1
|
Domínguez R, López-León I, Moreno-Lara J, Rico E, Sánchez-Oliver AJ, Sánchez-Gómez Á, Pecci J. Sport supplementation in competitive swimmers: a systematic review with meta-analysis. J Int Soc Sports Nutr 2025; 22:2486988. [PMID: 40205676 PMCID: PMC11986859 DOI: 10.1080/15502783.2025.2486988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Competitive swimmers have a high prevalence of sports supplement (SS) consumption. However, only a few SS are scientifically proven to be safe, effective, and legal. Therefore, before incorporating supplements to enhance performance and health in competitive swimming, it is crucial to conduct an analysis and review to assess their effects. The objective of this study was to analyze the demonstrated effects of SS, as reported in published studies, on the swimming performance of competitive swimmers. METHODS Following PRISMA guidelines, a systematic search was conducted across six databases for the selection of studies included in this review. Studies that analyzed the effects of sports supplementation compared to placebo were included and subjected to meta-analysis. RESULTS This revision included 23 studies, 16 of them (69.6%) qualified as excellent and 7 (30.4%) as good at the methodological level based on the punctuation in the PEDro scale. The systematic review included 422 swimmers (61.8% male, 38.2% female), with distances assessed ranging from 50 m to 800 m, including studies employing interval procedures. Creatine showed a significant effect (ES = -0.46; 95% CIs = -0.75 to -0.17, p = 0.002; I2 = 11%) on swimming performance, while the rest of the analyzed supplements did not show significant effects (all p > 0.05). CONCLUSIONS Creatine supplementation demonstrated ergogenic benefits for competitive swimmers, although the evidence supporting the use of this supplement is still limited. Sodium bicarbonate and β-alanine may enhance performance in distances with higher glycolytic demands, while caffeine is effective at dosages of 3-6 mg/kg administered 60 min before exercise. Further research is needed to confirm the potential ergogenic effects of other supplements, such as beetroot juice.
Collapse
Affiliation(s)
- Raúl Domínguez
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
- University of Lavras, Studies Research Group in Neuromuscular Responses (GEPREN), Lavras, Brazil
| | - Inmaculada López-León
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
| | - Javier Moreno-Lara
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
| | - Esteban Rico
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
| | - Antonio J. Sánchez-Oliver
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
- University of Lavras, Studies Research Group in Neuromuscular Responses (GEPREN), Lavras, Brazil
| | - Ángela Sánchez-Gómez
- Universidad de Córdoba, Departamento de Enfermería Farmacología y Fisioterapia, Facultad de Medicina y Enfermería, Córdoba, España
| | - Javier Pecci
- University of Seville, Department of Physical Education and Sport, Seville, Spain
| |
Collapse
|
2
|
Luo H, Tengku Kamalden TF, Zhu X, Xiang C, Nasharuddin NA. Effects of different dietary supplements on athletic performance in soccer players: a systematic review and network meta-analysis. J Int Soc Sports Nutr 2025; 22:2467890. [PMID: 39972597 PMCID: PMC11843665 DOI: 10.1080/15502783.2025.2467890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND As dietary supplements play a crucial role in meeting the unique nutritional needs of soccer players, a growing body of studies are exploring the effects of dietary supplements on athletic performance in soccer players. The effectiveness of certain supplements, such as caffeine and creatine, remains debated due to inconsistent results across studies. Therefore, this systematic review and Bayesian network meta-analysis was conducted to tentatively identify the most effective dietary supplements for soccer players. METHODS We searched PubMed, Web of Science, Cochrane, Embase, and SPORTDiscus from database establishment to 5 February 2024 to identify randomized controlled trials (RCTs) evaluating the effects of different dietary supplements on athletic performance in soccer players. The risk of bias was assessed using the revised Cochrane risk-of-bias tool for randomized trials. A Bayesian network meta-analysis was performed using the R software and Stata 18.0. A subgroup analysis was conducted based on the competitive level of the athletes. RESULTS Eighty RCTs were included, with 1,425 soccer players randomly receiving 31 different dietary supplements or placebo. The network meta-analysis showed that compared with placebo, carbohydrate + protein (SMD: 2.2, very large), carbohydrate + electrolyte (SMD: 1.3, large), bovine colostrum (SMD: moderate) and caffeine (SMD: 0.29, small) were associated with a significant effect on increasing the distance covered. Kaempferia parviflora (SMD: 0.46, small) was associated with a significant effect on enhancing muscular strength. Beta-alanine (SMD: 0.83, moderate), melatonin (SMD: 0.75, moderate), caffeine (SMD: 0.37, small), and creatine (SMD: 0.33, small) were associated with a significant effect on enhancing jump height. Magnesium creatine chelate (SMD: -3.0, very large), melatonin (SMD: -1.9, large), creatine + sodium bicarbonate (SMD: -1.4, large), and arginine (SMD: -1.2, moderate) were associated with a significant effect on decreasing sprint time. Creatine + sodium bicarbonate (SMD: -2.3, very large) and caffeine (SMD: -0.38, small) were associated with a significant effect on improving agility. Sodium pyruvate (SMD: 0.50, small) was associated with a significant effect on increasing peak power. Magnesium creatine chelate (SMD: 1.3, large) and sodium pyruvate (SMD: 0.56, small) were associated with a significant effect on increasing mean power. Carbohydrate + electrolyte (SMD: -0.56, small) was associated with a significant effect on improving the rating of perceived exertion. CONCLUSIONS This study suggests that a range of dietary supplements, including caffeine, creatine, creatine + sodium bicarbonate, magnesium creatine chelate, carbohydrate + electrolyte, carbohydrate + protein, arginine, beta-alanine, bovine colostrum, Kaempferia parviflora, melatonin, and sodium pyruvate, can improve athletic performance in soccer players. This review provides evidence-based guidance for soccer coaches and nutritionists on using dietary supplements to enhance specific performance measures.
Collapse
Affiliation(s)
- Hua Luo
- Universiti Putra Malaysia, Department of Sport Studies, Faculty of Educational Studies, Serdang, Selangor, Malaysia
| | | | - Xiaolin Zhu
- Shenzhen Technology University, College of Sport and Art, Shenzhen, China
| | - Changqing Xiang
- Universiti Putra Malaysia, Department of Sport Studies, Faculty of Educational Studies, Serdang, Selangor, Malaysia
| | - Nurul Amelina Nasharuddin
- Universiti Putra Malaysia, Department of Multimedia, Faculty of Computer Science and Information Technology, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Mendonça PT, Dutra YM, Antunes BM, Lira F, Zagatto AM. Fourteen weeks of β-alanine supplementation and HIIT did not improve serum BDNF concentrations and Stroop test performance. Int J Sports Med 2025; 46:324-333. [PMID: 39832765 DOI: 10.1055/a-2500-5556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study aimed to investigate whether 14 weeks of β-alanine supplementation and high-intensity intermittent training improves brain-derived neurotrophic factor concentrations and cognitive aspects related to executive functions assessed by the Stroop test. Thirteen healthy and active men underwent a 4-week supplementation period (β-alanine: 6.4 g/d or a placebo) followed by 10-week supplementation combined with high-intensity intermittent training, totaling 14 weeks of intervention. Participants underwent a graded exercise test, while the blood samples for brain-derived neurotrophic factor analysis and the Stroop test (cognitive task) were assessed before and after a high-intensity intermittent exercise (10 runs of 1:1 min effort and a pause ratio at 130% of respiratory compensation point). These measurements were performed three times across the study being at baseline, after 4 weeks of supplementation (POST4weeks) and at the end of the 14 weeks of study (POST14weeks). Compared to baseline values, there were no improvements in brain-derived neurotrophic factor concentrations or Stroop test performance with either β-alanine or high-intensity intermittent training. Lactate peak concentrations in a high-intensity intermittent exercise session also did not differ between groups. However, high-intensity intermittent training did improve some cardiorespiratory parameters (i.e., intensity associated with V̇O2max p=0.01 and respiratory compensation point, p=0.01). In conclusion, β-alanine supplementation alone or associated with high-intensity intermittent training did not improve the brain-derived neurotrophic factor concentrations and Stroop test performance in healthy men.
Collapse
|
4
|
Nieto ÁVA, Diaz AH, Hernández M. Are there Effective Vegan-Friendly Supplements for Optimizing Health and Sports Performance? a Narrative Review. Curr Nutr Rep 2025; 14:44. [PMID: 40072649 DOI: 10.1007/s13668-025-00633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE OF REVIEW Veganism, characterized by the exclusion of all animal-derived products, has grown in popularity due to ethical, environmental, and health considerations. However, vegan athletes often face unique nutritional challenges related to dietary deficiencies of critical nutrients such as proteins, vitamin B12, iron, calcium, and omega-3 fatty acids, among others. This narrative review aims to explore the efficacy and benefits of vegan-friendly supplements specifically tailored to athletic performance, focusing on essential micronutrients, ergogenic aids, and nutrient bioavailability. RECENT FINDINGS Nineteen key supplements are discussed, including protein powders, creatine, beta-alanine, caffeine, vitamin B12, vitamin D, omega-3 fatty acids, zinc, calcium, iron, iodine, vitamin K2, selenium, probiotics, nitrates, electrolytes (including sodium and potassium), taurine, vitamin A, and magnesium. Evidence suggests that the integration of these supplements into personalized nutrition plans can bridge dietary gaps while addressing specific performance needs, potentially leveling the competitive field for vegan athletes. Recent studies also highlight research gaps in sex-specific needs, synergistic effects, and strategies to enhance the bioavailability of nutrients from whole foods. Vegan diets, while conferring various benefits, require careful consideration of nutrient intake for athletes seeking optimal performance. Personalized biochemical assessments should be considered when possible for tailoring specific nutritional guidelines for each case. This narrative review provides practical guidelines for clinicians, nutritionists, trainers, sports scientists, and athletes to design personalized supplementation strategies that address common nutritional shortfalls, enhance performance, and serve as a foundation for future research in vegan sports nutrition.
Collapse
Affiliation(s)
- Álvaro Vergara A Nieto
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile
- Facultad de Ciencias de La Salud, Escuela de Nutrición y Dietética, Universidad del Desarrollo, Ainavillo 456, 4070001, Concepción, Chile
| | - Andrés Halabi Diaz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida Republica 275, 8370146, Santiago, Chile.
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile.
- Departamento de I+D+I, CatchPredict SpA, Avenida Ramón Picarte 780, 5090000, Valdivia, Chile.
| | - Millaray Hernández
- Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile
| |
Collapse
|
5
|
Derave W, Greenhaff P, Harris P, Hoffman J, Sahlin K, Sale C, Saunders B, Snow D. Obituary: in memory of the scientific career of Professor Roger C Harris. Amino Acids 2025; 57:18. [PMID: 40038133 DOI: 10.1007/s00726-025-03446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Affiliation(s)
- Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Paul Greenhaff
- The David Greenfield Human Physiology Unit, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Pat Harris
- Waltham Petcare Science Institute, Leicestershire, UK
| | - Jay Hoffman
- Department of Physical Therapy, School of Health Science, Ariel University, Ariel, Israel
| | - Kent Sahlin
- The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Craig Sale
- Institute of Sport, Manchester Metropolitan University, Manchester, UK.
| | - Bryan Saunders
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Lavilla CJ, Billacura MP, Khatun S, Cotton DP, Lee VK, Bhattacharya S, Caton PW, Sale C, Wallis JD, Garner AC, Turner MD. Carnosinase inhibition enhances reactive species scavenging in high fat diet. Life Sci 2025; 364:123448. [PMID: 39923839 DOI: 10.1016/j.lfs.2025.123448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
AIMS Life expectancy is typically reduced by 2-4 years in people with a body mass index (BMI) of 30-35 kg/m2 and by 8-10 years in people with a BMI of 40-50 kg/m2. Obesity is also associated with onset, or exacerbation of, multiple chronic diseases. Mechanistically, this, in part, involves formation of advanced glycation and lipidation end-products that directly bond with proteins, lipids, or DNA, thereby perturbing typical cellular function. Here we seek to prevent these damaging adduction events through inhibition of carnosinase enzymes that rapidly degrade the physiological reactive species scavenger, carnosine, in the body. MAIN METHODS Herein we performed in silico computational modelling of a compound library of ∼53,000 molecules to identify carnosine-like molecules with intrinsic resistance to carnosinase turnover. KEY FINDINGS We show that leading candidate molecules reduced reactive species in C2C12 myotubes, and that mice fed N-methyl-[6-(2-furyl)pyrid-3-yl]methylamine alongside a high fat diet had significantly decreased amounts of damaging plasma 4-hydroxynonenal and 3-nitrotyrosine reactive species. Oral administration of N-methyl-[6-(2-furyl)pyrid-3-yl]methylamine to high fat-fed mice also resulted in a modest ∼10 % reduction in weight gain when compared to mice fed only high fat diet. SIGNIFICANCE Our findings suggest that inhibition of carnosinase enzymes can increase the life-span, and thereby enhance the efficacy, of endogenous carnosine in vivo, thereby offering potential therapeutic benefits against obesity and other cardiometabolic diseases characterised by metabolic stress.
Collapse
Affiliation(s)
- Charlie Jr Lavilla
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Merell P Billacura
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Suniya Khatun
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Daniel P Cotton
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Vivian K Lee
- Diabetes & Obesity Theme, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE1 1UL, UK
| | - Sreya Bhattacharya
- Diabetes & Obesity Theme, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE1 1UL, UK
| | - Paul W Caton
- Diabetes & Obesity Theme, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE1 1UL, UK
| | - Craig Sale
- Deparment of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester M1 7EL, UK
| | - John D Wallis
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - A Christopher Garner
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | - Mark D Turner
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK.
| |
Collapse
|
7
|
Perić L, Drenjančević I, Jukić I, Boris A, Šušnjara P, Kolobarić N, Mihaljević Z, Kralik Z, Kralik G, Košević M, Galović O, Stupin A. Carnosine-enriched functional food enhances micro- and macrovascular endothelium-independent vasodilation in competitive athletes-a randomized study. Appl Physiol Nutr Metab 2025; 50:1-11. [PMID: 39983097 DOI: 10.1139/apnm-2024-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
This randomized interventional study aimed to investigate the effect of carnosine-enriched chicken meat consumption on systemic endothelium-dependent and -independent micro- and macrovascular reactivity in thirty-five healthy competitive male athletes. Both forearm skin micro- and macrovascular endothelium-independent vasodilation were increased, and diastolic and mean arterial blood pressure (BP) were decreased in Carnosine group (n = 19) following the 3-week dietary protocol. Microvascular endothelium-dependent response (post-occlusion reactive hyperemia) was increased in the Carnosine group and significantly associated with decreased mean arterial BP level. Following dietary protocol, Controls (n = 16) had substantially higher urate (but still normal) levels than the Carnosine group. Carnosine supplementation in the form of functional food enhances endothelium-dependent and vascular smooth muscle-dependent vasodilation in peripheral micro- and microcirculation. Carnosine's effect on vascular endothelium could be attributed to its BP-lowering effect. Results suggest that carnosine has the potential to resist hyperuricemia in healthy individuals. ClinicalTrials.gov (NCT05723939).
Collapse
Affiliation(s)
- Leon Perić
- Department of Ophthalmology, University Hospital Center Osijek, Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukić
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Alina Boris
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Petar Šušnjara
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Interdisciplinary Sciences, Faculty of Kinesiology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nikolina Kolobarić
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljević
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zlata Kralik
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Gordana Kralik
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Manuela Košević
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Olivera Galović
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Chemistry Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ana Stupin
- Scientific Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
8
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Piscopo S, Beley N, Dzyha S, Smetanina K, Shanaida V, Resimont S, Bjorklund G. The Possible Roles of β-alanine and L-carnosine in Anti-aging. Curr Med Chem 2025; 32:6-22. [PMID: 38243982 DOI: 10.2174/0109298673263561231117054447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024]
Abstract
β-alanine (BA), being a non-proteinogenic amino acid, is an important constituent of L-carnosine (LC), which is necessary for maintaining the muscle buffering capacity and preventing a loss of muscle mass associated with aging effects. BA is also very important for normal human metabolism due to the formation of a part of pantothenate, which is incorporated into coenzyme A. BA is synthesized in the liver, and its combination with histidine results in the formation of LC, which accumulates in the muscles and brain tissues and has a well-defined physiological role as a good buffer for the pH range of muscles that caused its rapidly increased popularity as ergogenic support to sports performance. The main antioxidant mechanisms of LC include reactive oxygen species (ROS) scavenging and chelation of metal ions. With age, the buffering capacity of muscles also declines due to reduced concentration of LC and sarcopenia. Moreover, LC acts as an antiglycation agent, ultimately reducing the development of degenerative diseases. LC has an anti-inflammatory effect in autoimmune diseases such as osteoarthritis. As histidine is always present in the human body in higher concentrations than BA, humans have to get BA from dietary sources to support the required amount of this critical constituent to supply the necessary amount of LC synthesis. Also, BA has other beneficial effects, such as preventing skin aging and intestinal damage, improving the stress-- fighting capability of the muscle cells, and managing an age-related decline in memory and learning. In this review, the results of a detailed analysis of the role and various beneficial properties of BA and LC from the anti-aging perspective are presented.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Svitlana Dzyha
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Kateryna Smetanina
- Faculty of Postgraduate Education, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Stephane Resimont
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Geir Bjorklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
9
|
Hwang DJ, Yang HJ. Nutritional Strategies for Enhancing Performance and Training Adaptation in Weightlifters. Int J Mol Sci 2024; 26:240. [PMID: 39796095 PMCID: PMC11720227 DOI: 10.3390/ijms26010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Weightlifting demands explosive power and neuromuscular coordination in brief, repeated intervals. These physiological demands underscore the critical role of nutrition, not only in optimizing performance during competitions but also in supporting athletes' rigorous training adaptations and ensuring effective recovery between sessions. As weightlifters strive to enhance their performance, well-structured nutritional strategies are indispensable. In this comprehensive review, we explored how weightlifters can optimize their performance through targeted nutritional strategies, including carbohydrate intake for glycogen replenishment and proteins for muscle growth and recovery. Additionally, the roles of key supplements, such as creatine, beta-alanine, and branch-chained amino acids in enhancing strength, delaying fatigue, and supporting muscle repair were discussed. A comprehensive literature review was conducted using PubMed, Google Scholar, and Web of Science to gather studies on nutritional strategies for weightlifting performance and training adaptation. The review focused on English-language articles relevant to weightlifters, including studies on powerlifting, while excluding those involving non-human subjects. Weightlifting requires explosive power, and proper nutrition is vital for performance and recovery, emphasizing the role of carbohydrate, protein, and fat intake. Nutrient timing and personalized strategies, informed by genetic and metabolomic analyses, enhance recovery and performance, while supplements like creatine, caffeine, and beta-alanine can significantly improve results when used correctly. Sustainable nutritional strategies are essential for enhancing weightlifter performance, emphasizing a balanced approach over extreme diets or excessive supplements. Further research is needed to refine these strategies based on individual athlete characteristics, ensuring consistent top-level performance throughout competitive seasons.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Sport Science Institute, Korea National Sport University, Seoul 05541, Republic of Korea;
| | - Hong-Jun Yang
- Institute of Health & Environment, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
de Camargo JBB, Brigatto FA. Beta-Alanine for Improving Exercise Capacity, Muscle Strength, and Functional Performance of Older Adults: A Systematic Review. J Aging Phys Act 2024:1-9. [PMID: 39724872 DOI: 10.1123/japa.2024-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND/OBJECTIVE Beta-alanine supplementation increases muscle carnosine content and also improves exercise capacity and performance in young adults, with mixed findings emerging from the few studies investigating its effects on older participants. Therefore, this study aimed to systematically review the evidence regarding the effects of beta-alanine on exercise capacity, muscle strength, and functional performance of older adults. METHODS This systematic review was conducted following the specific methodological guidelines of the Preferred Report Items for Systematic Reviews and Meta-Analyses and the Physiotherapy Evidence Database scale. Furthermore, the Cochrane risk-of-bias assessment tool was used. The search was carried out in five relevant databases (MEDLINE, Embase, Web of Science, Scopus, and Cochrane Library) from inception up to March 2024. RESULTS Of the 1,749 registers identified, only five met the established criteria and were included in this systematic review. A total of 163 older adults (mean age ± SD: 69.1 ± 2.8 years; range: 66.2-72.7 years) were included across all five studies. The majority of studies included participants from both genders. The mean intervention duration ± SD was 11.7 ± 1.0 weeks. The mean daily dosage was 2.7 ± 0.4 g/day (range: 2.4-3.2 g/day). CONCLUSION Overall, exercise capacity may be improved following supplementation protocols with dosages ranging from 2.4 to 3.2 g/day. Muscle strength and functional performance do not seem to be improved by beta-alanine since these tasks are not significantly impacted by acidosis buildup.
Collapse
Affiliation(s)
- Júlio Benvenutti Bueno de Camargo
- Laboratory of Neuromuscular Adaptations to Resistance Training (MUSCULAB), Federal University of São Carlos-UFSCar, São Paulo, Brazil
| | | |
Collapse
|
11
|
Huang D, Wang X, Takagi H, Mo S, Wang Z, Chow DHK, Huang B. Effects of Different Dietary Supplements on Swimming Performance: A Systematic Review and Network Meta-Analysis. Nutrients 2024; 17:33. [PMID: 39796467 PMCID: PMC11722695 DOI: 10.3390/nu17010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Nutritional supplements are widely used by swimmers, but the effectiveness of various supplements and the identification of the most effective intervention require further investigation. PURPOSE This paper evaluated and compared the effectiveness of various nutrition-based interventions on swimming performance through both direct and indirect comparisons. METHODS PubMed, Embase, Web of Science, Cochrane Library, and SPORTDiscus databases were thoroughly searched up to 4 April 2024. The risk of bias was judged using the Cochrane risk of bias tool. A random-effect model was adopted to compute standardized mean differences (SMD) and 95% confidence intervals (CI). RESULTS L-arginine (Arg) demonstrated superior performance to the placebo (SMD = -1.66, 95% CI [-2.92, -0.44]), emerging as the most effective intervention for reducing 100 swimming time (SUCRA = 89.5%). Beta-alanine (BA) was the best intervention for improving blood lactate (SUCRA = 80%). Creatine combined with sodium bicarbonate (Creatine_NaHCO3) significantly increased blood pH compared to the placebo (SMD = 3.79, 95% CI [1.85, 5.80]), with a SUCRA score of 99.9%, suggesting it is the most effective intervention for this parameter. No prominent differences were noted among the interventions in 50 m time, 200 m time, heart rate, and body mass. CONCLUSIONS Dietary supplements might provide benefits for improving swimming performance. Arg emerged as the most efficacious modality for reducing 100 m time. BA proved to be the preeminent strategy for decreasing blood lactate. Creatine_NaHCO3 was distinguished as the optimal approach for improving blood pH.
Collapse
Affiliation(s)
- Dongxiang Huang
- School of Physical Education, Shaoguan University, Shaoguan 512005, China; (D.H.); (X.W.)
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong 999077, China
| | - Xiaobing Wang
- School of Physical Education, Shaoguan University, Shaoguan 512005, China; (D.H.); (X.W.)
| | - Hideki Takagi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 3058555, Japan;
| | - Shiwei Mo
- School of Physical Education, Shenzhen University, Shenzhen 518060, China;
| | - Zhongzheng Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China;
| | - Daniel Hung-Kay Chow
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong 999077, China
| | - Bo Huang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China;
| |
Collapse
|
12
|
Ozaki M, Nakade T, Sekiguchi M, Shimotsuma M, Hirose T, Kawase T, Tsuji A, Kuranaga T, Kakeya H, Tomonaga S. Simultaneous Analysis of Imidazole Dipeptides, Constituent Amino Acids, and Taurine in Meats Using the Highly Sensitive Labeling Reagent l-FDVDA and PBr Column. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27538-27548. [PMID: 39588613 DOI: 10.1021/acs.jafc.4c07391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Imidazole dipeptides (IDPs) are found in the skeletal muscles and brains of various animals, and they exhibit unique functions like antioxidant and antiaging properties. Despite their importance, the metabolic mechanisms and physiological roles of IDPs remain unclear. Herein, we propose a method for the simultaneous analysis of IDPs, their constituent amino acids, and taurine, which are difficult to separate using conventional labeling reagents or columns, using liquid chromatography-single quadrupole mass spectrometry with PBr column and our highly sensitive labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-l-valine-N,N-dimethylethylenediamineamide (l-FDVDA). This method successfully separated histidine and carnosine enantiomers as well as l-2-oxocarnosine with high antioxidant activity under the same conditions. Our labeling reagent was more stable than the other reagents and did not degrade and desorb from the analytes for at least 1 week at 4 °C. Furthermore, our method allows for the accurate analysis of IDPs, amino acids, and taurine in meats from various animal species, tissues, and breeds.
Collapse
Affiliation(s)
- Makoto Ozaki
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Tomomi Nakade
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Mayu Sekiguchi
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Motoshi Shimotsuma
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Tsunehisa Hirose
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Takahiro Kawase
- Kyoto Institute of Nutrition and Pathology, Inc., Madani, Tachikawa,Ujidawara-cho, Tsuzuki-gun, Kyoto 610-0231, Japan
| | - Ai Tsuji
- Development of Health and Nutrition, Faculty of Health and Sciences, Nagoya Women's University, Nagoya 467-8610, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Margaritelis NV, Cobley JN, Nastos GG, Papanikolaou K, Bailey SJ, Kritsiligkou P, Nikolaidis MG. Evidence-based sports supplements: A redox analysis. Free Radic Biol Med 2024; 224:62-77. [PMID: 39147071 DOI: 10.1016/j.freeradbiomed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Despite the overwhelming number of sports supplements on the market, only seven are currently recognized as effective. Biological functions are largely regulated through redox reactions, yet no comprehensive analysis of the redox properties of these supplements has been compiled. Here, we analyze the redox characteristics of these seven supplements: bicarbonates, beta-alanine, caffeine, creatine, nitrates, carbohydrates, and proteins. Our findings suggest that all sports supplements exhibit some degree of redox activity. However, the precise physiological implications of these redox properties remain unclear. Future research, employing unconventional perspectives and methodologies, will reveal new redox pixels of the exercise physiology and sports nutrition picture.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - James N Cobley
- School of Life Sciences, The University of Dundee, Dundee, Scotland, UK
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | | | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Paraskevi Kritsiligkou
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
14
|
Georgiou GD, Antoniou K, Antoniou S, Michelekaki EA, Zare R, Ali Redha A, Prokopidis K, Christodoulides E, Clifford T. Effect of Beta-Alanine Supplementation on Maximal Intensity Exercise in Trained Young Male Individuals: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2024; 34:397-412. [PMID: 39032921 DOI: 10.1123/ijsnem.2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Beta-alanine is a nonessential amino acid that is commonly used to improve exercise performance. It could influence the buffering of hydrogen ions produced during intense exercise and delay fatigue, providing a substrate for increased synthesis of intramuscular carnosine. This systematic review evaluates the effects of beta-alanine supplementation on maximal intensity exercise in trained, young, male individuals. Six databases were searched on August 10, 2023, to identify randomized, double-blinded, placebo-controlled trials investigating the effect of chronic beta-alanine supplementation in trained male individuals with an age range of 18-40 years. Studies evaluating exercise performance through maximal or supramaximal intensity efforts falling within the 0.5-10 min duration were included. A total of 18 individual studies were analyzed, employing 18 exercise test protocols and 15 outcome measures in 331 participants. A significant (p = .01) result was observed with an overall effect size of 0.39 (95% confidence interval [CI] [0.09, 0.69]), in favor of beta-alanine supplementation versus placebo. Results indicate significant effects at 4 weeks of supplementation, effect size 0.34 (95% CI [0.02, 0.67], p = .04); 4-10 min of maximal effort, effect size 0.55 (95% CI [0.07, 1.04], p = .03); and a high beta-alanine dosage of 5.6-6.4 g per day, effect size 0.35 (95% CI [0.09, 0.62], p = .009). The results provide insights into which exercise modality will benefit the most, and which dosage protocols and durations stand to provide the greatest ergogenic effects. This may be used to inform further research, and professional or recreational training design, and optimization of supplementation strategies.
Collapse
Affiliation(s)
| | | | | | | | - Reza Zare
- Meshkat Sports Complex, Karaj, Iran
- Arses Sports Complex, Karaj, Iran
| | - Ali Ali Redha
- University of Exeter, Exeter, United Kingdom
- The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Tom Clifford
- Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
15
|
Antonio J, Pereira F, Curtis J, Rojas J, Evans C. The Top 5 Can't-Miss Sport Supplements. Nutrients 2024; 16:3247. [PMID: 39408214 PMCID: PMC11479151 DOI: 10.3390/nu16193247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Sports supplements have become popular among fitness enthusiasts for enhancing the adaptive response to exercise. This review analyzes five of the most effective ergogenic aids: creatine, beta-alanine, nitrates, caffeine, and protein. Methods: We conducted a narrative review of the literature with a focus on the sport supplements with the most robust evidence for efficacy and safety. Results: Creatine, one of the most studied ergogenic aids, increases phosphocreatine stores in skeletal muscles, improving ATP production during high-intensity exercises like sprinting and weightlifting. Studies show creatine supplementation enhances skeletal muscle mass, strength/power, and muscular endurance. The typical dosage is 3-5 g per day and is safe for long-term use. Beta-alanine, when combined with the amino acid histidine, elevates intramuscular carnosine, which acts as a buffer in skeletal muscles and delays fatigue during high-intensity exercise by neutralizing hydrogen ions. Individuals usually take 2-6 g daily in divided doses to minimize paresthesia. Research shows significant performance improvements in activities lasting 1-4 min. Nitrates, found in beetroot juice, enhance aerobic performance by increasing oxygen delivery to muscles, enhancing endurance, and reducing oxygen cost during exercise. The recommended dosage is approximately 500 milligrams taken 2-3 h before exercise. Caffeine, a central nervous system stimulant, reduces perceived pain while enhancing focus and alertness. Effective doses range from 3 to 6 milligrams per kilogram of body weight, typically consumed an hour before exercise. Protein supplementation supports muscle repair, growth, and recovery, especially after resistance training. The recommended intake for exercise-trained men and women varies depending on their specific goals. Concluions: In summary, creatine, beta-alanine, nitrates, caffeine, and protein are the best ergogenic aids, with strong evidence supporting their efficacy and safety.
Collapse
Affiliation(s)
- Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL 33328, USA
| | - Flavia Pereira
- Exercise and Sport Science, Keiser University, West Palm Beach, FL 33309, USA
| | - Jason Curtis
- Exercise and Sport Science, Keiser University, West Palm Beach, FL 33309, USA
| | - Jose Rojas
- Exercise and Sport Science, Keiser University, West Palm Beach, FL 33309, USA
| | - Cassandra Evans
- Exercise and Sport Science, Nova Southeastern University, Davie, FL 33328, USA
| |
Collapse
|
16
|
Pérez-Piñero S, Ramos-Campo DJ, López-Román FJ, Ortolano R, Torregrosa-García A, Luque-Rubia AJ, Ibáñez-Soroa N, Andreu-Caravaca L, Ávila-Gandía V. Effect of high-dose β-Alanine supplementation on uphill cycling performance in World Tour cyclists: A randomised controlled trial. PLoS One 2024; 19:e0309404. [PMID: 39226288 PMCID: PMC11371202 DOI: 10.1371/journal.pone.0309404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Scientists and coaches seek effective ergogenic aids for performance improvement. Cyclists commonly use β-Alanine, which may enhance post-exercise recovery and physical performance. High-dose β-Alanine supplementation's impact on World Tour cyclists during a 7-day camp remains unstudied. This study aimed to analyse the effect of a high dose of β-alanine in World Tour cyclist during a 7-day camp. A double-blinded, randomised controlled trial was conducted. 11 cyclists were included in the final analysis: β-alanine supplementation (n = 5; VO2max: 67.6±1.6 ml/kg/min) and a placebo group (n = 6; VO2max: 68.0±2.4 ml/kg/min). The duration of the supplementation protocol was seven days with four daily intakes. The subjects commenced supplementation after the physical tests (immediately following the snack) and consumed the final intake after breakfast on the day of the final test (a total of 7 days and 3 additional doses, 31 servings in total; 5g per dosage; 155g the total cumulative amount). Before and after seven days of supplementation, the cyclists performed an uphill time trial. Blood lactate, heart rate and rating of perceived exertion were measured during test. β-alanine supplementation improved the relative mean power attained during the time-trial compared with the control group (Z = -2.008; p = 0.045; Δ = 0.060), as well as the time needed to complete this trial (Z = -2.373; p = 0.018). As for physiological and metabolic variables, no significant change was found. In conclusion, the present study supports the effectiveness of one-week high dose of β-alanine during a cycling training in World Tour cyclists to improve their uphill time-trial performance. In addition, it is important to highlight the potential role of β-alanine in improving recovery power. This aspect is particularly relevant in the context of a training camp, where fatigue levels can increase alongside training intensity. Trial registration: This study was registered in ClinicalTrials.gov: (identifier: NCT04427319).
Collapse
Affiliation(s)
- Silvia Pérez-Piñero
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Domingo Jesús Ramos-Campo
- Faculty of Physical Activity and Sport Science-INEF, Department of Health and Human Performance, LFE Research Group, Universidad Politécnica de Madrid, Madrid, Spain
| | - Francisco Javier López-Román
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Primary Care Research Group, Murcia, Spain
| | - Raquel Ortolano
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Antonio Torregrosa-García
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Antonio Jesús Luque-Rubia
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Natalia Ibáñez-Soroa
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Luis Andreu-Caravaca
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
- Facultad de Deporte, UCAM, Universidad Católica de Murcia, Murcia, Spain
| | - Vicente Ávila-Gandía
- Faculty of Health Sciences, Sports Physiology Department, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| |
Collapse
|
17
|
Ostfeld I, Zamir A, Ben-Zeev T, Levi C, Gepner Y, Peled D, Barazany D, Springer S, Hoffman JR. β-Alanine supplementation improves fractional anisotropy scores in the hippocampus and amygdala in 60-80-year-old men and women. Exp Gerontol 2024; 194:112513. [PMID: 38971131 DOI: 10.1016/j.exger.2024.112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/04/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Recently, β-alanine (BA) supplementation was shown to improve cognitive function in older adults with decreased cognitive function. Mechanisms supporting these improvements have not been well defined. This study examined the effects of 10-weeks of BA supplementation on changes in circulating brain inflammatory markers, brain derived neurotrophic factor (BDNF), and brain morphology. Twenty participants were initially randomized into BA (2.4 g·d-1) or placebo (PL) groups. At each testing session, participants provided a resting blood sample and completed the Montreal cognitive assessment (MoCA) test and magnetic resonance imaging, which included diffusion tensor imaging to assess brain tissue integrity. Only participants that scored at or below normal for the MoCA assessment were analyzed (6 BA and 4 PL). The Mann-Whitney U test was used to examine Δ (POST-PRE) differences between the groups. No differences in Δ scores were noted in any blood marker (BDNF, CRP, TNF-α and GFAP). Changes in fractional anisotropy scores were significantly greater for BA than PL in the right hippocampus (p = 0.033) and the left amygdala (p = 0.05). No other differences were noted. The results provide a potential mechanism of how BA supplementation may improve cognitive function as reflected by improved tissue integrity within the hippocampus and amygdala.
Collapse
Affiliation(s)
- Ishay Ostfeld
- Department of Physical Therapy, School of Health Science, Ariel University, Ariel, Israel
| | - Amit Zamir
- Department of Physical Therapy, School of Health Science, Ariel University, Ariel, Israel
| | - Tavor Ben-Zeev
- Department of Physical Therapy, School of Health Science, Ariel University, Ariel, Israel
| | - Chagai Levi
- Department of Physical Therapy, School of Health Science, Ariel University, Ariel, Israel
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - David Peled
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Barazany
- Strauss Computational Neuroimaging Center, Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Springer
- Department of Physical Therapy, School of Health Science, Ariel University, Ariel, Israel
| | - Jay R Hoffman
- Department of Physical Therapy, School of Health Science, Ariel University, Ariel, Israel.
| |
Collapse
|
18
|
Hamouda MH, Salem HF, Afifi HEDM, Ibrahim NA, Rabea H. Effect of Carnosine Supplementation as Add-On Therapy With Vitamin B Complex in People With Type 2 Diabetes and Diabetic Neuropathy: A Randomized Controlled Study. Clin Diabetes 2024; 42:561-569. [PMID: 39429454 PMCID: PMC11486889 DOI: 10.2337/cd24-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Affiliation(s)
- Mahitab Hany Hamouda
- Department of Clinical Pharmacy, Modern Technology and Information University, Cairo, Egypt
| | | | | | | | - Hoda Rabea
- Department of Clinical Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
19
|
Li G, Li Z, Liu J. Amino acids regulating skeletal muscle metabolism: mechanisms of action, physical training dosage recommendations and adverse effects. Nutr Metab (Lond) 2024; 21:41. [PMID: 38956658 PMCID: PMC11220999 DOI: 10.1186/s12986-024-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Maintaining skeletal muscle mass is important for improving muscle strength and function. Hence, maximizing lean body mass (LBM) is the primary goal for both elite athletes and fitness enthusiasts. The use of amino acids as dietary supplements is widespread among athletes and physically active individuals. Extensive literature analysis reveals that branched-chain amino acids (BCAA), creatine, glutamine and β-alanine may be beneficial in regulating skeletal muscle metabolism, enhancing LBM and mitigating exercise-induced muscle damage. This review details the mechanisms of these amino acids, offering insights into their efficacy as supplements. Recommended dosage and potential side effects are then outlined to aid athletes in making informed choices and safeguard their health. Lastly, limitations within the current literature are addressed, highlighting opportunities for future research.
Collapse
Affiliation(s)
- Guangqi Li
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China
| | - Zhaojun Li
- Gaomi Municipal Center for Disease Control and Prevention, Gaomi city, Shandong, People's Republic of China
| | - Junyi Liu
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China.
| |
Collapse
|
20
|
Diniz F, Parmeggiani B, Brandão G, Ferreira BK, Teixeira MF, Streck EL, Olivera-Bravo S, Barbeito LH, Schuck PF, de Melo Reis RA, Ferreira GC. Dual Effect of Carnosine on ROS Formation in Rat Cultured Cortical Astrocytes. Mol Neurobiol 2024; 61:4908-4922. [PMID: 38151612 DOI: 10.1007/s12035-023-03880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
Carnosine is composed of β-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2',7'-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.
Collapse
Affiliation(s)
- Fabiola Diniz
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - Belisa Parmeggiani
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Brandão
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Klippel Ferreira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monique Fonseca Teixeira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio Luiz Streck
- Laboratório de Doenças Neurometabólicas, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | | | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Mizuno D, Kawahara M, Konoha-Mizuno K, Hama R, Ogawara T. The Role of Zinc in the Development of Vascular Dementia and Parkinson's Disease and the Potential of Carnosine as Their Therapeutic Agent. Biomedicines 2024; 12:1296. [PMID: 38927502 PMCID: PMC11201809 DOI: 10.3390/biomedicines12061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Synaptic zinc ions (Zn2+) play an important role in the development of vascular dementia (VD) and Parkinson's disease (PD). In this article, we reviewed the current comprehension of the Zn2+-induced neurotoxicity that leads to the pathogenesis of these neuronal diseases. Zn2+-induced neurotoxicity was investigated by using immortalised hypothalamic neurons (GT1-7 cells). This cell line is useful for the development of a rapid and convenient screening system for investigating Zn2+-induced neurotoxicity. GT1-7 cells were also used to search for substances that prevent Zn2+-induced neurotoxicity. Among the tested substances was a protective substance in the extract of Japanese eel (Anguilla japonica), and we determined its structure to be like carnosine (β-alanylhistidine). Carnosine may be a therapeutic drug for VD and PD. Furthermore, we reviewed the molecular mechanisms that involve the role of carnosine as an endogenous protector and its protective effect against Zn2+-induced cytotoxicity and discussed the prospects for the future therapeutic applications of this dipeptide for neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Dai Mizuno
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata-shi 990-9585, Yamagata, Japan; (K.K.-M.); (R.H.); (T.O.)
| | - Masahiro Kawahara
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishitokyo-shi 202-8585, Tokyo, Japan;
| | - Keiko Konoha-Mizuno
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata-shi 990-9585, Yamagata, Japan; (K.K.-M.); (R.H.); (T.O.)
| | - Ryoji Hama
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata-shi 990-9585, Yamagata, Japan; (K.K.-M.); (R.H.); (T.O.)
| | - Terumasa Ogawara
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata-shi 990-9585, Yamagata, Japan; (K.K.-M.); (R.H.); (T.O.)
| |
Collapse
|
22
|
Amraotkar AR, Hoetker D, Negahdar MJ, Ng CK, Lorkiewicz P, Owolabi US, Baba SP, Bhatnagar A, O’Toole TE. Comparative evaluation of different modalities for measuring in vivo carnosine levels. PLoS One 2024; 19:e0299872. [PMID: 38536838 PMCID: PMC10971688 DOI: 10.1371/journal.pone.0299872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/16/2024] [Indexed: 08/30/2024] Open
Abstract
Carnosine is an endogenous di-peptide (β-alanine -L- histidine) involved in maintaining tissue homeostasis. It is most abundant in skeletal muscle where its concentration has been determined in biopsy samples using tandem mass spectrometry (MS-MS). Carnosine levels can also be assessed in intact leg muscles by proton magnetic resonance spectroscopy (1H-MRS) or in blood and urine samples using mass spectrometry. Nevertheless, it remains uncertain how carnosine levels from these distinct compartments are correlated with each other when measured in the same individual. Furthermore, it is unclear which measurement modality might be most suitable for large-scale clinical studies. Hence, in 31 healthy volunteers, we assessed carnosine levels in skeletal muscle, via 1H-MRS, and in erythrocytes and urine by MS-MS. While muscle carnosine levels were higher in males (C2 peak, p = 0.010; C4 peak, p = 0.018), there was no sex-associated difference in urinary (p = 0.433) or erythrocyte (p = 0.858) levels. In a linear regression model adjusted for age, sex, race, and diet, there was a positive association between erythrocyte and urinary carnosine. However, no association was observed between 1H-MRS and erythrocytes or urinary measures. In the relationship between muscle versus urinary and erythrocyte measures, females had a positive association, while males did not show any association. We also found that 1H-MRS measures were highly sensitive to location of measurement. Thus, it is uncertain whether 1H-MRS can accurately and reliably predict endogenous carnosine levels. In contrast, urinary and erythrocyte carnosine measures may be stable and in greater synchrony, and given financial and logistical concerns, may be a feasible alternative for large-scale clinical studies.
Collapse
Affiliation(s)
- Alok R. Amraotkar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - David Hoetker
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Mohammad J. Negahdar
- Department of Radiology, University of Louisville, Louisville, KY, United States of America
| | - Chin K. Ng
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Department of Chemistry, University of Louisville, Louisville, KY, United States of America
| | - Ugochukwu S. Owolabi
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
| | - Shahid P. Baba
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Timothy E. O’Toole
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| |
Collapse
|
23
|
Katafuchi A, Kamegawa M, Goto S, Kuwahara D, Osawa Y, Shimamoto S, Ishihara S, Ohtsuka A, Ijiri D. Effects of Cyclic High Ambient Temperature on Muscle Imidazole Dipeptide Content in Broiler Chickens. J Poult Sci 2024; 61:2024004. [PMID: 38304875 PMCID: PMC10824857 DOI: 10.2141/jpsa.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
Imidazole dipeptides possess important bioregulatory properties in animals. This study aimed to evaluate the effect of high ambient temperature on muscle imidazole dipeptides (carnosine, anserine, and balenine) in broiler chickens. Sixteen 14-day-old male broiler chickens were divided into two groups, which were reared under thermoneutral (25 ± 1 °C) or cyclic high ambient temperature (35 ± 1 °C for 8 h/day) for 4 weeks. Chickens exposed to cyclic high ambient temperatures displayed lower skeletal muscle anserine and carnosine content than control chickens. Balenine could not be detected in the pectoral muscle of either group. The pectoral muscles of broiler chickens kept under cyclic high-temperature exhibited significantly lower mRNA expression of carnosine synthase 1, which synthesizes carnosine and anserine; but a significantly higher mRNA expression of carnosinase 2, which degrades carnosine and anserine. Our results suggest that heat exposure decreases pectoral imidazole dipeptide content in broiler chickens. This may be attributed to a lower expression of imidazole dipeptide-synthesizing genes, but higher levels of genes involved in their degradation.
Collapse
Affiliation(s)
- Ayumi Katafuchi
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mizuki Kamegawa
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Serina Goto
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Daichi Kuwahara
- Biotechnology Group, Innovation Technology Center, Central Technical Research Laboratory, ENEOS Corporation, Chidori-Cho 8, Naka-ku, Yokohama 231-0815, Japan
| | - Yukiko Osawa
- Biotechnology Group, Innovation Technology Center, Central Technical Research Laboratory, ENEOS Corporation, Chidori-Cho 8, Naka-ku, Yokohama 231-0815, Japan
| | - Saki Shimamoto
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Shinya Ishihara
- Graduate School of Applied Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Akira Ohtsuka
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Daichi Ijiri
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
24
|
Amawi A, AlKasasbeh W, Jaradat M, Almasri A, Alobaidi S, Hammad AA, Bishtawi T, Fataftah B, Turk N, Saoud HA, Jarrar A, Ghazzawi H. Athletes' nutritional demands: a narrative review of nutritional requirements. Front Nutr 2024; 10:1331854. [PMID: 38328685 PMCID: PMC10848936 DOI: 10.3389/fnut.2023.1331854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Nutrition serves as the cornerstone of an athlete's life, exerting a profound impact on their performance and overall well-being. To unlock their full potential, athletes must adhere to a well-balanced diet tailored to their specific nutritional needs. This approach not only enables them to achieve optimal performance levels but also facilitates efficient recovery and reduces the risk of injuries. In addition to maintaining a balanced diet, many athletes also embrace the use of nutritional supplements to complement their dietary intake and support their training goals. These supplements cover a wide range of options, addressing nutrient deficiencies, enhancing recovery, promoting muscle synthesis, boosting energy levels, and optimizing performance in their respective sports or activities. The primary objective of this narrative review is to comprehensively explore the diverse nutritional requirements that athletes face to optimize their performance, recovery, and overall well-being. Through a thorough literature search across databases such as PubMed, Google Scholar, and Scopus, we aim to provide evidence-based recommendations and shed light on the optimal daily intakes of carbohydrates, protein, fats, micronutrients, hydration strategies, ergogenic aids, nutritional supplements, and nutrient timing. Furthermore, our aim is to dispel common misconceptions regarding sports nutrition, providing athletes with accurate information and empowering them in their nutritional choices.
Collapse
Affiliation(s)
- Adam Amawi
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Walaa AlKasasbeh
- Department of Physical and Health Education, Faculty of Educational Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manar Jaradat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Amani Almasri
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Sondos Alobaidi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Aya Abu Hammad
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Taqwa Bishtawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Batoul Fataftah
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Nataly Turk
- Department of Family and Community Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Hassan Al Saoud
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Amjad Jarrar
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Oxford Brookes Center for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Hadeel Ghazzawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
25
|
Wickham KA, Spriet LL. Food for thought: Physiological considerations for nutritional ergogenic efficacy. Scand J Med Sci Sports 2024; 34:e14307. [PMID: 36648389 DOI: 10.1111/sms.14307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
Top-class athletes have optimized their athletic performance largely through adequate training, nutrition, recovery, and sleep. A key component of sports nutrition is the utilization of nutritional ergogenic aids, which may provide a small but significant increase in athletic performance. Over the last decade, there has been an exponential increase in the consumption of nutritional ergogenic aids, where over 80% of young athletes report using at least one nutritional ergogenic aid for training and/or competition. Accordingly, due to their extensive use, there is a growing need for strong scientific investigations validating or invalidating the efficacy of novel nutritional ergogenic aids. Notably, an overview of the physiological considerations that play key roles in determining ergogenic efficacy is currently lacking. Therefore, in this brief review, we discuss important physiological considerations that contribute to ergogenic efficacy for nutritional ergogenic aids that are orally ingested including (1) the impact of first pass metabolism, (2) rises in systemic concentrations, and (3) interactions with the target tissue. In addition, we explore mouth rinsing as an alternate route of ergogenic efficacy that bypasses the physiological hurdles of first pass metabolism via direct stimulation of the central nervous system. Moreover, we provide real-world examples and discuss several practical factors that can alter the efficacy of nutritional ergogenic aids including human variability, dosing protocols, training status, sex differences, and the placebo effect. Taking these physiological considerations into account will strengthen the quality and impact of the literature regarding the efficacy of potential ergogenic aids for top-class athletes.
Collapse
Affiliation(s)
- Kate A Wickham
- Environmental Ergonomics Lab, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Brauwers B, Machado FVC, Beijers RJHCG, Spruit MA, Franssen FME. Combined Exercise Training and Nutritional Interventions or Pharmacological Treatments to Improve Exercise Capacity and Body Composition in Chronic Obstructive Pulmonary Disease: A Narrative Review. Nutrients 2023; 15:5136. [PMID: 38140395 PMCID: PMC10747351 DOI: 10.3390/nu15245136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that is associated with significant morbidity, mortality, and healthcare costs. The burden of respiratory symptoms and airflow limitation can translate to reduced physical activity, in turn contributing to poor exercise capacity, muscle dysfunction, and body composition abnormalities. These extrapulmonary features of the disease are targeted during pulmonary rehabilitation, which provides patients with tailored therapies to improve the physical and emotional status. Patients with COPD can be divided into metabolic phenotypes, including cachectic, sarcopenic, normal weight, obese, and sarcopenic with hidden obesity. To date, there have been many studies performed investigating the individual effects of exercise training programs as well as nutritional and pharmacological treatments to improve exercise capacity and body composition in patients with COPD. However, little research is available investigating the combined effect of exercise training with nutritional or pharmacological treatments on these outcomes. Therefore, this review focuses on exploring the potential additional beneficial effects of combinations of exercise training and nutritional or pharmacological treatments to target exercise capacity and body composition in patients with COPD with different metabolic phenotypes.
Collapse
Affiliation(s)
- Bente Brauwers
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine, Life Sciences, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Felipe V. C. Machado
- BIOMED (Biomedical Research Institute), REVAL (Rehabilitation Research Centre), Hasselt University, 3590 Hasselt, Belgium;
| | - Rosanne J. H. C. G. Beijers
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Martijn A. Spruit
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Frits M. E. Franssen
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|
27
|
Carr AJ, McKay AKA, Burke LM, Smith ES, Urwin CS, Convit L, Jardine WT, Kelly MK, Saunders B. Use of Buffers in Specific Contexts: Highly Trained Female Athletes, Extreme Environments and Combined Buffering Agents-A Narrative Review. Sports Med 2023; 53:25-48. [PMID: 37878211 PMCID: PMC10721675 DOI: 10.1007/s40279-023-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2023] [Indexed: 10/26/2023]
Abstract
This narrative review evaluated the evidence for buffering agents (sodium bicarbonate, sodium citrate and beta-alanine), with specific consideration of three discrete scenarios: female athletes, extreme environments and combined buffering agents. Studies were screened according to exclusion and inclusion criteria and were analysed on three levels: (1) moderating variables (supplement dose and timing, and exercise test duration and intensity), (2) design factors (e.g., use of crossover or matched group study design, familiarisation trials) and (3) athlete-specific factors (recruitment of highly trained participants, buffering capacity and reported performance improvements). Only 19% of the included studies for the three buffering agents reported a performance benefit, and only 10% recruited highly trained athletes. This low transferability of research findings to athletes' real-world practices may be due to factors including the small number of sodium citrate studies in females (n = 2), no studies controlling for the menstrual cycle (MC) or menstrual status using methods described in recently established frameworks, and the limited number of beta-alanine studies using performance tests replicating real-world performance efforts (n = 3). We recommend further research into buffering agents in highly trained female athletes that control or account for the MC, studies that replicate the demands of athletes' heat and altitude camps, and investigations of highly trained athletes' use of combined buffering agents. In a practical context, we recommend developing evidence-based buffering protocols for individual athletes which feature co-supplementation with other evidence-based products, reduce the likelihood of side-effects, and optimise key moderating factors: supplement dose and timing, and exercise duration and intensity.
Collapse
Affiliation(s)
- Amelia J Carr
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ella S Smith
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Charles S Urwin
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Lilia Convit
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - William T Jardine
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Monica K Kelly
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de São Paulo, University of São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Sims ST, Kerksick CM, Smith-Ryan AE, Janse de Jonge XA, Hirsch KR, Arent SM, Hewlings SJ, Kleiner SM, Bustillo E, Tartar JL, Starratt VG, Kreider RB, Greenwalt C, Rentería LI, Ormsbee MJ, VanDusseldorp TA, Campbell BI, Kalman DS, Antonio J. International society of sports nutrition position stand: nutritional concerns of the female athlete. J Int Soc Sports Nutr 2023; 20:2204066. [PMID: 37221858 PMCID: PMC10210857 DOI: 10.1080/15502783.2023.2204066] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/25/2023] Open
Abstract
Based on a comprehensive review and critical analysis of the literature regarding the nutritional concerns of female athletes, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Female athletes have unique and unpredictable hormone profiles, which influence their physiology and nutritional needs across their lifespan. To understand how perturbations in these hormones affect the individual, we recommend that female athletes of reproductive age should track their hormonal status (natural, hormone driven) against training and recovery to determine their individual patterns and needs and peri and post-menopausal athletes should track against training and recovery metrics to determine the individuals' unique patterns. 2. The primary nutritional consideration for all athletes, and in particular, female athletes, should be achieving adequate energy intake to meet their energy requirements and to achieve an optimal energy availability (EA); with a focus on the timing of meals in relation to exercise to improve training adaptations, performance, and athlete health. 3. Significant sex differences and sex hormone influences on carbohydrate and lipid metabolism are apparent, therefore we recommend first ensuring athletes meet their carbohydrate needs across all phases of the menstrual cycle. Secondly, tailoring carbohydrate intake to hormonal status with an emphasis on greater carbohydrate intake and availability during the active pill weeks of oral contraceptive users and during the luteal phase of the menstrual cycle where there is a greater effect of sex hormone suppression on gluconogenesis output during exercise. 4. Based upon the limited research available, we recommend that pre-menopausal, eumenorrheic, and oral contraceptives using female athletes should aim to consume a source of high-quality protein as close to beginning and/or after completion of exercise as possible to reduce exercise-induced amino acid oxidative losses and initiate muscle protein remodeling and repair at a dose of 0.32-0.38 g·kg-1. For eumenorrheic women, ingestion during the luteal phase should aim for the upper end of the range due to the catabolic actions of progesterone and greater need for amino acids. 5. Close to the beginning and/or after completion of exercise, peri- and post-menopausal athletes should aim for a bolus of high EAA-containing (~10 g) intact protein sources or supplements to overcome anabolic resistance. 6. Daily protein intake should fall within the mid- to upper ranges of current sport nutrition guidelines (1.4-2.2 g·kg-1·day-1) for women at all stages of menstrual function (pre-, peri-, post-menopausal, and contraceptive users) with protein doses evenly distributed, every 3-4 h, across the day. Eumenorrheic athletes in the luteal phase and peri/post-menopausal athletes, regardless of sport, should aim for the upper end of the range. 7. Female sex hormones affect fluid dynamics and electrolyte handling. A greater predisposition to hyponatremia occurs in times of elevated progesterone, and in menopausal women, who are slower to excrete water. Additionally, females have less absolute and relative fluid available to lose via sweating than males, making the physiological consequences of fluid loss more severe, particularly in the luteal phase. 8. Evidence for sex-specific supplementation is lacking due to the paucity of female-specific research and any differential effects in females. Caffeine, iron, and creatine have the most evidence for use in females. Both iron and creatine are highly efficacious for female athletes. Creatine supplementation of 3 to 5 g per day is recommended for the mechanistic support of creatine supplementation with regard to muscle protein kinetics, growth factors, satellite cells, myogenic transcription factors, glycogen and calcium regulation, oxidative stress, and inflammation. Post-menopausal females benefit from bone health, mental health, and skeletal muscle size and function when consuming higher doses of creatine (0.3 g·kg-1·d-1). 9. To foster and promote high-quality research investigations involving female athletes, researchers are first encouraged to stop excluding females unless the primary endpoints are directly influenced by sex-specific mechanisms. In all investigative scenarios, researchers across the globe are encouraged to inquire and report upon more detailed information surrounding the athlete's hormonal status, including menstrual status (days since menses, length of period, duration of cycle, etc.) and/or hormonal contraceptive details and/or menopausal status.
Collapse
Affiliation(s)
- Stacy T. Sims
- SPRINZ Auckland University of Technology, Auckland, New Zealand
| | - Chad M. Kerksick
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Saint Charles, TX, USA
| | - Abbie E. Smith-Ryan
- Institute of Sports Sciences and Medicine, Florida State University, Nutrition and Integrative Physiology, Tallahassee, FL, USA
| | | | - Katie R. Hirsch
- Jacksonville University, Department of Health and Exercise Sciences, Jacksonville, FL, USA
| | - Shawn M. Arent
- Jacksonville University, Department of Health and Exercise Sciences, Jacksonville, FL, USA
| | - Susan Joyce Hewlings
- University of South Florida, Performance and Physique Enhancement Laboratory,Tampa, FL, USA
| | - Susan M. Kleiner
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Erik Bustillo
- Nova Southeastern University, Exercise and Sport Science, Fight Science Lab, Davie, FL, USA
| | - Jaime L. Tartar
- College of Science, Technology,
and Health, Lindenwood University, Exercise and Performance Nutrition Laboratory, St Charles, MO, USA
| | - Valerie G. Starratt
- College of Science, Technology,
and Health, Lindenwood University, Exercise and Performance Nutrition Laboratory, St Charles, MO, USA
| | - Richard B. Kreider
- University of North Carolina Chapel Hill, Department of Exercise and Sport Science, Chapel Hill, NC, USA
| | - Casey Greenwalt
- Macquarie University, Department of Health Sciences, Macquarie Park, NSW, Australia
| | - Liliana I. Rentería
- Macquarie University, Department of Health Sciences, Macquarie Park, NSW, Australia
| | - Michael J. Ormsbee
- Macquarie University, Department of Health Sciences, Macquarie Park, NSW, Australia
| | - Trisha A. VanDusseldorp
- University of South, Department of Exercise Science, Arnold School of Public Health, Carolina, Columbia, USA
- Nutrasource, Guelph, Ontario, Canada
| | | | | | - Jose Antonio
- Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, USA
| |
Collapse
|
29
|
Barahona-Fuentes G, Huerta Ojeda Á, Galdames Maliqueo S, Yeomans-Cabrera MM, Jorquera Aguilera C. Effects of acute beta-alanine supplementation on post-exertion rating of per-ceived exertion, heart rate, blood lactate, and physical performance on the 6-minute race test in middle-distance runners. NUTR HOSP 2023; 40:1047-1055. [PMID: 37073742 DOI: 10.20960/nh.04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Introduction Background: the use of beta-alanine (BA) to increase physical performance in the heavy-intensity domain zone (HIDZ) is widely documented. However, the effect of this amino acid on the post-exertion rating of perceived exertion (RPE), heart rate (HR), and blood lactate (BL) is still uncertain. Objectives: a) to determine the effect of acute BA supplementation on post-exertion RPE, HR, and BL in middle-distance athletes; and b) to determine the effect of acute BA supplementation on physical performance on the 6-minute race test (6-MRT). Material and methods: the study included 12 male middle-distance athletes. The de-sign was quasi-experimental, intrasubject, double-blind & crossover. It had two treat-ments (low-dose BA [30 mg·kg-1] and high-dose BA [45 mg·kg-1]) and a placebo, 72 hours apart. The effect of BA was evaluated at the end of the 6-MRT and post-exertion. The variables were RPE, HR and BL, and 6-MRT (m) distance. The statistical analysis included a repeated-measures ANOVA (p < 0.05). Results: the analysis evidenced no significant differences at the end of 6-MRT for all variables (p ˃ 0.05). However, both doses of BA generated a lower post-exertion RPE. The high dose of BA caused significant increases in post-exertion BL (p ˂ 0.05). Conclusion: acute supplementation with BA generated a lower post-exertion RPE. This decrease in RPE and the post-exertion BL increase could be related to an increase in physical performance in HIDZ.
Collapse
Affiliation(s)
| | - Álvaro Huerta Ojeda
- Núcleo de Investigación en Salud, Actividad Física y Deporte, ISAFYD. Universidad de Las Américas
| | - Sergio Galdames Maliqueo
- Facultad de Ciencias de la Actividad Física y del Deporte, Universidad de Playa Ancha de Ciencias de la Educación, Valparaíso, Chile
| | | | | |
Collapse
|
30
|
Ding Q, Duan X. A High-Specific-Activity L-aspartate-α-Decarboxylase from Bacillus aryabhattai Gel-09 and Site-Directed Mutation to Improve Its Substrate Tolerance. Appl Biochem Biotechnol 2023; 195:5802-5822. [PMID: 36708489 DOI: 10.1007/s12010-023-04360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
L-aspartate-α-decarboxylase (ADC) can recognize L-aspartic acid specifically and catalyze the decarboxylation of L-aspartic acid to β-alanine. In this study, a novel L-aspartate-α-decarboxylase (BaADC) with high specific activity from Bacillus aryabhattai Gel-09 was heterologously expressed and characterized. It exhibited optimal enzyme activity at pH 5.5 and 75 °C, and its specific activity was 33.9 U/mg. To improve the substrate tolerance of BaADC, site-directed mutation was used to construct variants. The optimal variant BaADC_I88M exhibited higher pH stability and thermostability, with 1.2-fold increase in catalytic efficiency. Moreover, through the fed-batch method, the conversion of L-aspartic acid to β-alanine catalyzed by BaADC_I88M reached 98.6% (128.67 g/L) at 12 h, which was 1.42-fold that of the wild-type enzyme. The mechanism of improved substrate tolerance was interpreted by molecular dynamics simulation and structural analysis, which revealed that the local conformational change in the active pocket could promote correct protonation. These results suggested that BaADC and its variant are potential candidates for use in the industrial production of β-alanine.
Collapse
Affiliation(s)
- Qian Ding
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
31
|
de Souza Gonçalves L, Pereira WR, da Silva RP, Yamaguchi GC, Carvalho VH, Vargas BS, Jensen L, de Medeiros MHG, Roschel H, Artioli GG. Anserine is expressed in human cardiac and skeletal muscles. Physiol Rep 2023; 11:e15833. [PMID: 37771070 PMCID: PMC10539627 DOI: 10.14814/phy2.15833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
We evaluated whether anserine, a methylated analog of the dipeptide carnosine, is present in the cardiac and skeletal muscles of humans and whether the CARNMT1 gene, which encodes the anserine synthesizing enzyme carnosine-N-methyltransferase, is expressed in human skeletal muscle. We found that anserine is present at low concentrations (low micromolar range) in both cardiac and skeletal muscles, and that anserine content in skeletal muscle is ~15 times higher than in cardiac muscle (cardiac muscle: 10.1 ± 13.4 μmol·kg-1 of dry muscle, n = 12; skeletal muscle: 158.1 ± 68.5 μmol·kg-1 of dry muscle, n = 11, p < 0.0001). Anserine content in the heart was highly variable between individuals, ranging from 1.4 to 45.4 μmol·kg-1 of dry muscle, but anserine content was not associated with sex, age, or body mass. We also showed that CARNMT1 gene is poorly expressed in skeletal muscle (n = 10). This is the first study to demonstrate that anserine is present in the ventricle of the human heart. The presence of anserine in human heart and the confirmation of its expression in human skeletal muscle open new avenues of investigation on the specific and differential physiological functions of histidine dipeptides in striated muscles.
Collapse
Affiliation(s)
- Lívia de Souza Gonçalves
- Applied Physiology & Nutrition Research Group—Center of Lifestyle, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
- Division of PediatricsDepartment of PediatricsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Wagner Ribeiro Pereira
- Applied Physiology & Nutrition Research Group—Center of Lifestyle, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Rafael Pires da Silva
- Applied Physiology & Nutrition Research Group—Center of Lifestyle, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Guilherme Carvalho Yamaguchi
- Applied Physiology & Nutrition Research Group—Center of Lifestyle, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | | | | | - Leonardo Jensen
- Laboratorio de Hipertensao do Instituto do Coraçao do Hospital das Clínicas da Faculdade de Medicina da Universidade São PauloSão PauloBrazil
| | | | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group—Center of Lifestyle, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | | |
Collapse
|
32
|
Maestre-Hernández AB, Pérez-Piñero S, López-Román FJ, Andreu-Caravaca L, Luque-Rubia AJ, Ramos-Campo DJ, Díaz-Silvestre MJ, Ávila-Gandía V. Effect of a sustained-release formulation of β-alanine on laboratory parameters and paresthesia in recreational trained men: a randomized double-blind placebo-controlled study. Front Nutr 2023; 10:1213105. [PMID: 37766731 PMCID: PMC10520961 DOI: 10.3389/fnut.2023.1213105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Beta-alanine is a non-essential amino acid that has been a focus of increasing research by its role as ergogenic aid to improve muscle performance. Methods A randomized, double-blind and controlled trial was conducted to determine the effect of a nutritional supplement of a sustained-release formulation of β-alanine in recreational trained men. The active product was an innovative sustained-release β-alanine microgranules powder blend, administered at high doses (15 g/day) divided into 3 intakes during 30 days. There were 10 participants in the experimental group and 9 in the placebo group, with a mean age of 22.5 ± 3.3 years. Participants were testing at baseline and at the end of study. Results In the β-alanine group, there were statistically increases in serum triglycerides, LDL-cholesterol, and urea nitrogen at the end of the study as compared with baseline, although there were no differences with the control group. The occurrence of paresthesia, described above all as tickling, was the majority but presented VAS score less than 3/10 in almost all subjects. Discussion More studies are required to evaluate the changes in blood parameters that can be caused by high intake of β-alanine during a long period of time. Clinical trial registration ClinicalTrials.gov, identifier (NCT05334121).
Collapse
Affiliation(s)
- Ana Belén Maestre-Hernández
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Silvia Pérez-Piñero
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Francisco Javier López-Román
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
- Primary Care Research Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Luis Andreu-Caravaca
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
- Facultad de Deporte. UCAM, Universidad Católica de Murcia, Guadalupe, Spain
| | - Antonio J. Luque-Rubia
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Domingo J. Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Madrid, Spain
| | - María José Díaz-Silvestre
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Vicente Ávila-Gandía
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| |
Collapse
|
33
|
Tang J, Zhang H, Yin L, Zhou Q, Zhang H. The gut microbiota from maintenance hemodialysis patients with sarcopenia influences muscle function in mice. Front Cell Infect Microbiol 2023; 13:1225991. [PMID: 37771694 PMCID: PMC10523162 DOI: 10.3389/fcimb.2023.1225991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Background Sarcopenia is a common complication in patients undergoing maintenance hemodialysis (MHD). Growing evidence suggests a close relationship between the gut microbiota and skeletal muscle. However, research on gut microbiota in patients with sarcopenia undergoing MHD (MS) remains scarce. To bridge this knowledge gap, we aimed to evaluate the pathogenic influence of gut microbiota in the skeletal muscle of patients with MS, to clarify the causal association between gut microbiota and skeletal muscle symptoms in patients with MS and identify the potential mechanisms underlying this causal association. Methods Fecal samples were collected from 10 patients with MS and 10 patients without MS (MNS). Bacteria were extracted from these samples for transplantation. Mice (n=42) were randomly divided into three groups and, after antibiotic treatment, fecal microbiota transplantation (FMT) was performed once a day for 3 weeks. Skeletal muscle and fecal samples from the mice were collected for 16S rRNA gene sequencing and for histological, real-time PCR, and metabolomic analyses. Results Mice colonized with gut microbiota from MS patients exhibited notable decreases in muscle function and muscle mass, compared with FMT from patients with MNS. Moreover, 16S rRNA sequencing revealed that the colonization of MS gut microbiota reduced the abundance of Akkermansia in the mouse intestines. Metabolome analysis revealed that seven metabolic pathways were notably disrupted in mice transplanted with MS microbiota. Conclusion This study established a connection between skeletal muscle and the gut microbiota of patients with MS, implying that disruption of the gut microbiota may be a driving factor in the development of skeletal muscle disorders in patients undergoing MHD. This finding lays the foundation for understanding the pathogenesis and potential treatment methods for sarcopenia in patients undergoing MHD.
Collapse
Affiliation(s)
- Jie Tang
- Lianyungang Clinical College of Nanjing Medical University, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Hailin Zhang
- Lianyungang Clinical College of Nanjing Medical University, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Lixia Yin
- Lianyungang Clinical College of Nanjing Medical University, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Qifan Zhou
- Lianyungang Clinical College of Nanjing Medical University, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Huipin Zhang
- Department of Hemopurification Center, The Affliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
34
|
Van der Stede T, Spaas J, de Jager S, De Brandt J, Hansen C, Stautemas J, Vercammen B, De Baere S, Croubels S, Van Assche CH, Pastor BC, Vandenbosch M, Van Thienen R, Verboven K, Hansen D, Bové T, Lapauw B, Van Praet C, Decaestecker K, Vanaudenaerde B, Eijnde BO, Gliemann L, Hellsten Y, Derave W. Extensive profiling of histidine-containing dipeptides reveals species- and tissue-specific distribution and metabolism in mice, rats, and humans. Acta Physiol (Oxf) 2023; 239:e14020. [PMID: 37485756 DOI: 10.1111/apha.14020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
AIM Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear. METHODS Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively). RESULTS Our data show that tissue HCD levels are uniquely produced by carnosine synthase (CARNS1), an enzyme that was preferentially expressed by fast-twitch skeletal muscle fibres and brain oligodendrocytes. Cardiac HCD levels are remarkably low compared to other excitable tissues. Carnosine is unstable in human plasma, but is preferentially transported within red blood cells in humans but not rodents. The low abundant carnosine analogue N-acetylcarnosine is the most stable plasma HCD, and is enriched in human skeletal muscles. Here, N-acetylcarnosine is continuously secreted into the circulation, which is further induced by acute exercise in a myokine-like fashion. CONCLUSION Collectively, we provide a novel basis to unravel tissue-specific, paracrine, and endocrine roles of HCDs in human health and disease.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Jan Spaas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- University MS Center (UMSC) Hasselt, Pelt, Belgium
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jana De Brandt
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
| | - Camilla Hansen
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Jan Stautemas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Bjarne Vercammen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Ghent, Belgium
| | - Charles-Henri Van Assche
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Maastricht University, Maastricht, The Netherlands
| | - Berta Cillero Pastor
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Maastricht University, Maastricht, The Netherlands
| | - Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Maastricht University, Maastricht, The Netherlands
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kenneth Verboven
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
| | - Dominique Hansen
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
- Heart Center Hasselt, Jessa Hospital Hasselt, Hasselt, Belgium
| | - Thierry Bové
- Department of Cardiac Surgery, Ghent University Hospital, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Charles Van Praet
- Department of Urology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Karel Decaestecker
- Department of Urology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Bart Vanaudenaerde
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC) Hasselt, Pelt, Belgium
- SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Division of Sport Science, Stellenbosch University, Stellenbosch, South Africa
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Fernández-Lázaro D, Fiandor EM, García JF, Busto N, Santamaría-Peláez M, Gutiérrez-Abejón E, Roche E, Mielgo-Ayuso J. β-Alanine Supplementation in Combat Sports: Evaluation of Sports Performance, Perception, and Anthropometric Parameters and Biochemical Markers-A Systematic Review of Clinical Trials. Nutrients 2023; 15:3755. [PMID: 37686787 PMCID: PMC10490143 DOI: 10.3390/nu15173755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
β-alanine does not have an ergogenic effect by itself, but it does as a precursor for the synthesis of carnosine in human skeletal muscle. β-alanine and carnosine together help improve the muscles' functionality, especially in high-intensity exercises such as combat sports. Therefore, β-alanine could be considered a nutritional ergogenic aid to improve sports performance in combat athletes. We aimed to critically review clinical trial evidence on the impact of β-alanine supplementation on sports performance, perception, and anthropometric parameters, as well as circulating biochemical markers in combat athletes. This systematic review was conducted following the specific methodological guidelines of the Preferred Report Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA), the PICOS question model, the Critical Review Form of McMaster, and the PEDro scale. Furthermore, the Cochrane risk-of-bias assessment tool was used. The search was carried out in the SCOPUS, Web of Science (WOS), and Medline (PubMed) databases for studies published from the beginning of the database until July 31, 2023. Of the 41 registers identified, only 7 met the established criteria and were included in this systematic review. Overall, performance parameters related to strength, power, total exercise work capacity, and combat-specific parameters were significantly improved (p < 0.05). Perception parameters increased non-significantly (p > 0.05). Regarding biochemical parameters, carnosine increased significantly (p < 0.05), pH decreased non-significantly (p > 0.05), and the results for blood bicarbonate and blood lactate were heterogeneous. Finally, there was a non-significant (p > 0.05) improvement in the anthropometric parameters of lean mass and fat mass. β-alanine supplementation appears to be safe and could be a suitable nutritional ergogenic aid for combat athletes.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain; (E.R.); (J.M.-A.)
| | - Emma Marianne Fiandor
- Faculty of Physical Activity and Sport Sciences, European University, 28670 Villaviciosa de Odón, Spain;
| | - Juan F. García
- Department of Mechanical, Informatics and Aerospatial Engineering, University of Leon, 24071 Leon, Spain
| | - Natalia Busto
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Mirian Santamaría-Peláez
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Eduardo Gutiérrez-Abejón
- Pharmacological Big Data Laboratory, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Pharmacy Directorate, Castilla y León Health Council, 47007 Valladolid, Spain
| | - Enrique Roche
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain; (E.R.); (J.M.-A.)
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Juan Mielgo-Ayuso
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain; (E.R.); (J.M.-A.)
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
36
|
West S, Monteyne AJ, van der Heijden I, Stephens FB, Wall BT. Nutritional Considerations for the Vegan Athlete. Adv Nutr 2023; 14:774-795. [PMID: 37127187 PMCID: PMC10334161 DOI: 10.1016/j.advnut.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
Accepting a continued rise in the prevalence of vegan-type diets in the general population is also likely to occur in athletic populations, it is of importance to assess the potential impact on athletic performance, adaptation, and recovery. Nutritional consideration for the athlete requires optimization of energy, macronutrient, and micronutrient intakes, and potentially the judicious selection of dietary supplements, all specified to meet the individual athlete's training and performance goals. The purpose of this review is to assess whether adopting a vegan diet is likely to impinge on such optimal nutrition and, where so, consider evidence based yet practical and pragmatic nutritional recommendations. Current evidence does not support that a vegan-type diet will enhance performance, adaptation, or recovery in athletes, but equally suggests that an athlete can follow a (more) vegan diet without detriment. A clear caveat, however, is that vegan diets consumed spontaneously may induce suboptimal intakes of key nutrients, most notably quantity and/or quality of dietary protein and specific micronutrients (eg, iron, calcium, vitamin B12, and vitamin D). As such, optimal vegan sports nutrition requires (more) careful consideration, evaluation, and planning. Individual/seasonal goals, training modalities, athlete type, and sensory/cultural/ethical preferences, among other factors, should all be considered when planning and adopting a vegan diet.
Collapse
Affiliation(s)
- Sam West
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ino van der Heijden
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
37
|
Hayashi N, Nagastuka H, Sato M, Goto K. Effect of long-term carnosine/anserine supplementation on iron regulation after a prolonged running session. Phys Act Nutr 2023; 27:70-77. [PMID: 37583074 PMCID: PMC10440176 DOI: 10.20463/pan.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Exercise-induced hemolysis, which is caused by metabolic and/or mechanical stress during exercise, is considered a potential factor for upregulating hepcidin. Intramuscular carnosine has multiple effects including antioxidant activity. Therefore, this study aimed to determine whether long-term carnosine/anserine supplementation modulates exercise-induced hemolysis and subsequent hepcidin elevation. METHODS Seventeen healthy male participants were allocated to two different groups: participants consuming 1,500 mg/day of carnosine/anserine supplements (n = 9, C+A group) and participants consuming placebo powder supplements (n = 8, PLA group). The participants consumed carnosine/anserine or placebo supplements daily for 30.7 ± 0.4 days. They performed an 80-running session at 70% VO2peak pre-and post-supplementation. Iron regulation and inflammation in response to exercise were evaluated. RESULTS Serum iron concentrations significantly increased after exercise (p < 0.01) and serum haptoglobin concentrations decreased after exercise in both groups (p < 0.01). No significant differences in these variables were observed between pre-and post-supplementation. Serum hepcidin concentration significantly increased 180 min after exercise in both groups (p < 0.01). The integrated area under the curve of hepcidin significantly decreased after supplementation (p = 0.011) but did not vary between the C+A and PLA groups. CONCLUSION Long-term carnosine/anserine supplementation does not affect iron metabolism after a single endurance exercise session.
Collapse
Affiliation(s)
- Nanako Hayashi
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Haruna Nagastuka
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Mikako Sato
- NH Foods Ltd. R&D Center, Midorigahara, Tsukuba, Ibaraki, Japan
| | - Kazushige Goto
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
38
|
Cross W, Srivastava S. A Double-Blind, Randomized, Placebo-Controlled Study to Assess the Efficacy of a Nerve Support Formula on Neuropathic Pain in Individuals Suffering from Type II Diabetes Mellitus. J Pain Res 2023; 16:1115-1126. [PMID: 37020664 PMCID: PMC10069439 DOI: 10.2147/jpr.s397777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
Background The primary objective of the present study was to evaluate the effects of a Nerve Support Formula NeuropAWAY® on diabetic neuropathic pain. Methods This double-blind, placebo-controlled, randomized trial was conducted between August 2020 and February 2021. Patients aged ≥40 and ≤65 years with a history of type 2 diabetes (T2D) with a confirmed diagnosis of diabetic neuropathic pain were included in the study. The primary efficacy endpoint was to assess the effect of the 42 days administration of the Nerve Support Formula on the neuropathic pain as assessed by the 11 point Pain Intensity Numeric Rating Scale (PI-NRS). The secondary objectives were to assess the effect on plasma vitamin B12 levels, nerve conduction velocity, blood flow velocity, Brief Pain Inventory, Neuropathy Total Symptom Score, and Insomnia Severity Index. Results The enrolled study population (n=59) was randomized in two study groups; the Investigational Product (IP) group - Nerve Support Formula (n=27) and placebo group (n=32). The mean age of these participants was 52.63 and 53.72 for IP and placebo group, respectively. The mean (SD) HbA1c levels for IP and placebo group were 8.37 (0.85) and 8.16 (0.86), respectively. By the end of the study (Day 42) the decrease in PI-NRS scores for the IP group was maximal (↓61.32%) and highly significant (p<0.001) in comparison to the placebo group (↑2.47%). Significant improvements (p<0.05) were also noted in the secondary efficacy variables after 42 days of IP intake. Conclusion The formula was found to be significantly effective as compared to placebo in reducing pain and other sensory symptoms related to the diabetic peripheral neuropathy.
Collapse
|
39
|
No Effect of Acute Balenine Supplementation on Maximal and Submaximal Exercise Performance in Recreational Cyclists. Int J Sport Nutr Exerc Metab 2023; 33:84-92. [PMID: 36623508 DOI: 10.1123/ijsnem.2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Carnosine (β-alanyl-L-histidine) and its methylated analogues anserine and balenine are highly concentrated endogenous dipeptides in mammalian skeletal muscle that are implicated in exercise performance. Balenine has a much better bioavailability and stability in human circulation upon acute ingestion, compared to carnosine and anserine. Therefore, ergogenic effects observed with acute carnosine and anserine supplementation may be even more pronounced with balenine. This study investigated whether acute balenine supplementation improves physical performance in four maximal and submaximal exercise modalities. A total of 20 healthy, active volunteers (14 males; six females) performed cycling sprints, maximal isometric contractions, a 4-km TT and 20-km TT following either preexercise placebo or 10 mg/kg of balenine ingestion. Physical, as well as mental performance, along with acid-base balance and glucose concentration were assessed. Balenine was unable to augment peak power (p = .3553), peak torque (p = .3169), time to complete the 4 km (p = .8566), nor 20 km time trial (p = .2660). None of the performances were correlated with plasma balenine or CN1 enzyme activity. In addition, no effect on pH, bicarbonate, and lactate was observed. Also, the supplement did not affect mental performance. In contrast, glucose remained higher during and after the 20 km time trial following balenine ingestion. In conclusion, these results overall indicate that the functionality of balenine does not fully resemble that of carnosine and anserine, since it was unable to elicit performance improvements with similar and even higher plasma concentrations.
Collapse
|
40
|
Safety of beta-alanine supplementation in humans: a narrative review. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-023-01052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
41
|
The Effect of β-Alanine Supplementation on Performance, Cognitive Function and Resiliency in Soldiers. Nutrients 2023; 15:nu15041039. [PMID: 36839397 PMCID: PMC9961614 DOI: 10.3390/nu15041039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
β-alanine is a nonessential amino acid that combines with the amino acid histidine to form the intracellular dipeptide carnosine, an important intracellular buffer. Evidence has been well established on the ability of β-alanine supplementation to enhance anaerobic skeletal muscle performance. As a result, β-alanine has become one of the more popular supplements used by competitive athletes. These same benefits have also been reported in soldiers. Evidence accumulated over the last few years has suggested that β-alanine can result in carnosine elevations in the brain, which appears to have broadened the potential effects that β-alanine supplementation may have on soldier performance and health. Evidence suggests that β-alanine supplementation can increase resilience to post-traumatic stress disorder, mild traumatic brain injury and heat stress. The evidence regarding cognitive function is inconclusive but may be more of a function of the stressor that is applied during the assessment period. The potential benefits of β-alanine supplementation on soldier resiliency are interesting but require additional research using a human model. The purpose of this review is to provide an overview of the physiological role of β-alanine and why this nutrient may enhance soldier performance.
Collapse
|
42
|
Ostfeld I, Ben-Zeev T, Zamir A, Levi C, Gepner Y, Springer S, Hoffman JR. Role of β-Alanine Supplementation on Cognitive Function, Mood, and Physical Function in Older Adults; Double-Blind Randomized Controlled Study. Nutrients 2023; 15:nu15040923. [PMID: 36839281 PMCID: PMC9960300 DOI: 10.3390/nu15040923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
This study investigated 10 weeks of β-alanine (BA) supplementation on changes in cognitive function, mood, and physical performance in 100 older adults (70.6 ± 8.7 y). Participants were randomized into a BA (2.4 g·d-1) or placebo (PL) group. Testing occurred prior to supplementation (PRE), at the midpoint (MID), and at week-10 (POST). Participants completed cognitive function assessments, including the Montreal cognitive assessment (MOCA) and the Stroop pattern recognition test, at each testing session. Behavioral questionnaires [i.e., the profile of mood states, geriatric depression scale (GDS), and geriatric anxiety scale (GAS)] and physical function assessments (grip strength and timed sit-to-stand) were also conducted. No difference between groups was noted in MoCA scores (p = 0.19). However, when examining participants whose MOCA scores at PRE were at or below normal (i.e., ≤26), participants in BA experienced significant improvements in MOCA scores at MID (13.6%, p = 0.009) and POST (11.8%, p = 0.016), compared to PL. No differences were noted in mood scores, GAS, or any of the physical performance measures. A significant decrease was observed in the GDS for participants consuming BA but not in PL. Results suggested that BA supplementation can improve cognitive function in older adults whose cognitive function at baseline was at or below normal and possibly reduce depression scores.
Collapse
Affiliation(s)
- Ishay Ostfeld
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Tavor Ben-Zeev
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Amit Zamir
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Chagai Levi
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shmuel Springer
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Jay R. Hoffman
- School of Health Science, Ariel University, Ariel 40700, Israel
- Correspondence:
| |
Collapse
|
43
|
Sharula, Kai S, Okada T, Shimamoto S, Fujimura S. The short-term feeding of low- and high-histidine diets prior to market affects the muscle carnosine and anserine contents and meat quality of broilers. Anim Sci J 2023; 94:e13856. [PMID: 37528620 DOI: 10.1111/asj.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 08/03/2023]
Abstract
Functional dipeptides carnosine and anserine are abundant in muscle. We determined the effect of short-term dietary histidine (His) content on muscle carnosine and anserine contents and meat quality of broilers. Three groups of 28-day-old female broilers were fed diets with His contents of 67%, 100%, or 150% of requirement for 10 days before market (His contents 0.21%, 0.32%, and 0.48%, respectively). The carnosine and anserine contents of 0-h aged muscle significantly increased with dietary His content; in particular, the carnosine content was 162% higher in the His 0.48% group than in the His 0.32% group. The contents of both peptides also increased with dietary His content in 48-h aged muscle, but carnosine was not detected in 0- and 48-h aged muscle of the His 0.21% group. The drip loss, cooking loss, shear force, and pH of meat were not affected by the dietary His content. The 2-thiobarbituric acid-reactive substances contents of 24- and 48-h aged muscles were lower in the His 0.48% group than in the other groups, and the a* and b* values were lower in the His 0.21% group. These results suggest that short-term dietary His content affects imidazole dipeptide contents, antioxidative capacity, and color of broiler meat.
Collapse
Affiliation(s)
- Sharula
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | | | - Toru Okada
- Aska Animal Health Co. Ltd, Tokyo, Japan
| | - Saki Shimamoto
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Shinobu Fujimura
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
44
|
Pilegaard K, Uldall ASM, Ravn-Haren G. Intake of Food Supplements, Caffeine, Green Tea and Protein Products among Young Danish Men Training in Commercial Gyms for Increasing Muscle Mass. Foods 2022; 11:4003. [PMID: 36553745 PMCID: PMC9777690 DOI: 10.3390/foods11244003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sixty-three men (15-35 years of age) regularly training in Danish gyms and supplement users were interviewed about the use of supplemental protein and food supplements, intake of caffeine- and (-)-epigallocathechin-3-gallate (EGCG)-containing supplements and beverages and any experienced adverse effects. Protein powder (60%), fish oil (54%) and multivitamin/mineral supplements (41%) were the most popular products. The daily supplementary protein intake (mean 0.42 g/kg body weight, users only) in adult men contributed substantially to their protein intake and exceeded the recommended allowance (0.83 g/kg body weight) for six adult participants (14%). Thirty-eight percent of the adult men exceeded the daily caffeine intake presumed to be safe (400 mg) with coffee as the main contributor. Thirty percent drank green tea and among this percentage, two participants had an extreme daily intake (1.5 and 2 -L). EGCG intake could not be estimated from the food supplements due to the lack of label information. Eighteen participants (29%) reported having experienced adverse effects but seventeen did not consult a physician or report the adverse effect to the Danish food authority. The most common adverse effects were insomnia, shaking, headache and palpitations, itching of the skin and stinging. Pre-workout products accounted for 53% of the adverse effects. Three adverse effects came after intake of two brands of supplements known to have contained substances such as 1,3-dimethylamine or derivatives of phenylethylamines previously having caused serious adverse effects.
Collapse
Affiliation(s)
- Kirsten Pilegaard
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
45
|
De Brandt J, Derave W, Vandenabeele F, Pomiès P, Blancquaert L, Keytsman C, Barusso-Grüninger MS, de Lima FF, Hayot M, Spruit MA, Burtin C. Efficacy of 12 weeks oral beta-alanine supplementation in patients with chronic obstructive pulmonary disease: a double-blind, randomized, placebo-controlled trial. J Cachexia Sarcopenia Muscle 2022; 13:2361-2372. [PMID: 35977911 PMCID: PMC9530565 DOI: 10.1002/jcsm.13048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Beta-alanine (BA) supplementation increases muscle carnosine, an abundant endogenous antioxidant and pH buffer in skeletal muscle. Carnosine loading promotes exercise capacity in healthy older adults. As patients with chronic obstructive pulmonary disease (COPD) suffer from elevated exercise-induced muscle oxidative/carbonyl stress and acidosis, and from reduced muscle carnosine stores, it was investigated whether BA supplementation augments muscle carnosine and induces beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress in patients with COPD. METHODS In this double-blind, randomized, placebo (PL)-controlled trial (clinicaltrials.gov identifier: NCT02770417), 40 patients (75% male) with COPD (mean ± standard deviation: age 65 ± 6 years; FEV1 % predicted 55 ± 14%) were assigned to 12 weeks oral BA or PL supplementation (3.2 g/day). The primary outcome, i.e. muscle carnosine, was quantified from m. vastus lateralis biopsies obtained before and after intervention. Co-primary outcomes, i.e. incremental and constant work rate cycle capacity, were also assessed. Linear mixed model analyses were performed. Compliance with and side effects of supplement intake and secondary outcomes (quadriceps strength and endurance, and muscle oxidative/carbonyl stress) were also assessed. RESULTS Beta-alanine supplementation increased muscle carnosine in comparison with PL in patients with COPD (mean difference [95% confidence interval]; +2.82 [1.49-4.14] mmol/kg wet weight; P < 0.001). Maximal incremental cycling capacity (VO2 peak: +0.5 [-0.7 to 1.7] mL/kg/min; P = 0.384, Wpeak: +5 [-1 to 11] W; P = 0.103) and time to exhaustion on the constant work rate cycle test (+28 [-179 to 236] s; P = 0.782) did not change significantly. Compliance with supplement intake was similar in BA (median (quartile 1-quartile 3); 100 (98-100)%) and PL (98 (96-100)%) (P = 0.294) groups, and patients did not report side effects possibly related to supplement intake. No change was observed in secondary outcomes. CONCLUSIONS Beta-alanine supplementation is efficacious in augmenting muscle carnosine (+54% from mean baseline value) without side effects in patients with COPD in comparison with PL. However, accompanied beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress were not observed.
Collapse
Affiliation(s)
- Jana De Brandt
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Frank Vandenabeele
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Charly Keytsman
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Marina S Barusso-Grüninger
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,LEFiR - Spirometry and Respiratory Laboratory, São Carlos Federal University - UFSCar, São Carlos, São Paulo, Brazil
| | - Fabiano F de Lima
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,Faculty of Science and Technology, Department of Physical Therapy, Postgraduate Program in Physical Therapy, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Maurice Hayot
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Martijn A Spruit
- Department of Research and Education, CIRO+, Horn, The Netherlands.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chris Burtin
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
46
|
Dietary Supplement Use of Turkish Footballers: Differences by Sex and Competition Level. Nutrients 2022; 14:nu14183863. [PMID: 36145239 PMCID: PMC9503904 DOI: 10.3390/nu14183863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate the consumption of dietary supplements (DS) and to determine related topics in Turkish football players of different sexes and competition levels. A total of 117 footballers (79 males and 38 females) completed a specific survey regarding DS consumption in athletes. The type of DS ingested was classified based on the level of scientific evidence by the Australian Institute of Sport (AIS): group A (high level of scientific evidence), group B (DS that could have a positive effect, but require more evidence), group C (evidence is against their use), and group D (prohibited substances). After a Kolmogorov−Smirnov test, a t-test or Mann−Whitney U test was performed for quantitative variables, while Pearson’s chi-square and odds ratio (with the confidence interval) were performed for qualitative variables. Of the sample, 87.2% reported having consumed DS, with a higher consumption rate in males (males: 93.7%, females: 73.7%; p = 0.006; OR = 5.3 [1.7−16.8]) and professional players (professional: 98.2%, non-professional: 77.4%; p < 0.001; OR = 7.9 [1.2−52.3]). Males and professional players consume more sports foods (p < 0.001), performance supplements (p < 0.001), and total group A supplements (p < 0.001) compared to females and non-professionals. In addition, males consume more medical supplements (p = 0.012) and total group C supplements (p < 0.001) than female footballers. The most consumed DS were sports drinks (63.2%), magnesium (52.1%), vitamin C (51.3%), vitamin D (46.2%), caffeine (38.5%), sports bars (37.6%), whey protein (28.2%), meat protein (25.6%), vitamin E (24.8%), and omega-3 fatty acids (24.8%). The supplement consumption was higher in male and professional footballers. According to the AIS classification, there were significant differences in the consumption of sports foods, medical supplements, performance supplements, and the total number of group A and group C supplements according to sex, and there were significant differences in the consumption of sports foods, performance supplements, and the total number of group A supplements according to competition level.
Collapse
|
47
|
Effect of Beta-Alanine Supplementation on Exercise-Induced Cell Damage and Lactate Accumulation in Female Basketball Players: A Randomized, Double-Blind Study. J Hum Kinet 2022; 83:99-107. [PMID: 36157944 PMCID: PMC9465754 DOI: 10.2478/hukin-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Beta-alanine (BA) is a supplement that has received attention for its buffering potential among athletes. The aim of this study was to investigate the effects of BA supplementation on exercise performance and exercise-induced cell damage in female basketball players. Twenty-two female basketball players participated in a randomized, double-blind study. They ingested 6.4 g·day-1 of BA or an isocaloric placebo (dextrose) over 4 weeks. Exercise performance including aerobic (Bruce test), anaerobic (Wingate test), intermittent (Yo-Yo test) and basketball performance (countermovement jump and free throw shots) was measured before and following the intervention. Exercise measures were performed at the lab and free throw shots were undertaken on a wooden indoor basketball court. Blood samples were also collected before and after the exhaustive exercise to assess lactate concentration, creatine kinase (CK), lactate dehydrogenase (LDH) and malondialdehyde (MDA) activity. The exhaustive exercise test induced an increase in lactate concentration and MDA, CK and LDH activity (all p < 0.05). BA supplementation significantly reduced the lactate response to exhaustive exercise (p = 0.001); however, it had no significant effect on exercise-induced MDA, CK and LDH activity (all p > 0.05). Furthermore, exercise performance measures improved from pre- to post-test regardless of supplement/placebo ingestion (all p < 0.05). BA consumption over 4 weeks significantly reduced lactate accumulation following exhaustive exercise, but had no ergogenic effect in female basketball players. Usual dosing of BA does not seem to exhibit protective effect against oxidative damage.
Collapse
|
48
|
Samadi M, Askarian A, Shirvani H, Shamsoddini A, Shakibaee A, Forbes SC, Kaviani M. Effects of Four Weeks of Beta-Alanine Supplementation Combined with One Week of Creatine Loading on Physical and Cognitive Performance in Military Personnel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137992. [PMID: 35805647 PMCID: PMC9265371 DOI: 10.3390/ijerph19137992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023]
Abstract
The purpose was to investigate the effects of a 7-day creatine (Cr) loading protocol at the end of four weeks of β-alanine supplementation (BA) on physical performance, blood lactate, cognitive performance, and resting hormonal concentrations compared to BA alone. Twenty male military personnel (age: 21.5 ± 1.5 yrs; height: 1.78 ± 0.05 m; body mass: 78.5 ± 7.0 kg; BMI: 23.7 ± 1.64 kg/m2) were recruited and randomized into two groups: BA + Cr or BA + placebo (PL). Participants in each group (n = 10 per group) were supplemented with 6.4 g/day of BA for 28 days. After the third week, the BA + Cr group participants were also supplemented with Cr (0.3 g/kg/day), while the BA + PL group ingested an isocaloric placebo for 7 days. Before and after supplementation, each participant performed a battery of physical and cognitive tests and provided a venous blood sample to determine resting testosterone, cortisol, and IGF-1. Furthermore, immediately after the last physical test, blood lactate was assessed. There was a significant improvement in physical performance and mathematical processing in the BA + Cr group over time (p < 0.05), while there was no change in the BA + PL group. Vertical jump performance and testosterone were significantly higher in the BA + Cr group compared to BA + PL. These results indicate that Cr loading during the final week of BA supplementation (28 days) enhanced muscular power and appears to be superior for muscular strength and cognitive performance compared to BA supplementation alone.
Collapse
Affiliation(s)
- Mohammad Samadi
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Ali Askarian
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Hossein Shirvani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Alireza Shamsoddini
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Abolfazl Shakibaee
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Scott C. Forbes
- Faculty of Education, Department of Physical Education Studies, Brandon University, Brandon, MB R7A 6A9, Canada;
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Faculty of Pure and Applied Science, Acadia University, Wolfville, NS B4P 2R6, Canada
- Correspondence:
| |
Collapse
|
49
|
Hamaoka T, Fu X, Tomonaga S, Hashimoto O, Murakami M, Funaba M. Stimulation of uncoupling protein 1 expression by β-alanine in brown adipocytes. Arch Biochem Biophys 2022; 727:109341. [PMID: 35777522 DOI: 10.1016/j.abb.2022.109341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Carnosine, which is abundant in meat, is a dipeptide composed of β-alanine and histidine, known to afford various health benefits. It has been suggested that carnosine can elicit an anti-obesity effect via induction and activation of brown/beige adipocytes responsible for non-shivering thermogenesis. However, the relationship between carnosine and brown/beige adipocytes has not been comprehensively elucidated. We hypothesized that β-alanine directly modulates brown/beige adipogenesis and performed an in vitro assessment to test this hypothesis. HB2 brown preadipocytes were differentiated using insulin from day 0. Cells were treated with various concentrations of β-alanine (12.5-100 μM) during adipogenesis (days 0-8) and differentiation (days 8-10). Then, cells were further stimulated with or without forskolin, an activator of the cAMP-dependent protein kinase pathway, on day 8 or day 10 for 4 h before harvesting. We observed that HB2 cells expressed molecules related to the transport and signal transduction of β-alanine. Treatment with β-alanine during brown adipogenesis dose-dependently enhanced forskolin-induced Ucp1 expression; this was not observed in differentiated brown adipocytes. Consistent with these findings, treatment with β-alanine during days 0-8 increased phosphorylation levels of CREB in forskolin-treated HB2 cells. In addition, β-alanine treatment during brown adipogenesis increased the expression of Pparα, known to induce brown/beige adipogenesis, in a dose-dependent manner. These findings revealed that β-alanine could target HB2 adipogenic cells and enhance forskolin-induced Ucp1 expression during brown adipogenesis, possibly by accelerating phosphorylation and activation of CREB. Thus, β-alanine, a carnosine-constituting amino acid, might directly act on brown adipogenic cells to stimulate energy expenditure.
Collapse
Affiliation(s)
- Tsukasa Hamaoka
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Xiajie Fu
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Osamu Hashimoto
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, 526-0829, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, 252-5201, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
50
|
Negro M, Cerullo G, Perna S, Beretta-Piccoli M, Rondanelli M, Liguori G, Cena H, Phillips SM, Cescon C, D’Antona G. Effects of a Single Dose of a Creatine-Based Multi-Ingredient Pre-workout Supplement Compared to Creatine Alone on Performance Fatigability After Resistance Exercise: A Double-Blind Crossover Design Study. Front Nutr 2022; 9:887523. [PMID: 35799580 PMCID: PMC9255897 DOI: 10.3389/fnut.2022.887523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background This study aims to investigate the acute effects of a single oral administration of a creatine-based multi-ingredient pre-workout supplement (MIPS) on performance fatigability and maximal force production after a resistance exercise protocol (REP). Methods Eighteen adult males (age: 23 ± 1 years; body mass: 76.4 ± 1.5 kg; height: 1.77 ± 0.01 m) were enrolled in a randomized, double-blind, crossover design study. Subjects received a single dose of a MIPS (3 g of creatine, 2 g of arginine, 1 g of glutamine, 1 g of taurine, and 800 mg of β-alanine) or creatine citrate (CC) (3 g of creatine) or a placebo (PLA) in three successive trials 1 week apart. In a randomized order, participants consumed either MIPS, CC, or PLA and performed a REP 2 h later. Before ingestion and immediately after REP, subjects performed isometric contractions of the dominant biceps brachii: two maximal voluntary contractions (MVCs), followed by a 20% MVC for 90 s and a 60% MVC until exhaustion. Surface electromyographic indices of performance fatigability, conduction velocity (CV), and fractal dimension (FD) were obtained from the surface electromyographic signal (sEMG). Time to perform the task (TtT), basal blood lactate (BL), and BL after REP were also measured. Results Following REP, statistically significant (P < 0.05) pre–post mean for ΔTtT between MIPS (−7.06 s) and PLA (+0.222 s), ΔCV slopes (20% MVC) between MIPS (0.0082%) and PLA (−0.0519%) and for ΔCV slopes (60% MVC) between MIPS (0.199%) and PLA (−0.154%) were found. A pairwise comparison analysis showed no statistically significant differences in other variables between groups and condition vs. condition. Conclusion After REP, a creatine-enriched MIPS resulted in greater improvement of sEMG descriptors of performance fatigability and TtT compared with PLA. Conversely, no statistically significant differences in outcomes measured were observed between CC and PLA or MIPS and CC.
Collapse
Affiliation(s)
- Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) – Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | - Matteo Beretta-Piccoli
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici (ICS) Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Pavia, Pavia, Italy
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Giuseppe D’Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) – Sport Medicine Centre, University of Pavia, Voghera, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Giuseppe D’Antona,
| |
Collapse
|