicity of infection ranged from 0.001–0.1 at 6 dpi, but did not replicate in mammalian cells. Under electron microscopy, the virion of the Yichang virus appeared as spherical particles with diameters of ∼80 nm and large club-shaped projections. Although subsequent genomic sequence analysis revealed that the Yichang virus had similar protein patterns as those of other mesoniviruses, the nucleotide acids shared less than 20% BLAST query coverage with known viruses in the family Mesoniviridae, and showed a maximum sequence identity of 67% for RNA-dependent RNA polymerase (RdRp). The putative protein sequences showed slightly higher identity (28%–68%), and the most conserved domain was RdRp. Based on the phylogenetic and pairwise evolutionary distance analyses, the Yichang virus should be considered a new species belonging to a currently unassigned genus within the family Mesoniviridae.
Collapse
|
16
|
Zhou J, Jin Y, Chen Y, Li J, Zhang Q, Xie X, Gan L, Liu Q. Complete Genomic and Ultrastructural Analysis of a Nam Dinh Virus Isolated from Culex pipiens quinquefasciatus in China. Sci Rep 2017; 7:271. [PMID: 28325899 PMCID: PMC5428213 DOI: 10.1038/s41598-017-00340-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/22/2017] [Indexed: 11/09/2022] Open
Abstract
The Nam Dinh virus (NDiV) was isolated from Culex quinquefasciatus in Shenzhen, China, for the first time, in 2011. In this study, we characterized the ultrastructure of NDiV, determined its complete genome sequence and made comparisons with other known nidoviruses. Electron microscopic observation revealed that the NDiV strain isolated in China produced viral nucleocapsid-like particles and vesicles in host cells. The extracellular virions were enveloped and were spherical with short spikes. The complete genome sequence of the newly isolated NDiV was submitted to the GenBank database (GenBank accession number KF522691). Sequencing of the viral genome showed that the homologies of NDiV isolated in China and Vietnam were greater than 94.0% and 89.0% at the nucleotide and amino acid sequence levels, respectively. Moreover, gene substitution was detected, whereas insertions and deletions were not. A phylogenetic tree analysis showed that these viruses belong to the genus Alphamesonivirus1 of the family Mesoniviridae. The similarity between the two viruses regarding morphological and molecular biological characteristics indicates that the molecular genetics of NDiV are conservative and that the regional differences are unlikely to have a significant effect. This is the first report of the isolation and complete sequencing of a mesonivirus in mainland China.
Collapse
Affiliation(s)
- Jianming Zhou
- Longgang Center for Disease Control and Prevention in Shenzhen, Shenzhen, China
| | - Yujuan Jin
- Longgang Center for Disease Control and Prevention in Shenzhen, Shenzhen, China
| | - Yingjian Chen
- Longgang Center for Disease Control and Prevention in Shenzhen, Shenzhen, China
| | - Jingmei Li
- Longgang Center for Disease Control and Prevention in Shenzhen, Shenzhen, China
| | - Qiwen Zhang
- Longgang Center for Disease Control and Prevention in Shenzhen, Shenzhen, China
| | - Xianqing Xie
- Longgang Center for Disease Control and Prevention in Shenzhen, Shenzhen, China
| | - Liping Gan
- Longgang Center for Disease Control and Prevention in Shenzhen, Shenzhen, China
| | - Qu Liu
- Longgang Center for Disease Control and Prevention in Shenzhen, Shenzhen, China.
| |
Collapse
|
17
|
Hall RA, Bielefeldt-Ohmann H, McLean BJ, O'Brien CA, Colmant AMG, Piyasena TBH, Harrison JJ, Newton ND, Barnard RT, Prow NA, Deerain JM, Mah MGKY, Hobson-Peters J. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens. Evol Bioinform Online 2017; 12:35-44. [PMID: 28096646 PMCID: PMC5226260 DOI: 10.4137/ebo.s40740] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023] Open
Abstract
Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction.
Collapse
Affiliation(s)
- Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.; QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Joshua M Deerain
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Marcus G K Y Mah
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.; QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
18
|
Roundy CM, Azar SR, Rossi SL, Weaver SC, Vasilakis N. Insect-Specific Viruses: A Historical Overview and Recent Developments. Adv Virus Res 2016; 98:119-146. [PMID: 28433051 DOI: 10.1016/bs.aivir.2016.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arthropod-borne viruses (arboviruses) have in recent years become a tremendous global health concern resulting in substantial human morbidity and mortality. With the widespread utilization of molecular technologies such as next-generation sequencing and the advancement of bioinformatics tools, a new age of viral discovery has commenced. Many of the novel agents being discovered in recent years have been isolated from mosquitoes and exhibit a highly restricted host range. Strikingly, these insect-specific viruses have been found to be members of viral families traditionally associated with human arboviral pathogens, including but not limited to the families Flaviviridae, Togaviridae, Reoviridae, and Bunyaviridae. These agents therefore present novel opportunities in the fields of viral evolution and viral/vector interaction and have tremendous potential as agents for biocontrol of vectors and or viruses of medical importance.
Collapse
Affiliation(s)
- Christopher M Roundy
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Sasha R Azar
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Shannan L Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Scott C Weaver
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
19
|
Fauver JR, Grubaugh ND, Krajacich BJ, Weger-Lucarelli J, Lakin SM, Fakoli LS, Bolay FK, Diclaro JW, Dabiré KR, Foy BD, Brackney DE, Ebel GD, Stenglein MD. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology 2016; 498:288-299. [PMID: 27639161 DOI: 10.1016/j.virol.2016.07.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 12/19/2022]
Abstract
Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission.
Collapse
Affiliation(s)
- Joseph R Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nathan D Grubaugh
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Benjamin J Krajacich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Lakin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Fatorma K Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | | | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Doug E Brackney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
20
|
Bolling BG, Weaver SC, Tesh RB, Vasilakis N. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses 2015; 7:4911-28. [PMID: 26378568 PMCID: PMC4584295 DOI: 10.3390/v7092851] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 01/23/2023] Open
Abstract
Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.
Collapse
Affiliation(s)
- Bethany G Bolling
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
21
|
Vasilakis N, Tesh RB. Insect-specific viruses and their potential impact on arbovirus transmission. Curr Opin Virol 2015; 15:69-74. [PMID: 26322695 DOI: 10.1016/j.coviro.2015.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/15/2022]
Abstract
Arthropod-borne viruses (arboviruses) are the causative agents of significant morbidity and mortality among humans and animals globally. In the past few years, the widespread adoption of next generation sequencing and metagenomics has led to a new era of virus discovery, where many novel viruses have been documented, exhibiting a restricted host-range in mosquitoes. They represent a wide-range of insect-specific viruses within the families of Bunyaviridae, Flaviviridae, Mesoniviridae, Reoviridae, Rhabdoviridae, Togaviridae, and the newly recognized taxon of Negeviruses. Collectively, their discovery has opened new vistas about the extent of viral diversity and evolution, their influence on vector competence and ability of their insect hosts to transmit human pathogens (e.g. arboviruses), and their potential development as biological control agents or novel vaccine platforms.
Collapse
Affiliation(s)
- Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-0609, United States.
| | - Robert B Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-0609, United States.
| |
Collapse
|
22
|
Kuwata R, Isawa H, Hoshino K, Sasaki T, Kobayashi M, Maeda K, Sawabe K. Analysis of Mosquito-Borne Flavivirus Superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) Cells Persistently Infected with Culex Flavivirus (Flaviviridae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:222-229. [PMID: 26336307 DOI: 10.1093/jme/tju059] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 12/07/2014] [Indexed: 06/05/2023]
Abstract
Superinfection exclusion is generally defined as a phenomenon in which a pre-existing viral infection prevents a secondary viral infection; this has also been observed in infections with mosquito-borne viruses. In this study, we examined the superinfection exclusion of the vertebrate-infecting flaviviruses, Japanese encephalitis virus (JEV) and dengue virus (DENV), by stable and persistent infection with an insect-specific flavivirus, Culex flavivirus (CxFV), in a Culex tritaeniorhynchus Giles cell line (CTR cells). Our experimental system was designed based on the premise that wild Cx. tritaeniorhynchus mosquitoes naturally infected with CxFV are superinfected with JEV by feeding on JEV-infected animals. As a result, we found no evidence of the superinfection exclusion of both JEV and DENV by pre-existing CxFV infection at the cellular level. However, JEV superinfection induced severe cytopathic effects on persistently CxFV-infected CTR cells. These observations imply the possibility that JEV superinfection in CxFV-infected Cx. tritaeniorhynchus mosquitoes has an adverse effect on their fitness.
Collapse
Affiliation(s)
- Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan. Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan. Corresponding author, e-mail:
| | - Keita Hoshino
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mutsuo Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
23
|
Blanck S, Stinn A, Tsiklauri L, Zirkel F, Junglen S, Ziebuhr J. Characterization of an alphamesonivirus 3C-like protease defines a special group of nidovirus main proteases. J Virol 2014; 88:13747-58. [PMID: 25231310 PMCID: PMC4248970 DOI: 10.1128/jvi.02040-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/12/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cavally virus (CavV) and related viruses in the family Mesoniviridae diverged profoundly from other nidovirus lineages but largely retained the characteristic set of replicative enzymes conserved in the Coronaviridae and Roniviridae. The expression of these enzymes in virus-infected cells requires the extensive proteolytic processing of two large replicase polyproteins, pp1a and pp1ab, by the viral 3C-like protease (3CL(pro)). Here, we show that CavV 3CL(pro) autoproteolytic cleavage occurs at two N-terminal (N1 and N2) and one C-terminal (C1) processing site(s). The mature form of 3CL(pro) was revealed to be a 314-residue protein produced by cleavage at FKNK1386|SAAS (N2) and YYNQ1700|SATI (C1). Site-directed mutagenesis data suggest that the mesonivirus 3CL(pro) employs a catalytic Cys-His dyad comprised of CavV pp1a/pp1ab residues Cys-1539 and His-1434. The study further suggests that mesonivirus 3CL(pro) substrate specificities differ from those of related nidovirus proteases. The presence of Gln (or Glu) at the P1 position was not required for cleavage, although residues that control Gln/Glu specificity in related viral proteases are retained in the CavV 3CL(pro) sequence. Asn at the P2 position was identified as a key determinant for mesonivirus 3CL(pro) substrate specificity. Other positions, including P4 and P1', each are occupied by structurally related amino acids, indicating a supportive role in substrate binding. Together, the data identify a new subgroup of nidovirus main proteases and support previous conclusions on phylogenetic relationships between the main nidovirus lineages. IMPORTANCE Mesoniviruses have been suggested to provide an evolutionary link between nidovirus lineages with small (13 to 16 kb) and large (26 to 32 kb) RNA genome sizes, and it has been proposed that a specific set of enzymes, including a proofreading exoribonuclease and other replicase gene-encoded proteins, play a key role in the major genome expansion leading to the currently known lineages of large nidoviruses. Despite their smaller genome size (20 kb), mesoniviruses retained most of the replicative domains conserved in large nidoviruses; thus, they are considered interesting models for studying possible key events in the evolution of RNA genomes of exceptional size and complexity. Our study provides the first characterization of a mesonivirus replicase gene-encoded nonstructural protein. The data confirm and extend previous phylogenetic studies of mesoniviruses and related viruses and pave the way for studies into the formation of the mesonivirus replication complex and functional and structural studies of its functional subunits.
Collapse
Affiliation(s)
- Sandra Blanck
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Anne Stinn
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Lali Tsiklauri
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
24
|
Warrilow D, Watterson D, Hall RA, Davis SS, Weir R, Kurucz N, Whelan P, Allcock R, Hall-Mendelin S, O'Brien CA, Hobson-Peters J. A new species of mesonivirus from the Northern Territory, Australia. PLoS One 2014; 9:e91103. [PMID: 24670468 PMCID: PMC3966781 DOI: 10.1371/journal.pone.0091103] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
Here we describe Casuarina virus (CASV), a new virus in the family Mesoniviridae. This is the first report of a mesonivirus in Australia, which extends the geographical range of this virus family to 3 continents. The virus was isolated in 2010 from Coquillettidia xanthogaster mosquitoes during surveillance in the suburbs of Darwin, the capital of the Northern Territory. Cryo-electron microscopy of the CASV virions revealed spherical particles of 65 nm in size with large club-shaped projections of approximately 15 nm in length. The new virus was most closely related to Alphamesonivirus 1, the only currently recognized species in the family. In 2013 a further 5 putative new mesonivirus species were described: Hana, Méno, Nsé, Moumo and Dak Nong viruses. The evolutionary distance between CASV and two of its closest relatives, Cavally and Hana viruses (Jones-Taylor-Thornton distance of 0.151 and 0.224, respectively), along with its isolation from a different genus of mosquitoes captured on a separate continent indicate that CASV is a new species.
Collapse
Affiliation(s)
- David Warrilow
- Public Health Virology Laboratory, Forensic and Scientific Services, Department of Health, Archerfield, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Steven S Davis
- Berrimah Veterinary Labs, Department of Primary Industries and Fisheries, Darwin, Northern Territory, Australia
| | - Richard Weir
- Berrimah Veterinary Labs, Department of Primary Industries and Fisheries, Darwin, Northern Territory, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Peter Whelan
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Richard Allcock
- LotteryWest State Biomedical Facility, Genomics, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia; Department of Clinical Immunology, Pathwest Laboratory Medicine Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Forensic and Scientific Services, Department of Health, Archerfield, Queensland, Australia
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
25
|
Auguste AJ, Carrington CVF, Forrester NL, Popov VL, Guzman H, Widen SG, Wood TG, Weaver SC, Tesh RB. Characterization of a novel Negevirus and a novel Bunyavirus isolated from Culex (Culex) declarator mosquitoes in Trinidad. J Gen Virol 2013; 95:481-485. [PMID: 24262627 DOI: 10.1099/vir.0.058412-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pools of mosquitoes were tested for insect-specific viruses using cytopathic effect (CPE) assays on Aedes albopictus (C6/36) cells. Illumina sequencing of RNA from pool TR7094, which produced extensive CPE 2 days post-infection, yielded the complete genome sequences of a previously unknown Bunyavirus, designated Cumuto virus (CUMV), and a second virus designated Wallerfield virus (WALV). WALV shared highest amino acid identity (60.1 %) with Dezidougou virus from Côte d'Ivoire, a positive-sense, single-strand RNA, insect-specific virus belonging to the newly proposed genus Negevirus associated with mosquitoes and phlebotomine sandflies. The S, M and L segments of CUMV were most closely related to those of Gouleako virus, also from Côte d'Ivoire (amino acid identities of 36 %, 38% and 54 % respectively). Neither virus produced CPE on vertebrate cells, or illness in newborn mice. Isolation and characterization of these viruses increase our knowledge of the geographical distribution, diversity and host range of mosquito-specific bunyaviruses and negeviruses.
Collapse
Affiliation(s)
- Albert J Auguste
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Naomi L Forrester
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vsevolod L Popov
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hilda Guzman
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert B Tesh
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|