1
|
Michalak KM, Wojciechowska N, Kułak K, Minicka J, Jagodziński AM, Bagniewska-Zadworna A. Is autophagy always a death sentence? A case study of highly selective cytoplasmic degradation during phloemogenesis. ANNALS OF BOTANY 2025; 135:681-696. [PMID: 39497527 PMCID: PMC11904893 DOI: 10.1093/aob/mcae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/04/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND AND AIMS The transformation of sieve elements from meristematic cells, equipped with a full complement of organelles, to specialized transport tubes devoid of a nucleus has long been enigmatic. We hypothesized a strong involvement of various degradation pathways, particularly macroautophagy in this context, emphasizing the importance of autophagic selectivity in the remaining viability of these cells. METHODS Experiments were performed on pioneer roots of Populus trichocarpa cultivated in rhizotrons under field conditions. Through anatomical, ultrastructural and molecular analyses, we delineate the stages of phloemogenesis and the concurrent alterations in the cytoplasmic composition of SEs. KEY RESULTS Notably, we observed not only macroautophagic structures, but also the formation of autophagic plastids, the selective degradation of specific organelles, vacuole disruption and the release of vacuolar contents. These events initially lead to localized reductions in cytoplasm density, but the organelle-rich cytoplasmic phase is safeguarded from extensive damage by a membrane system derived from the endoplasmic reticulum. The sieve element ultimately develops into a conduit containing electron-translucent cytoplasm. Eventually, the mature sieve element is a tube filled only by translucent cytoplasm, with sparse organelles tethered to the cell wall. CONCLUSIONS Although the activation of programmed cell death pathways was postulated, the persistence of sieve elements indicates that protoplast depletion is meticulously regulated by hitherto unidentified mechanisms. This research elucidates the sequential processes occurring in these cells during phloemogenesis and unveils novel insights into the mechanisms of selective autophagy.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Karolina Kułak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection in Poznań, Węgorka 20, Poznań 60-318, Poland
| | - Andrzej M Jagodziński
- Department of Ecology, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik 62-035, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| |
Collapse
|
2
|
Serafini-Fracassini D, Del Duca S. Programmed Cell Death Reversal: Polyamines, Effectors of the U-Turn from the Program of Death in Helianthus tuberosus L. Int J Mol Sci 2024; 25:5386. [PMID: 38791426 PMCID: PMC11121942 DOI: 10.3390/ijms25105386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.
Collapse
Affiliation(s)
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
Microbial interaction mediated programmed cell death in plants. 3 Biotech 2022; 12:43. [PMID: 35096500 PMCID: PMC8761208 DOI: 10.1007/s13205-021-03099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/26/2021] [Indexed: 02/03/2023] Open
Abstract
Food demand of growing population can only be met by finding solutions for sustaining the crop yield. The understanding of basic mechanisms employed by microorganisms for the establishment of parasitic relationship with plants is a complex phenomenon. Symbionts and biotrophs are dependent on living hosts for completing their life cycle, whereas necrotrophs utilize dead cells for their growth and establishment. Hemibiotrophs as compared to other microbes associate themselves with plants in two phase's, viz. early bio-phase and later necro-phase. Plants and microbes interact with each other using receptors present on host cell surface and elicitors (PAMPs and effectors) produced by microbes. Plant-microbe interaction either leads to compatible or incompatible reaction. In response to various biotic and abiotic stress factors, plant undergoes programmed cell death which restricts the growth of biotrophs or hemibiotrophs while necrotrophs as an opportunist starts growing on dead tissue for their own benefit. PCD regulation is an outcome of plant-microbe crosstalk which entirely depends on various biochemical events like generation of reactive oxygen species, nitric oxide, ionic efflux/influx, CLPs, biosynthesis of phytohormones, phytoalexins, polyamines and certain pathogenesis-related proteins. This phenomenon mostly occurs in resistant and non-host plants during invasion of pathogenic microbes. The compatible or incompatible host-pathogen interaction depends upon the presence or absence of host plant resistance and pathogenic race. In addition to host-pathogen interaction, the defense induction by beneficial microbes must also be explored and used to the best of its potential. This review highlights the mechanism of microbe- or symbiont-mediated PCD along with defense induction in plants towards symbionts, biotrophs, necrotrophs and hemibiotrophs. Here we have also discussed the possible use of beneficial microbes in inducing systemic resistance in plants against pathogenic microbes.
Collapse
|
4
|
Sychta K, Słomka A, Kuta E. Insights into Plant Programmed Cell Death Induced by Heavy Metals-Discovering a Terra Incognita. Cells 2021; 10:cells10010065. [PMID: 33406697 PMCID: PMC7823951 DOI: 10.3390/cells10010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death (PCD) is a process that plays a fundamental role in plant development and responses to biotic and abiotic stresses. Knowledge of plant PCD mechanisms is still very scarce and is incomparable to the large number of studies on PCD mechanisms in animals. Quick and accurate assays, e.g., the TUNEL assay, comet assay, and analysis of caspase-like enzyme activity, enable the differentiation of PCD from necrosis. Two main types of plant PCD, developmental (dPCD) regulated by internal factors, and environmental (ePCD) induced by external stimuli, are distinguished based on the differences in the expression of the conserved PCD-inducing genes. Abiotic stress factors, including heavy metals, induce necrosis or ePCD. Heavy metals induce PCD by triggering oxidative stress via reactive oxygen species (ROS) overproduction. ROS that are mainly produced by mitochondria modulate phytotoxicity mechanisms induced by heavy metals. Complex crosstalk between ROS, hormones (ethylene), nitric oxide (NO), and calcium ions evokes PCD, with proteases with caspase-like activity executing PCD in plant cells exposed to heavy metals. This pathway leads to very similar cytological hallmarks of heavy metal induced PCD to PCD induced by other abiotic factors. The forms, hallmarks, mechanisms, and genetic regulation of plant ePCD induced by abiotic stress are reviewed here in detail, with an emphasis on plant cell culture as a suitable model for PCD studies. The similarities and differences between plant and animal PCD are also discussed.
Collapse
|
5
|
Del Duca S, Aloisi I, Parrotta L, Cai G. Cytoskeleton, Transglutaminase and Gametophytic Self-Incompatibility in the Malinae (Rosaceae). Int J Mol Sci 2019; 20:ijms20010209. [PMID: 30626063 PMCID: PMC6337636 DOI: 10.3390/ijms20010209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
Self-incompatibility (SI) is a complex process, one out of several mechanisms that prevent plants from self-fertilizing to maintain and increase the genetic variability. This process leads to the rejection of the male gametophyte and requires the co-participation of numerous molecules. Plants have evolved two distinct SI systems, the sporophytic (SSI) and the gametophytic (GSI) systems. The two SI systems are markedly characterized by different genes and proteins and each single system can also be divided into distinct subgroups; whatever the mechanism, the purpose is the same, i.e., to prevent self-fertilization. In Malinae, a subtribe in the Rosaceae family, i.e., Pyrus communis and Malus domestica, the GSI requires the production of female determinants, known as S-RNases, which penetrate the pollen tube to interact with the male determinants. Beyond this, the penetration of S-RNase into the pollen tube triggers a series of responses involving membrane proteins, such as phospholipases, intracellular variations of cytoplasmic Ca2+, production of reactive oxygen species (ROS) and altered enzymatic activities, such as that of transglutaminase (TGase). TGases are widespread enzymes that catalyze the post-translational conjugation of polyamines (PAs) to different protein targets and/or the cross-linking of substrate proteins leading to the formation of cross-linked products with high molecular mass. When actin and tubulin are the substrates, this destabilizes the cytoskeleton and inhibits the pollen-tube's growth process. In this review, we will summarize the current knowledge of the relationship between S-RNase penetration, TGase activity and cytoskeleton function during GSI in the Malinae.
Collapse
Affiliation(s)
- Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Iris Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Luigi Parrotta
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy.
- Dipartimento di Scienze della Vita, Università di Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Giampiero Cai
- Dipartimento di Scienze della Vita, Università di Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
6
|
Qi YH, Mao FF, Zhou ZQ, Liu DC, Deng XY, Li JW, Mei FZ. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging. PROTOPLASMA 2018; 255:1651-1665. [PMID: 29717349 DOI: 10.1007/s00709-018-1256-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that the increase in mitochondrial damage and corresponding release of cytochrome c may be one of the major causes of endosperm PCD advancement under waterlogging.
Collapse
Affiliation(s)
- Yuan-Hong Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Fang-Fang Mao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhu-Qing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Dong-Cheng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Yi Deng
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Ji-Wei Li
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Fang-Zhu Mei
- Division of Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
7
|
Abstract
Transglutaminase (TGase:E.C. 2.3.2.13) catalyzes the acyl-transfer reaction between one or two primary amino groups of polyamines and protein-bound Gln residues giving rise to post-translational modifications. One increasing the positive charge on a proteins surface and the other results in the covalent crosslinking of proteins. Pioneering studies on TGase in plants started in the middle of the 1980's but the methodology designed for use with animal extracts was not directly applicable to plant extracts. Here we describe radioactive and colorimetric methods adapted to study plant TGase, as well as protocols to analyze the involvement of TGase and polyamines in the functionality of cytoskeletal proteins.
Collapse
|
8
|
Galsurker O, Doron-Faigenboim A, Teper-Bamnolker P, Daus A, Fridman Y, Lers A, Eshel D. Cellular and Molecular Changes Associated with Onion Skin Formation Suggest Involvement of Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2016; 7:2031. [PMID: 28119713 PMCID: PMC5220068 DOI: 10.3389/fpls.2016.02031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 05/07/2023]
Abstract
Skin formation of onion (Allium cepa L.) bulb involves scale desiccation accompanied by scale senescence, resulting in cell death and tissue browning. Understanding the mechanism of skin formation is essential to improving onion skin and bulb qualities. Although onion skin plays a crucial role in postharvest onion storage and shelf life, its formation is poorly understood. We investigated the mode of cell death in the outermost scales that are destined to form the onion skin. Surprisingly, fluorescein diacetate staining and scanning electron microscopy indicated that the outer scale desiccates from the inside out. This striking observation suggests that cell death in the outer scales, during skin formation, is an internal and organized process that does not derive only from air desiccation. DNA fragmentation, a known hallmark of programmed cell death (PCD), was revealed in the outer scales and gradually decreased toward the inner scales of the bulb. Transmission electron microscopy further revealed PCD-related structural alterations in the outer scales which were absent from the inner scales. De novo transcriptome assembly for three different scales: 1st (outer), 5th (intermediate) and 8th (inner) fleshy scales identified 2,542 differentially expressed genes among them. GO enrichment for cluster analysis revealed increasing metabolic processes in the outer senescent scale related to defense response, PCD processes, carbohydrate metabolism and flavonoid biosynthesis, whereas increased metabolism and developmental growth processes were identified in the inner scales. High expression levels of PCD-related genes were identified in the outer scale compared to the inner ones, highlighting the involvement of PCD in outer-skin development. These findings suggest that a program to form the dry protective skin exists and functions only in the outer scales of onion.
Collapse
Affiliation(s)
- Ortal Galsurker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
- The Robert H. Smith Institute of Field Crops and Vegetables, Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Paula Teper-Bamnolker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Avinoam Daus
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Yael Fridman
- The Alexander Silberman Institute of Life Science, Edmond Safra Campus (G Ram), The Hebrew UniversityJerusalem, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Dani Eshel
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
- *Correspondence: Dani Eshel,
| |
Collapse
|
9
|
Cai G, Della Mea M, Faleri C, Fattorini L, Aloisi I, Serafini-Fracassini D, Del Duca S. Spermine either delays or promotes cell death in Nicotiana tabacum L. corolla depending on the floral developmental stage and affects the distribution of transglutaminase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:11-22. [PMID: 26706054 DOI: 10.1016/j.plantsci.2015.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The role of spermine (SM) was studied to verify if SM supplied to Nicotiana tabacum flower can modulate programmed cell death (PCD) of the corolla. SM has strong effects on the development and senescence of excised flowers despite its low physiological levels. The timing and duration of SM treatment is a key factor; SM counteracts PCD (verified by morphological observations, pigment contents and DNA laddering) only in the narrow developmental window of corolla expansion. Before and after, SM promotes PCD. SM exerts its pro-survival role by delaying fresh weight loss, by inhibiting reduction of pigments and finally by preventing DNA degradation. Moreover, SM deeply alters the distribution of the PA-conjugating enzyme transglutaminase (TGase). TGase is present in the epidermis during development, but it sprays also in the cell walls of inner parenchyma at senescence. After SM treatment, parenchyma cells accumulate TGase, increase in size and their cell walls do not undergo stiffening contrarily to control cells. The subcellular localization of TGase has been validated by biolistic-transformation of onion epidermal cells. Results indicated that SM is a critical factor in the senescence of N. tabacum corolla by controlling biochemical and morphological parameters; the lasts are probably interconnected with the action of TGase.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento di Scienze della Vita, Università di Siena, Siena 53100, Italy.
| | - Massimiliano Della Mea
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, Bologna 40126, Italy.
| | - Claudia Faleri
- Dipartimento di Scienze della Vita, Università di Siena, Siena 53100, Italy.
| | - Laura Fattorini
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, I-00185, Italy.
| | - Iris Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, Bologna 40126, Italy.
| | - Donatella Serafini-Fracassini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, Bologna 40126, Italy.
| | - Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, Bologna 40126, Italy.
| |
Collapse
|
10
|
Rybaczek D, Musiałek MW, Balcerczyk A. Caffeine-Induced Premature Chromosome Condensation Results in the Apoptosis-Like Programmed Cell Death in Root Meristems of Vicia faba. PLoS One 2015; 10:e0142307. [PMID: 26545248 PMCID: PMC4636323 DOI: 10.1371/journal.pone.0142307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022] Open
Abstract
We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant–DSBs versus alkaline–DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD.
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- * E-mail:
| | - Marcelina Weronika Musiałek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
11
|
Wang L, Zhang H. Genomewide survey and characterization of metacaspase gene family in rice (Oryza sativa). J Genet 2015; 93:93-102. [PMID: 24840826 DOI: 10.1007/s12041-014-0343-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metacaspases (MCs), which are cysteine-dependent proteases found in plants, fungi, and protozoa, may be involved in programmed cell death processes, being distant relatives of metazoan caspases. In this study, we analysed the structures, phylogenetic relationship, genome localizations, expression patterns and domestic selections of eight MC genes identified in rice (OsMC). Alignment analysis of the corresponding protein sequences suggested OsMC proteins can be classified into two subtypes. The expression profiles of eight OsMC genes were analysed in 27 tissues covering the whole life cycle of rice. There are four OsMC genes uniquely expressed in mature tissues, indicating that these genes might play certain roles in senescence. Under abiotic and biotic stresses, four OsMC genes were expressed with treatments of one or more of Magnaporthe oryzae (M. oryzae) infected, pest damaged, cold stress and drought stress, indicating they might be involved in plant defense. In addition, gene trees and genetic diversity (π) were performed to measure whether candidate genes were selected during rice domestication. The results suggested that all the type I genes could not be domestication genes. However, two of five type II OsMC genes showed strong evidence for selective sweep, suggesting that these genes might be involved in cultivated rice domestication. These results provide a foundation for future functional genomic studies of this family in rice.
Collapse
Affiliation(s)
- Likai Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, People's Republic of China.
| | | |
Collapse
|
12
|
Cai J, Zhang Z, Zhou Z, Yang W, Liu Y, Mei F, Zhou G, Wang L. Localization of BEN1-LIKE protein and nuclear degradation during development of metaphloem sieve elements in Triticum aestivum L. ACTA BIOLOGICA HUNGARICA 2015; 66:66-79. [PMID: 25740439 DOI: 10.1556/abiol.66.2015.1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Metaphloem sieve elements (MSEs) in the developing caryopsis of Triticum aestivum L. undergo a unique type of programmed cell death (PCD); cell organelles gradually degrade with the MSE differentiation while mature sieve elements keep active. This study focuses on locating BEN1-LIKE protein and nuclear degradation in differentiating MSEs of wheat. Transmission electron microscopy (TEM) showed that nuclei degraded in MSE development. First, the degradation started at 2-3 days after flowering (DAF). The degraded fragments were then swallowed by phagocytic vacuoles at 4 DAF. Finally, nuclei almost completely degraded at 5 DAF. We measured the BEN1-LIKE protein expression in differentiating MSEs. In situ hybridization showed that BEN1-LIKE mRNA was a more obvious hybridization signal at 3-4 DAF at the microscopic level. Immuno-electron microscopy further revealed that BEN1-LIKE protein was mainly localized in MSE nuclei. Furthermore, MSE differentiation was tested using a TSQ Zn2+ fluorescence probe which showed that the dynamic change of Zn2+ accumulation was similar to BEN1-LIKE protein expression. These results suggest that nucleus degradation in wheat MSEs is associated with BEN1-LIKE protein and that the expression of this protein may be regulated by Zn2+ accumulation variation.
Collapse
Affiliation(s)
- Jingtong Cai
- Huazhong Agricultural University Laboratory of Cell Biology, College of Life Science and Technology Wuhan, Hubei 430070 China
| | - Zhihui Zhang
- Huazhong Agricultural University Laboratory of Cell Biology, College of Life Science and Technology Wuhan, Hubei 430070 China
| | - Zhuqing Zhou
- Huazhong Agricultural University Laboratory of Cell Biology, College of Life Science and Technology Wuhan, Hubei 430070 China
| | - Wenli Yang
- Huazhong Agricultural University Laboratory of Cell Biology, College of Life Science and Technology Wuhan, Hubei 430070 China
| | - Yang Liu
- Huazhong Agricultural University Laboratory of Cell Biology, College of Life Science and Technology Wuhan, Hubei 430070 China
| | - Fangzhu Mei
- Huazhong Agricultural University College of Plant Sciences & Technology Wuhan, Hubei 430070 China
| | - Guangsheng Zhou
- Huazhong Agricultural University College of Plant Sciences & Technology Wuhan, Hubei 430070 China
| | - Likai Wang
- Huazhong Agricultural University Laboratory of Cell Biology, College of Life Science and Technology Wuhan, Hubei 430070 China
| |
Collapse
|
13
|
Polyamines are common players in different facets of plant programmed cell death. Amino Acids 2014; 47:27-44. [PMID: 25399055 DOI: 10.1007/s00726-014-1865-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 01/16/2023]
Abstract
Programmed cell death (PCD) is a process that occurs throughout the life span of every plant life, from initial germination of the seed to the senescence of the plant. It is a normal physiological milestone during the plant's developmental process, but it can also be induced by external factors, including a variety of environmental stresses and as a response to pathogen infections. Changes in the morphology of the nucleus is one of the most noticeable during PCD but all the components of the plant cell (cytoplasm, cytoskeleton and organelles) are involved in this fascinating process. To date, relatively little is known about PCD in plants, but several factors, among which polyamines (PAs) and plant growth regulators, have been shown to play an important role in the initiation and regulation of the process. The role of PAs in plant PCD appears to be multifaceted acting in some instances as pro-survival molecules, whereas in others seem to be implicated in accelerating PCD. The molecular mechanism is still under study. Here we present some PCD plant models, focusing on the role of the enzyme responsible for PA conjugation to proteins: transglutaminase (TGase), an enzyme linked with the process of PCD also in some animal models. The role of PAs and plant TGase in the senescence and PCD in flowers, leaf and the self-incompatibility of pollen will be discussed and examined in depth.
Collapse
|
14
|
Tran V, Weier D, Radchuk R, Thiel J, Radchuk V. Caspase-like activities accompany programmed cell death events in developing barley grains. PLoS One 2014; 9:e109426. [PMID: 25286287 PMCID: PMC4186829 DOI: 10.1371/journal.pone.0109426] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/31/2014] [Indexed: 11/19/2022] Open
Abstract
Programmed cell death is essential part of development and cell homeostasis of any multicellular organism. We have analyzed programmed cell death in developing barley caryopsis at histological, biochemical and molecular level. Caspase-1, -3, -4, -6 and -8-like activities increased with aging of pericarp coinciding with abundance of TUNEL positive nuclei and expression of HvVPE4 and HvPhS2 genes in the tissue. TUNEL-positive nuclei were also detected in nucellus and nucellar projection as well as in embryo surrounding region during early caryopsis development. Quantitative RT-PCR analysis of micro-dissected grain tissues revealed the expression of HvVPE2a, HvVPE2b, HvVPE2d, HvPhS2 and HvPhS3 genes exclusively in the nucellus/nucellar projection. The first increase in cascade of caspase-1, -3, -4, -6 and -8-like activities in the endosperm fraction may be related to programmed cell death in the nucellus and nucellar projection. The second increase of all above caspase-like activities including of caspase-9-like was detected in the maturating endosperm and coincided with expression of HvVPE1 and HvPhS1 genes as well as with degeneration of nuclei in starchy endosperm and transfer cells. The distribution of the TUNEL-positive nuclei, tissues-specific expression of genes encoding proteases with potential caspase activities and cascades of caspase-like activities suggest that each seed tissue follows individual pattern of development and disintegration, which however harmonizes with growth of the other tissues in order to achieve proper caryopsis development.
Collapse
Affiliation(s)
- Van Tran
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Diana Weier
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ruslana Radchuk
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Johannes Thiel
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Volodymyr Radchuk
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
15
|
Del Duca S, Serafini-Fracassini D, Cai G. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. FRONTIERS IN PLANT SCIENCE 2014; 5:120. [PMID: 24778637 PMCID: PMC3985020 DOI: 10.3389/fpls.2014.00120] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 05/14/2023]
Abstract
Research on polyamines (PAs) in plants laps a long way of about 50 years and many roles have been discovered for these aliphatic cations. PAs regulate cell division, differentiation, organogenesis, reproduction, dormancy-break and senescence, homeostatic adjustments in response to external stimuli and stresses. Nevertheless, the molecular mechanisms of their multiple activities are still matter of research. PAs are present in free and bound forms and interact with several important cell molecules; some of these interactions may occur by covalent linkages catalyzed by transglutaminase (TGase), giving rise to "cationization" or cross-links among specific proteins. Senescence and programmed cell death (PCD) can be delayed by PAs; in order to re-interpret some of these effects and to obtain new insights into their molecular mechanisms, their conjugation has been revised here. The TGase-mediated interactions between proteins and PAs are the main target of this review. After an introduction on the characteristics of this enzyme, on its catalysis and role in PCD in animals, the plant senescence and PCD models in which TGase has been studied, are presented: the corolla of naturally senescing or excised flowers, the leaves senescing, either excised or not, the pollen during self-incompatible pollination, the hypersensitive response and the tuber storage parenchyma during dormancy release. In all the models examined, TGase appears to be involved by a similar molecular mechanism as described during apoptosis in animal cells, even though several substrates are different. Its effect is probably related to the type of PCD, but mostly to the substrate to be modified in order to achieve the specific PCD program. As a cross-linker of PAs and proteins, TGase is an important factor involved in multiple, sometimes controversial, roles of PAs during senescence and PCD.
Collapse
Affiliation(s)
- Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences (Botany), University of BolognaBologna, Italy
| | | | - Giampiero Cai
- Department of Life Sciences, University of SienaSiena, Italy
| |
Collapse
|
16
|
De Franceschi P, Dondini L, Sanzol J. Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4015-32. [PMID: 22563122 DOI: 10.1093/jxb/ers108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The molecular bases of the gametophytic self-incompatibility (GSI) system of species of the subtribe Pyrinae (Rosaceae), such as apple and pear, have been widely studied in the last two decades. The characterization of S-locus genes and of the mechanisms underlying pollen acceptance or rejection have been topics of major interest. Besides the single pistil-side S determinant, the S-RNase, multiple related S-locus F-box genes seem to be involved in the determination of pollen S specificity. Here, we collect and review the state of the art of GSI in the Pyrinae. We emphasize recent genomic data that have contributed to unveiling the S-locus structure of the Pyrinae, and discuss their consistency with the models of self-recognition that have been proposed for Prunus and the Solanaceae. Experimental data suggest that the mechanism controlling pollen-pistil recognition specificity of the Pyrinae might fit well with the collaborative 'non-self' recognition system proposed for Petunia (Solanaceae), whereas it presents relevant differences with the mechanism exhibited by the species of the closely related genus Prunus, which uses a single evolutionarily divergent F-box gene as the pollen S determinant. The possible involvement of multiple pollen S genes in the GSI system of Pyrinae, still awaiting experimental confirmation, opens up new perspectives to our understanding of the evolution of S haplotypes, and of the evolution of S-RNase-based GSI within the Rosaceae family. Whereas S-locus genes encode the players determining self-recognition, pollen rejection in the Pyrinae seems to involve a complex cascade of downstream cellular events with significant similarities to programmed cell death.
Collapse
Affiliation(s)
- Paolo De Franceschi
- Dipartimento di Colture Arboree (DCA), Università degli Studi di Bologna, Via Giuseppe Fanin 46, 40127 Bologna, Italy.
| | | | | |
Collapse
|
17
|
Simulated environmental criticalities affect transglutaminase of Malus and Corylus pollens having different allergenic potential. Amino Acids 2011; 42:1007-24. [PMID: 21847612 DOI: 10.1007/s00726-011-1043-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/26/2011] [Indexed: 10/17/2022]
Abstract
Increases in temperature and air pollution influence pollen allergenicity, which is responsible for the dramatic raise in respiratory allergies. To clarify possible underlying mechanisms, an anemophilous pollen (hazel, Corylus avellana), known to be allergenic, and an entomophilous one (apple, Malus domestica), the allergenicity of which was not known, were analysed. The presence also in apple pollen of known fruit allergens and their immunorecognition by serum of an allergic patient were preliminary ascertained, resulting also apple pollen potentially allergenic. Pollens were subjected to simulated stressful conditions, provided by changes in temperature, humidity, and copper and acid rain pollution. In the two pollens exposed to environmental criticalities, viability and germination were negatively affected and different transglutaminase (TGase) gel bands were differently immunodetected with the polyclonal antibody AtPng1p. The enzyme activity increased under stressful treatments and, along with its products, was found to be released outside the pollen with externalisation of TGase being predominant in C. avellana, whose grain presents a different cell wall composition with respect to that of M. domestica. A recombinant plant TGase (AtPng1p) stimulated the secreted phospholipase A(2) (sPLA(2)) activity, that in vivo is present in human mucosa and is involved in inflammation. Similarly, stressed pollen, hazel pollen being the most efficient, stimulated to very different extent sPLA(2) activity and putrescine conjugation to sPLA(2). We propose that externalised pollen TGase could be one of the mediators of pollen allergenicity, especially under environmental stress induced by climate changes.
Collapse
|
18
|
Gentile A, Antognoni F, Iorio RA, Distefano G, Las Casas G, La Malfa S, Serafini-Fracassini D, Del Duca S. Polyamines and transglutaminase activity are involved in compatible and self-incompatible pollination of Citrus grandis. Amino Acids 2011; 42:1025-35. [PMID: 21818566 DOI: 10.1007/s00726-011-1017-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/10/2011] [Indexed: 12/11/2022]
Abstract
Pollination of pummelo (Citrus grandis L. Osbeck) pistils has been studied in planta by adding compatible and self-incompatible (SI) pollen to the stigma surface. The pollen germination has been monitored inside the pistil by fluorescent microscopy showing SI altered morphologies with irregular depositions of callose in the tube walls, and heavy callose depositions in enlarged tips. The polyamine (PA) content as free, perchloric acid (PCA)-soluble and -insoluble fractions and transglutaminase (TGase) activity have been analyzed in order to deepen their possible involvement in the progamic phase of plant reproduction. The conjugated PAs in PCA-soluble fraction were definitely higher than the free and the PCA-insoluble forms, in both compatible and SI pollinated pistils. In pistils, pollination caused an early decrease of free PAs and increase of the bound forms. The SI pollination, showed highest values of PCA-soluble and -insoluble PAs with a maximum in concomitance with the pollen tube arrest. As TGase mediates some of the effects of PAs by covalently binding them to proteins, its activity, never checked before in Citrus, was examined with two different assays. In addition, the presence of glutamyl-PAs confirmed the enzyme assay data and excluded the possibility of a misinterpretation. The SI pollination caused an increase in TGase activity, whereas the compatible pollination caused its decrease. Similarly to bound PAs, the glutamyl-PAs and the enzyme activity peaked in the SI pollinated pistils in concomitance with the observed block of the pollen tube growth, suggesting an involvement of TGase in SI response.
Collapse
Affiliation(s)
- Alessandra Gentile
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università di Catania, via Valdisavoia 5, 95123, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Programmed cell death involved in the schizolysigenous formation of the secretory cavity in Citrus sinensis L. (Osbeck). ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3275-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Serafini-Fracassini D, Di Sandro A, Del Duca S. Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:602-11. [PMID: 20381367 DOI: 10.1016/j.plaphy.2010.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 05/02/2023]
Abstract
Aliphatic polyamines (PAs) are involved in the delay or prevention of plant senescence, but the molecular mechanism is not clarified. The hypothesis is put forward that one of the mechanisms by which PAs modulate leaf senescence and chlorophyll stabilisation could be due to their modification of chlorophyll-bound proteins, catalysed by transglutaminase (TGase, R-glutaminylpeptide-amine gamma-glutamyltransferase; E.C. 2.3.2.13). The retardation of leaf senescence of Lactuca sativa L. by spermine (Spm) was examined during induced cell death using leaf discs, or during the normal developmental senescence of leaves. Over 3 days, in leaf discs, Spm caused a delay of chlorophyll (Chl) decay, an increase of endogenous TGase activity, and a three-fold increase in chlorophyll content when supplied together with exogenous TGase. Spm was conjugated, via TGase, mainly to 22-30 kDa proteins. Long-term experiments over 5 days showed a general decrease in all three parameters with or without Spm. When leaves remained on the plants, Spm-sprayed leaves showed an increase in free Spm 1 h after spraying, mainly in the young leaves, whereas over longer periods (15 days) there was an increase in perchloric acid-soluble and -insoluble Spm metabolites. In senescing leaves, Spm prevented degradation of chlorophyll b and some proteins, and increased TGase activity, producing more PA-protein conjugates. Spm was translocated to chloroplasts and bound mainly onto fractions enriched in PSII, but also those enriched in PSI, whose light-harvesting complexes (LHC) sub-fractions contained TGase. Spm was conjugated by TGase mainly to LHCII, more markedly in the light. Immunodetection of TGase revealed multiple proteins in young leaves, possibly representing different TGase isoforms when TGase activity was high, whereas in already senescent leaves, when its activity decreased, one high-molecular-mass band was found, possibly because of enzyme polymerisation. Spm thus protected senescing Lactuca leaves from the decay of their chloroplast photosystem complexes. The senescence-delaying effects of Spm could be mediated by TGase, as TGase was re-activated to the level in young leaves following Spm treatment.
Collapse
|
21
|
Falasca G, Franceschetti M, Bagni N, Altamura MM, Biasi R. Polyamine biosynthesis and control of the development of functional pollen in kiwifruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:565-573. [PMID: 20359902 DOI: 10.1016/j.plaphy.2010.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 05/29/2023]
Abstract
The role of polyamines (PAs) in plant reproduction, especially pollen development and germination has been demonstrated in several higher plants. The aim of the present research was to investigate PA involvement in pollen development and germination in dioecious kiwifruit (Actinidia deliciosa). Differences in PA content, level and gene expression for PA biosynthetic enzymes, and the effect of PA biosynthetic inhibitors were found during pollen development (or abortion in female flowers). Whereas PAs, especially spermidine (Spd), remained high throughout the development of functional pollen, the levels collapsed by the last stage of development of sterile pollen. Mature and functional pollen from male-fertile anthers showed S-adenosyl methionine decarboxylase activity (SAMDC; involved in Spd biosynthesis) throughout microgametogenesis, with high levels of soluble SAMDC found starting from the late uninucleate microspore stage. Soluble SAMDC was absent in male-sterile anthers. Arginine decarboxylase [ADC; for putrescine (Put) biosynthesis] showed little difference in functional vs sterile pollen; ornithine decarboxylase [ODC; also for putrescine (Put) biosynthesis] was present only in sterile pollen. Ultrastructural studies of aborted pollen grains in male-sterile flowers showed that cytoplasmic residues near the intine contain vesicles, extruding towards the pollen wall. Very high SAMDC activity was found in the wall residues of the aborted pollen. The combined application in planta of competitive inhibitors of S-adenosylmethionine decarboxylase (MGBG) and of spermidine synthase (CHA), or of D-arginine (inhibitor of Put synthesis), to male-fertile plants led to abnormal pollen grains with reduced viability. The importance of PAs during male-fertile pollen germination was also found. In fact, PA biosynthetic enzymes (ADC and, mainly, SAMDC) were active early during pollen hydration and germination in vitro. Two different SAMDC gene transcripts were expressed in germinating pollen together with a lower level of ADC transcript. Gene expression preceded PA enzyme activity. The application of PA inhibitors in planta drastically reduced pollen germination. Thus, low free Spd can lead either to degeneration or loss of functionality of kiwifruit pollen grains.
Collapse
Affiliation(s)
- G Falasca
- Dipartimento di Biologia Vegetale, Sapienza Università di Roma, Italy
| | | | | | | | | |
Collapse
|
22
|
Li CY, Li WH, Li C, Gaudet DA, Laroche A, Cao LP, Lu ZX. Starch synthesis and programmed cell death during endosperm development in triticale (x Triticosecale Wittmack). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:602-615. [PMID: 20590991 DOI: 10.1111/j.1744-7909.2010.00961.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Triticale (x Triticosecale Wittmack) grains synthesize and accumulate starch as their main energy source. Starch accumulation rate and synthesis activities of ADP-glucose pyrophosphorylase, soluble starch synthases, granule-bound starch synthase and starch-branching enzyme showed similar pattern of unimodal curves during endosperm development. There was no significant difference in activity of the starch granule-bound protein isolated from total and separated starch granules at different developmental stages after anthesis in triticale. Evans Blue staining and analysis of DNA fragmentation indicated that cells of triticale endosperm undergo programmed cell death during its development. Dead cells within the endosperm were detected at 6 d post anthesis (DPA), and evidence of DNA fragmentation was first observed at 21 DPA. The period between initial detection of PCD to its rapid increase overlapped with the key stages of rapid starch accumulation during endosperm development. Cell death occurred stochastically throughout the whole endosperm, meanwhile, the activities of starch biosynthetic enzymes and the starch accumulation rate decreased in the late stages of grain filling. These results suggested that the timing and progression of PCD in triticale endosperm may interfere with starch synthesis and accumulation.
Collapse
Affiliation(s)
- Chun-Yan Li
- College of Agriculture, Shihezi University, Xinjiang 832003, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Del Duca S, Cai G, Di Sandro A, Serafini-Fracassini D. Compatible and self-incompatible pollination in Pyrus communis displays different polyamine levels and transglutaminase activity. Amino Acids 2009; 38:659-67. [DOI: 10.1007/s00726-009-0426-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
|
24
|
Zhou Z, Wang L, Li J, Song X, Yang C. Study on programmed cell death and dynamic changes of starch accumulation in pericarp cells of Triticum aestivum L. PROTOPLASMA 2009; 236:49-58. [PMID: 19455280 DOI: 10.1007/s00709-009-0046-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/27/2009] [Indexed: 05/21/2023]
Abstract
Features of programmed cell death (PCD) and dynamic changes of starch accumulation in developing pericarp cells of wheat (Triticum aestivum L.) were observed and analyzed by periodic acid-Schiff/toluidine blue O double staining, fluorescence staining, terminal deoxynucleotidyl transferase-mediated fluorescein deoxyuridine triphosphate nick-end labeling (TUNEL) and transmission electron microscopy. The results showed that cellular organelles were orderly disintegrated. TUNEL-positive nuclei were detected at 0 day after flowering (DAF), whereas nuclei showed significant features of degradation at 2 DAF, such as chromatin condensation, nuclei condensation, and nuclei deformation. Then, heterochromatin gradually disappeared and the cellular nucleus was completely degraded. The mitochondria degradation and vacuolation also were detected at 15 DAF. These results indicated that the development of pericarp cells was a typical process of PCD. However, the PCD in pericarp cells had their own characteristics: PCD started early and lasted for a considerable time. In the delayed process of PCD, starch granules were synthesized, deposited, and degraded temporarily in amyloplasts or chloroplasts. The delay of PCD in pericarp cells may be due to sufficient photosynthetic assimilates and energy supply. Besides, normal mitochondria were required for pericarp cells to survive. Pericarp cells contained only compound starch granules. Starch was massively synthesized from 0 to 11 DAF, but it was rapidly degraded after 11 DAF. Therefore, apart from protection, pericarp cells played essential roles in starch synthesis, storage, and degradation, as well as nutrient transportation.
Collapse
Affiliation(s)
- Zhuqing Zhou
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | | | | | | | | |
Collapse
|
25
|
Casani S, Fontanini D, Capocchi A, Lombardi L, Galleschi L. Investigation on cell death in the megagametophyte of Araucaria bidwillii Hook. post-germinated seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:599-607. [PMID: 19321357 DOI: 10.1016/j.plaphy.2009.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/08/2009] [Accepted: 02/24/2009] [Indexed: 05/27/2023]
Abstract
The megagametophyte of the Araucaria bidwillii seed is a storage tissue that surrounds and feeds the embryo. When all its reserves are mobilized, the megagametophyte degenerates as a no longer needed tissue. In this work we present a biochemical and a cytological characterization of the megagametophyte cell death. The TUNEL assay showed progressive DNA fragmentation throughout the post-germinative stages, while DNA electrophoretic analysis highlighted a smear as the predominant pattern of DNA degradation and internucleosomal DNA cleavage only for a minority of cells at late post-germinative stages. Cytological investigations at these stages detected profound changes in the size and morphology of the megagametophyte nuclei. By using in vitro assays, we were able to show a substantial increase in proteolytic activities, including caspase-like protease activities during the megagametophyte degeneration. Among the caspase-like enzymes, caspase 6- and 1-like proteases appeared to be the most active in the megagametophyte with a preference for acidic pH. On the basis of our results, we propose that the major pathway of cell death in the Araucaria bidwillii megagametophyte is necrosis; however, we do not exclude that some cells undergo developmental programmed cell death.
Collapse
Affiliation(s)
- Simone Casani
- Department of Biology, University of Pisa, Via Luca Ghini 5, 56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Self-incompatibility (SI) is a genetically controlled system adopted by many flowering plants to avoid inbreeding and thus to maintain species diversity. Generally, self-pollen rejection occurs through active pollen and pistil recognition and subsequent signaling responses. So far, three different molecular controls of pollen and pistil recognition have been characterized and are exemplified by three families: the Solanaceae, the Papaveraceae, and the Brassicaceae. With more components involved in these SI systems coming to light, recent studies have provided intriguing insights into the downstream reactions that follow the initial SI signal perception. The process of pollen rejection is closely associated with rapid and effective proteolytic events, including the ubiquitin-proteasome pathway and the vacuolar sorting pathway. Here, we review our current understanding of the roles of proteolysis in SI responses of flowering plants.
Collapse
Affiliation(s)
- Yijing Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | |
Collapse
|
27
|
Wang L, Zhou Z, Song X, Li J, Deng X, Mei F. Evidence of ceased programmed cell death in metaphloem sieve elements in the developing caryopsis of Triticum aestivum L. PROTOPLASMA 2008; 234:87-96. [PMID: 18985425 DOI: 10.1007/s00709-008-0023-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 10/07/2008] [Indexed: 05/26/2023]
Abstract
Transmission electron microscopy (TEM) and fluorescence microscopy studies revealed that the metaphloem sieve elements (MSEs) in the ventral vascular bundle of the caryopses of developing wheat (Triticum aestivum L.) undergo a unique type of programmed cell death (PCD). Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive nuclei were observed at 3 and 4 days after flowering (DAF). Transmission electron microscopy studies of differentiating MSEs revealed increased vacuolation, nuclear degeneration, chromatin condensation and localization to the periphery of the nucleus, and partly dilated perinuclear spaces, all typical characteristics of PCD in plant cells. In addition, vacuoles were disrupted at the last stages of differentiation. These results demonstrate that MSE differentiation is a unique type of PCD with highly selective autophagic processes, in which PCD ceases just prior to death. During this cessation of PCD, vacuoles and the endoplasmic reticulum appear to be associated with selective organelle digestion.
Collapse
Affiliation(s)
- Likai Wang
- Laboratory of Cell Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | | | | | | | | |
Collapse
|
28
|
Li J, Brader G, Palva ET. Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis. MOLECULAR PLANT 2008; 1:482-95. [PMID: 19825555 DOI: 10.1093/mp/ssn013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Programmed cell death (PCD) is a central regulatory process in both plant development and in plant responses to pathogens. PCD requires a coordinate activation of pro-apoptotic factors such as proteases and suppressors inhibiting and modulating these processes. In plants, various caspase-like cysteine proteases as well as serine proteases have been implicated in PCD. Here, we show that a serine protease (Kunitz trypsin) inhibitor (KTI1) of Arabidopsis acts as a functional KTI when produced in bacteria and in planta. Expression of AtKTI1 is induced late in response to bacterial and fungal elicitors and to salicylic acid. RNAi silencing of the AtKTI1 gene results in enhanced lesion development after infiltration of leaf tissue with the PCD-eliciting fungal toxin fumonisin B1 (FB1) or the avirulent bacterial pathogen Pseudomonas syringae pv tomato DC3000 carrying avrB (Pst avrB). Overexpression of AtKTI1 results in reduced lesion development after Pst avrB and FB1 infiltration. Interestingly, RNAi silencing of AtKTI1 leads to enhanced resistance to the virulent pathogen Erwinia carotovora subsp. carotovora SCC1, while overexpression of AtKTI1 leads to higher susceptibility towards this pathogen. Together, these data indicate that AtKTI1 is involved in modulating PCD in plant-pathogen interactions.
Collapse
Affiliation(s)
- Jing Li
- Viikki Biocenter, Department of Biological and Environmental Sciences, Division of Genetics, University of Helsinki, POB 56, FIN-00014, Helsinki, Finland
| | | | | |
Collapse
|