1
|
Tang J, Wu Z, Sun Z, Liu H, Liu H. Lunar magnetism impairs wheat seedling photosynthesis: A simulated environment study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109996. [PMID: 40382801 DOI: 10.1016/j.plaphy.2025.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Plants evolved under Earth's stable geomagnetic field (GMF), a condition sharply contrasting with the near-absence of a global magnetic field on the Moon. However, the effects of this stark magnetic disparity on fundamental plant processes like photosynthesis remain underexplored, particularly in the context of future lunar agriculture. This study rigorously investigated the physiological and biochemical mechanisms underpinning the photosynthetic response of wheat seedlings - a staple crop selected for its centrality in closed-loop life support - to a simulated lunar weak magnetic field (WMF, <5 nT). We used a controlled environment and simulated lunar soil to compare wheat seedlings grown under precisely controlled WMF and GMF conditions. Our findings reveal that WMF significantly impeded seedling growth, as evidenced by diminished height, reduced hydration, and lower biomass accumulation. Photosynthetic gas exchange was severely compromised under WMF, manifesting as reduced net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration. Light and CO2 response curve analyses further revealed a fundamental reduction in photosynthetic efficiency, characterized by lower apparent quantum efficiency and maximum photosynthetic capacity. Concomitantly, levels of key photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids) and ferritin were significantly depressed in WMF-exposed seedlings, suggesting a mechanistic link to impaired photosynthetic machinery and potentially compromised nutrient uptake. This inhibitory effect of lunar-level magnetic fields on photosynthetic carbon assimilation is likely mediated by disruptions in light energy conversion, electron transport chain efficiency, and RuBP regeneration capacity. Furthermore, the observed reduction in ferritin, a crucial iron storage protein, may exacerbate oxidative stress and limit iron availability for chlorophyll biosynthesis. These combined disruptions indicate a significant constraint on plant productivity in lunar environments, thereby limiting the viability of purely terrestrial-adapted crops for lunar agriculture. These findings underscore the need to consider magnetic field mitigation strategies or genetically adapt crops for optimal photosynthetic function in weak magnetic field environments to ensure sustainable plant-based life support beyond Earth. This research provides a vital foundation for future investigations into plant magneto-biology and the development of robust agricultural systems for space exploration.
Collapse
Affiliation(s)
- Jingkai Tang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Internet Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zizhou Wu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Internet Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhiyin Sun
- School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Internet Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Hong Liu
- Innovation Center for Medical Engineering &Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Internet Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
2
|
Cimen A, Baba Y, Birinci Yildirim A, Ucar Turker A. What Effects Do Magnetic Fields Exert on the Bioaccumulation of Galanthamine and Lycorine, Growth Efficiency, Capacity to Scavenge Free Radicals, and Defense Enzyme Activities of Summer Snowflakes (Leucojum aestivum L.)? Chem Biodivers 2025; 22:e202400984. [PMID: 39024491 DOI: 10.1002/cbdv.202400984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Leucojum aestivum L. is a bulbous Amaryllidaceae family plant. A pot experiment was conducted to investigate the impact of three different magnetic field (MF) intensities [50, 100 and 150 militesla (mT)] with three different exposure durations (1, 3 and 7 days) on growth parameters, alkaloid levels (galanthamine and lycorine), non-enzymatic antioxidant activities (total phenol-flavonoid content and free radical scavenging activity), and enzymatic antioxidant activities [superoxide dismutase (SOD) and catalase (CAT)] compared with control (no MF) in the bulbs and leaves. Maximum bulb length was achieved with 150 mT MF application for 3 days. Galanthamine levels increased by 63 % in the bulbs with 150 mT-7 days exposure and by 79.8 % in the leaves with 50 MT-1 day exposure compared to the control. The leaves and bulbs with 100 mT exposure showed the greatest increases in lycorine concentrations (23.8 % and 62.3 % rises, respectively). MF exposures of 150 mT for 3 days gave the best radical scavenging activity and total phenol-flavonoid content. The highest alkaloid levels in the bulbs were associated with higher SOD and CAT activity generated by MF treatments. This study revealed that the medicinal value and quantity of L. aestivum bulbs could be significantly increased with 150 mT MF intensity.
Collapse
Affiliation(s)
- Ayca Cimen
- Department of Biology, Faculty of Science and Art, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkiye
| | - Yavuz Baba
- Department of Biology, Faculty of Science and Art, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkiye
| | - Arzu Birinci Yildirim
- Department of Field Crops, Faculty of Agricultural and Environmental Science, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkiye
| | - Arzu Ucar Turker
- Department of Biology, Faculty of Science and Art, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkiye
| |
Collapse
|
3
|
Maffei ME, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A, Del Bianco M. The physiology of plants in the context of space exploration. Commun Biol 2024; 7:1311. [PMID: 39394270 PMCID: PMC11470014 DOI: 10.1038/s42003-024-06989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Michele Morgante
- Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy
| | - Marta Del Bianco
- Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy.
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy.
| |
Collapse
|
4
|
Lin S, Wang Q, Zhao X, Gu Y, Wei K, Luo P, Deng M. Enhancing salt tolerance and crop growth in agricultural systems: the impact of magnetized-ionized water irrigation on soil properties, microbial communities, and cotton growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7214-7227. [PMID: 38624018 DOI: 10.1002/jsfa.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The development of agricultural practices requires an understanding of the improvement of salt tolerance and crop growth in agricultural systems through magnetized-ionized water irrigation. METHOD This study examined the impacts of fresh water (F), brackish water (B), magnetized-ionized fresh water (MIF), and magnetized-ionized brackish water (MIB) on soil properties and the growth of cotton seedlings through microbial analysis during the cotton seedling period. RESULTS The results revealed that magnetized-ionized water irrigation improved soil water retention and promoted salt leaching. In comparison with F irrigation, plant height, leaf area index (LAI), dry matter accumulation (DM), and chlorophyll content (SPAD) levels increased by 3.61%, 4.07%, 5.76%, and 1.33%, respectively, under MIF irrigation. Similarly, when compared with B irrigation, LAI, DM, and SPAD increased by 5.13%, 6.12%, and 3.12% under MIB irrigation. Magnetized-ionized water irrigation also led to a notable rise in the relative abundance of beneficial soil bacterial communities, particularly Pseudomonas and Azoarcus, as well as fungal communities like Trichoderma, while reducing the prevalence of pathogenic fungi, such as Lasionectria, Gibberella, and Alternaria. Notably, this irrigation approach induced alterations in soil properties, and partial least squares path modeling revealed significant links between soil properties and both cotton growth and fungal community structure (with path coefficients of -0.884 and 0.693, respectively). CONCLUSION This study elucidated the distinct effects of soil properties and growth indices on cotton yield during the seedling period, providing a crucial scientific foundation for enhancing future agricultural production through the use of magnetized-ionized water irrigation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shudong Lin
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Quanjiu Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Xue Zhao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Yunna Gu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Kai Wei
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Pengcheng Luo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| | - Mingjiang Deng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
5
|
Čėsnienė I, Čėsna V, Miškelytė D, Novickij V, Mildažienė V, Sirgedaitė-Šėžienė V. Seed Treatment with Cold Plasma and Electromagnetic Field: Changes in Antioxidant Capacity of Seedlings in Different Picea abies (L.) H. Karst Half-Sib Families. PLANTS (BASEL, SWITZERLAND) 2024; 13:2021. [PMID: 39124139 PMCID: PMC11314105 DOI: 10.3390/plants13152021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
In the context of climate change, methods to improve the resistance of coniferous trees to biotic and abiotic stress are in great demand. The common plant response to exposure to vastly different stressors is the generation of reactive oxygen species (ROS) followed by activation of the defensive antioxidant system. We aimed to evaluate whether seed treatment with physical stressors can activate the activity of antioxidant enzymes and radical scavenging activity in young Picea abies (L.) H. Karst seedlings. For this, we applied seed treatment with cold plasma (CP) and electromagnetic field (EMF) and compared the response in ten different half-sib families of Norway spruce. The impact of the treatments with CP (1 min-CP1; 2 min-CP2) and EMF (2 min) on one-year-old and two-year-old P. abies seedlings was determined by the emergence rate, parameters of growth, and spectrophotometric assessment of antioxidant capacity (enzyme activity; DPPH and ABTS scavenging) in needles. The results indicated that the impact of seed treatment is strongly dependent on the genetic family. In the 577 half-sib family, the activity of antioxidant enzymes catalase (CAT), ascorbate peroxidase (APX), peroxidase (POX), and glutathione reductase (GR) increased after EMF-treatment in one-year-old seedlings, while similar effects in 477 half-sib family were induced by CP2 treatment. In two-year-old seedlings, CP1-treatment increased CAT, APX, POX, GR, SOD, DPPH, and ABTS activity in the 457 half-sib family. However, no significant impact of the treatment with CP1 was determined in one-year-old seedlings in this family. The application of novel technologies and the consideration of the combinatory impact of genetic and physical factors could have the potential to improve the accumulation of compounds that play an essential role in the defense mechanisms of P. abies. Nevertheless, for different resistance and responses to stressors of plants, their genetic properties play an essential role. A comprehensive analysis of interactions among the stress factors (CP and EMF), genetic properties, and changes induced in the antioxidant system can be of importance both for the practical application of seed treatment in forestry and for understanding fundamental adaptation mechanisms in conifers.
Collapse
Affiliation(s)
- Ieva Čėsnienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, LT-53101 Girionys, Lithuania; (V.Č.); (V.S.-Š.)
| | - Vytautas Čėsna
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, LT-53101 Girionys, Lithuania; (V.Č.); (V.S.-Š.)
| | - Diana Miškelytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, Akademija, LT-53361 Kaunas, Lithuania;
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicien, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Vida Mildažienė
- Faculty of Natural Sciences, Vytautas Magnus University, Universiteto 10, Akademija, LT-53361 Kaunas, Lithuania;
| | - Vaida Sirgedaitė-Šėžienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, LT-53101 Girionys, Lithuania; (V.Č.); (V.S.-Š.)
| |
Collapse
|
6
|
Sun W, He Y, Deng Y, Hu Y, Cao M, Luo J. Interaction effects of magnetized water irrigation and wounding stress on Cd phytoremediation effect of Arabidopsis halleri. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1016-1026. [PMID: 38037794 DOI: 10.1080/15226514.2023.2288896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In this study, the phytoremediation efficiency of Arabidopsis halleri L. in response to mechanical injury were compared between those irrigated with magnetized water and those irrigated with normal water. Under normal irrigation treatment, wounding stress increased malondialdehyde (MDA) concentrations and hydrogen peroxide (H2O2) levels in A. halleri leaves significantly, by 46.7-86.1% and 39.4-77.4%, respectively, relative to those in the intact tissues. In addition, wounding stresses decreased the content of Cd in leaves by 26.8-52.2%, relative to the control, indicating that oxidative damage in plant tissues was induced by mechanical injury, rather than Cd accumulation. There were no significant differences in MDA and H2O2 between A. halleri irrigated with magnetized water and with normal water under wounding conditions; however, the activities of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) in the leaves of plants treated with magnetized water were significantly increased by 25.1-56.7%, 47.3-183.6%, and 44.2-109.4%, respectively. Notably, under the magnetic field, the phytoremediation effect of 30% wounded A. halleri nearly returned to normal levels. We find that irrigation with magnetized water is an economical pathway to improve the tolerance of A. halleri to inevitable mechanical injury and may recover its phytoremediation effect.
Collapse
Affiliation(s)
- Weiheng Sun
- Hubei Geological & Mining Exploration Co., Ltd, Wuhan, China
| | - Yue He
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yuping Deng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, Leicester, UK
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
7
|
Luo J, Feng S, Li M, He Y, Deng Y, Cao M. Effect of magnetized water irrigation on Cd subcellular allocation and chemical forms in leaves of Festuca arundinacea during phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116376. [PMID: 38657453 DOI: 10.1016/j.ecoenv.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The application of an external magnetic field has been shown to improve the Cd phytoremediation efficiency of F. arundinacea by leaf harvesting. However, the influencing mechanisms of the promoting effect have not yet been revealed. This study evaluated variations in the Cd subcellular allocation and fractions in various F. arundinacea leaves, with or without magnetized water irrigation. Over 50 % of the metal were sequestered within the cell wall in all tissues under all treatments, indicating that cell wall binding was a critical detoxification pathway for Cd. After magnetized water treatment, the metal stored in the cytoplasm of roots raised from 33.1 % to 45.3 %, and the quantity of soluble Cd in plant roots enhanced from 53.4 % to 59.0 %. The findings suggested that magnetized water mobilized Cd in the roots, and thus drove it into the leaves. In addition, the proportion of Cd in the organelles, and the concentration of ethanol-extracted Cd in emerging leaves, decreased by 13.0 % and 47.1 %, respectively, after magnetized water treatment. These results explained why an external field improved the phytoextraction effect of the plant through leaf harvesting.
Collapse
Affiliation(s)
- Jie Luo
- Yangtze University, University Road, No.1, Wuhan, China
| | - Siyao Feng
- Yangtze University, University Road, No.1, Wuhan, China.
| | - Mingpo Li
- The South of Zhejiang Comprehensive Engineering Survey and Mapping Institute Co., Ltd, China
| | - Yue He
- Yangtze University, University Road, No.1, Wuhan, China
| | - Yuping Deng
- Yangtze University, University Road, No.1, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
8
|
Luo J, Cao M, Deng Y, He Y, Feng S. Effects of magnetic field on cd subcellular distribution and chemical speciation in Noccaea caerulescens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115835. [PMID: 38100850 DOI: 10.1016/j.ecoenv.2023.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Implementing an external magnetic field of suitable strength has been reported to increase Cd uptake by Noccaea caerulescence. However, only a few mechanisms promoting this efficiency have been reported. A series of culture experiments was conducted to explore how Cd subcellular distribution and speciation vary within the tissue of N. caerulescens when subjected to external magnetic fields of different intensities. Without a magnetic field, over 80% of the Cd was deposited in the cell wall and cytoplasm, indicating that cell wall retention and cytoplasm isolation are significant mechanisms for the detoxification of Cd. An external magnetic field (120 mT) increased the Cd concentrations deposited in the cytoplasm and water-soluble inorganic Cd in the roots, increasing the cell wall-bound Cd and undissolved Cd phosphate in the shoots. Meanwhile, the magnetic field increased carbonic anhydrase activity in plant shoots, except at 400 mT. These results indicated that an external field can elevate the Cd decontamination capacity of N. caerulescens by changing the subcellular compartmentalization and speciation of Cd in different tissues.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Yuping Deng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yue He
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
9
|
Shabrangy A. Using Magnetic Fields to Enhance the Seed Germination, Growth, and Yield of Plants. Methods Mol Biol 2024; 2788:375-395. [PMID: 38656526 DOI: 10.1007/978-1-0716-3782-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Geomagnetic field (GMF) protects living organisms on the Earth from the radiation coming from space along with other environmental factors during evolution, and it has affected the growth and development of plants. Many researchers have always been interested in investigating these effects in different aspects. In this chapter, we focus on the methods of using different types of magnetic fields (MFs) to investigate the dimensions of their biological effects on plants. The aim is to increase seed germination, growth characters, and yield of plants using the following methods: (1) Using MFs lower than GMF to study effects of GMF on the growth and yield of plants. (2) Using reversed magnetic fields (RMFs) lower than GMF to study its effects on the growth and development of plants during evolution. (3) Using static magnetic fields (SMFs) higher than GMF and reversed SMFs to study effects of the south (S) and north (N) magnetic pole on plants. (4) Using electromagnetic fields (EMFs) to increase and accelerate seed germination, growth, and yield of plants, and establish the status of plants against other environmental stresses. (5) Using magnetized water (MW) to improve plant seed germination, growth, and yield. (6) Using high gradient magnetic field (HGMF) to study magneto-tropism in plants. In this chapter, we recommend application of various types of MFs to study their biological effects on plants to improve crop production.
Collapse
Affiliation(s)
- Azita Shabrangy
- Plant Functional Genomics Lab, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| |
Collapse
|
10
|
Dziwulska-Hunek A, Niemczynowicz A, Kycia RA, Matwijczuk A, Kornarzyński K, Stadnik J, Szymanek M. Stimulation of soy seeds using environmentally friendly magnetic and electric fields. Sci Rep 2023; 13:18085. [PMID: 37872189 PMCID: PMC10593769 DOI: 10.1038/s41598-023-45134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
The study analyses the impact of alternating (magnetic induction B = 30 mT for t = 60 s) and constant magnetic fields (B = 130 mT for t = 17 h) and alternating electric fields (electric current E = 5 kV/cm for t = 60 s) on various growth parameters of soy plants: the germination energy and capacity, plants emergence, the fresh mass of seedlings, protein content (Kjeldahl's method), and photosynthetic parameters (with MINI-PAM 2000 WALTZ Photosynthesis Yield Analyser and a SPAD-502 Chlorophyll Meter). Four cultivars were used: MAVKA, MERLIN, VIOLETTA, and ANUSZKA. Moreover, the advanced Machine Learning processing pipeline was proposed to distinguish the impact of physical factors on photosynthetic parameters. The use of electromagnetic fields had a positive impact on the germination rate in MERLIN seeds. The best results in terms of germination improvement were observed for alternating magnetic field stimulation in all cultivars (p > 0.05). For the VIOLETTA cultivar an increase (p > 0.05) in the emergence and overall number of plants as well as fresh mass was observed after electromagnetic field stimulation. For the MAVKA and MERLIN cultivars, the concentration of proteins in the leaves was noticeably higher in plants grown from seeds stimulated using a constant magnetic field.
Collapse
Affiliation(s)
- Agata Dziwulska-Hunek
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Agnieszka Niemczynowicz
- Department of Analysis and Differential Equations, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710, Olsztyn, Poland
| | - Radosław A Kycia
- Faculty of Computer Science and Telecommunications, Cracow University of Technology, 31-155, Kraków, Poland
- Department of Mathematics and Statistics, Masaryk Univeristy, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Krzysztof Kornarzyński
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Joanna Stadnik
- Department of Animal Material Technologies, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Mariusz Szymanek
- Department of Agricultural, Forest and Transport Machinery, University of Life Sciences in Lublin, Głeboka 28, 20-612, Lublin, Poland
| |
Collapse
|
11
|
Thoradit T, Thongyoo K, Kamoltheptawin K, Tunprasert L, El-Esawi MA, Aguida B, Jourdan N, Buddhachat K, Pooam M. Cryptochrome and quantum biology: unraveling the mysteries of plant magnetoreception. FRONTIERS IN PLANT SCIENCE 2023; 14:1266357. [PMID: 37860259 PMCID: PMC10583551 DOI: 10.3389/fpls.2023.1266357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Magnetoreception, the remarkable ability of organisms to perceive and respond to Earth's magnetic field, has captivated scientists for decades, particularly within the field of quantum biology. In the plant science, the exploration of the complicated interplay between quantum phenomena and classical biology in the context of plant magnetoreception has emerged as an attractive area of research. This comprehensive review investigates into three prominent theoretical models: the Radical Pair Mechanism (RPM), the Level Crossing Mechanism (LCM), and the Magnetite-based MagR theory in plants. While examining the advantages, limitations, and challenges associated with each model, this review places a particular weight on the RPM, highlighting its well-established role of cryptochromes and in-vivo experiments on light-independent plant magnetoreception. However, alternative mechanisms such as the LCM and the MagR theory are objectively presented as convincing perspectives that permit further investigation. To shed light on these theoretical frameworks, this review proposes experimental approaches including cutting-edge experimental techniques. By integrating these approaches, a comprehensive understanding of the complex mechanisms driving plant magnetoreception can be achieved, lending support to the fundamental principle in the RPM. In conclusion, this review provides a panoramic overview of plant magnetoreception, highlighting the exciting potential of quantum biology in unraveling the mysteries of magnetoreception. As researchers embark on this captivating scientific journey, the doors to deciphering the diverse mechanisms of magnetoreception in plants stand wide open, offering a profound exploration of nature's adaptations to environmental cues.
Collapse
Affiliation(s)
- Thawatchai Thoradit
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Kanjana Thongyoo
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | - Lalin Tunprasert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | | | - Blanche Aguida
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
12
|
Appel H, Cocroft R. Plant ecoacoustics: a sensory ecology approach. Trends Ecol Evol 2023:S0169-5347(23)00030-7. [PMID: 36868907 DOI: 10.1016/j.tree.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 03/05/2023]
Abstract
Many interactions of plants with the environment have an acoustic component, including the actions of herbivores and pollinators, wind and rain. Although plants have long been tested for their response to single tones or music, their response to naturally occurring sources of sound and vibration is barely explored. We argue that progress in understanding the ecology and evolution of plant acoustic sensing requires testing how plants respond to acoustic features of their natural environments, using methods that precisely measure and reproduce the stimulus experienced by the plant.
Collapse
Affiliation(s)
- Heidi Appel
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA.
| | - Reginald Cocroft
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
13
|
Bezerra EA, Carvalho CP, Costa Filho RN, Silva AF, Alam M, Sales MV, Dias NL, Gonçalves JF, Freitas CD, Ramos MV. Static magnetic field promotes faster germination and increases germination rate of Calotropis procera seeds stimulating cellular metabolism. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
14
|
Parmagnani AS, Mannino G, Maffei ME. Transcriptomics and Metabolomics of Reactive Oxygen Species Modulation in Near-Null Magnetic Field-Induced Arabidopsis thaliana. Biomolecules 2022; 12:biom12121824. [PMID: 36551252 PMCID: PMC9775259 DOI: 10.3390/biom12121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The geomagnetic field (GMF) is a natural component of Earth's biosphere. GMF reduction to near-null values (NNMF) induces gene expression modulation that generates biomolecular, morphological, and developmental changes. Here, we evaluate the effect of NNMF on gene expression and reactive oxygen species (ROS) production in time-course experiments on Arabidopsis thaliana. Plants exposed to NNMF in a triaxial Helmholtz coils system were sampled from 10 min to 96 h to evaluate differentially expressed genes (DEGs) of oxidative stress responses by gene microarray. In 24-96 h developing stages, H2O2 and polyphenols were also analyzed from roots and shoots. A total of 194 DEGs involved in oxidative reactions were selected, many of which showed a fold change ≥±2 in at least one timing point. Heatmap clustering showed DEGs both between roots/shoots and among the different time points. NNMF induced a lower H2O2 than GMF, in agreement with the expression of ROS-related genes. Forty-four polyphenols were identified, the content of which progressively decreased during NNMF exposition time. The comparison between polyphenols content and DEGs showed overlapping patterns. These results indicate that GMF reduction induces metabolomic and transcriptomic modulation of ROS-scavenging enzymes and H2O2 production in A. thaliana, which is paralleled by the regulation of antioxidant polyphenols.
Collapse
|
15
|
Parmagnani AS, D'Alessandro S, Maffei ME. Iron-sulfur complex assembly: Potential players of magnetic induction in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111483. [PMID: 36183809 DOI: 10.1016/j.plantsci.2022.111483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iron-sulfur (Fe-S) clusters are involved in fundamental biological reactions and represent a highly regulated process involving a complex sequence of mitochondrial, cytosolic and nuclear-catalyzed protein-protein interactions. Iron-sulfur complex assembly (ISCA) scaffold proteins are involved in Fe-S cluster biosynthesis, nitrogen and sulfur metabolism. ISCA proteins are involved in abiotic stress responses and in the pigeon they act as a magnetic sensor by forming a magnetosensor (MagS) complex with cryptochrome (Cry). MagR gene exists in the genomes of humans, plants, and microorganisms and the interaction between Cry and MagR is highly conserved. Owing to the extensive presence of ISCA proteins in plants and the occurrence of homology between animal and human MagR with at least four Arabidopsis ISCAs and several ISCAs from different plant species, we believe that a mechanism similar to pigeon magnetoperception might be present in plants. We suggest that plant ISCA proteins, homologous of the animal MagR, are good candidates and could contribute to a better understanding of plant magnetic induction. We thus urge more studies in this regard to fully uncover the plant molecular mechanisms underlying MagR/Cry mediated magnetic induction and the possible coupling between light and magnetic induction.
Collapse
Affiliation(s)
- Ambra S Parmagnani
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Stefano D'Alessandro
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Massimo E Maffei
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy.
| |
Collapse
|
16
|
González-Vidal A, Mercado-Sáenz S, Burgos-Molina AM, Sendra-Portero F, Ruiz-Gómez MJ. Growth alteration of Allium cepa L. roots exposed to 1.5 mT, 25 Hz pulsed magnetic field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2471-2483. [PMID: 34474627 DOI: 10.1080/09603123.2021.1972090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The response of plants to magnetic fields (MF) is not fully understood. This work studies the effects of pulsed MF on the germination and growth of Allium cepa roots. Onions were exposed to 25Hz, 1.5mT, 33h. Pulsed MF was generated by a Helmholtz-type equipment that generated rectangular voltage pulses. The results showed that fewer roots grew in the specimens exposed to pulsed MF (14±6 roots on day 1 to 21±8 on day 4) than in the control groups (32±17 to 48±23) (p<0.05 Friedman). Control specimens showed a root mean length of 7±4 mm (day 1) and 24±10 mm (day 4). The specimens treated with pulsed MF showed a length of 4±2 mm (day 1), reaching 18±9 mm on day 4 (p<0.001 ANOVA). In conclusion, the exposure of Allium cepa specimens to 25Hz, 1.5mT pulsed MF during 33h produces a decrease in the germination and growth of roots.
Collapse
Affiliation(s)
- Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Silvia Mercado-Sáenz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|
17
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
18
|
Hassan S, Zeng XA, Khan MK, Farooq MA, Ali A, Kumari A, Mahwish, Rahaman A, Tufail T, Liaqat A. Recent developments in physical invigoration techniques to develop sprouts of edible seeds as functional foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.997261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For nutritional security, the availability of nutrients from food sources is a crucial factor. Global consumption of edible seeds including cereals, pulses, and legumes makes it a valuable source of nutrients particularly vitamins, minerals, and fiber. The presence of anti-nutritional factors forms complexes with nutrients, this complexity of the nutritional profile and the presence of anti-nutritional factors in edible seeds lead to reduced bioavailability of nutrients. By overcoming these issues, the germination process may help improve the nutrient profile and make them more bioavailable. Physical, physiological, and biological methods of seed invigoration can be used to reduce germination restraints, promote germination, enhance early crop development, to increase yields and nutrient levels through sprouting. During sprouting early start of metabolic activities through hydrolytic enzymes and resource mobilization causes a reduction in emergence time which leads to a better nutritional profile. The use of physical stimulating methods to increase the sprouting rate gives several advantages compared to conventional chemical-based methods. The advantages of physical seed treatments include environment-friendly, high germination rate, early seedling emergence, uniform seedling vigor, protection from chemical hazards, and improved yield. Different physical methods are available for seed invigoration viz. gamma irradiation, laser irradiation, microwaves, magnetic field, plasma, sound waves, and ultrasonic waves. Still, further research is needed to apply each technique to different seeds to identify the best physical method and factors for seed species along with different environmental parameters. The present review will describe the use and effects of physical processing techniques for seed invigoration.
Collapse
|
19
|
Hu Y, Li J, Li R, Niu Y, Cao M, Luo J. Influence of magnetized water irrigation on characteristics of antioxidant enzyme, ferritin, and Cd excretion in Festuca arundinacea during phytoextraction. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129527. [PMID: 35816798 DOI: 10.1016/j.jhazmat.2022.129527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The magnetic field can alter the hydrogen-bond structure and polarity characteristics of water; therefore, we hypothesize that magnetized water can affect plant physiological functions, including metal detoxification and excretion. In this study, the amount of Cd excreted on the leaves of Festuca arundinacea was estimated using magnetized water and normal water irrigation patterns. Irrigation with magnetized water improved the shoot dry weight and Cd content in F. arundinacea by 13.6% and 52.8%, respectively, compared to the control. Magnetized water irrigation also increased antioxidant enzyme activities in plant leaves, thereby alleviating the oxidative damage. The concentration of ferritin was 0.91 folds higher than that of the control, increasing the Fe sequestration and detoxification capacity of F. arundinacea. The amount of Cd excreted was significantly higher under magnetized water irrigation, thereby increasing the annual Cd removal by 109.7% from soil by leaf washing compared with that of the control. In contrast, F. arundinacea irrigated with magnetized water excreted 38.1% less Fe owing to the increase in ferritin levels, compared with that of the control. This study suggests a novel pathway of Cd phytoremediation by rinsing excreted Cd from the leaf surface without harvesting and replanting F. arundinacea.
Collapse
Affiliation(s)
- Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jinrui Li
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Ruyi Li
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yao Niu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
20
|
Saletnik B, Saletnik A, Słysz E, Zaguła G, Bajcar M, Puchalska-Sarna A, Puchalski C. The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules 2022; 27:molecules27185823. [PMID: 36144557 PMCID: PMC9506020 DOI: 10.3390/molecules27185823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 01/09/2023] Open
Abstract
The purpose of this paper is to review the scientific results and summarise the emerging topic of the effects of statistic magnetic field on the structure, biochemical activity, and gene expression of plants. The literature on the subject reports a wide range of possibilities regarding the use of the magnetic field to modify the properties of plant cells. MFs have a significant impact on the photosynthesis efficiency of the biomass and vigour accumulation indexes. Treating plants with SMFs accelerates the formation and accumulation of reactive oxygen species. At the same time, the influence of MFs causes the high activity of antioxidant enzymes, which reduces oxidative stress. SMFs have a strong influence on the shape of the cell and the structure of the cell membrane, thus increasing their permeability and influencing the various activities of the metabolic pathways. The use of magnetic treatments on plants causes a higher content of proteins, carbohydrates, soluble and reducing sugars, and in some cases, lipids and fatty acid composition and influences the uptake of macro- and microelements and different levels of gene expression. In this study, the effect of MFs was considered as a combination of MF intensity and time exposure, for different varieties and plant species. The following article shows the wide-ranging possibilities of applying magnetic fields to the dynamics of changes in the life processes and structures of plants. Thus far, the magnetic field is not widely used in agricultural practice. The current knowledge about the influence of MFs on plant cells is still insufficient. It is, therefore, necessary to carry out detailed research for a more in-depth understanding of the possibilities of modifying the properties of plant cells and achieving the desired effects by means of a magnetic field.
Collapse
Affiliation(s)
- Bogdan Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
- Correspondence:
| | - Aneta Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Ewelina Słysz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Marcin Bajcar
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Anna Puchalska-Sarna
- Laboratory of Physiotherapy in Developmental Disorders, Institute of Health Sciences, College of Medical Sciences, Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| |
Collapse
|
21
|
Jiang X, Yang Y, Feng S, Hu Y, Cao M, Luo J. Reactive effects of pre-sowing magnetic field exposure on morphological characteristics and antioxidant ability of Brassica juncea in phytoextraction. CHEMOSPHERE 2022; 303:135046. [PMID: 35618056 DOI: 10.1016/j.chemosphere.2022.135046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
As magnetic fields constantly act on living and biochemical processes, it is reasonable to hypothesize that magnetic field treatment of plant seeds would enhance the uptake capacity of non-essential elements. To verify this hypothesis, seeds of Brassica juncea were treated with 50, 100, 150, 200, and 400 mT fields, and the dry weight, Cd uptake capacity, ferritin content, antioxidant enzyme activity, and phytoremediation effects of the plant were compared at the end of the experiment. Relative to the control, low- and moderate-intensity fields (50-200 mT) enhanced the dry weight of plant leaves by 15.1%, 24.5%, 35.8%, and 49.1%, respectively, whereas the high-intensity field (400 mT) decreased the biomass yield by 18.9%. The content of Cd in the above-ground tissues of B. juncea enhanced with the increasing field intensity, accompanied by an increase in oxidative damage. The activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased with exposure to low (50 and 100 mT) and moderate (150 and 200 mT) intensities, followed by a reduction at a high intensity (400 mT). Catalase activity (CAT) and ferritin content exhibited an increasing trend with increasing intensity. The Cd decontamination index of B. juncea increased with the increasing magnetic field intensity until it reached a peak at 150 mT, after which the values remained constant. Considering the phytoremediation effect and energy consumption, 150 mT was the optimal scheme for magnetic-field-assisted phytoremediation using B. juncea. This study suggests that a suitable magnetic field can be regarded as an ecologically friendly physical trigger to improve the phytoextraction effect of B. juncea.
Collapse
Affiliation(s)
- Xingchao Jiang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yongchao Yang
- China-Copper Resources Corporation, Kunming, Yunnan, 650051, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
22
|
Zareei E, Zaare-Nahandi F, Oustan S, Hajilou J, Dadpour M. Insight into the role of magnetic nutrient solution on leaf morphology and biochemical attributes of Rasha grapevine (Vitis vinifera L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:290-301. [PMID: 35728421 DOI: 10.1016/j.plaphy.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The growth, development, and morphology of plants are extremely affected by many internal and external factors. In this regard, plant nourishing solutions take the most impact. Nowadays, the magnetization of nutrient solutions has been recommended as a promising eco-friendly approach for improving the growth and development of plants. This study was designed to explore the potential of magnetic nutrient solutions in altering morphometric characteristics as well as some physiological and nutritional attributes of Rasha grapevines. Magnetic treatments included magnetized nutrient solution (MagS) and pre-magnetized water completed with nutrients (MagW + S) at magnetic field intensities (0.1 and 0.2 T). According to the results, the most considerable changes in leaf shape and size as well as fresh and dry weights were observed in the plants treated with MagS at 0.2 T. Also, MagS 0.2 had a significant effect on increasing photosynthetic pigments, content of total soluble carbohydrates and protein, and activity of antioxidant enzymes. The content of TNK, K, P, Fe, and Cu was considerably amplified by MagW + S 0.2. Overall, the magnetic solutions had favorable influences on physiological, nutritional state, and leaf morphology of grapevines possibly through alerting water and solution properties, mineral solubility, and phytohormones signalling.
Collapse
Affiliation(s)
- Elnaz Zareei
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Fariborz Zaare-Nahandi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Shahin Oustan
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jafar Hajilou
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammadreza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
23
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
24
|
Maghsoudi N, Doroodmand MM. Specific Ionic Recognition Using Fig's Xylem/Phloem Vessel as a Novel and Applicable Device: Lab-on-a Xylem/Phloem. ACS OMEGA 2022; 7:20596-20604. [PMID: 35755353 PMCID: PMC9218978 DOI: 10.1021/acsomega.2c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
A novel and specific detection system using voltage-stimulating ion transport through fig xylem/phloem vessels as a new lab-on-a xylem/phloem substrate was introduced. The voltage drove the ion flux through the vessels by a sinusoidal waveform with very low frequency (2.70 ± 0.05 kHz, n = 10) and voltage amplitude between 0.0 and 1.0 kV (vs total applied potential) with positive and negative polarities depending on cation and anion separation, respectively. The recorded potential induced by the applied potential was considered as a fingerprint electrical potential stimulator during reliable recognition of different ionic species. The system possessed some different characteristics such as (i) prominent figures of merit with linear ranges between 5.0 and 1200.0 (±0.7, n = 10) ng mL-1 (correlation coefficient, R 2, >0.99) for each ionic species and (ii) improved detection limits via tracing electrical current and conductance gradient (as the sensitive detection systems), while testing 50.0 ng mL-1 of different salts as cationic and anionic species. The reliability of the system was evidenced via focusing on at least 60 independent cationic and anionic species during introducing a 70-membered distinct array-based bio-substrate device. This process not only showed great method applicability for specific determination with acceptable figures of merit but also resulted in introducing a software database for direct detection and recognition of various ionic analyses. The introduced detection/separation device competed with other spectroscopic/electrochemical systems due to the specific and simultaneous recognition of great ranges of ionic species in different real samples at ultratrace levels.
Collapse
|
25
|
The Effect on the Germination Vigour of Cucumber Seeds after Receiving Magnetic Field Treatment Pre-Sowing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the experiment, the impact of magnetisation on cucumber seeds is examined with the use of Bitter magnets with a constant magnetic field. The magnetisation process is performed in three magnetic fields: low—200 mT, medium—1 T, and high—9 T for 15 and 60 min. After germination, the biometric parameters are determined. The results of this research show that cucumber after pre-treatment in a magnetic field of 1 T for 60 min has a similar germination capacity and root length as the control sample. However, cucumber seeds magnetised in a 1 T field for 60 min have a significantly higher dry weight than the control sample (5.50 ± 0.32 mg vs. 3.01 ± 0.18 mg). The magnetisation in 9 T for both 15 and 60 min shows that these samples have a significantly lower germination capacity (86.8 ± 4.4% and 81.4 ± 7.3% vs. 91.8 a ± 3.2%) and root length (1.78 ± 0.02 cm and 4.42 ± 0.83 cm vs. 8.21 ± 0.34 cm) compared to the control sample. The cucumber seeds pre-treated at 9 T have a significantly greater dry weight than the control sample. Additionally, our research shows that some magnetic field intensities and magnetisation durations inhibit root growth and limit germination. These results are also important as they indicate which values of magnetic fields should be avoided.
Collapse
|
26
|
Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of thermal and non-thermal atmospheric pressure plasma to solve problems related to agriculture and biomedicine is the focus of this paper. Plasma in thermal equilibrium is used where heat is required. In agriculture, it is used to treat soil and land contaminated by the products of biomass, plastics, post-hospital and pharmaceutical waste combustion, and also by ecological phenomena that have recently been observed, such as droughts, floods and storms, leading to environmental pollution. In biomedical applications, thermal plasma is used in so-called indirect living tissue treatment. The sources of thermal plasma are arcs, plasma torches and microwave plasma reactors. In turn, atmospheric pressure cold (non-thermal) plasma is applied in agriculture and biomedicine where heat adversely affects technological processes. The thermodynamic imbalance of cold plasma makes it suitable for organic syntheses due its low power requirements and the possibility of conducting chemical reactions in gas at relatively low and close to ambient temperatures. It is also suitable in the treatment of living tissues and sterilisation of medical instruments made of materials that are non-resistant to high temperatures. Non-thermal and non-equilibrium discharges at atmospheric pressure that include dielectric barrier discharges (DBDs) and atmospheric pressure plasma jets (APPJs), as well as gliding arc (GAD), can be the source of cold plasma. This paper presents an overview of agriculture and soil protection problems and biomedical and health protection problems that can be solved with the aid of plasma produced with electrical discharges. In particular, agricultural processes related to water, sewage purification with ozone and with advanced oxidation processes, as well as those related to contaminated soil treatment and pest control, are presented. Among the biomedical applications of cold plasma, its antibacterial activity, wound healing, cancer treatment and dental problems are briefly discussed.
Collapse
|
27
|
Scrutinizing the Impact of Alternating Electromagnetic Fields on Molecular Features of the Model Plant Arabidopsis thaliana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095144. [PMID: 35564539 PMCID: PMC9099453 DOI: 10.3390/ijerph19095144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023]
Abstract
Natural and anthropogenic electromagnetic fields (EMFs) are ubiquitous in the environment and interfere with all biological organisms including plants. Particularly the quality and quantity of alternating EMFs from anthropogenic sources are increasing due to the implementation of novel technologies. There is a significant interest in exploring the impact of EMFs (similar to those emitted from battery chargers of electric cars) on plants. The model plant Arabidopsis thaliana was exposed to a composite alternating EMF program for 48 h and scrutinized for molecular alterations using photosynthetic performance, metabolite profiling, and RNA sequencing followed by qRT-PCR validation. Clear differences in the photosynthetic parameters between the treated and control plants indicated either lower nonphotochemical quenching or higher reduction of the plastoquinone pool or both. Transcriptome analysis by RNA sequencing revealed alterations in transcript amounts upon EMF exposure; however, the gene ontology groups of, e.g., chloroplast stroma, thylakoids, and envelope were underrepresented. Quantitative real-time PCR validated deregulation of some selected transcripts. More profound were the readjustments in metabolite pool sizes with variations in photosynthetic and central energy metabolism. These findings together with the invariable phenotype indicate efficient adjustment of the physiological state of the EMF-treated plants, suggesting testing for more challenging growth conditions in future experiments.
Collapse
|
28
|
Tang Y, Ji S, Chen D, Wang J, Cao M, Luo J. Effects of magnetically treated Sedum alfredii seeds on the dissolved organic matter characteristics of Cd-contaminated soil during phytoextraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20808-20816. [PMID: 34743305 DOI: 10.1007/s11356-021-17312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The effects of magnetic field treatments on the two determining factors of phytoremediation, growth status and element uptake capacity, of Sedum alfredii Hance. have been thoroughly studied; however, minimal studies have been performed to determine the influence of the Cd hyperaccumulator S. alfredii, grown from magnetically treated seeds, on the dissolved organic matter (DOM) characteristics in its rhizosphere. A series of pot experiments were conducted to evaluate the variations in the DOM concentration and fractionations in the rhizosphere of S. alfredii treated with external magnetic fields. Compared with the untreated seeds, S. alfredii grown from magnetically treated seeds excreted more DOM in its rhizosphere. Additionally, the hydrophilic DOM fractionation proportion, which presented a greater capacity to mobilize Cd in the soil, increased from 42.7 % in the control sample to 47.2 % in the 150 mT magnetically treated S. alfredii sample. The water-soluble and exchangeable forms of Cd in the rhizosphere of the magnetically treated S. alfredii were significantly lower than those of the control sample. Furthermore, the Cd extraction capacity of DOM from the rhizosphere of the magnetically treated S. alfredii was greater than that of the control sample, thereby increasing the Cd uptake ability of the magnetically treated species. This study proves that a suitable magnetic field treatment can enhance the phytoremediation effect of S. alfredii, and reveals the mechanism of the phenomenon from the perspective of changes in soil DOM.
Collapse
Affiliation(s)
- Youjun Tang
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China
| | - Shuaizhi Ji
- Technical Inspection Center of Zhongyuan Oilfield, SINOPEC, Puyang, China
| | - Dan Chen
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China
| | - Jiawei Wang
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Jie Luo
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China.
| |
Collapse
|
29
|
Sudsiri CJ, Jumpa N, Ritchie RJ. Stimulation of propagation of para-rubber tree grafts using electromagnetic field irradiation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Ercan I, Tombuloglu H, Alqahtani N, Alotaibi B, Bamhrez M, Alshumrani R, Ozcelik S, Kayed TS. Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:36-48. [PMID: 34844116 DOI: 10.1016/j.plaphy.2021.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The magnetic field (MF) interacts with biological systems and has the potential to increase germination, plant growth and productivity. Although it is known as a low cost and promising approach, the mechanism that increases growth is not fully understood yet. In this study, the effect of different MF strengths (20, 42, 125, and 250 mT) was investigated on barley (Hordeum vulgare L.). In addition to phenological parameters, possible cell damage, electron transport rate, chlorophyll fluorescence, magnetic character and elemental status of tissues were determined. Results showed that lower strengths (≤125 mT) of MF treatment improve germination. Confocal microscopy analyzes revealed MF-induced cell membrane damage in roots that could alter the elemental content of tissues. Elemental analyzes found that the content of macroelements (Ca, Mg, P, and K) are gradually reduced with increasing MF forces; in opposite the microelement contents (Fe, B, Cu, Mn, Zn, and Mo) are increased in roots. Diamagnetism is the dominant magnetic character in all root and leaf samples. However, the roots became surprisingly superparamagnetic in 250 mT application. It seems that MF treatment at higher strength (250 mT in this study) could influence the orientation of magnetic moments. These findings suggest that MF application: i) can alter the magnetic character of plants, ii) enhances the germination, photosynthetic machinery, and growth, and iii) affects the nutrient uptake and abundance in tissues, depending on the MF strength. This comprehensive study can help in understanding the interaction of magnetic field with plants.
Collapse
Affiliation(s)
- Ismail Ercan
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia.
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Noha Alqahtani
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Bayan Alotaibi
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Muruj Bamhrez
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Raghdah Alshumrani
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Sezen Ozcelik
- Department of Food Engineering, Faculty of Engineering, Hakkari University, 30000, Hakkari, Turkey
| | - Tarek Said Kayed
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
31
|
Bera K, Dutta P, Sadhukhan S. Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. PLANT CELL REPORTS 2022; 41:53-73. [PMID: 34654949 DOI: 10.1007/s00299-021-02798-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Seed priming has long been explored as an effective value-added potential technique that results in improved germination, reduced seedling emergence time, shortened crop duration, increased stress tolerance and eventually increased higher grain production. However, the wider applicability of water or chemical-based conventional methods of seed priming is often restricted considering its deleterious effects on post-treatment storability or agricultural pollution due to the persistence of chemicals in plant systems or in the environment. In this context, the utilization of physical methods of seed priming for enhancing plant productivity has created a new horizon in the domain of seed technology. Being eco-friendly and cost-effective approaches, priming with extra-terrestrial or physical agents such as ionizing radiation such as X-rays and gamma rays and non-ionizing radiation such as ultrasonic wave, magnetic field, microwaves, and infrared light offers many advantages along with ensuring enhanced production over conventional methods. Ultraviolet radiations, bridging between ionizing and non-ionizing radiation, are important electromagnetic waves that would also be an effective priming agent. Non-ionizing radiation has certain biological advantages over ionizing radiation since it does not generate charged ions while passing through a subject, but has enough energy to cause biological effects. Extensive research works to study the effects of various non-ionizing physical priming methods are required before their wider exploitation in agriculture. With this background, this review aims to highlight the current understanding of non-ionizing physical methods of seed priming and its applicability to combat present-day challenges to achieve agro-ecological resilience.
Collapse
Affiliation(s)
- Kuntal Bera
- Department of Seed Science and Technology, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, 736165, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Puspendu Dutta
- Department of Seed Science and Technology, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, 736165, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India.
| |
Collapse
|
32
|
Causal theory on acceleration of seed germination in the vicinity of high voltage direct current transmission line. J Theor Biol 2021; 531:110899. [PMID: 34509491 DOI: 10.1016/j.jtbi.2021.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
Seed germination is the primary stage of growth in a seed. A wealth of experiments exist in literature to support the existence of correlation between seed germination to the electric and magnetic fields. This becomes more important as researchers have suggested to develop technologies to build ecologically clean and environment-friendly solutions to agricultural practices. Although the literature supports the existence of seed germination acceleration, the lack of a definite causal theory has been observed by numerous researchers over decades. After considering all the existing experimental data, we have formulated a causal theory to explain the factors influencing seed germination around high voltage DC transmission lines. This work opens new avenues of research in this field.
Collapse
|
33
|
Sukhova E, Gromova E, Yudina L, Kior A, Vetrova Y, Ilin N, Mareev E, Vodeneev V, Sukhov V. Change in H + Transport across Thylakoid Membrane as Potential Mechanism of 14.3 Hz Magnetic Field Impact on Photosynthetic Light Reactions in Seedlings of Wheat ( Triticum aestivum L.). PLANTS 2021; 10:plants10102207. [PMID: 34686016 PMCID: PMC8537839 DOI: 10.3390/plants10102207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Natural and artificial extremely low-frequency magnetic fields (ELFMFs) are important factors influencing physiological processes in living organisms including terrestrial plants. Earlier, it was experimentally shown that short-term and long-term treatments by ELFMFs with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) influenced parameters of photosynthetic light reactions in wheat leaves. The current work is devoted to an analysis of potential ways of this ELFMF influence on the light reactions. Only a short-term wheat treatment by 14.3 Hz ELFMF was used in the analysis. First, it was experimentally shown that ELFMF-induced changes (an increase in the effective quantum yield of photosystem II, a decrease in the non-photochemical quenching of chlorophyll fluorescence, a decrease in time of changes in these parameters, etc.) were observed under the action of ELFMF with widely ranging magnitudes (from 3 to 180 µT). In contrast, the potential quantum yield of photosystem II and time of relaxation of the energy-dependent component of the non-photochemical quenching were not significantly influenced by ELFMF. Second, it was shown that the ELFMF treatment decreased the proton gradient across the thylakoid membrane. In contrast, the H+ conductivity increased under this treatment. Third, an analysis of the simplest mathematical model of an H+ transport across the thylakoid membrane, which was developed in this work, showed that changes in H+ fluxes related to activities of the photosynthetic electron transport chain and the H+-ATP synthase were not likely a mechanism of the ELFMF influence. In contrast, changes induced by an increase in an additional H+ flux (probably, through the proton leakage and/or through the H+/Ca2+ antiporter activity in the thylakoid membrane) were in good accordance with experimental results. Thus, we hypothesized that this increase is the mechanism of the 14.3 Hz ELFMF influence (and, maybe, influences of other low frequencies) on photosynthetic light reactions in wheat.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Ekaterina Gromova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
| | - Lyubov Yudina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
| | - Anastasiia Kior
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Yana Vetrova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
| | - Nikolay Ilin
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Evgeny Mareev
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
- Correspondence: ; Tel.: +7-909-292-8653
| |
Collapse
|
34
|
Yang P, Gan T, Pi W, Cao M, Chen D, Luo J. Effect of using Celosia argentea grown from seeds treated with a magnetic field to conduct Cd phytoremediation in drought stress conditions. CHEMOSPHERE 2021; 280:130724. [PMID: 34162085 DOI: 10.1016/j.chemosphere.2021.130724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
The mechanisms of the stimulatory effect of external magnetic fields on plant growth have been revealed; however, the role of magnetic fields in the efficiency of phytoremediation with Celosia argentea grown under drought stress which results in detrimental influences on food security has not been reported. Therefore, this study evaluated the physiological responses of C. argentea to the interactions between exposure to a magnetic field and drought stress. Compared with a control, a drought treatment negatively affected the dry weight, transpiration rate, and Cd extraction efficiency of the species and caused oxidative damage in plant cells, as manifested by the increase in malondialdehyde levels and antioxidant enzyme activities. The biomass production, pigment levels, Cd content, and phytoremediation efficiency of the plant were positively affected by all magnetic field treatments compared to the control. All magnetic treatments, except those at 30 mT, alleviated the detrimental effects induced by a 10-day irrigation regime by enhancing the dry weight, chlorophyll content, and activities of antioxidant enzymes in the leaves of the plant. In terms of the interaction between pre-sowing magnetic field seed treatment and drought stress, a 100 mT treatment increased most of the measured parameters, particularly under a 3-day irrigation regime; this corresponded to the optimal phytoremediation efficiency. The results suggest that magnetic field treatment is a novel, economical, and practicable strategy by which to increase the efficiency of phytoremediation using C. argentea under drought stress.
Collapse
Affiliation(s)
- Pan Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Tian Gan
- School of Civil Engineering, Shandong University, Jinan, China
| | - Wen Pi
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Dan Chen
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
35
|
Erdmann W, Kmita H, Kosicki JZ, Kaczmarek Ł. How the Geomagnetic Field Influences Life on Earth - An Integrated Approach to Geomagnetobiology. ORIGINS LIFE EVOL B 2021; 51:231-257. [PMID: 34363564 DOI: 10.1007/s11084-021-09612-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Earth is one of the inner planets of the Solar System, but - unlike the others - it has an oxidising atmosphere, relatively stable temperature, and a constant geomagnetic field (GMF). The GMF does not only protect life on Earth against the solar wind and cosmic rays, but it also shields the atmosphere itself, thus creating relatively stable environmental conditions. What is more, the GMF could have influenced the origins of life: organisms from archaea to plants and animals may have been using the GMF as a source of spatial information since the very beginning. Although the GMF is constant, it does undergo various changes, some of which, e.g. a reversal of the poles, weaken the field significantly or even lead to its short-term disappearance. This may result in considerable climatic changes and an increased frequency of mutations caused by the solar wind and cosmic radiation. This review analyses data on the influence of the GMF on different aspects of life and it also presents current knowledge in the area. In conclusion, the GMF has a positive impact on living organisms, whereas a diminishing or disappearing GMF negatively affects living organisms. The influence of the GMF may also be an important factor determining both survival of terrestrial organisms outside Earth and the emergence of life on other planets.
Collapse
Affiliation(s)
- Weronika Erdmann
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jakub Z Kosicki
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
36
|
Politaeva N, Badenko V. Magnetic and electric field accelerate Phytoextraction of copper Lemna minor duckweed. PLoS One 2021; 16:e0255512. [PMID: 34347844 PMCID: PMC8336833 DOI: 10.1371/journal.pone.0255512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022] Open
Abstract
In accordance with the opinion of the World Health Organization and the World Water Council the development of effective technologies for the treatment of wastewater from heavy metals for their discharge into water bodies or reuse is an urgent task nowadays. Phytoremediation biotechnologies is the most environmentally friendly and cheapest way of the treatment of wastewater, suitable for sustainable development principals. The main disadvantage of the phytoremediation is the slow speed of the process. A method for accelerating the process of phytoremediation by the combined effect of magnetic and weak electric fields is proposed. The purpose of this study is to determine the values of the parameters of the magnetic and weak electric fields that are most suitable for extracting cuprum ions from wastewater using the higher aqua plants (Lemna minor). A corresponding technological process based on the results of the study is proposed. The results have shown that the removal of copper cations from sulfate solutions effectively occurs in the initial period of time (1–5 hours) under the influence of a magnetic field with an intensity of H = 2 kA/m. Under the combined influence of an electrical current with density j = 240 μA/cm2 and a magnetic field (H = 2 kA/m) the highest rate of copper extraction by duckweed leaves is achieved. Under these conditions, the greatest growth and development of plant leaves occurs. The paper presents the results of determining of the parameters of the electrochemical release from the eluate of the spent phytomass of duckweed. It has been determined that the release of metal occurs at E = 0.32 V. An original scheme for wastewater treatment from copper with subsequent separation of copper from the spent phytomass of duckweed is proposed. In general, the presented results are a scientific justification of wastewater treatment technologies and a contribution to resolving the crisis in the field of fresh water supply. An important contribution in the circular economy is a technology recommendation proposed for recovering copper from duckweed after wastewater treatment.
Collapse
Affiliation(s)
- Natalia Politaeva
- Civil Engineering Institute, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russian Federation
| | - Vladimir Badenko
- Civil Engineering Institute, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russian Federation
- * E-mail:
| |
Collapse
|
37
|
Dobránszki J. Application of naturally occurring mechanical forces in in vitro plant tissue culture and biotechnology. PLANT SIGNALING & BEHAVIOR 2021; 16:1902656. [PMID: 33902398 PMCID: PMC8143234 DOI: 10.1080/15592324.2021.1902656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Cues and signals of the environment in nature can be either beneficial or detrimental from the growth and developmental perspectives. Plants, despite their limited spatial mobility, have developed advanced strategies to overcome the various and changing environmental impacts including stresses. In vitro plantlets, tissues and cells are constantly exposed to the influence of their environment that is well controlled. Light has a widely known morphogenetic effect on plants; however, other physical cues and signals are at least as important but were often neglected. In this review, I summarize our knowledge about the role of the mechanical stimuli, like sound, ultrasound, touch, or wounding in in vitro plant cultures. I summarize the molecular, biochemical, physiological, growth, and developmental changes they cause and how these processes are controlled; moreover, how their regulating or stimulating roles are applied in various plant biotechnological applications. Recent studies revealed that mechanical forces can be used for affecting the plant development and growth in plant tissue culture efficiently, and for increasing the efficacy of other plant biotechnological methods, like genetic transformation and secondary metabolite production.
Collapse
Affiliation(s)
- Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
38
|
Paponov IA, Fliegmann J, Narayana R, Maffei ME. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci Rep 2021; 11:9195. [PMID: 33911161 PMCID: PMC8080623 DOI: 10.1038/s41598-021-88695-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
The geomagnetic field (GMF) is one of the environmental stimuli that plants experience continuously on Earth; however, the actions of the GMF on plants are poorly understood. Here, we carried out a time-course microarray experiment to identify genes that are differentially regulated by the GMF in shoot and roots. We also used qPCR to validate the activity of some genes selected from the microarray analysis in a dose-dependent magnetic field experiment. We found that the GMF regulated genes in both shoot and roots, suggesting that both organs can sense the GMF. However, 49% of the genes were regulated in a reverse direction in these organs, meaning that the resident signaling networks define the up- or downregulation of specific genes. The set of GMF-regulated genes strongly overlapped with various stress-responsive genes, implicating the involvement of one or more common signals, such as reactive oxygen species, in these responses. The biphasic dose response of GMF-responsive genes indicates a hormetic response of plants to the GMF. At present, no evidence exists to indicate any evolutionary advantage of plant adaptation to the GMF; however, plants can sense and respond to the GMF using the signaling networks involved in stress responses.
Collapse
Affiliation(s)
- Ivan A Paponov
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Judith Fliegmann
- ZMBP Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ravishankar Narayana
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Massimo E Maffei
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
39
|
Magnetic Field Treatments Improves Sunflower Yield by Inducing Physiological and Biochemical Modulations in Seeds. Molecules 2021; 26:molecules26072022. [PMID: 33916293 PMCID: PMC8036579 DOI: 10.3390/molecules26072022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Magnetic seed enhancement has been practicing as a promising tool to improve germination and seedling growth of low vigor seeds stored under suboptimal conditions, but there is still ambiguity regarding the prospects for magnetism in oilseeds. Present study elucidates the potential of magnetic seed stimulation to improve sunflower germination, growth and yield. Germination and emergence tests were performed to optimize the strength of the magnetic field to sunflower seed enhancement. The seeds were directly exposed to magnetic field strengths of 50, 100 and 150 millitesla (mT) for 5, 10 and 15 min (min) and then standard germination tests were performed. Secondly, the emergence potential of untreated seeds was compared with seed exposed to hydropriming, priming with 3% moringa leaf extract (MLE), priming with magnetically treated water (MTW) for 10 min and priming with 3% MLE solution prepared in magnetically treated water (MTW + MLE). Germination, emergence, seedling growth and seed biochemical properties were used to select the best treatment for field evaluation. The results of the study revealed that magnetic seed treatment with 100 mT for 10 min and seed priming with 3% MLE solution in magnetically treated water (MTW + MLE) significantly improved emergence, crop growth rate and sunflower yield.
Collapse
|
40
|
Niu H, Bian C, Long A, Wang Z, Cao M, Luo J. Impacts of root pruning and magnetized water irrigation on the phytoremediation efficiency of Celosia argentea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111963. [PMID: 33493728 DOI: 10.1016/j.ecoenv.2021.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Pot experiments were conducted to evaluate the effects of magnetized water irrigation (100 mT) and root cutting (three pruning intensities) on phytoremediation efficiency of Celosia argentea. In the absence of magnetic field treatment, low root cutting intensity increased the dry weight of the below-ground and aerial parts of C. argentea. Moderate and severe cutting intensities decreased the biomass yield of the plant roots by 11.3% and 31.0%, and increased the dry weight of aerial parts by 75.9% and 27.6%, respectively, alleviating the detrimental effects of these pruning treatments on the plant roots. In the presence of magnetic field treatment, 10% and 25% of pruning treatments increased the dry weight of plant roots by 52.1% and 33.8%, and 33% pruning treatment decreased it by 14.1%. Under both irrigation treatments, low and moderate root cutting strategies did not affect the take up of Cd by the plant roots, while severe cutting decreased it significantly. Enzyme activities decreased with the increment of pruning intensity, and magnetic field can alleviate the negative impact, increasing the capacity of the root pruned species to scavenge the excessive ROS induced by the accumulated Cd. The results showed that root pruning enhanced the phytoremediation efficiency of C. argentea, and this effect was enhanced when combined with magnetized water irrigation.
Collapse
Affiliation(s)
- Hong Niu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Cuijie Bian
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Aogui Long
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Zhengli Wang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
41
|
Alavi SA, Ghehsareh AM, Soleymani A, Panahpour E. Enhanced nutrient uptake in salt-stressed Mentha piperita using magnetically treated water. PROTOPLASMA 2021; 258:403-414. [PMID: 33130948 DOI: 10.1007/s00709-020-01547-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The improvement of the growth and quality of medicinal plants under stress is of significance, worldwide. The hypothesis was to alleviate salinity stress in Mentha piperita by enhancing nutrient uptake using magnetically treated water, which to our knowledge has not been previously investigated. The objective was to test the effects of magnetized water (using alternating magnetic fields) (main plots, M1-M4 representing control, 100, 200, and 300 mT, respectively), salinity (subplots, S1-S4 representing control, 40, 80, and 120 mM NaCl, respectively), and growth medium (sub-subplots, X1-X4 representing coco peat, palm, coco peat + perlite, and palm + perlite, respectively) on M. piperita nutrient uptake in the greenhouse. The M treatments, especially the 100 and 200 mT levels, significantly increased plant N (1.08%, S3M4X1), P (0.89%, S3M3X1), K (3.23%, S3M3X1), Ca (53.6 mg/kg, S4M4X4), and Mg (39.63 mg/kg, S3M3X2) concentrations (compared with control at 0.71, 0.49, 2.4, 26.63, 1.63) even at the highest level of salinity. Magnetically treated water also significantly enhanced plant Fe and Zn concentration to a maximum of 750 μg/kg (M4S3X1) and 94.67 μg/kg (S4M4X3), under salinity stress, respectively. The single and the combined use of organic and mineral media significantly affected plant nutrient uptake, especially when used with the proper rate of M treatment. If combined with the proper growth medium, the magnetized water may be more effective on the alleviation of salt stress in Mentha piperita by enhancing nutrient uptake.
Collapse
Affiliation(s)
- Sayed Amin Alavi
- Department of Soil Science, Isfahan (Khorasgan) Islamic Azad University, Isfahan, Iran
| | | | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Islamic Azad University, Isfahan, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Ebrahim Panahpour
- Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
42
|
Sukhov V, Sukhova E, Sinitsyna Y, Gromova E, Mshenskaya N, Ryabkova A, Ilin N, Vodeneev V, Mareev E, Price C. Influence of Magnetic Field with Schumann Resonance Frequencies on Photosynthetic Light Reactions in Wheat and Pea. Cells 2021; 10:149. [PMID: 33451018 PMCID: PMC7828558 DOI: 10.3390/cells10010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Photosynthesis is an important target of action of numerous environmental factors; in particular, stressors can strongly affect photosynthetic light reactions. Considering relations of photosynthetic light reactions to electron and proton transport, it can be supposed that extremely low frequency magnetic field (ELFMF) may influence these reactions; however, this problem has been weakly investigated. In this paper, we experimentally tested a hypothesis about the potential influence of ELFMF of 18 µT intensity with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) on photosynthetic light reactions in wheat and pea seedlings. It was shown that ELFMF decreased non-photochemical quenching in wheat and weakly influenced quantum yield of photosystem II at short-term treatment; in contrast, the changes in potential and effective quantum yields of photosystem II were observed mainly under chronic action of ELFMF. It is interesting that both short-term and chronic treatment decreased the time periods for 50% activation of quantum yield and non-photochemical quenching under illumination. Influence of ELFMF on pea was not observed at both short-term and chronic treatment. Thus, we showed that ELFMF with Schumann resonance frequencies could influence photosynthetic light processes; however, this effect depends on plant species (wheat or pea) and type of treatment (short-term or chronic).
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (A.R.); (V.V.)
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (A.R.); (V.V.)
| | - Yulia Sinitsyna
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (Y.S.); (N.M.); (N.I.); (E.M.); (C.P.)
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ekaterina Gromova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (A.R.); (V.V.)
| | - Natalia Mshenskaya
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (Y.S.); (N.M.); (N.I.); (E.M.); (C.P.)
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Anastasiia Ryabkova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (A.R.); (V.V.)
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Nikolay Ilin
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (A.R.); (V.V.)
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Evgeny Mareev
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Colin Price
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Department of Geophysics, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
43
|
Llauradó Maury G, Méndez Rodríguez D, Hendrix S, Escalona Arranz JC, Fung Boix Y, Pacheco AO, García Díaz J, Morris-Quevedo HJ, Ferrer Dubois A, Aleman EI, Beenaerts N, Méndez-Santos IE, Orberá Ratón T, Cos P, Cuypers A. Antioxidants in Plants: A Valorization Potential Emphasizing the Need for the Conservation of Plant Biodiversity in Cuba. Antioxidants (Basel) 2020; 9:E1048. [PMID: 33121046 PMCID: PMC7693031 DOI: 10.3390/antiox9111048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Plants are phytochemical hubs containing antioxidants, essential for normal plant functioning and adaptation to environmental cues and delivering beneficial properties for human health. Therefore, knowledge on the antioxidant potential of different plant species and their nutraceutical and pharmaceutical properties is of utmost importance. Exploring this scientific research field provides fundamental clues on (1) plant stress responses and their adaptive evolution to harsh environmental conditions and (2) (new) natural antioxidants with a functional versatility to prevent and treat human pathologies. These natural antioxidants can be valorized via plant-derived foods and products. Cuba contains an enormously rich plant biodiversity harboring a great antioxidant potential. Besides opening new avenues for the implementation of sustainable agroecological practices in crop production, it will also contribute to new strategies to preserve plant biodiversity and simultaneously improve nature management policies in Cuba. This review provides an overview on the beneficial properties of antioxidants for plant protection and human health and is directed to the valorization of these plant antioxidants, emphasizing the need for biodiversity conservation.
Collapse
Affiliation(s)
- Gabriel Llauradó Maury
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Daniel Méndez Rodríguez
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Sophie Hendrix
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Julio César Escalona Arranz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Yilan Fung Boix
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Ania Ochoa Pacheco
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Jesús García Díaz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Humberto J. Morris-Quevedo
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Albys Ferrer Dubois
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Elizabeth Isaac Aleman
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Natalie Beenaerts
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Isidro E. Méndez-Santos
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
| | - Teresa Orberá Ratón
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| |
Collapse
|
44
|
Sarraf M, Kataria S, Taimourya H, Santos LO, Menegatti RD, Jain M, Ihtisham M, Liu S. Magnetic Field (MF) Applications in Plants: An Overview. PLANTS 2020; 9:plants9091139. [PMID: 32899332 PMCID: PMC7570196 DOI: 10.3390/plants9091139] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 01/21/2023]
Abstract
Crop yield can be raised by establishment of adequate plant stand using seeds with high germination ratio and vigor. Various pre-sowing treatments are adopted to achieve this objective. One of these approaches is the exposure of seeds to a low-to-medium level magnetic field (MF), in pulsed and continuous modes, as they have shown positive results in a number of crop seeds. On the basis of the sensitivity of plants to MF, different types of MF have been used for magnetopriming studies, such as weak static homogeneous magnetic fields (0–100 μT, including GMF), strong homogeneous magnetic fields (milliTesla to Tesla), and extremely low frequency (ELF) magnetic fields of low-to-moderate (several hundred μT) magnetic flux densities. The agronomic application of MFs in plants has shown potential in altering conventional plant production systems; increasing mean germination rates, and root and shoot growth; having high productivity; increasing photosynthetic pigment content; and intensifying cell division, as well as water and nutrient uptake. Furthermore, different studies suggest that MFs prevent the large injuries produced/inflicted by diseases and pests on agricultural crops and other economically important plants and assist in reducing the oxidative damage in plants caused by stress situations. An improved understanding of the interactions between the MF and the plant responses could revolutionize crop production through increased resistance to disease and stress conditions, as well as the superiority of nutrient and water utilization, resulting in the improvement of crop yield. In this review, we summarize the potential applications of MF and the key processes involved in agronomic applications. Furthermore, in order to ensure both the safe usage and acceptance of this new opportunity, the adverse effects are also discussed.
Collapse
Affiliation(s)
- Mohammad Sarraf
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran
| | - Sunita Kataria
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Indore 452001, India; (S.K.); (M.J.)
| | - Houda Taimourya
- Department of Horticulture, Horticol complex of Agadir (CHA), Agronomy and Veterinary Institute Hassan II, Agadir 80000, Morocco;
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande-RS 96203-900, Brazil;
| | - Renata Diane Menegatti
- Department of Botany, Institute of Biology, Federal University of Pelotas, Rio Grande-RS 96203-900, Brazil;
| | - Meeta Jain
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Indore 452001, India; (S.K.); (M.J.)
| | - Muhammad Ihtisham
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.I.); (S.L.); Tel.: +86-139-8064-5789 (S.L.)
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (M.I.); (S.L.); Tel.: +86-139-8064-5789 (S.L.)
| |
Collapse
|
45
|
Ramesh B, Kavitha G, Gokiladevi S, Balachandar RK, Kavitha K, Gengadharan AC, Puvanakrishnan R. Effect of Extremely Low Power Time-Varying Electromagnetic Field on Germination and Other Characteristics in Foxtail Millet (Setaria italica) Seeds. Bioelectromagnetics 2020; 41:526-539. [PMID: 32865253 DOI: 10.1002/bem.22292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 11/12/2022]
Abstract
The ability of extremely low, time-varying electromagnetic field (EMF) to improve germination efficacy was studied in Foxtail millet (Setaria italica) seeds using response surface methodology. An optimal factorial central composite design was chosen to optimize the EMF with three critical factors, viz. frequency, intensity, and duration. The adequacy of the model and fitness was evaluated by analysis of variance and regression coefficients. This model suggested that the factors, frequency, and intensity had a significant impact on germination. Optimal conditions for germination were observed to be 10 Hz frequency, 30,007 nT intensity, and 30-min duration with an observed germination percentage of 93.0, and a predicted germination percentage of 92.92. Magneto-priming was found to increase the germination efficacy (15.66%), shoot length (27.78%), total seedling length (20.30%), seedling dry mass (26.49%), and water uptake (34.48% at 80 min) showing significant output when compared with the control and positive controls. Remarkable improvements were observed in germination parameters such as vigor index-1 (39.14%), vigor index-2 (46.28%), speed of germination (27.52%), and emergence index (12.50%). Magneto-priming was found to reduce the levels of germination-specific enzymes, viz. α-amylase, protease, and dehydrogenase, while it enhanced the levels of antioxidant enzymes, viz. catalase (114.63%) and superoxide dismutase (19.62%), triggering fast germination and early vigor of seedlings. This study clearly showed that EMF priming significantly improved the germination effect and other characteristics of Foxtail millet seeds. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
| | - Govindababu Kavitha
- Department of Biotechnology, Sri Sankara Arts and Science College, Kanchipuram, India
| | | | | | - Kuppuswamy Kavitha
- Department of Microbiology, Sri Sankara Arts and Science College, Kanchipuram, India
| | | | | |
Collapse
|
46
|
Jalili Darbandi Sofla M, Norouzi-Apourvari S, Schaffie M. The effect of magnetic field on stability of conventional and pickering water-in-crude oil emulsions stabilized with fumed silica and iron oxide nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Abdel Latef AAH, Dawood MFA, Hassanpour H, Rezayian M, Younes NA. Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide, Hydrogen Sulfide, Phenylalanine Ammonia-Lyase Activity, Antioxidant Defense System, and Yield in Lettuce. BIOLOGY 2020; 9:E172. [PMID: 32709036 PMCID: PMC7408432 DOI: 10.3390/biology9070172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/24/2023]
Abstract
Magnetic fields are an unavoidable physical factor affecting living organisms. Lettuce seeds (Lactuca sativa var. cabitat L.) were subjected to various intensities of the static magnetic field (SMF) viz., MF0 (control), SMF1 (0.44 Tesla (T), SMF2 (0.77 T), and SMF3 (1 T) for three exposure times (1, 2, and 3 h). SMF-treated seedlings showed induction in growth parameters and metabolism comparing to control. All photosynthetic pigments were induced markedly under SMF, especially chlorophyll a. SMF at different intensities boosted osmolytes, non-enzymatic antioxidants, and the phenylalanine ammonia-lyase activity over non-magnetized seedlings. Oxidative damage criteria viz., hydrogen peroxide, superoxide radical, and lipid peroxidation, as well as polyphenol oxidase activity, were kept at low values under SMF-treated seeds relative to control, especially SMF2. Electron donors to antioxidant enzymes including nitrate reductase, nitric oxide, and hydrogen sulfide induced via SMF exposure and consequently the activities of superoxide dismutase, glutathione-S-transferases, catalase, and peroxidases family enzymes were also stimulated under SMF, whatever the intensity or the exposure period applied. All these regulations reflected on the enhancement of lettuce yield production which reached 50% over the control at SMF3. Our findings offered that SMF-seed priming is an innovative and low-cost strategy that can improve the growth, bioactive constituents, and yield of lettuce.
Collapse
Affiliation(s)
- Arafat Abdel Hamed Abdel Latef
- Biology Department, Turabah University College, Turabah Branch, Taif University, Taif 21995, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Halimeh Hassanpour
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran 14665-834, Iran;
| | - Maryam Rezayian
- Department of Plant Biology, and Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran;
| | - Nabil A. Younes
- Horticulture Department, Faculty of Agriculture, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;
| |
Collapse
|
48
|
Mohammadi R, Roshandel P. Ameliorative Effects of a Static Magnetic Field on Hyssop (Hyssopus officinalis L.) Growth and Phytochemical Traits Under Water Stress. Bioelectromagnetics 2020; 41:403-412. [PMID: 32573004 DOI: 10.1002/bem.22278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 05/23/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
The present study was carried out in order to evaluate the promoting effect of a static magnetic field (SMF) on drought tolerance and medicinal properties in Hyssopus officinalis. In the current work, the effect of seed priming with SMF (45, 90, 200, and 250 mT for 5 min) was investigated in 60-day-old hyssop (H. officinalis) plants that were irrigated every 8 days. The assessments consisted of total dry mass, membrane integrity, photosynthetic pigment concentrations, polyphenol content, antioxidant enzyme activities, and antioxidant capacity. Compared with exclusively water stress, magnetopriming, particularly at 200 mT, significantly altered these parameters in the grown plants. At this intensity, the level of total dry mass, total chlorophyll, and polyphenol content increased by 94%, 2.5- and 7.7-fold, respectively. Also, the level of electrolyte leakage and malondialdehyde decreased by 35% and 33%. The reducing power, DPPH (1,1-diphenyl-2-picrylhydrozyl), and superoxide anion-scavenging activities were highly augmented as well. Magnetopriming at 200 mT increased catalase (+92%) and ascorbate peroxidase (+2.3-fold) activities. However, the highest activity of guaiacol peroxidase was recorded at 90 mT. Generally, the present study illustrated the positive effect of magnetopriming (200 mT) on improvement of drought tolerance in H. officinalis through protection of cellular membrane integrity, maintenance of photosynthetic pigment content, and alternation of antioxidant enzyme activities. Furthermore, the data showed this treatment (200 mT) not only had no negative effect on medicinal properties of H. officinalis, but also improved it via increasing total phenolic content and antioxidant capacity. Bioelectromagnetics. 2020;41:403-412. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
| | - Parto Roshandel
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
49
|
Luo J, He W, Qi S, Wu J, Gu XS. A novel phytoremediation method assisted by magnetized water to decontaminate soil Cd based on harvesting senescent and dead leaves of Festuca arundinacea. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121115. [PMID: 31525682 DOI: 10.1016/j.jhazmat.2019.121115] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/19/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
It is more economical and feasible to harvest above-ground plant tissues, especially leaves, than to uproot the entire plant during phytoremediation. The major goal of this study is to estimate the promoting effect of an external magnetic field on soil Cadmium (Cd) remediation efficiency by harvesting the leaves of Festuca arundinacea, irrigated by normal and magnetized water. Changes in the amount of emerging, mature, senescent, and dead leaves, as well as Cd concentrations in the corresponding tissues were compared. It was found that F. arundinacea irrigated by either kind of water accumulated significantly more Cd in senescent and dead leaves than in other tissues. After irrigation with magnetized water, the biomass of senescent and dead leaves increased from 15.7 and 6.4% to 17.2 and 11.6%, respectively, and a significantly higher amount of Cd (˜23.6%) was redistributed into dead leaves compared with the control. Thus, significantly more Cd was removed by harvesting the senescent and dead leaves of F. arundinacea. These results indicate that magnetic fields can increase the phytoremediation efficiency of F. arundinacea for Cd, and simultaneously reduce the cost of harvested residue disposal.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan 430100, China.
| | - Wenxiang He
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Shihua Qi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jian Wu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaowen Sophie Gu
- School of Botany, University of Melbourne, 3010, Victoria, Australia
| |
Collapse
|
50
|
Islam M, Maffei ME, Vigani G. The Geomagnetic Field Is a Contributing Factor for an Efficient Iron Uptake in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:325. [PMID: 32373135 PMCID: PMC7186349 DOI: 10.3389/fpls.2020.00325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
The Earth's magnetic field, defined as the geomagnetic field (GMF), is an unavoidable environmental factor for all living organisms. Variation in the GMF intensity was found to affect the content of some nutrients and their associated channels and transporters in Arabidopsis thaliana. In this work, we observed that reduction of the GMF to near null magnetic field (NNMF) affects the accumulation of metals in plant tissues, mainly iron (Fe) and zinc (Zn) content, while the content of others metals such as copper (Cu) and manganese (Mn) is not affected. Accordingly, Fe uptake genes were induced in the roots of NNMF-exposed plants and the root Fe reductase activity was affected by transferring GMF-exposed plant to NNMF condition. Under Fe deficiency, NNMF-exposed plants displayed a limitation in the activation of Fe-deficiency induced genes. Such an effect was associated with the strong accumulation of Zn and Cu observed under NNMF conditions. Overall, our results provide evidence on the important role of the GMF on the iron uptake efficiency of plants.
Collapse
|