1
|
Aslan AN, Abayli H, Tonbak S, Ongor H, Unal A, Akan M, Yalcinkaya E. First detection and molecular characterization of Chaphamaparvovirus galliform in broiler and turkey flocks in Türkiye. BMC Vet Res 2025; 21:153. [PMID: 40057714 PMCID: PMC11889929 DOI: 10.1186/s12917-025-04612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND A newly uncovered parvovirus, Chaphamaparvovirus, continues to be reported across various species. This study investigated the detection and genetic characterization of Chaphamaparvovirus galliform (GaChpV) in poultry, specifically broilers and turkeys, from various regions in Türkiye. To address this, comprehensive sampling and analysis were conducted to better understand the virus's distribution and impact in these avian populations. RESULTS In 2023, a total of 1060 fecal samples were collected from 76 broiler flocks (10 healthy and 66 with enteritis) and 30 turkey flocks (10 healthy and 20 with enteritis). Using nested PCR with specific primer sets, the study detected GaChpV in 36 out of 76 broiler flocks (47.3%) and 2 out of 30 turkey flocks (6,6%). Although GaChpV was detected at notable frequencies, the analysis revealed no statistically significant association between GaChpV and enteritis cases (p = 0.617). In this study, the nucleotide sequences (nt) of the capsid genes from GaChpV strains isolated from broilers and turkeys were 99 to 100% identical. Furthermore, these strains exhibited a high degree of genetic similarity ranging from 73 to 98% to Chaphamaparvovirus galliform 2 (GaChpV-2) strains from Europe, China, and Brazil. Complete genome sequencing of a broiler strain (CkChPV/2023/UN-2-TR) yielded a genome of 4,229 nucleotides, with sequence identity ranging from 78.93 to 98.82% compared to other GaChpV strains. Phylogenetic analysis further revealed that the CkChPV/2023/UN-2-TR strain clustered with GaChpV-2 strains, highlighting its genetic relatedness and diversity within the GaChpV family. The study also investigated genetic recombination signals and identified potential B-cell linear epitopes, contributing to a better understanding of the virus's genetic diversity and antigenic characteristics. CONCLUSIONS This report represents the first detection of GaChpV in turkey and broiler flocks in Türkiye. Notably, research on this topic in turkeys is quite limited. The data derived from this study will contribute to elucidating the molecular epidemiology and evolutionary dynamics of GaChpV.
Collapse
Affiliation(s)
- Ahsen Nisa Aslan
- Faculty of Veterinery Medicine, Department of Virology, Firat University, Elazig, 23110, Türkiye.
| | - Hasan Abayli
- Faculty of Veterinery Medicine, Department of Virology, Firat University, Elazig, 23110, Türkiye
| | - Sukru Tonbak
- Faculty of Veterinery Medicine, Department of Virology, Firat University, Elazig, 23110, Türkiye
| | - Hasan Ongor
- Faculty of Veterinery Medicine, Department of Microbiology, Firat University, Elazig, Türkiye
| | - Akin Unal
- Veterinary Diagnosis and Analysis Laboratory, Ankara University, Technocity, Avitek R&D, Ankara, Türkiye
| | - Mehmet Akan
- Faculty of Veterinary Medicine, Department of Microbiology, Ankara University, Ankara, Türkiye
| | - Ertug Yalcinkaya
- Faculty of Veterinery Medicine, Department of Virology, Firat University, Elazig, 23110, Türkiye
| |
Collapse
|
2
|
Di Profio F, Di Martino B, Lanave G, Robetto S, Prandi I, Capucchio MT, Mandola ML, Quaranta G, Orusa R, Marsilio F, Martella V, Sarchese V. European Hedgehogs as Hosts of Chaphamaparvovirus, Italy. Animals (Basel) 2024; 14:3624. [PMID: 39765528 PMCID: PMC11672586 DOI: 10.3390/ani14243624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
In 2022, a novel parvovirus was identified from an outbreak of fatal enteritis in weaned European hedgehogs (Erinaceus europaeus) at a wildlife rescue center in Southern Italy. During sequence analysis, the strain was found to be closely related (90.4% nucleotide identity) to a chaphamaparvovirus (ChPV) discovered in Amur hedgehogs (Erinaceus amurensis) during a large metaviromic investigation in game animals in China. In this study, we investigated the presence of this novel ChPV in necropsied European hedgehogs from different areas of North-Western Italy. Duodenal and liver samples collected from 194 necropsied hedgehogs were screened by using a specific quantitative PCR. A total of 38/194 animals (19.6%) tested positive, with ChPV DNA being detected in the duodenum (9.3%, 18/194), liver (7.2%, 14/194) or in both (3.1%, 6/194) tissue samples, with comparable rates and mean viral loads. The nearly full-length genome of four hedgehog ChPV strains was reconstructed. During phylogenetic analysis based on the NS1 and partial VP aa sequences, the four strains detected in this study tightly clustered with the prototype ChPVs previously identified in Amur and European hedgehogs within a potential novel candidate species of the genus Chaphamaparvovirus.
Collapse
Affiliation(s)
- Federica Di Profio
- Department of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D’Accio, 64100 Teramo, Italy; (B.D.M.); (F.M.); (V.S.)
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D’Accio, 64100 Teramo, Italy; (B.D.M.); (F.M.); (V.S.)
| | - Gianvito Lanave
- Department of Veterinary Medicine, Università Aldo Moro di Bari, S.p. per Casamassima Km3, 70010 Bari, Italy; (G.L.); (V.M.)
| | - Serena Robetto
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Aosta, Italy; (S.R.); (R.O.)
| | - Ilaria Prandi
- Centro Animali Non Convenzionali (C.A.N.C), Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy; (I.P.); (M.T.C.); (G.Q.)
| | - Maria Teresa Capucchio
- Centro Animali Non Convenzionali (C.A.N.C), Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy; (I.P.); (M.T.C.); (G.Q.)
| | - Maria Lucia Mandola
- S.S. Virologia Specialistica, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy;
| | - Giuseppe Quaranta
- Centro Animali Non Convenzionali (C.A.N.C), Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy; (I.P.); (M.T.C.); (G.Q.)
| | - Riccardo Orusa
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Aosta, Italy; (S.R.); (R.O.)
| | - Fulvio Marsilio
- Department of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D’Accio, 64100 Teramo, Italy; (B.D.M.); (F.M.); (V.S.)
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, S.p. per Casamassima Km3, 70010 Bari, Italy; (G.L.); (V.M.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Vittorio Sarchese
- Department of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D’Accio, 64100 Teramo, Italy; (B.D.M.); (F.M.); (V.S.)
| |
Collapse
|
3
|
Sarker S, Klukowski N, Talukder S, Gupta SD, Vaughan-Higgins R. Evidence of a highly divergent novel parvovirus in Australia's critically endangered western ground parrot/kyloring (Pezoporus flaviventris). Aust Vet J 2024; 102:570-575. [PMID: 39363816 DOI: 10.1111/avj.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Detecting pathogens in endangered animal populations is vital for understanding and mitigating threats to their survival. The critically endangered western ground parrot (Pezoporus flaviventris, WGP), with a population as low as 150 individuals in Australia, faces an imminent risk of extinction. Despite this urgency, research on viral pathogens in this species remains limited. This study aimed to identify and characterise viruses present in faecal samples from seven individual WGP using a viral metagenomic approach. Analysis of the sequenced datasets revealed the presence of a novel virus belonging to the Parvoviridae family, named psittaciform chaphamaparvovirus 7 (PsChPV-7). The genome of PsChPV-7 contains typical structural and functional gene sequences found in Parvoviridae but is highly divergent, indicating its classification as a distinct species. Phylogenetic analysis placed PsChPV-7 within a unique sub-clade of the Chaphamaparvovirus genus, suggesting its evolutionary significance as an ancient lineage within this group. These findings may contribute to the development of strategic management and biosecurity plans aimed at conserving this endangered WGP.
Collapse
Affiliation(s)
- S Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - N Klukowski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - S Talukder
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - S D Gupta
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | | |
Collapse
|
4
|
Varsani A, Krupovic M. 2024 Smacoviridae family update: 59 new species in seven genera. Arch Virol 2024; 169:184. [PMID: 39167240 DOI: 10.1007/s00705-024-06116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Family Smacoviridae (order Cremevirales, class Arfiviricetes, phylum Cressdnaviricota) comprises viruses with small circular genomes of ~2300-3000 nt in length that encode at least two proteins, the rolling-circle replication associated protein (Rep) and the capsid protein (CP). Smacovirids have been discovered in fecal samples of various animals and display remarkable sequence diversity. Here, we provide an overview of the genomic properties of classified smacovirids and report on the latest taxonomy update in the family Smacoviridae. The family has been expanded by 59 new species in the genera Porprismacovirus (n = 25), Inpeasmacovirus (n = 1), Felismacovirus (n = 22), Drosmacovirus (n = 4), Dragsmacovirus (n = 2), Bovismacovirus (n = 4), and Bonzesmacovirus (n = 1) and currently includes 12 genera with 143 species officially recognized by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ, 85287-5001, USA.
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
5
|
Zhang Y, Talukder S, Bhuiyan MSA, He L, Sarker S. Opportunistic sampling of yellow canary (Crithagra flaviventris) has revealed a high genetic diversity of detected parvoviral sequences. Virology 2024; 595:110081. [PMID: 38599030 DOI: 10.1016/j.virol.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Parvoviruses are known to be significant viral pathogens that infect a wide range of species globally. However, little is known about the parvoviruses circulating in Australian birds, including yellow canaries. Here, we present four parvoviral sequences including three novel parvoviruses detected from 10 yellow canaries (Crithagra flaviventris), named canary chaphamaparvovirus 1 and -2 (CaChPV1 and CaChPV2), canary dependoparvovirus 1 and -2 (CaDePV1 and CaDePV2). The whole genome sequences of CaChPV1, CaChPV2, CaDePV1, and CaDePV2 showed the highest identity with other parvoviruses at 76.4%, 75.9%, 84.0%, and 59.1%, respectively. Phylogenetic analysis demonstrated that CaChPV1 and CaChPV2 were clustered within the genus Chaphamaparvovirus. Meanwhile, CaDePV1 and CaDePV2 fall within the genus Dependoparvovirus and have the closest evolutionary relationship to the bird-associated dependoparvoviruses. Overall, this study enriched our understanding of the genetic diversity among avian parvoviruses within the Parvoviridae family.
Collapse
Affiliation(s)
- Yuhao Zhang
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Saranika Talukder
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Md Safiul Alam Bhuiyan
- Faculty of Sustainable Agriculture, Livestock Production, Universiti Malaysia Sabah, Sandakan, Sabah, Malaysia
| | - Lei He
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
6
|
FUJINO K, HORIE M, AIHARA N, KAMIIE J, TAHARAGUCHI S. Detection of chicken chapparvovirus 2 in chickens with hemorrhagic hepatitis in Japan. J Vet Med Sci 2024; 86:396-399. [PMID: 38346726 PMCID: PMC11061579 DOI: 10.1292/jvms.23-0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/28/2024] [Indexed: 04/02/2024] Open
Abstract
Chicken chaphamaparvovirus causes diarrheal symptoms and can be detected in fecal samples. This study reports the detection of chicken chapparvovirus 2 in debilitated chickens with hemorrhagic hepatitis at a broiler farm in Japan. After euthanasia and necropsy, liver hemorrhage was observed. Nuclear inclusion bodies in the hepatocytes were identified using histological analysis. High-throughput sequencing analysis using RNA from livers of three affected chickens revealed infection by chicken chapparvovirus 2 and chicken anemia virus. Polymerase chain reaction analysis showed that all three chickens were positive for chicken chapparvovirus 2, and only one was positive for both chicken chapparvovirus 2 and chicken anemia virus. In conclusion, chicken chapparvovirus 2 causes infection in chickens in Japan and might be involved in hemorrhagic hepatitis.
Collapse
Affiliation(s)
- Kan FUJINO
- Laboratory of Microbiology, School of Veterinary Medicine,
Azabu University, Kanagawa, Japan
| | - Masayuki HORIE
- Laboratory of Veterinary Microbiology, Graduate School of
Veterinary Science, Osaka Prefecture University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases,
Osaka Metropolitan University, Osaka, Japan
| | - Naoyuki AIHARA
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, Kanagawa, Japan
| | - Junichi KAMIIE
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, Kanagawa, Japan
| | - Satoshi TAHARAGUCHI
- Laboratory of Microbiology, School of Veterinary Medicine,
Azabu University, Kanagawa, Japan
| |
Collapse
|
7
|
Cui N, Yang X, Sui H, Tan L, Wang W, Su S, Qi L, Huang Q, Hrabchenko N, Xu C. Virome characterization of diarrheic red-crowned crane (G. japonensis). Anim Microbiome 2024; 6:8. [PMID: 38419121 PMCID: PMC10902971 DOI: 10.1186/s42523-024-00299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The red-crowned crane is one of the vulnerable bird species. Although the captive population has markedly increased over the last decade, infectious diseases can lead to the death of young red-crowned cranes while few virological studies have been conducted. METHODS Using a viral metagenomics approach, we analyzed the virome of tissues of the dead captive red-crowned crane with diarrhea symptoms in Dongying Biosphere Reserve, Shandong Province, China and feces of individual birds breeding at the corresponding captive breeding center, which were pooled separately. RESULTS There is much more DNA and RNA viruses in the feces than that of the tissues. RNA virus belonging to the families Picornaviridae, and DNA viruses belonging to the families Parvoviridae, associated with enteric diseases were detected in the tissues and feces. Genomes of the picornavirus, genomovirus, and parvovirus identified in the study were fully characterized, which further suggested that infectious viruses of these families were possibly presented in the diseased red-crowned crane. CONCLUSION RNA virus belonging to the families Picornaviridae, and DNA viruses belonging to the families Genomoviridae and Parvoviridae were possibly the causative agent for diarrhea of red-crowned crane. This study has expanded our understanding of the virome of red-crowned crane and provides a baseline for elucidating the etiology for diarrhea of the birds.
Collapse
Affiliation(s)
- Ning Cui
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China
| | - Xiao Yang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hong Sui
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Liugang Tan
- Dongying Animal Husbandry and Veterinary Station, Dongying, China
| | - Weihua Wang
- National Nature Reserve Management Committee of Shandong Yellow River Triangle, Dongying, China
| | - Shuai Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Lihong Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China
| | - Qinghua Huang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China.
| | - Nataliia Hrabchenko
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China.
| | - Chuantian Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Jinan, China.
| |
Collapse
|
8
|
Piewbang C, Lohavicharn P, Nguyen TV, Punyathi P, Kasantikul T, Techangamsuwan S. Carnivore chaphamaparvovirus-1 (CaChPV-1) infection in diarrheic dogs reveals viral endotheliotropism in intestine and lung. Vet Q 2023; 43:1-10. [PMID: 36846895 PMCID: PMC10013547 DOI: 10.1080/01652176.2023.2185696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Carnivore chaphamaparvovirus-1 (CaChPV-1) is a parvovirus identified in dogs and association of infection with diarrhea is controversial. Information on whether tissue tropism persists is lacking. OBJECTIVES To determine the disease association of CaChPV-1 in dogs with diarrhea and to investigate viral tropism and genetic diversity. ANIMALS AND METHODS CaChPV-1 infection was investigated in five recently deceased puppies and designed a retrospective study to determine whether the presence of CaChPV-1 is associated with diarrhea. The retrospective study was conducted in 137 intestinal tissue samples and 168 fecal samples obtained from 305 dogs. CaChPV-1 tissue localization was determined using in situ hybridization, and CaChPV-1 complete genomes obtained from dead puppies and retrospective study were sequenced and analyzed. RESULTS CaChPV-1 was detected in 6.56% (20/305) of tested dogs, including 14 diarrheic- and 6 non-diarrheic dogs, and was significant in puppies with diarrhea (p = 0.048). Among the CaChPV-1-positive diarrheic dogs, one sample was obtained from intestinal tissue and 13 samples were fecal samples. However, six CaChPV-1 positive non-diarrheic dogs were based on fecal samples but not on intestinal tissue. Within the age range, the presence of CaChPV-1 was significant in puppies (p < 0.00001) and was mainly localized in the stromal and endothelial cells of intestinal villi and pulmonary alveoli. Phylogenetic analysis indicated genetic diversity of CaChPV-1 Thai strains that were mostly clustered within the sequences found in China. CONCLUSIONS Although definitive pathogenesis of CaChPV-1 remains undetermined, this study provides evidence supporting that CaChPV-1 localizes in canine cells and could play a potential role as an enteric pathogen.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pattiya Lohavicharn
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tin Van Nguyen
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Panitnan Punyathi
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanit Kasantikul
- Clemson Veterinary Diagnostic Center, Clemson University, Columbia, South Carolina, USA
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Kadlečková D, Vinkler M, Tachezy R, Saláková M. Genome sequence of parvovirus from budgerigar ( Melopsittacus undulatus). Microbiol Resour Announc 2023; 12:e0045323. [PMID: 37811960 PMCID: PMC10652929 DOI: 10.1128/mra.00453-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Here, we report a parvovirus genome identified in Melopsittacus undulatus. The genome is 4,547 bp long and codes for two major open reading frames (ORFs): the non-structural replicase protein 1 (NS1) and the structural capsid gene (VP1). Phylogenetic analysis shows that this virus belongs to the genus Chaphamaparvovirus.
Collapse
Affiliation(s)
- Dominika Kadlečková
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czech Republic
| | - Martina Saláková
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czech Republic
| |
Collapse
|
10
|
Cui H, Zhang Z, Xu X, Zuo K, Ji J, Guo G, Kan Y, Yao L, Xie Q, Bi Y. Molecular identification of carnivore chaphamaparvovirus 2 (feline chaphamaparvovirus) in cats with diarrhea from China. Front Vet Sci 2023; 10:1252628. [PMID: 37854096 PMCID: PMC10580804 DOI: 10.3389/fvets.2023.1252628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Chaphamaparvovirus carnivoran2 (feline chaphamaparvovirus, FeChPV) is a novel feline parvovirus originally detected in Canadian cats in 2019, and it has also been identified in domestic cats in other nations. To evaluate the prevalence and genetic diversity of FeChPV in China, rectal swabs of pet cats from Henan, Guangdong, Anhui, Zhejiang, and Inner Mongolia provinces were collected. Of the 230 samples subjected to nested polymerase chain reaction, 6 (2.6%) tested positive for FeChPV. Although all positive samples were from cats with diarrhea, statistical analyses revealed no correlation between the presence of the virus and clinical symptoms (p > 0.05). Phylogenetic trees of nonstructural protein 1 (NS1) and capsid protein (VP1) demonstrated that these six new strains formed a major branch with other reference FeChPV strains and considerably differed from Chaphamaparvoviru carnivoran1. Moreover, recombination analysis revealed that the FeChPV strain CHN20201025, previously detected in a dog, was a recombinant and strains CHN200228 and CHN180917, identified in this study, were the closest relatives to the parental strains. The findings of this study and a previous study wherein FeChPV was detected in dogs suggest that FeChPV can propagate between species. Additionally, these findings indicate that the genetic diversity of FeChPV can provide an insight into the epidemiological status of FeChPV in China.
Collapse
Affiliation(s)
- Hao Cui
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
- Laboratory Animal Center, Chifeng Municipal Hospital, Chifeng, China
| | - Zhibin Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Kejing Zuo
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou, China
| | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Ge Guo
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Qingmei Xie
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, South China Agricultural University, Guangzhou, China
| | - Yingzuo Bi
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Li N, Bai Y, Yan X, Guo Z, Xiang K, Yang Z, Shangguan H, Ge J, Zhao L. The prevalence, genetic diversity and evolutionary analysis of cachavirus firstly detected in northeastern China. Front Vet Sci 2023; 10:1233972. [PMID: 37771946 PMCID: PMC10527371 DOI: 10.3389/fvets.2023.1233972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Canine cachavirus is a novel parvovirus belonging to the genus Chaphamaparvovirus that was first detected in dogs in the United States. However, our knowledge of the prevalence and genetic characteristics of cachavirus is relatively limited. In this study, 325 canine fecal specimens collected from healthy and diarrheic dogs in northeastern China were screened with PCR. Twenty-two of the 325 (6.8%) samples were positive for cachavirus. The diarrhea samples showed high viral coinfection rates, and we detected coinfections with canine astrovirus (CaAstV) and cachavirus for the first time. A sequence analysis revealed that the Chinese cachavirus strains have point mutations in four consecutive amino acid codons relative to the original American strain. A codon usage analysis of the VP1 gene showed that most preferred codons in cachavirus were A- or T-ending codons, as in traditional canine parvovirus 2. A co-evolutionary analysis showed that cachavirus has undergone cospeciation with its hosts and has been transmitted among different host species. Our findings extend the limited cachavirus sequences available, and provide detailed molecular characterization of the strains in northeastern China. Further epidemiological surveillance is required to determine the significance and evolution of cachavirus.
Collapse
Affiliation(s)
- Nuowa Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Yan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kongrui Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, China
| | - Lili Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
12
|
Ji J, Liu Q, Pan S, Hu W, Xu X, Kan Y, Xie Q, Yao L. Retrospective Detection and Phylogenetic Analysis of Cachavirus-Related Parvoviruses in Dogs in China. Transbound Emerg Dis 2023; 2023:7010191. [PMID: 40303781 PMCID: PMC12017101 DOI: 10.1155/2023/7010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 05/02/2025]
Abstract
Cachavirus (CachaV) infection was first reported in the USA in 2019. This virus has been previously detected in pet dogs and cats in China. In the present study, we retrospectively examined this virus in 413 dogs and 127 cats. Swab samples obtained from these animals were collected during 2015-2017. Notably, CachaV was detected in four samples from dogs with diarrhea but not in cats; however, the correlation between healthy dogs and those with enteritis was not statistically significant. Furthermore, we amplified early complete genomic sequences of the four strains detected in our study dogs (CHN1601, CHN1602, CHN1703, and CHN1704). Among these strains, the sequence identity of the NS1 protein and the seven previously reported strains in China were 97.44%-99.7%, whereas that of VP1 protein was 98.02%-99.6%. Interestingly, in the NS1 coding region, CHN1704 demonstrated 99.7% (highest) similarity with the CachaV strain NWT-W88 detected from a wolf and 64.5% similarity with the NS1 of a bat parvovirus (BtPV) strain. Conversely, in the VP1 coding region, CHN1703 demonstrated 99.7% (highest) similarity with the prototype CachaV strain IDEXX1 detected from dogs and 63.3% similarity with BtPV strain. For the phylogenetic analysis of NS1 and VP1, the four strains detected during 2016-2017 were merged with other Chinese and foreign CachaV strains to form the major branch. We believe that these results helped improve the understanding of how CachaV evolved and suggest that the virus has been circulating in China since at least March 2016.
Collapse
Affiliation(s)
- Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006, China
| | - Qiang Liu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Shunshun Pan
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Wen Hu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
13
|
Ji J, Cui H, Xu S, Xu X, Liu Q, Kan Y, Xie Q, Yao L. Molecular Characterization of Feline Chaphamaparvovirus ( Carnivore chaphamaparvovirus 2) Firstly Detected in Dogs from China. Transbound Emerg Dis 2023; 2023:5882871. [PMID: 40303830 PMCID: PMC12016959 DOI: 10.1155/2023/5882871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 05/02/2025]
Abstract
A new type of parvovirus known as feline chaphamaparvovirus (FeChPV) was discovered in the feces of shelter cats in Canada in 2019, and >50% of cats were reported to be infected with this virus. In this study, two FeChPV-positive samples were identified from the rectal swabs of 285 dogs with diarrhea but none in 50 healthy dogs. Whole genome sequences of these two FeChPV strains (OQ162042 and OQ162043) were amplified and compared with those of the two viruses originally discovered in Canada (IDEXX-1 and VRI849). The whole genome, NS1, and VP1 of the two FeChPV strains shared a high identity of 95.0%-97.8% nucleotide, 96.9%-98.6% amino acid (aa), and 97.2%-98.8% aa with the reported FeChPV strains, respectively. The phylogenetic tree of NS1 and VP1 revealed that two FeChPV strains, namely, CHN20201025 and CHN20201226, were closely clustered with the two FeChPV prototypes detected in Canada in a group. Moreover, CHN20201025 and CHN20201226 were obviously different from Carnivore chaphamaparvovirus 1 and were classified as Carnivore chaphamaparvovirus 2. This is the first study to report the identification of FeChPV in fecal samples from dogs in China, and the genetic analysis of the FeChPV, which was previously detected in Canadian cats, would improve our understanding of its host spectrum.
Collapse
Affiliation(s)
- Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006, China
| | - Hao Cui
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Shuqi Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Qiang Liu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
14
|
Ramos EDSF, Abreu WU, Rodrigues LRR, Marinho LF, Morais VDS, Villanova F, Pandey RP, Araújo ELL, Deng X, Delwart E, da Costa AC, Leal E. Novel Chaphamaparvovirus in Insectivorous Molossus molossus Bats, from the Brazilian Amazon Region. Viruses 2023; 15:606. [PMID: 36992315 PMCID: PMC10054343 DOI: 10.3390/v15030606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Chaphamaparvovirus (CHPV) is a recently characterized genus of the Parvoviridae family whose members can infect different hosts, including bats, which constitute the second most diverse order of mammals and are described worldwide as important transmitters of zoonotic diseases. In this study, we identified a new CHPV in bat samples from the municipality of Santarém (Pará state, North Brazil). A total of 18 Molossus molossus bats were analyzed using viral metagenomics. In five animals, we identified CHPVs. These CHPV sequences presented the genome with a size ranging from 3797 to 4284 bp. Phylogenetic analysis-based nucleotide and amino acid sequences of the VP1 and NS1 regions showed that all CHPV sequences are monophyletic. They are also closely related to CHPV sequences previously identified in bats in southern and southeast Brazil. According to the International Committee on Taxonomy of Viruses (ICTV) classification criteria for this species (the CHPV NS1 gene region must have 85% identity to be classified in the same species), our sequences are likely a new specie within the genus Chaphamaparvovirus, since they have less than 80% identity with other CHPV described earlier in bats. We also make some phylogenetic considerations about the interaction between CHPV and their host. We suggest a high level of specificity of CPHV and its hosts. Thus, the findings contribute to improving information about the viral diversity of parvoviruses and show the importance of better investigating bats, considering that they harbor a variety of viruses that may favor zoonotic events.
Collapse
Affiliation(s)
- Endrya do Socorro Foro Ramos
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, Pará, Brazil
| | - Wandercleyson Uchôa Abreu
- Programa de Pos-Graduação REDE Bionorte, Polo Pará, Universidade Federal do Oeste do Pará, Santarém 68040-255, Pará, Brazil
| | - Luis Reginaldo Ribeiro Rodrigues
- Laboratory of Genetics & Biodiversity, Institute of Educational Sciences, Universidade Federal do Oeste do Pará, Santarém 68040-255, Pará, Brazil
| | - Luis Fernando Marinho
- Department of Agricultural Sciences, School of Veterinary Medicine, University of Amazonia, Santarém 68040-255, Pará, Brazil
| | - Vanessa dos Santos Morais
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, São Paulo, Brazil
| | - Fabiola Villanova
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, Pará, Brazil
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India
| | - Emerson Luiz Lima Araújo
- General Coordination of Public Health, Laboratories of the Strategic Articulation, Department of the Health, Surveillance Secretariat, Ministry of Health (CGLAB/DAEVS/SVS-MS), Brasília 70719-040, Distrito Federal, Brazil
| | - Xutao Deng
- General Coordination of Public Health, Laboratories of the Strategic Articulation, Department of the Health, Surveillance Secretariat, Ministry of Health (CGLAB/DAEVS/SVS-MS), Brasília 70719-040, Distrito Federal, Brazil
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Delwart
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Vitalant Research Institute, San Francisco, CA 94143, USA
| | - Antonio Charlys da Costa
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, São Paulo, Brazil
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, Pará, Brazil
| |
Collapse
|
15
|
Dai Z, Wang H, Wu H, Zhang Q, Ji L, Wang X, Shen Q, Yang S, Ma X, Shan T, Zhang W. Parvovirus dark matter in the cloaca of wild birds. Gigascience 2022; 12:giad001. [PMID: 36734170 PMCID: PMC9896142 DOI: 10.1093/gigascience/giad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
With the development of viral metagenomics and next-generation sequencing technology, more and more novel parvoviruses have been identified in recent years, including even entirely new lineages. The Parvoviridae family includes a different group of viruses that can infect a wide variety of animals. In this study, systematic analysis was performed to identify the "dark matter" (datasets that cannot be easily attributed to known viruses) of parvoviruses and to explore their genetic diversity from wild birds' cloacal swab samples. We have tentatively defined this parvovirus "dark matter" as a highly divergent lineage in the Parvoviridae family. All parvoviruses showed several characteristics, including 2 major protein-coding genes and similar genome lengths. Moreover, we observed that the novel parvo-like viruses share similar genome organizations to most viruses in Parvoviridae but could not clustered with the established subfamilies in phylogenetic analysis. We also found some new members associated with the Bidnaviridae family, which may be derived from parvovirus. This suggests that systematic analysis of domestic and wild animal samples is necessary to explore the genetic diversity of parvoviruses and to mine for more of this potential dark matter.
Collapse
Affiliation(s)
- Ziyuan Dai
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| | - Haoning Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang 150076, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai 810099, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai 810099, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai 810099, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 810099, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
16
|
Cui H, Pan S, Xu X, Ji J, Ma K, Yao L, Kan Y, Bi Y, Xie Q. Molecular characteristics of novel chaphamaparvovirus identified in chickens. Poult Sci 2022; 102:102449. [PMID: 36623336 PMCID: PMC9841274 DOI: 10.1016/j.psj.2022.102449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Chicken chaphamaparvovirus (CkChpV) is a novel parvovirus species that belongs to the Chaphamaparvovirus genus and is frequently detected in different vertebrates exhibiting diarrhea symptoms. In this study, screening tests were performed on samples from 478 chickens, including 357 with diarrhea and 121 healthy, collected from 25 farms in China to investigate CkChpV infection in China. CkChpV, avian nephritis virus, rotavirus, chicken parvovirus, Newcastle disease virus, infectious bronchitis virus, chicken proventricular necrosis virus, and chicken circovirus were all detected in the samples at a positivity rate of 32%, 9%, 6%, 2%, 2%, 1%, 0%, and 0%, respectively. Statistical analyses suggested a correlation between the infection by the virus and diarrhea (P < 0.05). The genome of 9 strains from the CkChpV-positive samples, whose length was 4,432 nucleotides, have been completely sequenced. The strains shared 97.2 to 98.7% genomic similarity, 98.1 to 99.1%, and 98.2 to 99.2% amino acid similarity, respectively, for NS1 and VP1 compared with CkChpV strain RS/BR/15/2S in GenBank. The genetic relationship between these strains and CkChpV was established through phylogenetic analysis. These findings indicated the infection existence of CkChpV in China, which enriches our understanding of the diversity of the chaphamaparvoviruses and its host spectrum.
Collapse
Affiliation(s)
- Hao Cui
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Shunshun Pan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Nanyang, Henan, 473006, PR China.
| | - Ke Ma
- Department of Infectious Diseases, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
17
|
Unravelling Bile Viromes of Free-Range Laying Chickens Clinically Diagnosed with Spotty Liver Disease: Emergence of Many Novel Chaphamaparvoviruses into Multiple Lineages. Viruses 2022; 14:v14112543. [PMID: 36423151 PMCID: PMC9695665 DOI: 10.3390/v14112543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Spotty liver disease (SLD) causes substantial egg production losses and chicken mortality; therefore, it is a disease that concerns Australian egg farmers. Over the last few decades, much research has been conducted to determine the etiologic agents of SLD and to develop potential therapeutics; however, SLD still remains a major issue for the chicken industries globally and remained without the elucidation of potentially multiple pathogens involved. To help fill this gap, this study was aimed at understanding the viral diversity of bile samples from which the SLD-causing bacterium, Campylobacter hepaticus, has been isolated and characterised. The collected samples were processed and sequenced using high-throughput next-generation sequencing. Remarkably, this study found 15 galliform chaphamaparvoviruses (GaChPVs), of which 14 are novel under the genus Chaphamaparvovirus. Among them, nine were complete genomes that showed between 41.7% and 78.3% genome-wide pairwise similarities to one another. Subsequent phylogenetic analysis using the NS1 gene exhibited a multiple incursion of chaphamaparvovirus lineages, including a novel lineage of unknown ancestral history in free-range laying chickens in Australia. This is the first evidence of circulating many parvoviruses in chickens in Australia, which has increased our knowledge of the pathogen diversity that may have an association with SLD in chickens.
Collapse
|
18
|
Hu X, Ding Z, Li Y, Chen Z, Wu H. Serum investigation of antibodies against porcine circovirus 4 Rep and Cap protein in Jiangxi Province, China. Front Microbiol 2022; 13:944679. [PMID: 36338086 PMCID: PMC9634748 DOI: 10.3389/fmicb.2022.944679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
In 2019, a novel porcine circovirus 4 (PCV4) was first identified in Hunan Province, China. The circular PCV4 DNA was detected in both diseased and healthy pigs. Recently, PCV4 prevalence surveys have been analyzed in many provinces in both China and South Korea with low positive rates. However, no serological data has been conducted to investigate the prevalence of PCV4 in pigs from Jiangxi Province. To address this issue, an indirect anti-PCV4 antibody enzyme-linked immunosorbent assay (ELISA) based on Cap and Rep protein as a coating antigen was established and applied to study the serum epidemiology of PCV4 in Jiangxi Province. Purified PCV4-His-tagged Cap and Rep were used as the coating antigen to develop an ELISA detection kit. There was no cross-reaction of the Cap/Rep-based ELISA with antisera against PCV2, TGEV and PRRSV, indicating a high specificity of this ELISA assay. The intra-assay coefficient variations (CVs) of Cap-based were 1.239%−9.796%, Rep-based 1.288%−5.011%, and inter-assay CVs of 1.167%−4.694% and 1.621%−8.979%, respectively, indicating a good repeatability. Finally, a total number of 507 serum samples were collected from Jiangxi Province to test for antibody prevalence of PCV4, and 17 (3.35%) and 36 (7.10%) of the samples were Cap and Rep antibody positive, respectively. In summary, our established ELISA kit could be used to detect PCV4 antibodies in serum with good repeatability and high specificity. In addition, field samples detection results showed that the antibody of PCV4 was poorly distributed in intensive pig farms in Jiangxi Province, China.
Collapse
Affiliation(s)
- Xifeng Hu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Li
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huansheng Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Department of Veterinary Microbiology, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Huansheng Wu
| |
Collapse
|
19
|
Kubacki J, Qi W, Fraefel C. Differential Viral Genome Diversity of Healthy and RSS-Affected Broiler Flocks. Microorganisms 2022; 10:microorganisms10061092. [PMID: 35744610 PMCID: PMC9231120 DOI: 10.3390/microorganisms10061092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
The intestinal virus community contributes to health and disease. Runting and stunting syndrome (RSS) is associated with enteric viruses and leads to economic losses in the poultry industry. However, many viruses that potentially cause this syndrome have also been identified in healthy animals. To determine the difference in the virome of healthy and diseased broilers, samples from 11 healthy and 17 affected broiler flocks were collected at two time points and analyzed by Next-Generation Sequencing. Virus genomes of Parvoviridae, Astroviridae, Picornaviridae, Caliciviridae, Reoviridae, Adenoviridae, Coronaviridae, and Smacoviridae were identified at various days of poultry production. De novo sequence analysis revealed 288 full or partial avian virus genomes, of which 97 belonged to the novel genus Chaphamaparvovirus. This study expands the knowledge of the diversity of enteric viruses in healthy and RSS-affected broiler flocks and questions the association of some viruses with the diseases.
Collapse
Affiliation(s)
- Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Weihong Qi
- Functional Genomics Center Zurich, 8057 Zurich, Switzerland;
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
20
|
The first report of porcine parvovirus 7 (PPV7) in Colombia demonstrates the presence of variants associated with modifications at the level of the VP2-capsid protein. PLoS One 2021; 16:e0258311. [PMID: 34914702 PMCID: PMC8675767 DOI: 10.1371/journal.pone.0258311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
There are a wide variety of porcine parvoviruses (PPVs) referred to as PPV1 to PPV7. The latter was discovered in 2016 and later reported in some countries in America, Asia, and Europe. PPV7 as a pathogenic agent or coinfection with other pathogens causing disease has not yet been determined. In the present study, we report the identification of PPV7 for the first time in Colombia, where it was found retrospectively since 2015 in 40% of the provinces that make up the country (13/32), and the virus was ratified for 2018 in 4/5 provinces evaluated. Additionally, partial sequencing (nucleotides 380 to 4000) was performed of four Colombian strains completely covering the VP2 and NS1 viral genes. A sequence identity greater than 99% was found when comparing them with reference strains from the USA and China. In three of the four Colombian strains, an insertion of 15 nucleotides (five amino acids) was found in the PPV7-VP2 capsid protein (540–5554 nt; 180–184 aa). Based on this insertion, the VP2 phylogenetic analysis exhibited two well-differentiated evolutionarily related groups. To evaluate the impact of this insertion on the structure of the PPV7-VP2 capsid protein, the secondary structure of two different Colombian strains was predicted, and it was determined that the insertion is located in the coil region and not involved in significant changes in the structure of the protein. The 3D structure of the PPV7-VP2 capsid protein was determined by threading and homology modeling, and it was shown that the insertion did not imply a change in the shape of the protein. Additionally, it was determined that the insertion is not involved in suppressing a potential B cell epitope, although the increase in length of the epitope could affect the interaction with molecules that allow a specific immune response.
Collapse
|
21
|
Molecular and Phylogenetic Characterisation of a Highly Divergent Novel Parvovirus (Psittaciform Chaphamaparvovirus 2) in Australian Neophema Parrots. Pathogens 2021; 10:pathogens10121559. [PMID: 34959514 PMCID: PMC8706300 DOI: 10.3390/pathogens10121559] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
Parvoviruses under the genus Chaphamaparvovirus (subfamily Hamaparvovirinae) are highly divergent and have recently been identified in many animals. However, the detection and characterisation of parvoviruses in psittacine birds are limited. Therefore, this study reports a novel parvovirus, tentatively named psittaciform chaphamaparvovirus 2 (PsChPV-2) under the genus Chaphamaparvovirus, which was identified in Australian Neophema birds. The PsChPV-2 genome is 4371 bp in length and encompasses four predicted open-reading frames, including two major genes, a nonstructural replicase gene (NS1), and a structural capsid gene (VP1). The NS1 and VP1 genes showed the closest amino acid identities of 56.2% and 47.7%, respectively, with a recently sequenced psittaciform chaphamaparvovirus 1 from a rainbow lorikeet (Trichoglossus moluccanus). Subsequent phylogenetic analyses exhibited that the novel PsChPV-2 is most closely related to other chaphamaparvoviruses of avian origin and has the greatest sequence identity with PsChPV-1 (60.6%). Further systematic investigation is warranted to explore the diversity with many avian-associated parvoviruses likely to be discovered.
Collapse
|
22
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
23
|
First detection of feline bocaparvovirus 2 and feline chaphamaparvovirus in healthy cats in Turkey. Vet Res Commun 2021; 46:127-136. [PMID: 34553342 PMCID: PMC8457779 DOI: 10.1007/s11259-021-09836-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
The pet cat’s population and the number of viruses that infect them are increasing worldwide. Recently, feline chaphamaparvovirus (FeChPV, also called fechavirus) and feline bocaparvovirus (FBoV) infections, which are novel parvovirus species, have been reported in cats from different geographic regions. Here, we investigated FBoV 1–3 and FeChPVs in healthy cats in Turkey using PCR, where nuclear phosphoprotein 1 (NP1) is targeted for FBoV and NP for FeChPV. For this purpose, oropharygeal swabs were obtained from 70 healthy cats with different housing status from June 15 to December 1, 2020. After PCR screening tests, six out of 70 cats (5/47 shelter cats; 1/23 domestic cats) were found to be positive for FBOV, while two were positive for FeChPV (1/47 shelter cats; 1/23 domestic cats). No cat was found in which both viruses were detected. The nucleotide (nt) sequence comparison in the 310 base pair (bp) NP gene of the two FeChPVs identified in this study shared a high identity with each other (95.0% nt and 99% aa identities) and with previously reported FeChPVs (92.4–97.1% nt and 98.1–99.0% aa identities), including 313R/2019/ITA, 49E/2019/ITA, VRI_849, 284R/2019/ITA, and IDEXX-1. Here, the near-full length (1489 nt, 495 amino acids-aa) of the VP2 gene of the FechaV/Tur-2020/68 isolate obtained from the study was also sequenced. The nt and aa identity ratio of this isolate with other FeChPVs was 98.0–98.5%-96–96.5%, respectively. Sequences of the 465 bp NP1 gene of the six Turkish FBoV strains shared high identities with each other (99.6–100% nt and 99.3–100% aa identities) and with those of FBoV-2 strains (97.8–99.1% nt and 98.0–100% aa identities), including 16SY0701, 17CC0505-BoV2, HFXA-6, and POR1. All FBoVs detected in this study were classified as genotype 2, similar to the study conducted in Japan and Portugal. Here, the NS1 (partial), NP1, VP1 and VP2 gene of the FBoV-2/TUR/2020–14 strain obtained from the study were also sequenced and the nt and aa sequences showed high identities to the above-mentioned FBoV-2 strain/isolates (> 96%, except for the aa ratio of strain 16SY0701). In conclusion, this study shows that FBoV and FeChPV are present in healthy cats in Turkey, and these viruses can be detected from oropharyngeal swabs. Our findings contribute to further investigation of the prevalence, genotype distribution, and genetic diversity of Turkish FBoVs and FeChPVs, adding to the molecular epidemiology of FBoV and FeChPVs worldwide.
Collapse
|
24
|
Abstract
The family Smacoviridae (order Cremevirales, class Arfiviricetes, phylum Cressdnaviricota) is comprised of viruses with small circular single-stranded DNA genomes of ~2.3-3 kb in length that have primarily been identified in fecal sample of various animals. Smacovirus genomes carry two genes in ambisense orientation encoding a capsid protein and a rolling-circle replication initiation protein, respectively. We have revised the taxonomy of the family by assigning 138 new genomic sequences deposited in GenBank to already established taxa as well as 41 new species and six new genera. Furthermore, we have adopted binomial species nomenclature, conforming to the "Genus + freeform epithet" format for all 84 species from 12 genera. The updated Smacoviridae taxonomy presented in this article has been ratified by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
25
|
Investigating the Diversity and Host Range of Novel Parvoviruses from North American Ducks Using Epidemiology, Phylogenetics, Genome Structure, and Codon Usage Analysis. Viruses 2021; 13:v13020193. [PMID: 33525386 PMCID: PMC7912424 DOI: 10.3390/v13020193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023] Open
Abstract
Parvoviruses are small single-stranded DNA viruses that can infect both vertebrates and invertebrates. We report here the full characterization of novel viruses we identified in ducks, including two viral species within the subfamily Hamaparvovirinae (duck-associated chapparvovirus, DAC) and a novel species within the subfamily Densovirinae (duck-associated ambidensovirus, DAAD). Overall, 5.7% and 21.1% of the 123 screened ducks (American black ducks, mallards, northern pintail) were positive for DAC and DAAD, respectively, and both viruses were more frequently detected in autumn than in winter. Genome organization and predicted transcription profiles of DAC and DAAD were similar to viruses of the genera Chaphamaparvovirus and Protoambidensovirus, respectively. Their association to these genera was also demonstrated by subfamily-wide phylogenetic and distance analyses of non-structural protein NS1 sequences. While DACs were included in a highly supported clade of avian viruses, no definitive conclusions could be drawn about the host type of DAAD because it was phylogenetically close to viruses found in vertebrates and invertebrates and analyses of codon usage bias and nucleotide frequencies of viruses within the family Parvoviridae showed no clear host-based viral segregation. This study highlights the high parvoviral diversity in the avian reservoir with many avian-associated parvoviruses likely yet to be discovered.
Collapse
|
26
|
Ji J, Hu W, Liu Q, Zuo K, Zhi G, Xu X, Kan Y, Yao L, Xie Q. Genetic Analysis of Cachavirus-Related Parvoviruses Detected in Pet Cats: The First Report From China. Front Vet Sci 2020; 7:580836. [PMID: 33330704 PMCID: PMC7719813 DOI: 10.3389/fvets.2020.580836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
In this study, members of the Carnivore chaphamaparvovirus species 1, closely related to a virus previously reported in dog feces named cachavirus was identified for the first time in feces of Chinese cats. Screening tests using rectal swabs from 171 diarrheic and 378 healthy cats collected from Henan, Anhui, and Zhejiang provinces in China revealed two samples from diarrheic cats that were positive for cachavirus, but statistical analysis indicated no association between the presence of the virus and clinical signs (p > 0.05). Subsequently, two partial genome sequences [from nucleotides 479–4123, according to the strains from dogs (cachavirus)] of the two strains from cats (cachavirus-cat1 and -cat2) were amplified. The NS1 and VP1 sites of cachavirus-cat1 and -cat2 shared a high identity of 91.9 and 97.0% with reported cachaviruses, respectively, but lower identity of 74.8 and 73.2% with another carnivore chaphamaparvovirus named fechaviruses detected in cats, respectively, indicated the two strains might origin from dogs. These findings improve our understanding of the diversity and tropism of viruses in Carnivore chaphamaparvovirus species 1 which now include both dogs and now cats viruses.
Collapse
Affiliation(s)
- Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
| | - Wen Hu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
| | - Qiang Liu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
| | - Kejing Zuo
- Veterinary Laboratory, Guangzhou Zoo, Guangzhou, China
| | - Guanglin Zhi
- Veterinary Laboratory, Guangzhou Zoo, Guangzhou, China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Edmondson EF, Hsieh WT, Kramer JA, Breed MW, Roelke-Parker ME, Stephens-Devalle J, Pate NM, Bassel LL, Hollingshead MG, Karim BO, Butcher DO, Warner AC, Nagashima K, Gulani J. Naturally Acquired Mouse Kidney Parvovirus Infection Produces a Persistent Interstitial Nephritis in Immunocompetent Laboratory Mice. Vet Pathol 2020; 57:915-925. [PMID: 33016243 DOI: 10.1177/0300985820953500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse kidney parvovirus (MKPV), also known as murine chapparvovirus (MuCPV), is an emerging, highly infectious agent that has been isolated from laboratory and wild mouse populations. In immunocompromised mice, MKPV produces severe chronic interstitial nephropathy and renal failure within 4 to 5 months of infection. However, the course of disease, severity of histologic lesions, and viral shedding are uncertain for immunocompetent mice. We evaluated MKPV infections in CD-1 and Swiss Webster mice, 2 immunocompetent stocks of mice. MKPV-positive CD-1 mice (n = 30) were identified at approximately 8 weeks of age by fecal PCR (polymerase chain reaction) and were subsequently housed individually for clinical observation and diagnostic sampling. Cage swabs, fecal pellets, urine, and blood were evaluated by PCR at 100 and 128 days following the initial positive test, which identified that 28 of 30 were persistently infected and 24 of these were viremic at 100 days. Histologic lesions associated with MKPV in CD-1 (n = 31) and Swiss mice (n = 11) included lymphoplasmacytic tubulointerstitial nephritis with tubular degeneration. Inclusion bodies were rare; however, intralesional MKPV mRNA was consistently detected via in situ hybridization within tubular epithelial cells of the renal cortex and within collecting duct lumina. In immunocompetent CD-1 mice, MKPV infection resulted in persistent shedding of virus for up to 10 months and a mild tubulointerstitial nephritis, raising concerns that this virus could produce study variations in immunocompetent models. Intranuclear inclusions were not a consistent feature of MKPV infection in immunocompetent mice.
Collapse
Affiliation(s)
- Elijah F Edmondson
- Molecular Histopathology Laboratory, 70717Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Wang-Ting Hsieh
- Laboratory Animal Sciences Program, 437329Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Josh A Kramer
- Laboratory Animal Sciences Program, 437329Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, 437329Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Melody E Roelke-Parker
- Laboratory Animal Sciences Program, 437329Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Julie Stephens-Devalle
- Laboratory Animal Sciences Program, 437329Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nathan M Pate
- Laboratory Animal Sciences Program, 437329Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Laura L Bassel
- Molecular Histopathology Laboratory, 70717Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Melinda G Hollingshead
- Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Baktiar O Karim
- Molecular Histopathology Laboratory, 70717Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Donna O Butcher
- Molecular Histopathology Laboratory, 70717Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Andrew C Warner
- Molecular Histopathology Laboratory, 70717Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kunio Nagashima
- Cancer Research Technology Program, 437329Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jatinder Gulani
- Laboratory Animal Sciences Program, 437329Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| |
Collapse
|
28
|
Hu W, Liu Q, Chen Q, Ji J. Molecular characterization of Cachavirus firstly detected in dogs in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104529. [PMID: 32890765 PMCID: PMC7468343 DOI: 10.1016/j.meegid.2020.104529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
Canine Cachavirus was novel parvovirus species has been firstly identified in dogs in USA and was classified within the proposed Chaphamaparvovirus genus. To investigate Cachavirus infection in dogs in China, 408 rectal swabs from healthy and diarrheic dogs obtained during 2018-2019 were screened. The rate of Cachavirus positivity was 0% and 1.55% in healthy or diarrheic dogs, respectively. However, statistical analysis suggested no association between the presence of the virus and clinical signs (p > 0.05). Nucleotide identity was 98.2%-98.9% for NS1 and 98.6%-99.1% for VP1, and amino acid identity was 97.9%-98.7% for NS1 and 98.8%-99.6% for VP1 between the five Chinese strains and Cachavirus-1A and Cachavirus-1B detected in the United States. Phylogenetic analysis also indicated that these Cachavirus strains are genetically related to Cachavirus-1A and Cachavirus-1B. This study confirms the presence of Cachavirus in pet dogs in China and provides novel findings on its molecular characteristics.
Collapse
Affiliation(s)
- Wen Hu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, PR China
| | - Qiang Liu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, PR China
| | - Qinxi Chen
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, PR China
| | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, PR China.
| |
Collapse
|
29
|
Palombieri A, Di Profio F, Lanave G, Capozza P, Marsilio F, Martella V, Di Martino B. Molecular detection and characterization of Carnivore chaphamaparvovirus 1 in dogs. Vet Microbiol 2020; 251:108878. [PMID: 33069035 PMCID: PMC7528909 DOI: 10.1016/j.vetmic.2020.108878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Canine chaphamaparvovirus (CaChPV) is a novel parvovirus recently discovered in dogs; Herein, stool samples from dogs with or without enteric signs were screened for CaChPV; CaChPV DNA was found either in diarrhoeic (1.9 %) or asymptomatic (1.6 %) dogs; The nearly complete genome sequences were determined for two strains; The Italian CaChPV strains tightly clustered with the American reference viruses.
Canine chaphamaparvovirus (CaChPV) is a newly recognised parvovirus discovered by metagenomic analysis during an outbreak of diarrhoea in dogs in Colorado, USA, in 2017 and more recently detected in diarrhoeic dogs in China. Whether the virus plays a role as canine pathogen and whether it is distributed elsewhere, in other geographical areas, is not known. We performed a case-control study to investigate the possible association of CaChPV with enteritis in dogs. CaChPV DNA was detected both in the stools of diarrhoeic dogs (1.9 %, 3/155) and of healthy animals (1.6 %, 2/120). All the CaChPV-infected dogs with diarrhea were mixed infected with other enteric viruses such as canine parvovirus (formerly CPV-2), canine bufavirus (CBuV) and canine coronavirus (CCoV), whilst none of the asymptomatic CaChPV positive animals resulted co-infected. The nearly full-length genome and the partial capsid protein (VP) gene of three canine strains, Te/36OVUD/19/ITA, Te/37OVUD/19/ITA and Te/70OVUD/19/ITA, were reconstructed. Upon phylogenetic analyses based on the NS1 and VP aa sequences, the Italian CaChPV strains tightly clustered with the American reference viruses. Distinctive residues could be mapped to the deduced variable regions of the VP of canine and feline chaphamaparvoviruses, considered as important markers of host range and pathogenicity for parvoviruses.
Collapse
Affiliation(s)
- Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Paolo Capozza
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy.
| |
Collapse
|
30
|
Metatranscriptomic Analysis of Virus Diversity in Urban Wild Birds with Paretic Disease. J Virol 2020; 94:JVI.00606-20. [PMID: 32581107 PMCID: PMC7459558 DOI: 10.1128/jvi.00606-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Wildlife naturally harbor a diverse array of infectious microorganisms and can be a source of novel diseases in domestic animals and human populations. Using unbiased RNA sequencing, we identified highly diverse viruses in native birds from Australian urban environments presenting with paresis. This research included the clinical investigation and description of poorly understood recurring syndromes of unknown etiology: clenched claw syndrome and black and white bird disease. As well as identifying a range of potentially disease-causing viral pathogens, this study describes methods that can effectively and efficiently characterize emergent disease syndromes in free-ranging wildlife and promotes further surveillance for specific pathogens of potential conservation and zoonotic concern. Wild birds are major natural reservoirs and potential dispersers of a variety of infectious diseases. As such, it is important to determine the diversity of viruses they carry and use this information to help understand the potential risks of spillover to humans, domestic animals, and other wildlife. We investigated the potential viral causes of paresis in long-standing, but undiagnosed, disease syndromes in wild Australian birds. RNA from diseased birds was extracted and pooled based on tissue type, host species, and clinical manifestation for metagenomic sequencing. Using a bulk and unbiased metatranscriptomic approach, combined with clinical investigation and histopathology, we identified a number of novel viruses from the families Astroviridae, Adenoviridae, Picornaviridae, Polyomaviridae, Paramyxoviridae, Parvoviridae, and Circoviridae in common urban wild birds, including Australian magpies, magpie larks, pied currawongs, Australian ravens, and rainbow lorikeets. In each case, the presence of the virus was confirmed by reverse transcription (RT)-PCR. These data revealed a number of candidate viral pathogens that may contribute to coronary, skeletal muscle, vascular, and neuropathology in birds of the Corvidae and Artamidae families and neuropathology in members of the Psittaculidae. The existence of such a diverse virome in urban avian species highlights the importance and challenges in elucidating the etiology and ecology of wildlife pathogens in urban environments. This information will be increasingly important for managing disease risks and conducting surveillance for potential viral threats to wildlife, livestock, and human health. IMPORTANCE Wildlife naturally harbor a diverse array of infectious microorganisms and can be a source of novel diseases in domestic animals and human populations. Using unbiased RNA sequencing, we identified highly diverse viruses in native birds from Australian urban environments presenting with paresis. This research included the clinical investigation and description of poorly understood recurring syndromes of unknown etiology: clenched claw syndrome and black and white bird disease. As well as identifying a range of potentially disease-causing viral pathogens, this study describes methods that can effectively and efficiently characterize emergent disease syndromes in free-ranging wildlife and promotes further surveillance for specific pathogens of potential conservation and zoonotic concern.
Collapse
|
31
|
Pénzes JJ, Söderlund-Venermo M, Canuti M, Eis-Hübinger AM, Hughes J, Cotmore SF, Harrach B. Reorganizing the family Parvoviridae: a revised taxonomy independent of the canonical approach based on host association. Arch Virol 2020; 165:2133-2146. [PMID: 32533329 DOI: 10.1007/s00705-020-04632-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parvoviridae, a diverse family of small single-stranded DNA viruses was established in 1975. It was divided into two subfamilies, Parvovirinae and Densovirinae, in 1993 to accommodate parvoviruses that infect vertebrate and invertebrate animals, respectively. This relatively straightforward segregation, using host association as the prime criterion for subfamily-level classification, has recently been challenged by the discovery of divergent, vertebrate-infecting parvoviruses, dubbed "chapparvoviruses", which have proven to be more closely related to viruses in certain Densovirinae genera than to members of the Parvovirinae. Viruses belonging to these genera, namely Brevi-, Hepan- and Penstyldensovirus, are responsible for the unmatched heterogeneity of the subfamily Densovirinae when compared to the Parvovirinae in matters of genome organization, protein sequence homology, and phylogeny. Another genus of Densovirinae, Ambidensovirus, has challenged traditional parvovirus classification, as it includes all newly discovered densoviruses with an ambisense genome organization, which introduces genus-level paraphyly. Lastly, current taxon definition and virus inclusion criteria have significantly limited the classification of certain long-discovered parvoviruses and impedes the classification of some potential family members discovered using high-throughput sequencing methods. Here, we present a new and updated system for parvovirus classification, which includes the introduction of a third subfamily, Hamaparvovirinae, resolves the paraphyly within genus Ambidensovirus, and introduces new genera and species into the subfamily Parvovirinae. These proposals were accepted by the ICTV in 2020 March.
Collapse
Affiliation(s)
- Judit J Pénzes
- Center for Structural Biology, Department of Biochemistry and Molecular Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | - Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Susan F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520-8035, USA
| | - Balázs Harrach
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary
| |
Collapse
|
32
|
Metagenomic characterisation of avian parvoviruses and picornaviruses from Australian wild ducks. Sci Rep 2020; 10:12800. [PMID: 32733035 PMCID: PMC7393117 DOI: 10.1038/s41598-020-69557-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Ducks can shed and disseminate viruses and thus play a role in cross-species transmission. In the current study, we detected and characterised various avian parvoviruses and picornaviruses from wild Pacific black ducks, Chestnut teals, Grey teals and Wood ducks sampled at multiple time points from a single location using metagenomics. We characterised 46 different avian parvoviruses belonging to three different genera Dependoparvovirus, Aveparvovirus and Chaphamaparvovirus, and 11 different avian picornaviruses tentatively belonging to four different genera Sicinivirus, Anativirus, Megrivirus and Aalivirus. Most of these viruses were genetically different from other currently known viruses from the NCBI dataset. The study showed that the abundance and number of avian picornaviruses and parvoviruses varied considerably throughout the year, with the high number of virus reads in some of the duck samples highly suggestive of an active infection at the time of sampling. The detection and characterisation of several parvoviruses and picornaviruses from the individual duck samples also suggests co-infection, which may lead to the emergence of novel viruses through possible recombination. Therefore, as new and emerging diseases evolve, it is relevant to explore and monitor potential animal reservoirs in their natural habitat.
Collapse
|
33
|
Li Y, Gordon E, Idle A, Altan E, Seguin MA, Estrada M, Deng X, Delwart E. Virome of a Feline Outbreak of Diarrhea and Vomiting Includes Bocaviruses and a Novel Chapparvovirus. Viruses 2020; 12:v12050506. [PMID: 32375386 PMCID: PMC7291048 DOI: 10.3390/v12050506] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
An unexplained outbreak of feline diarrhea and vomiting, negative for common enteric viral and bacterial pathogens, was subjected to viral metagenomics and PCR. We characterized from fecal samples the genome of a novel chapparvovirus we named fechavirus that was shed by 8/17 affected cats and identified three different feline bocaviruses shed by 9/17 cats. Also detected were nucleic acids from attenuated vaccine viruses, members of the normal feline virome, viruses found in only one or two cases, and viruses likely derived from ingested food products. Epidemiological investigation of disease signs, time of onset, and transfers of affected cats between three facilities support a possible role for this new chapparvovirus in a highly contagious feline diarrhea and vomiting disease.
Collapse
Affiliation(s)
- Yanpeng Li
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
| | - Emilia Gordon
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC V5T1R1, Canada; (E.G.); (A.I.)
| | - Amanda Idle
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC V5T1R1, Canada; (E.G.); (A.I.)
| | - Eda Altan
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
| | - M. Alexis Seguin
- IDEXX Reference Laboratories, Inc., West Sacramento, CA 95605, USA; (M.A.S.); (M.E.)
| | - Marko Estrada
- IDEXX Reference Laboratories, Inc., West Sacramento, CA 95605, USA; (M.A.S.); (M.E.)
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
- Correspondence: ; Tel.: +1-(415)-531-0763
| |
Collapse
|
34
|
Liu Q, Wang H, Ling Y, Yang SX, Wang XC, Zhou R, Xiao YQ, Chen X, Yang J, Fu WG, Zhang W, Qi GL. Viral metagenomics revealed diverse CRESS-DNA virus genomes in faeces of forest musk deer. Virol J 2020; 17:61. [PMID: 32334626 PMCID: PMC7183601 DOI: 10.1186/s12985-020-01332-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
Background Musk deer can produce musk which has high medicinal value and is closely related to human health. Viruses in forest musk deer both threaten the health of forest musk deer and human beings. Methods Using viral metagenomics we investigated the virome in 85 faeces samples collected from forest musk deer. Results In this article, eight novel CRESS-DNA viruses were characterized, whole genomes were 2148 nt–3852 nt in length. Phylogenetic analysis indicated that some viral genomes were part of four different groups of CRESS-DNA virus belonging in the unclassified CRESS-DNA virus, Smacoviridae, pCPa-like virus and pPAPh2-like virus. UJSL001 (MN621482), UJSL003 (MN621469) and UJSL017 (MN621476) fall into the branch of unclassified CRESS-DNA virus (CRESSV1–2), UJSL002 (MN621468), UJSL004 (MN621481) and UJSL007 (MN621470) belong to the cluster of Smacoviridae, UJSL005 (MN604398) showing close relationship with pCPa-like (pCRESS4–8) clusters and UJSL006 (MN621480) clustered into the branch of pPAPh2-like (pCRESS9) virus, respectively. Conclusion The virome in faeces samples of forest musk deer from Chengdu, Sichuan province, China was revealed, which further characterized the diversity of viruses in forest musk deer intestinal tract.
Collapse
Affiliation(s)
- Qi Liu
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.,Agricultural Engineering Research Institute, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hao Wang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yu Ling
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shi-Xing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiao-Chun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Rui Zhou
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yu-Qing Xiao
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xu Chen
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jie Yang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Wei-Guo Fu
- Agricultural Engineering Research Institute, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Gui-Lan Qi
- Institute of Animal Husbandry, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China.
| |
Collapse
|
35
|
Fahsbender E, Charlys da-Costa A, Elise Gill D, Augusto de Padua Milagres F, Brustulin R, Julio Costa Monteiro F, Octavio da Silva Rego M, Soares D’Athaide Ribeiro E, Cerdeira Sabino E, Delwart E. Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus. PLoS One 2020; 15:e0229993. [PMID: 32134963 PMCID: PMC7058308 DOI: 10.1371/journal.pone.0229993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Plasma from patients with dengue-like symptoms was collected in 2013 to 2016 from the Brazilian states of Tocantins and Amapa. 781 samples testing negative for IgM against Dengue, Zika, and Chikungunya viruses and for flaviviruses, alphaviruses and enteroviruses RNA using RT-PCRs were analyzed using viral metagenomics. Viral particles-associated nucleic acids were enriched, randomly amplified, and deep sequenced in 102 mini-pools generating over 2 billion reads. Sequence data was analyzed for the presence of known and novel eukaryotic viral reads. Anelloviruses were detected in 80%, human pegivirus 1 in 19%, and parvovirus B19 in 17% of plasma pools. HIV and enteroviruses were detected in two pools each. Previously uncharacterized viral genomes were also identified, and their presence in single plasma samples confirmed by PCR. Chapparvovirus and ambidensovirus genomes, both in the Parvoviridae family, were partially characterized showing 33% and 34% identity in their NS1 sequences to their closest relative. Molecular surveillance using pre-existing plasma from febrile patients provides a readily scalable approach for the detection of novel, potentially emerging, viruses.
Collapse
Affiliation(s)
- Elizabeth Fahsbender
- Vitalant Research Institute, San Francisco, CA, United States of America
- UCSF Dept. of Laboratory Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Antonio Charlys da-Costa
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Danielle Elise Gill
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Flavio Augusto de Padua Milagres
- Public Health Laboratory State (LACEN/TO), Secretary of Health of Tocantins, Palmas, TO, Brazil
- Federal University of Tocantins, Palmas, Tocantins, Brazil
| | - Rafael Brustulin
- Public Health Laboratory State (LACEN/TO), Secretary of Health of Tocantins, Palmas, TO, Brazil
- Federal University of Tocantins, Palmas, Tocantins, Brazil
| | | | | | | | - Ester Cerdeira Sabino
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, United States of America
- UCSF Dept. of Laboratory Medicine, University of California–San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Lee Q, Padula MP, Pinello N, Williams SH, O'Rourke MB, Fumagalli MJ, Orkin JD, Song R, Shaban B, Brenner O, Pimanda JE, Weninger W, de Souza WM, Melin AD, Wong JJL, Crim MJ, Monette S, Roediger B, Jolly CJ. Murine and related chapparvoviruses are nephro-tropic and produce novel accessory proteins in infected kidneys. PLoS Pathog 2020; 16:e1008262. [PMID: 31971979 PMCID: PMC6999912 DOI: 10.1371/journal.ppat.1008262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/04/2020] [Accepted: 12/08/2019] [Indexed: 12/21/2022] Open
Abstract
Mouse kidney parvovirus (MKPV) is a member of the provisional genus Chapparvovirus that causes renal disease in immune-compromised mice, with a disease course reminiscent of polyomavirus-associated nephropathy in immune-suppressed kidney transplant patients. Here we map four major MKPV transcripts, created by alternative splicing, to a common initiator region, and use mass spectrometry to identify “p10” and “p15” as novel chapparvovirus accessory proteins produced in MKPV-infected kidneys. p15 and the splicing-dependent putative accessory protein NS2 are conserved in all near-complete amniote chapparvovirus genomes currently available (from mammals, birds and a reptile). In contrast, p10 may be encoded only by viruses with >60% amino acid identity to MKPV. We show that MKPV is kidney-tropic and that the bat chapparvovirus DrPV-1 and a non-human primate chapparvovirus, CKPV, are also found in the kidneys of their hosts. We propose, therefore, that many mammal chapparvoviruses are likely to be nephrotropic. Parvoviruses are small, genetically simple single-strand DNA viruses that remain viable outside their hosts for very long periods of time. They cause disease in several domesticated species and in humans. Mouse kidney parvovirus (MKPV) is a causative agent of kidney failure in immune-compromised mice and is the only member of the provisional Chapparvovirus genus for which the complete genome including telomeres is known. Here, we show that MKPV propagates almost exclusively in the kidneys of mice infected naturally, wherein it produces novel accessory proteins whose coding regions are conserved in amniote-associated chapparvovirus sequences. We assemble a closely related complete viral genome present in DNA extracted from the kidney of a wild Cebus imitator monkey, and show that another related chapparvovirus is preferentially found in kidneys of the vampire bat Desmodus rotundus. We conclude that many mammal-hosted chapparvovirus are adapted to the kidney niche and may therefore cause disease following kidney stress in multiple species.
Collapse
Affiliation(s)
- Quintin Lee
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Matthew P. Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Natalia Pinello
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Simon H. Williams
- Center for Infection & Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Matthew B. O'Rourke
- Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Marcilio Jorge Fumagalli
- Virology Research Center, School of Medicine of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, Brazil
| | - Joseph D. Orkin
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada
| | - Renhua Song
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Babak Shaban
- Melbourne Integrative Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - John E. Pimanda
- Lowy Cancer Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Wolfgang Weninger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - William Marciel de Souza
- Virology Research Center, School of Medicine of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda D. Melin
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
- Department of Medical Genetics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Justin J.-L. Wong
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Marcus J. Crim
- Microbiology and Aquatic Diagnostics, IDEXX BioAnalytics, Discovery Drive, Columbia, MO, United States of America
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY, United States of America
| | - Ben Roediger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Autoimmunity, Transplantation, Inflammation (ATI) Disease Area, Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail: (BR); (CJJ)
| | - Christopher J. Jolly
- Lowy Cancer Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
- * E-mail: (BR); (CJJ)
| |
Collapse
|
37
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
38
|
Liu X, Wang H, Liu X, Li Y, Chen J, Zhang J, Wang X, Shen S, Wang H, Deng F, Wang M, Guan W, Hu Z. Genomic and transcriptional analyses of novel parvoviruses identified from dead peafowl. Virology 2019; 539:80-91. [PMID: 31706163 DOI: 10.1016/j.virol.2019.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/26/2019] [Indexed: 01/20/2023]
Abstract
To identify potential pathogens responsible for a disease outbreak of cultured peafowls in China in 2013, metagenomic sequencing was conducted. The genomes of two closely related parvoviruses, namely peafowl parvovirus 1 (PePV1) and PePV2, were identified with size of 4428 bp and 4348 bp, respectively. Phylogenetic analysis revealed that both viruses are novel parvoviruses, belonging to the proposed genus Chapparvovirus of Parvoviridae. The transcriptional profile of PePV1 was analyzed by transfecting a nearly complete PePV1 genome into HEK-293T cells. Results revealed that PePV1 employs one promoter and two polyadenylation sites to start and terminate its transcriptions, with one donor site and two acceptor sites for pre-mRNA splicing. PePV1 DNA and structural protein were detected in several tissues of a dead peafowl, which appeared to have suffered enteritis, pneumonia and viremia. These results provide novel information of chapparvoviruses, and call for attention to the potential pathogens.
Collapse
Affiliation(s)
- Xiaoping Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaoqian Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Li
- Hubei Wildlife Rescue Center, China
| | | | | | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wuxiang Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
39
|
A Duarte M, F Silva JM, R Brito C, S Teixeira D, L Melo F, M Ribeiro B, Nagata T, S Campos F. Faecal Virome Analysis of Wild Animals from Brazil. Viruses 2019; 11:E803. [PMID: 31480274 PMCID: PMC6784175 DOI: 10.3390/v11090803] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
The Brazilian Cerrado fauna shows very wide diversity and can be a potential viral reservoir. Therefore, the animal's susceptibility to some virus can serve as early warning signs of potential human virus diseases. Moreover, the wild animal virome of this biome is unknown. Based on this scenario, high-throughput sequencing contributes a robust tool for the identification of known and unknown virus species in this environment. In the present study, faeces samples from cerrado birds (Psittacara leucophthalmus, Amazona aestiva, and Sicalis flaveola) and mammals (Didelphis albiventris, Sapajus libidinosus, and Galictis cuja) were collected at the Veterinary Hospital, University of Brasília. Viral nucleic acid was extracted, submitted to random amplification, and sequenced by Illumina HiSeq platform. The reads were de novo assembled, and the identities of the contigs were evaluated by Blastn and tblastx searches. Most viral contigs analyzed were closely related to bacteriophages. Novel archaeal viruses of the Smacoviridae family were detected. Moreover, sequences of members of Adenoviridae, Anelloviridae, Circoviridae, Caliciviridae, and Parvoviridae families were identified. Complete and nearly complete genomes of known anelloviruses, circoviruses, and parvoviruses were obtained, as well as putative novel species. We demonstrate that the metagenomics approach applied in this work was effective for identification of known and putative new viruses in faeces samples from Brazilian Cerrado fauna.
Collapse
Affiliation(s)
- Matheus A Duarte
- Faculdade de Agronomia e Veterinária, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - João M F Silva
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Clara R Brito
- Faculdade de Agronomia e Veterinária, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Danilo S Teixeira
- Núcleo de Atendimento e Pesquisa de Animais Silvestres, Universidade Estadual de Santa Cruz, Ilhéus-BA 45.662-900, Brazil
| | - Fernando L Melo
- Departamento de Fitopatologia, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília-DF 70.910-900, Brazil
| | - Fabrício S Campos
- Laboratório de Bioinformática e Biotecnologia, Campus de Gurupi, Universidade Federal do Tocantins, Tocantins-TO 77.410-570, Brazil.
| |
Collapse
|
40
|
Fontenele RS, Lacorte C, Lamas NS, Schmidlin K, Varsani A, Ribeiro SG. Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil. Viruses 2019; 11:E710. [PMID: 31382446 PMCID: PMC6723397 DOI: 10.3390/v11080710] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Abstract
Capybaras (Hydrochoerus hydrochaeris), the world's largest rodents, are distributed throughout South America. These wild herbivores are commonly found near water bodies and are well adapted to rural and urban areas. There is limited information on the viruses circulating through capybaras. This study aimed to expand the knowledge on the viral diversity associated with capybaras by sampling their faeces. Using a viral metagenomics approach, we identified diverse single-stranded DNA viruses in the capybara faeces sampled in the Distrito Federal, Brazil. A total of 148 complete genomes of viruses in the Microviridae family were identified. In addition, 14 genomoviruses (family Genomoviridae), a novel cyclovirus (family Circoviridae), and a smacovirus (family Smacoviridae) were identified. Also, 37 diverse viruses that cannot be assigned to known families and more broadly referred to as unclassified circular replication associated protein encoding single-stranded (CRESS) DNA viruses were identified. This study provides a snapshot of the viral diversity associated with capybaras that may be infectious to these animals or associated with their microbiota or diet.
Collapse
Affiliation(s)
- Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil
| | - Cristiano Lacorte
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil
| | - Natalia S Lamas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa.
| | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil.
| |
Collapse
|
41
|
Pénzes JJ, de Souza WM, Agbandje-McKenna M, Gifford RJ. An Ancient Lineage of Highly Divergent Parvoviruses Infects both Vertebrate and Invertebrate Hosts. Viruses 2019; 11:v11060525. [PMID: 31174309 PMCID: PMC6631224 DOI: 10.3390/v11060525] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Chapparvoviruses (ChPVs) comprise a divergent, recently identified group of parvoviruses (family Parvoviridae), associated with nephropathy in immunocompromised laboratory mice and with prevalence in deep sequencing results of livestock showing diarrhea. Here, we investigate the biological and evolutionary characteristics of ChPVs via comparative in silico analyses, incorporating sequences derived from endogenous parvoviral elements (EPVs) as well as exogenous parvoviruses. We show that ChPVs are an ancient lineage within the Parvoviridae, clustering separately from members of both currently established subfamilies. Consistent with this, they exhibit a number of characteristic features, including several putative auxiliary protein-encoding genes, and capsid proteins with no sequence-level homology to those of other parvoviruses. Homology modeling indicates the absence of a β-A strand, normally part of the luminal side of the parvoviral capsid protein core. Our findings demonstrate that the ChPV lineage infects an exceptionally broad range of host species, including both vertebrates and invertebrates. Furthermore, we observe that ChPVs found in fish are more closely related to those from invertebrates than they are to those of amniote vertebrates. This suggests that transmission between distantly related host species may have occurred in the past and that the Parvoviridae family can no longer be divided based on host affiliation.
Collapse
Affiliation(s)
- Judit J Pénzes
- McKnight Brain Institute and Department of Biochemistry and Molecular Biology, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA.
| | - William Marciel de Souza
- Virology Research Center, School of Medicine of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, Brazil.
| | - Mavis Agbandje-McKenna
- McKnight Brain Institute and Department of Biochemistry and Molecular Biology, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA.
| | - Robert J Gifford
- Medical Research Council-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, UK.
| |
Collapse
|
42
|
Fahsbender E, Altan E, Seguin MA, Young P, Estrada M, Leutenegger C, Delwart E. Chapparvovirus DNA Found in 4% of Dogs with Diarrhea. Viruses 2019; 11:v11050398. [PMID: 31035625 PMCID: PMC6563200 DOI: 10.3390/v11050398] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023] Open
Abstract
Feces from dogs in an unexplained outbreak of diarrhea were analyzed by viral metagenomics revealing the genome of a novel parvovirus. The parvovirus was named cachavirus and was classified within the proposed Chapparvovirus genus. Using PCR, cachavirus DNA was detected in two of nine tested dogs from that outbreak. In order to begin to elucidate the clinical impact of this virus, 2,053 canine fecal samples were screened using real-time PCR. Stool samples from 203 healthy dogs were positive for cachavirus DNA at a rate of 1.47%, while 802 diarrhea samples collected in 2017 and 964 samples collected in 2018 were positive at rates of 4.0% and 4.66% frequencies, respectively (healthy versus 2017-2018 combined diarrhea p-value of 0.05). None of 83 bloody diarrhea samples tested positive. Viral loads were generally low with average real-time PCR Ct values of 36 in all three positive groups. The species tropism and pathogenicity of cachavirus, the first chapparvovirus reported in feces of a placental carnivore, remains to be fully determined.
Collapse
Affiliation(s)
- Elizabeth Fahsbender
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Dept. of Laboratory Medicine, University of California, San Francisco, CA 94118, USA.
| | - Eda Altan
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Dept. of Laboratory Medicine, University of California, San Francisco, CA 94118, USA.
| | - M Alexis Seguin
- IDEXX Reference Laboratories, -Inc., West Sacramento, CA 95605, USA.
| | - Pauline Young
- IDEXX Reference Laboratories, -Inc., West Sacramento, CA 95605, USA.
| | - Marko Estrada
- IDEXX Reference Laboratories, -Inc., West Sacramento, CA 95605, USA.
| | | | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Dept. of Laboratory Medicine, University of California, San Francisco, CA 94118, USA.
| |
Collapse
|
43
|
Abstract
The classification of viruses provides the structure necessary to appreciate their biological diversity. Herein, we provide an update to our previous review of changes in viral taxonomy, covering changes between 2016 and 2018.
Collapse
|
44
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
45
|
Kapgate SS, Kumanan K, Vijayarani K, Barbuddhe SB. Avian parvovirus: classification, phylogeny, pathogenesis and diagnosis. Avian Pathol 2018; 47:536-545. [PMID: 30246559 DOI: 10.1080/03079457.2018.1517938] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poultry parvoviruses identified during the early 1980s are found worldwide in intestines from young birds with enteric disease syndromes as well as healthy birds. The chicken parvovirus (ChPV) and turkey parvovirus (TuPV) belong to the Aveparvovirus genus within the subfamily Parvovirinae. Poultry parvoviruses are small, non-enveloped, single-stranded DNA viruses consisting of three open reading frames, the first two encoding the non-structural protein (NS) and nuclear phosphoprotein (NP) and the third encoding the viral capsid proteins 1 (VP1 and VP2). In contrast to other parvoviruses, the VP1-unique region does not contain the phospholipase A2 sequence motif. Recent experimental studies suggested the parvoviruses to be the candidate pathogens in cases of enteric disease syndrome. Current diagnostic methods for poultry parvovirus detection include PCR, real-time PCR, enzyme linked immunosorbent assay using recombinant VP2 or VP1 capsid proteins. Moreover, sequence-independent amplification techniques combined with next-generation sequencing platforms have allowed rapid and simultaneous detection of the parvovirus from affected and healthy birds. There is no commercial vaccine; hence, the development of an effective vaccine to control the spread of infection should be of primary importance. This review presents the current knowledge on poultry parvoviruses with emphasis on taxonomy, phylogenetic relationship, genomic analysis, epidemiology, pathogenesis and diagnostic methods.
Collapse
Affiliation(s)
- Sunil S Kapgate
- a Department of Animal Biotechnology , Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - K Kumanan
- a Department of Animal Biotechnology , Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - K Vijayarani
- a Department of Animal Biotechnology , Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Sukhadeo B Barbuddhe
- b Meat Safety Laboratory , ICAR-National Research Centre on Meat , Chengicherla, Hyderabad , India
| |
Collapse
|
46
|
Miłek D, Woźniak A, Stadejek T. The detection and genetic diversity of novel porcine parvovirus 7 (PPV7) on Polish pig farms. Res Vet Sci 2018; 120:28-32. [PMID: 30170185 DOI: 10.1016/j.rvsc.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
In the last years several novel parvoviruses (PPVs) were discovered in pigs worldwide. The most recently discovered porcine parvovirus species is PPV7, which was detected in USA and China to date. This study reports the first evidence of PPV7 in Europe. Overall, 902 serum samples and 896 fecal samples were collected between 2014 and 2017 from 3 to 20 weeks old pigs from 14 conventional swine farms in Poland. PPV7 DNA was detected in samples from all examined farms. Overall, PPV7 was detected in 39,0% fecal pools and in 19,6% serum pools. No positive results were obtained from 3 to 6-week-old pigs. In growing pigs and fatteners the virus was detected in 26,1% serum pools and 51,4% fecal pools. PPV7 infection dynamics was similar in all tested farms. Five complete REP gene sequences of PPV7 from Poland were obtained. The identity of Polish sequences ranged from 94.3 to 96.7% and from 93.5 to 96.7% at the nucleotide and amino acid level, respectively. Their identity to previously discovered sequences from USA and China ranged from 93.9 to 95.0% and from 91.8 to 95.4% at the nucleotide and amino acid level, respectively.
Collapse
Affiliation(s)
- Dagmara Miłek
- Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Aleksandra Woźniak
- Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Tomasz Stadejek
- Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| |
Collapse
|
47
|
Altan E, Aiemjoy K, Phan TG, Deng X, Aragie S, Tadesse Z, Callahan KE, Keenan J, Delwart E. Enteric virome of Ethiopian children participating in a clean water intervention trial. PLoS One 2018; 13:e0202054. [PMID: 30114205 PMCID: PMC6095524 DOI: 10.1371/journal.pone.0202054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/26/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The enteric viruses shed by different populations can be influenced by multiple factors including access to clean drinking water. We describe here the eukaryotic viral genomes in the feces of Ethiopian children participating in a clean water intervention trial. METHODOLOGY/PRINCIPAL FINDINGS Fecal samples from 269 children with a mean age of 2.7 years were collected from 14 villages in the Amhara region of Ethiopia, half of which received a new hand-dug water well. Feces from these villages were then analyzed in 29 sample pools using viral metagenomics. A total of 127 different viruses belonging to 3 RNA and 3 DNA viral families were detected. Picornaviridae family sequence reads were the most commonly found, originating from 14 enterovirus and 6 parechovirus genotypes plus multiple members of four other picornavirus genera (cosaviruses, saliviruses, kobuviruses, and hepatoviruses). Picornaviruses with nearly identical capsid VP1 were detected in different pools reflecting recent spread of these viral strains. Next in read frequencies and positive pools were sequences from the Caliciviridae family including noroviruses GI and GII and sapoviruses. DNA viruses from multiple genera of the Parvoviridae family were detected (bocaviruses 1-4, bufavirus 3, and dependoparvoviruses), together with four species of adenoviruses and common anelloviruses shedding. RNA in the order Picornavirales and CRESS-DNA viral genomes, possibly originating from intestinal parasites or dietary sources, were also characterized. No significant difference was observed between the number of mammalian viruses shed from children from villages with and without a new water well. CONCLUSIONS We describe an approach to estimate the efficacy of potentially virus transmission-reducing interventions and the first complete (DNA and RNA viruses) description of the enteric viromes of East African children. A wide diversity of human enteric viruses was found in both intervention and control groups. Mammalian enteric virome diversity was not reduced in children from villages with a new water well. This population-based sampling also provides a baseline of the enteric viruses present in Northern Ethiopia against which to compare future viromes.
Collapse
Affiliation(s)
- Eda Altan
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States of America
| | - Kristen Aiemjoy
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Tung G. Phan
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States of America
| | | | | | | | - Jeremy Keenan
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States of America
| |
Collapse
|
48
|
Wang H, Li S, Mahmood A, Yang S, Wang X, Shen Q, Shan T, Deng X, Li J, Hua X, Cui L, Delwart E, Zhang W. Plasma virome of cattle from forest region revealed diverse small circular ssDNA viral genomes. Virol J 2018; 15:11. [PMID: 29334978 PMCID: PMC5769433 DOI: 10.1186/s12985-018-0923-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/04/2018] [Indexed: 11/12/2022] Open
Abstract
Background Free-range cattle are common in the Northeast China area, which have close contact with farmers and may carry virus threatening to cattle and farmers. Methods Using viral metagenomics we analyzed the virome in plasma samples collected from 80 cattle from the forested region of Northeast China. Results The virome of cattle plasma is composed of the viruses belonging to the families including Parvoviridae, Papillomaviridae, Picobirnaviridae, and divergent viral genomes showing sequence similarity to circular Rep-encoding single stranded (CRESS) DNA viruses. Five such CRESS-DNA genomes were full characterized, with Rep sequences related to circovirus and gemycircularvirus. Three bovine parvoviruses belonging to two different genera were also characterized. Conclusion The virome in plasma samples of cattle from the forested region of Northeast China was revealed, which further characterized the diversity of viruses in cattle plasma. Electronic supplementary material The online version of this article (10.1186/s12985-018-0923-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.,Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shouxin Li
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.,College of Life Science, Shenyang Normal University, Shenyang, Liaoning, 110034, China
| | - Asif Mahmood
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xutao Deng
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Jingjiao Li
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xiuguo Hua
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Li Cui
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Eric Delwart
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
49
|
Oba M, Katayama Y, Naoi Y, Tsuchiaka S, Omatsu T, Okumura A, Nagai M, Mizutani T. Discovery of fur seal feces-associated circular DNA virus in swine feces in Japan. J Vet Med Sci 2017; 79:1664-1666. [PMID: 28845022 PMCID: PMC5658556 DOI: 10.1292/jvms.16-0642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fur seal feces-associated circular ssDNA virus (FSfaCV) was discovered in a pig for the first time in Japan using a next-generation sequencer with duplex-specific nuclease. Full genome of the virus showed approximately 92% similarity to FSfaCVs from New Zealand fur seals. Furthermore, we investigated the prevalence of the ssDNA virus in 85 piglets in Japan, and 65 piglets were positive (76%) for the virus.
Collapse
Affiliation(s)
- Mami Oba
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu 501-1193, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu 501-1193, Japan
| | - Atsushi Okumura
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, U.S.A
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu 501-1193, Japan.,Laboratory of Epizootiology, Department of Veterinary Medicine Faculty and Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu 501-1193, Japan
| |
Collapse
|
50
|
Case-Control Comparison of Enteric Viromes in Captive Rhesus Macaques with Acute or Idiopathic Chronic Diarrhea. J Virol 2017; 91:JVI.00952-17. [PMID: 28659484 DOI: 10.1128/jvi.00952-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
Diarrhea is the major cause of non-research-associated morbidity and mortality affecting the supply of rhesus macaques and, potentially, their responses to experimental treatments. Idiopathic chronic diarrhea (ICD) in rhesus macaques also resembles ulcerative colitis, one form of human inflammatory bowel disease. To test for viral etiologies, we characterized and compared the fecal viromes from 32 healthy animals, 31 animals with acute diarrhea, and 29 animals with ICD. The overall fractions of eukaryotic viral reads were 0.063% for the healthy group, 0.131% for the acute-diarrhea group, and 0.297% for the chronic-diarrhea group. Eukaryotic viruses belonging to 6 viral families, as well as numerous circular Rep-encoding single-stranded DNA (CRESS DNA) viral genomes, were identified. The most commonly detected sequences were from picornaviruses, making up 59 to 88% of all viral reads, followed by 9 to 17% for CRESS DNA virus sequences. The remaining 5 virus families, Adenoviridae, Astroviridae, Anelloviridae, Picobirnaviridae, and Parvoviridae, collectively made up 1 to 3% of the viral reads, except for parvoviruses, which made up 23% of the viral reads in the healthy group. Detected members of the families Picornaviridae and Parvoviridae were highly diverse, consisting of multiple genera, species, and genotypes. Coinfections with members of up to six viral families were detected. Complete and partial viral genomes were assembled and used to measure the number of matching short sequence reads in feces from the 92 animals in the two clinical and the healthy control groups. Several enterovirus genotypes and CRESS DNA genomes were associated with ICD relative to healthy animals. Conversely, higher read numbers from different parvoviruses were associated with healthy animals. Our study reveals a high level of enteric coinfections with diverse viruses in a captive rhesus macaque colony and identifies several viruses positively or negatively associated with ICD.
Collapse
|