1
|
Hu Q, Liu J, Chen X, Guzmán C, Xu Q, Zhang Y, Chen Q, Tang H, Qi P, Deng M, Ma J, Chen G, Wei Y, Wang J, Zheng Y, Tu Y, Jiang Q. Multi-omic analysis reveals the effects of interspecific hybridization on the synthesis of seed reserve polymers in a Triticum turgidum ssp. durum × Aegilops sharonensis amphidiploid. BMC Genomics 2024; 25:626. [PMID: 38902625 PMCID: PMC11188524 DOI: 10.1186/s12864-024-10352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Wheat grain endosperm is mainly composed of proteins and starch. The contents and the overall composition of seed storage proteins (SSP) markedly affect the processing quality of wheat flour. Polyploidization results in duplicated chromosomes, and the genomes are often unstable and may result in a large number of gene losses and gene rearrangements. However, the instability of the genome itself, as well as the large number of duplicated genes generated during polyploidy, is an important driving force for genetic innovation. In this study, we compared the differences in starch and SSP, and analyzed the transcriptome and metabolome among Aegilops sharonensis (R7), durum wheat (Z636) and amphidiploid (Z636×R7) to reveal the effects of polyploidization on the synthesis of seed reserve polymers. RESULTS The total starch and amylose content of Z636×R7 was significantly higher than R7 and lower than Z636. The gliadin and glutenin contents of Z636×R7 were higher than those in Z636 and R7. Through transcriptome analysis, there were 21,037, 2197, 15,090 differentially expressed genes (DEGs) in the three comparison groups of R7 vs Z636, Z636 vs Z636×R7, and Z636×R7 vs R7, respectively, which were mainly enriched in carbon metabolism and amino acid biosynthesis pathways. Transcriptome data and qRT-PCR were combined to analyze the expression levels of genes related to storage polymers. It was found that the expression levels of some starch synthase genes, namely AGP-L, AGP-S and GBSSI in Z636×R7 were higher than in R7 and among the 17 DEGs related to storage proteins, the expression levels of 14 genes in R7 were lower than those in Z636 and Z636×R7. According to the classification analysis of all differential metabolites, most belonged to carboxylic acids and derivatives, and fatty acyls were enriched in the biosynthesis of unsaturated fatty acids, niacin and nicotinamide metabolism, one-carbon pool by folate, etc. CONCLUSION: After allopolyploidization, the expression of genes related to starch synthesis was down-regulated in Z636×R7, and the process of starch synthesis was inhibited, resulting in delayed starch accumulation and prolongation of the seed development process. Therefore, at the same development time point, the starch accumulation of Z636×R7 lagged behind that of Z636. In this study, the expression of the GSe2 gene in Z636×R7 was higher than that of the two parents, which was beneficial to protein synthesis, and increased the protein content. These results eventually led to changes in the synthesis of seed reserve polymers. The current study provided a basis for a greater in-depth understanding of the mechanism of wheat allopolyploid formation and its stable preservation, and also promoted the effective exploitation of high-value alleles.
Collapse
Grants
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2023YFH0041 the Sichuan Science and Technology Program, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- 2022-YF05- 00022-SN the Science & Technology project of Chengdu, Sichuan Province, PR China
- the Science & Technology project of Chengdu, Sichuan Province, PR China
Collapse
Affiliation(s)
- Qian Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaolei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Edificio Gregor Mendel, Campus de RabanaEles, Cordoba, 14071, Spain
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yong Tu
- School of agricultural science, Xichang University, Xichang, Sichuan, 615000, China.
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023; 13:1771. [PMID: 38136642 PMCID: PMC10742212 DOI: 10.3390/biom13121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health. To ensure agricultural sustainability and the required food source, many attempts have been made towards developing cereal crops with a more effective nitrogen use efficiency (NUE). NUE depends on N uptake, utilization, and lastly, combining the capability to assimilate N into carbon skeletons and remobilize the N assimilated. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a crucial metabolic step of N assimilation, regulating crop yield. In this review, the physiological and genetic studies on GS and GOGAT of the main cereal crops will be examined, giving emphasis on their implications in NUE.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Cecilia Lasorella
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| |
Collapse
|
3
|
Guo Y, Wang G, Guo X, Chi S, Yu H, Jin K, Huang H, Wang D, Wu C, Tian J, Chen J, Bao Y, Zhang W, Deng Z. Genetic dissection of protein and starch during wheat grain development using QTL mapping and GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1189887. [PMID: 37377808 PMCID: PMC10291175 DOI: 10.3389/fpls.2023.1189887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
Protein, starch, and their components are important for wheat grain yield and end-products, which are affected by wheat grain development. Therefore, QTL mapping and a genome-wide association study (GWAS) of grain protein content (GPC), glutenin macropolymer content (GMP), amylopectin content (GApC), and amylose content (GAsC) were performed on wheat grain development at 7, 14, 21, and 28 days after anthesis (DAA) in two environments using a recombinant inbred line (RIL) population of 256 stable lines and a panel of 205 wheat accessions. A total of 29 unconditional QTLs, 13 conditional QTLs, 99 unconditional marker-trait associations (MTAs), and 14 conditional MTAs significantly associated (p < 10-4) with four quality traits were found to be distributed on 15 chromosomes, with the phenotypic variation explained (PVE) ranging from 5.35% to 39.86%. Among these genomic variations, three major QTLs [QGPC3B, QGPC2A, and QGPC(S3|S2)3B] and SNP clusters on the 3A and 6B chromosomes were detected for GPC, and the SNP TA005876-0602 was stably expressed during the three periods in the natural population. The QGMP3B locus was detected five times in three developmental stages in two environments with 5.89%-33.62% PVE, and SNP clusters for GMP content were found on the 3A and 3B chromosomes. For GApC, the QGApC3B.1 locus had the highest PVE of 25.69%, and SNP clusters were found on chromosomes 4A, 4B, 5B, 6B, and 7B. Four major QTLs of GAsC were detected at 21 and 28 DAA. Most interestingly, both QTL mapping and GWAS analysis indicated that four chromosomes (3B, 4A, 6B, and 7A) were mainly involved in the development of protein, GMP, amylopectin, and amylose synthesis. Of these, the wPt-5870-wPt-3620 marker interval on chromosome 3B seemed to be most important because it played an important role in the synthesis of GMP and amylopectin before 7 DAA, in the synthesis of protein and GMP from 14 to 21 DAA, and in the development of GApC and GAsC from 21 to 28 DAA. Using the annotation information of IWGSC Chinese Spring RefSeq v1.1 genome assembly, we predicted 28 and 69 candidate genes for major loci from QTL mapping and GWAS, respectively. Most of them have multiple effects on protein and starch synthesis during grain development. These results provide new insights and information for the potential regulatory network between grain protein and starch synthesis.
Collapse
Affiliation(s)
- Yingxin Guo
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, Shandong, China
| | - Guanying Wang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xin Guo
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
- Taiyuan Agro-Tech Extension and Service Center, Taiyuan, Shanxi, China
| | - Songqi Chi
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hui Yu
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Kaituo Jin
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Heting Huang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Dehua Wang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chongning Wu
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jichun Tian
- R&D Department, Shandong Huatian Agricultural Technology Co., Ltd, Feicheng, Shandong, China
| | - Jiansheng Chen
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yinguang Bao
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Weidong Zhang
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhiying Deng
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
4
|
Zhao Y, Islam S, Alhabbar Z, Zhang J, O'Hara G, Anwar M, Ma W. Current Progress and Future Prospect of Wheat Genetics Research towards an Enhanced Nitrogen Use Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091753. [PMID: 37176811 PMCID: PMC10180859 DOI: 10.3390/plants12091753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification.
Collapse
Affiliation(s)
- Yun Zhao
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Shahidul Islam
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zaid Alhabbar
- Department of Field Crops, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Jingjuan Zhang
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Graham O'Hara
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Masood Anwar
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Wujun Ma
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao 266109, China
| |
Collapse
|
5
|
Pascual L, Solé-Medina A, Faci I, Giraldo P, Ruiz M, Benavente E. Development and marker-trait relationships of functional markers for glutamine synthetase GS1 and GS2 homoeogenes in bread wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:8. [PMID: 37309364 PMCID: PMC10248667 DOI: 10.1007/s11032-022-01354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/28/2022] [Indexed: 06/14/2023]
Abstract
GS1 and GS2 genes encode, respectively, the main cytosolic and the plastidic isoforms of glutamine synthetase (GS). In the present study, the wheat GS1 and GS2 homoeogenes located in the A, B and D genome chromosomes have been sequenced in a group of 15 bread wheat varieties including landraces, old commercial varieties and modern cultivars. Phenotypic characterization by multi-environment field trials detected significant effects of specific GS homoeogenes on three of the seven agronomic and grain quality traits analyzed. Based on the gene sequence polymorphisms found, biallelic molecular markers that could facilitate marker-assisted breeding were developed for genes GS1A, GS2A and GS2D. The remaining genes encoding main wheat GS were excluded because of being monomorphic (GS1D) or too polymorphic (GS1B and GS2B) in the sequencing panel varieties. A collection of 187 Spanish bread wheat landraces was genotyped for these gene-based molecular markers. Data analyses conducted with phenotypic records reported for this germplasm collection in López-Fernández et al. (Plants-Basel 10: 620, 2021) have revealed the beneficial influence of some individual alleles on thousand-kernel weight (TKW), kernels per spike (KS) and grain protein content. Furthermore, genetic interactions between GS1A, a cytosolic GS isoform coding gene, and GS2A or GS2D, plastidic GS enzyme coding genes, were found to affect TKW and KS. The finding that some alleles at one locus may mask the effect of positive alleles at hypostatic GS loci should be kept in mind if gene pyramiding strategies are attempted for the improvement of N-use efficiency-related traits. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01354-0.
Collapse
Affiliation(s)
- Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Aida Solé-Medina
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Isabel Faci
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- John Innes Centre, Norwich Research Park, Colney, NR4 7UH UK
| | - Patricia Giraldo
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Magdalena Ruiz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Autovía A2, Km. 36.2, Finca La Canaleja, Alcalá de Henares, Madrid, 28805 Spain
| | - Elena Benavente
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Zhou Z, Geng S, Guan H, Liu C, Qin M, Li W, Shi X, Dai Z, Yao W, Lei Z, Wu Z, Hou J. Dissection of the Genetic Architecture for Quantities of Gliadins Fractions in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:826909. [PMID: 35401644 PMCID: PMC8988047 DOI: 10.3389/fpls.2022.826909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiyue Guan
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
7
|
A New Perspective on the Role of Glutamine Synthetase in Nitrogen Remobilization in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms222011083. [PMID: 34681741 PMCID: PMC8539157 DOI: 10.3390/ijms222011083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/05/2022] Open
Abstract
Glutamine synthetase (GS), a key enzyme in plant nitrogen metabolism, is closely related to nitrogen remobilization. However, how GS isoforms participate in nitrogen remobilization remains unclear. Here, the spatiotemporal expression of the TaGS gene family after anthesis was investigated, and the results showed that TaGS1;1 was mainly encoded by TaGS1;1-6A, while the other isozymes were mainly encoded by TaGS localized on the A and D subgenomes. TaGS1;2-4A/4D had the highest expression level, especially in rachis and peduncle. Furthermore, immunofluorescence showed TaGS1;2 was located in the phloem of rachis and peduncle. GUS (β-glucuronidase) staining confirmed that ProTaGS1;2-4A/4D::GUS activity was mainly present in the vascular system of leaves, roots, and petal of Arabidopsis. Ureides, an important transport form of nitrogen, were mainly synthesized in flag leaves and transported to grains through the phloem of peduncle and rachis during grain filling. TaAAH, which encodes the enzyme that degrades ureides to release NH4+, had a higher expression in rachis and peduncle and was synchronized with the increase in NH4+ concentration in phloem, indicating that NH4+ in phloem is from ureide degradation. Taking the above into account, TaGS1;2, which is highly expressed in the phloem of peduncle and rachis, may participate in N remobilization by assimilating NH4+ released from ureide degradation.
Collapse
|
8
|
Islam S, Zhang J, Zhao Y, She M, Ma W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110759. [PMID: 33487345 DOI: 10.1016/j.plantsci.2020.110759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
High nitrogen application aimed at increasing crop yield is offset by higher production costs and negative environmental consequences. For wheat, only one third of the applied nitrogen is utilized, which indicates there is scope for increasing Nitrogen Use Efficiency (NUE). However, achieving greater NUE is challenged by the complexity of the trait, which comprises processes associated with nitrogen uptake, transport, reduction, assimilation, translocation and remobilization. Thus, knowledge of the genetic regulation of these processes is critical in increasing NUE. Although primary nitrogen uptake and metabolism-related genes have been well studied, the relative influence of each towards NUE is not fully understood. Recent attention has focused on engineering transcription factors and identification of miRNAs acting on expression of specific genes related to NUE. Knowledge obtained from model species needs to be translated into wheat using recently-released whole genome sequences, and by exploring genetic variations of NUE-related traits in wild relatives and ancient germplasm. Recent findings indicate the genetic basis of NUE is complex. Pyramiding various genes will be the most effective approach to achieve a satisfactory level of NUE in the field.
Collapse
Affiliation(s)
- Shahidul Islam
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Yun Zhao
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
9
|
Nigro D, Fortunato S, Giove SL, Mazzucotelli E, Gadaleta A. Functional Validation of Glutamine synthetase and Glutamate synthase Genes in Durum Wheat near Isogenic Lines with QTL for High GPC. Int J Mol Sci 2020; 21:ijms21239253. [PMID: 33291583 PMCID: PMC7730160 DOI: 10.3390/ijms21239253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) is a minor crop grown on about 17 million hectares of land worldwide. Several grain characteristics determine semolina's high end-use quality, such as grain protein content (GPC) which is directly related to the final products' nutritional and technological values. GPC improvement could be pursued by considering a candidate gene approach. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a bottleneck in the first step of nitrogen assimilation. QTL for GPC have been located on all chromosomes, and several major ones have been reported on 2A and 2B chromosomes, where GS2 and Fd-GOGAT genes have been mapped. A useful and efficient method to validate a putative QTL is the constitution of near-isogenic lines (NILs) by using the marker found to be associated to that QTL. Here, we present the development of two distinct sets of heterogeneous inbred family (HIF)- based NILs segregating for GS2 and Fd-GOGAT genes obtained from heterozygous lines at those loci, as well as their genotypic and phenotypic characterizations. The results allow the validation of the previously identified GPC QTL on 2A and 2B chromosomes, along with the role of these key genes in GPC control.
Collapse
Affiliation(s)
- Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- Correspondence: (D.N.); (A.G.); Tel.: +39-0805442997(D.N.); +39-0805442995 (A.G.)
| | | | - Stefania Lucia Giove
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy;
| | | | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy;
- Correspondence: (D.N.); (A.G.); Tel.: +39-0805442997(D.N.); +39-0805442995 (A.G.)
| |
Collapse
|
10
|
Sultana N, Islam S, Juhasz A, Yang R, She M, Alhabbar Z, Zhang J, Ma W. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front Genet 2020; 11:583785. [PMID: 33193713 PMCID: PMC7554635 DOI: 10.3389/fgene.2020.583785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity. Knowledge about the physiological and transcriptomic changes that regulate NUE, in particular how plants cope with nitrogen (N) stress during flowering and the grain filling period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in different tissues and shows significant genetic variability. A comparative transcriptome study was carried out using RNA-seq analysis to investigate the effect of nitrogen levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs) were identified under nitrogen stress where down-regulated DEGs were predominantly associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and defense response, whereas the up-regulated DEGs were associated with nucleotide metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis further revealed that highly interacted down-regulated DEGs were involved in light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in steroid biosynthesis under N stress. The common down-regulated genes across the cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein 1589 of uncharacterized protein function, etc., whereas common up-regulated genes included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein, and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism and proteolysis. The DEGs with high abundance in high NUE cultivar can be good candidates to develop nitrogen stress-tolerant variety with improved NUE.
Collapse
Affiliation(s)
- Nigarin Sultana
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Shahidul Islam
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Angela Juhasz
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Rongchang Yang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zaid Alhabbar
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wujun Ma
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
11
|
Zhao L, Li L, Song L, Liu Z, Li X, Li X. HMW-GS at Glu-B1 Locus Affects Gluten Quality Possibly Regulated by the Expression of Nitrogen Metabolism Enzymes and Glutenin-Related Genes in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5426-5436. [PMID: 32314918 DOI: 10.1021/acs.jafc.0c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the effect of high-molecular-weight glutenin subunits (HMW-GSs) on gluten quality and glutenin synthesis based on the cytological, physicochemical, and transcriptional levels using Xinong1718 and its three near-isogenic lines (NILs). Cytological observations showed that the endosperm of Glu-1Bh with Bx14+By15 accumulated more abundant and larger protein bodies at 10 and 16 days after anthesis than the other NILs. Glu-1Bh exhibited higher nitrogen metabolism enzyme gene expression and activity levels. The transcriptional levels of genes encoding HMW-GSs, protein folding, and transcription factors differed significantly among the NILs, and they were highest in Glu-1Bh. Our results demonstrate that variations in the expression patterns of nitrogen metabolism and glutenin synthesis-related genes may account for the differences in the accumulation of glutenin, glutenin macropolymers, and protein bodies, thereby affecting the structural and thermal stability of gluten. These findings provide novel insights into how different HMW-GSs might improve the quality of wheat.
Collapse
Affiliation(s)
- Liye Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Lijun Song
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Zhenzhen Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Xu Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
12
|
Song L, Li L, Zhao L, Liu Z, Xie T, Li X. Absence of Dx2 at Glu-D1 Locus Weakens Gluten Quality Potentially Regulated by Expression of Nitrogen Metabolism Enzymes and Glutenin-Related Genes in Wheat. Int J Mol Sci 2020; 21:ijms21041383. [PMID: 32085665 PMCID: PMC7073084 DOI: 10.3390/ijms21041383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 01/11/2023] Open
Abstract
Absence of high-molecular-weight glutenin subunit (HMW-GS) Dx2 weakens the gluten quality, but it is unclear how the absence of Dx2 has these effects. Thus, we investigated the gluten quality in terms of cytological, physicochemical, and transcriptional characteristics using two near-isogenic lines with Dx2 absent or present at Glu-D1 locus. Cytological observations showed that absence of Dx2 delayed and decreased the accumulation of protein bodies (PBs), where fewer and smaller PBs formed in the endosperm. The activity and gene expression levels of nitrogen assimilation and proteolysis enzymes were lower in HMW-D1a without Dx2 than HMW-D1p with Dx2, and thus less amino acid was transported for protein synthesis in the grains. The expression pattern of genes encoding Glu-1Dx2+1Dy12 was similar to those of three transcription factors, where these genes were significantly down-regulated in HMW-D1a than HMW-D1p. Three genes involving with glutenin polymerization were also down-regulated in HMW-D1a. These results may explain the changes in the glutenin and glutenin macropolymer (GMP) levels during grain development. Therefore, we suggest that the lower nitrogen metabolism capacity and expression levels of glutenin synthesis-related genes in HMW-D1a accounted for the lower accumulation of glutenin, GMP, and PBs, thereby weakening the structural‒thermal properties of gluten.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuejun Li
- Correspondence: ; Tel./Fax: +86-29-8708-2022
| |
Collapse
|
13
|
Mazzucotelli E, Sciara G, Mastrangelo AM, Desiderio F, Xu SS, Faris J, Hayden MJ, Tricker PJ, Ozkan H, Echenique V, Steffenson BJ, Knox R, Niane AA, Udupa SM, Longin FCH, Marone D, Petruzzino G, Corneti S, Ormanbekova D, Pozniak C, Roncallo PF, Mather D, Able JA, Amri A, Braun H, Ammar K, Baum M, Cattivelli L, Maccaferri M, Tuberosa R, Bassi FM. The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles. FRONTIERS IN PLANT SCIENCE 2020; 11:569905. [PMID: 33408724 PMCID: PMC7779600 DOI: 10.3389/fpls.2020.569905] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/24/2020] [Indexed: 05/04/2023]
Abstract
Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.
Collapse
Affiliation(s)
- Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Giuseppe Sciara
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Anna M. Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Steven S. Xu
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Justin Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Matthew J. Hayden
- Agriculture Victoria, Agribio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Penny J. Tricker
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Turkey
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Departamento de Agronomía, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Ron Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Abdoul A. Niane
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Sripada M. Udupa
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | | | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Simona Corneti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Danara Ormanbekova
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Curtis Pozniak
- Plant Sciences and Crop Development Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Pablo F. Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Departamento de Agronomía, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Diane Mather
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Hans Braun
- Plant Sciences and Crop Development Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Karim Ammar
- International Maize and Wheat Improvement Center, Texcoco de Mora, Mexico
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
- *Correspondence: Filippo M. Bassi,
| |
Collapse
|
14
|
Nigro D, Gadaleta A, Mangini G, Colasuonno P, Marcotuli I, Giancaspro A, Giove SL, Simeone R, Blanco A. Candidate genes and genome-wide association study of grain protein content and protein deviation in durum wheat. PLANTA 2019; 249:1157-1175. [PMID: 30603787 DOI: 10.1007/s00425-018-03075-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/19/2018] [Indexed: 05/26/2023]
Abstract
Stable QTL for grain protein content co-migrating with nitrogen-related genes have been identified by the candidate genes and genome-wide association mapping approaches useful for marker-assisted selection. Grain protein content (GPC) is one of the most important quality traits in wheat, defining the nutritional and end-use properties and rheological characteristics. Over the years, a number of breeding programs have been developed aimed to improving GPC, most of them having been prevented by the negative correlation with grain yield. To overcome this issue, a collection of durum wheat germplasm was evaluated for both GPC and grain protein deviation (GPD) in seven field trials. Fourteen candidate genes involved in several processes related to nitrogen metabolism were precisely located on two high-density consensus maps of common and durum wheat, and six of them were found to be highly associated with both traits. The wheat collection was genotyped using the 90 K iSelect array, and 11 stable quantitative trait loci (QTL) for GPC were detected in at least three environments and the mean across environments by the genome-wide association mapping. Interestingly, seven QTL were co-migrating with N-related candidate genes. Four QTL were found to be significantly associated to increases of GPD, indicating that selecting for GPC could not affect final grain yield per spike. The combined approaches of candidate genes and genome-wide association mapping led to a better understanding of the genetic relationships between grain storage proteins and grain yield per spike, and provided useful information for marker-assisted selection programs.
Collapse
Affiliation(s)
- D Nigro
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| | - A Gadaleta
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy.
| | - G Mangini
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| | - P Colasuonno
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - I Marcotuli
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - A Giancaspro
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - S L Giove
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - R Simeone
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| | - A Blanco
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| |
Collapse
|
15
|
Imagawa F, Minagawa H, Nakayama Y, Kanno K, Hayakawa T, Kojima S. Tos17 insertion in NADH-dependent glutamate synthase genes leads to an increase in grain protein content in rice. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Sci Rep 2018; 8:11928. [PMID: 30093727 PMCID: PMC6085318 DOI: 10.1038/s41598-018-30451-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Basis for the effects of nitrogen (N) on wheat grain storage proteins (GSPs) and on the establishment of processing quality are far from clear. The response of GSPs and processing quality parameters to four N levels of four common wheat cultivars were investigated at two sites over two growing seasons. Except gluten index (GI), processing quality parameters as well as GSPs quantities were remarkably improved by increasing N level. N level explained 4.2~59.2% and 10.4~80.0% variability in GSPs fractions and processing quality parameters, respectively. The amount of N remobilized from vegetative organs except spike was significantly increased when enhancing N application. GSPs fractions and processing quality parameters except GI were only highly and positively correlated with the amount of N remobilized from stem with sheath. N reassimilation in grain was remarkably strengthened by the elevated activity and expression level of glutamine synthetase. Transcriptome analysis showed the molecular mechanism of seeds in response to N levels during 10~35 days post anthesis. Collectively, we provided comprehensive understanding of N-responding mechanisms with respect to wheat processing quality from N source to GSPs biosynthesis at the agronomic, physiological and molecular levels, and screened candidate genes for quality breeding.
Collapse
|
17
|
Allelic Variants of Glutamine Synthetase and Glutamate Synthase Genes in a Collection of Durum Wheat and Association with Grain Protein Content. DIVERSITY 2017. [DOI: 10.3390/d9040052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Marcotuli I, Gadaleta A, Mangini G, Signorile AM, Zacheo SA, Blanco A, Simeone R, Colasuonno P. Development of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat. Int J Mol Sci 2017. [PMID: 28635630 PMCID: PMC5486150 DOI: 10.3390/ijms18061329] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-density genetic linkage maps of crop species are particularly useful in detecting qualitative and quantitative trait loci for important agronomic traits and in improving the power of classical approaches to identify candidate genes. The aim of this study was to develop a high-density genetic linkage map in a durum wheat recombinant inbred lines population (RIL) derived from two elite wheat cultivars and to identify, characterize and correlate Quantitative Trait Loci (QTL) for β-glucan, protein content, grain yield per spike and heading time. A dense map constructed by genotyping the RIL population with the wheat 90K iSelect array included 5444 single nucleotide polymorphism (SNP) markers distributed in 36 linkage groups. Data for β-glucan and protein content, grain yield per spike and heading time were obtained from replicated trials conducted at two locations in southern Italy. A total of 19 QTL were detected in different chromosome regions. In particular, three QTL for β-glucan content were detected on chromosomes 2A and 2B (two loci); eight QTL controlling grain protein content were detected on chromosomes 1B, 2B, 3B (two loci), 4A, 5A, 7A and 7B; seven QTL for grain yield per spike were identified on chromosomes 1A, 2B, 3A (two loci), 3B (two loci) and 6B; and one marker-trait association was detected on chromosome 2A for heading time. The last was co-located with a β-glucan QTL, and the two QTL appeared to be negatively correlated. A genome scan for genomic regions controlling the traits and SNP annotated sequences identified five putative candidate genes involved in different biosynthesis pathways (β-glucosidase, GLU1a; APETALA2, TaAP2; gigantea 3, TaGI3; 14-3-3 protein, Ta14A; and photoperiod sensitivity, Ppd-A1). This study provides additional information on QTL for important agronomic traits that could be useful for marker-assisted breeding to obtain new genotypes with commercial and nutritional relevance.
Collapse
Affiliation(s)
- Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Giacomo Mangini
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Antonio Massimo Signorile
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Silvana Addolorata Zacheo
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Rosanna Simeone
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Pasqualina Colasuonno
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
19
|
Nigro D, Laddomada B, Mita G, Blanco E, Colasuonno P, Simeone R, Gadaleta A, Pasqualone A, Blanco A. Genome-wide association mapping of phenolic acids in tetraploid wheats. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Zhang Z, Xiong S, Wei Y, Meng X, Wang X, Ma X. The role of glutamine synthetase isozymes in enhancing nitrogen use efficiency of N-efficient winter wheat. Sci Rep 2017; 7:1000. [PMID: 28428629 PMCID: PMC5430530 DOI: 10.1038/s41598-017-01071-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/27/2017] [Indexed: 11/26/2022] Open
Abstract
Glutamine synthetase (GS) isozymes play critical roles in nitrogen (N) metabolism. However, the exact relationship between GS and nitrogen use efficiency (NUE) remain unclear. We have selected and compared two wheat cultivars, YM49 and XN509, which were identified as the N-efficient and N-inefficient genotypes, respectively. In this study, agronomical, morphological, physiological and biochemical approaches were performed. The results showed that TaGS1 was high expressed post-anthesis, and TaGS2 was highly expressed pre-anthesis in N-efficient genotype compared to N-inefficient genotype. GS1 and GS2 isozymes were also separated by native-PAGE and found that the spatial and temporal distribution of GS isozymes, their expression of gene and protein subunits in source-sink-flow organs during development periods triggered the pool strength and influenced the N flow. According to the physiological role of GS isozymes, we illustrated four metabolic regulation points, by which acting collaboratively in different organs, accelerating the transport of nutrients to the grain. It suggested that the regulation of GS isozymes may promote flow strength and enhance NUE by a complex C-N metabolic mechanism. The relative activity or amount of GS1 and GS2 isozymes could be a potential marker to predict and select wheat genotypes with enhanced NUE.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in HenanProvince, Zhengzhou, 450002, China
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in HenanProvince, Zhengzhou, 450002, China
| | - Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in HenanProvince, Zhengzhou, 450002, China
| | - Xiaodan Meng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in HenanProvince, Zhengzhou, 450002, China
| | - Xiaochun Wang
- Department of Biochemistry, College of Life Science, Henan Agriculture University, Zhengzhou, 450002, China.
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in HenanProvince, Zhengzhou, 450002, China.
| |
Collapse
|
21
|
Zhang M, Ma D, Ma G, Wang C, Xie X, Kang G. Responses of glutamine synthetase activity and gene expression to nitrogen levels in winter wheat cultivars with different grain protein content. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC PLANT BIOLOGY 2016; 16:188. [PMID: 27576435 PMCID: PMC5006382 DOI: 10.1186/s12870-016-0871-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/10/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. RESULTS A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. CONCLUSIONS This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Qiang He
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Huijun Li
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Wuwei Agricultural and Animal Husbandry Bureau, Wuwei, China
| | - Xiaojing Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Gansu Dingxi Academy of Agricultural Science, Dingxi, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Nigro D, Fortunato S, Giove SL, Paradiso A, Gu YQ, Blanco A, de Pinto MC, Gadaleta A. Glutamine synthetase in Durum Wheat: Genotypic Variation and Relationship with Grain Protein Content. FRONTIERS IN PLANT SCIENCE 2016; 7:971. [PMID: 27468287 PMCID: PMC4942471 DOI: 10.3389/fpls.2016.00971] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/20/2016] [Indexed: 05/29/2023]
Abstract
Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes.
Collapse
Affiliation(s)
- Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo MoroBari, Italy
| | - Stefania Fortunato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo MoroBari, Italy
- Department of Agricultural and Environmental Sciences, Research Unity of Genetic and Plant Biotechnology, University of Bari Aldo MoroBari, Italy
| | - Stefania L. Giove
- Department of Soil, Plant and Food Sciences, University of Bari Aldo MoroBari, Italy
| | | | - Yong Q. Gu
- Crop Improvement and Genetics Research, Western Regional Research Center, United States Department of Agriculture – Agricultural Research Service, AlbanyCA, USA
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, University of Bari Aldo MoroBari, Italy
| | | | - Agata Gadaleta
- Department of Agricultural and Environmental Sciences, Research Unity of Genetic and Plant Biotechnology, University of Bari Aldo MoroBari, Italy
| |
Collapse
|
24
|
Cui F, Fan X, Chen M, Zhang N, Zhao C, Zhang W, Han J, Ji J, Zhao X, Yang L, Zhao Z, Tong Y, Wang T, Li J. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:469-84. [PMID: 26660466 DOI: 10.1007/s00122-015-2641-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 11/20/2015] [Indexed: 05/21/2023]
Abstract
QTLs for kernel characteristics and tolerance to N stress were identified, and the functions of ten known genes with regard to these traits were specified. Kernel size and quality characteristics in wheat (Triticum aestivum L.) ultimately determine the end use of the grain and affect its commodity price, both of which are influenced by the application of nitrogen (N) fertilizer. This study characterized quantitative trait loci (QTLs) for kernel size and quality and examined the responses of these traits to low-N stress using a recombinant inbred line population derived from Kenong 9204 × Jing 411. Phenotypic analyses were conducted in five trials that each included low- and high-N treatments. We identified 109 putative additive QTLs for 11 kernel size and quality characteristics and 49 QTLs for tolerance to N stress, 27 and 14 of which were stable across the tested environments, respectively. These QTLs were distributed across all wheat chromosomes except for chromosomes 3A, 4D, 6D, and 7B. Eleven QTL clusters that simultaneously affected kernel size- and quality-related traits were identified. At nine locations, 25 of the 49 QTLs for N deficiency tolerance coincided with the QTLs for kernel characteristics, indicating their genetic independence. The feasibility of indirect selection of a superior genotype for kernel size and quality under high-N conditions in breeding programs designed for a lower input management system are discussed. In addition, we specified the functions of Glu-A1, Glu-B1, Glu-A3, Glu-B3, TaCwi-A1, TaSus2, TaGS2-D1, PPO-D1, Rht-B1, and Ha with regard to kernel characteristics and the sensitivities of these characteristics to N stress. This study provides useful information for the genetic improvement of wheat kernel size, quality, and resistance to N stress.
Collapse
Affiliation(s)
- Fa Cui
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoli Fan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Mei Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Chunhua Zhao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueqiang Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijuan Yang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453000, China
| | - Zongwu Zhao
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453000, China
| | - Yiping Tong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Wang X, Wei Y, Shi L, Ma X, Theg SM. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6827-34. [PMID: 26307137 PMCID: PMC4623691 DOI: 10.1093/jxb/erv388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.
Collapse
Affiliation(s)
- Xiaochun Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agriculture University, Zhengzhou 450002, China State Key Laboratory of Wheat and Maize Crop Science in China, Henan Agriculture University, Zhengzhou 450002, China Department of Biochemistry, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Yihao Wei
- Department of Biochemistry, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Lanxin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, Henan Agriculture University, Zhengzhou 450002, China
| | - Steven M Theg
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
26
|
Bao A, Zhao Z, Ding G, Shi L, Xu F, Cai H. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance. Int J Mol Sci 2015; 16:12713-36. [PMID: 26053400 PMCID: PMC4490469 DOI: 10.3390/ijms160612713] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 11/17/2022] Open
Abstract
Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth.
Collapse
Affiliation(s)
- Aili Bao
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuqing Zhao
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guangda Ding
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lei Shi
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangsen Xu
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongmei Cai
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak C, N'Diaye A, Xu S, Tuberosa R. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:648-63. [PMID: 25424506 DOI: 10.1111/pbi.12288] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 05/20/2023]
Abstract
Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 data sets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum) and their ancestor (wild emmer, T. turgidum ssp. dicoccoides). The consensus map harboured 30 144 markers (including 26 626 SNPs and 791 SSRs) half of which were present in at least two component maps. The final map spanned 2631 cM of all 14 durum wheat chromosomes and, differently from the individual component maps, all markers fell within the 14 linkage groups. Marker density per genetic distance unit peaked at centromeric regions, likely due to a combination of low recombination rate in the centromeric regions and even gene distribution along the chromosomes. Comparisons with bread wheat indicated fewer regions with recombination suppression, making this consensus map valuable for mapping in the A and B genomes of both durum and bread wheat. Sequence similarity analysis allowed us to relate mapped gene-derived SNPs to chromosome-specific transcripts. Dense patterns of homeologous relationships have been established between the A- and B-genome maps and between nonsyntenic homeologous chromosome regions as well, the latter tracing to ancient translocation events. The gene-based homeologous relationships are valuable to infer the map location of homeologs of target loci/QTLs. Because most SNP and SSR markers were previously mapped in bread wheat, this consensus map will facilitate a more effective integration and exploitation of genes and QTL for wheat breeding purposes.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Andrea Ricci
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Sara Giulia Milner
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Enrico Noli
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | | | - Rita Casadio
- Biocomputing Group, University of Bologna, Bologna, Italy
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Simone Scalabrin
- Istituto di Genomica Applicata, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Udine, Italy
| | - Vera Vendramin
- Istituto di Genomica Applicata, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Udine, Italy
| | | | - Antonio Blanco
- Dipartimento di Biologia e Chimica Agro-forestale ed ambientale, Università di Bari, Aldo Moro, Bari, Italy
| | - Francesca Desiderio
- Consiglio per la ricerca e la sperimentazione in agricoltura, Genomics Research Centre, Fiorenzuola d'Arda, Italy
| | - Assaf Distelfeld
- Faculty of Life Sciences, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Science and Science Education, University of Haifa, Haifa, Israel
| | - Justin Faris
- USDA-ARS Cereal Crops Research Unit, Fargo, ND, USA
| | - Abraham Korol
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Science and Science Education, University of Haifa, Haifa, Israel
| | - Andrea Massi
- Società Produttori Sementi Bologna (PSB), Argelato, Italy
| | - Anna Maria Mastrangelo
- Consiglio per la ricerca e la sperimentazione in agricoltura, Cereal Research Centre, Foggia, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Udine, Italy
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amidou N'Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Xu
- USDA-ARS Cereal Crops Research Unit, Fargo, ND, USA
| | - Roberto Tuberosa
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Wang J, Meng Y, Li B, Ma X, Lai Y, Si E, Yang K, Xu X, Shang X, Wang H, Wang D. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. PLANT, CELL & ENVIRONMENT 2015; 38:655-69. [PMID: 25124288 PMCID: PMC4407928 DOI: 10.1111/pce.12428] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 05/04/2023]
Abstract
Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response.
Collapse
Affiliation(s)
- Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Life Sciences and Technology, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Yong Lai
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Xianliang Xu
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Xunwu Shang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Di Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| |
Collapse
|
29
|
Xu XP, Liu H, Tian L, Dong XB, Shen SH, Qu LQ. Integrated and comparative proteomics of high-oil and high-protein soybean seeds. Food Chem 2015; 172:105-16. [PMID: 25442530 DOI: 10.1016/j.foodchem.2014.09.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/22/2014] [Accepted: 09/08/2014] [Indexed: 01/10/2023]
Abstract
We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding.
Collapse
Affiliation(s)
- Xiu Ping Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Hui Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Xiang Bai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Shi Hua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China.
| |
Collapse
|
30
|
Zheng JS, Yu CM, Chen P, Wang YZ, Liu TM, Xiong HP. Identification and Expression Analysis of Glutamine Synthetase Genes in Ramie (Boehmeria nivea L. Gaud). Open Life Sci 2015. [DOI: 10.1515/biol-2015-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractGlutamine synthetase (GS) plays a fundamental role in nitrogen metabolism in higher plants. Three BnGS genes have first been isolated: one gene encoding plastid GS (BnGS2) and two encoding cytosolic GS (BnGS1-1 and BnGS1-2) in ramie. Based on a sequence analysis and phylogenetic study, three BnGS sequences were classified into three distinct sub-families. The phylogenetic analysis showed that BnGS2 and BnGS1-2 were closely related to those of legumes, alfalfa (Medicago sativa), soybean (Glycine max) and bean (Phaseolus vulgaris). The BnGS gene expression patterns revealed that each gene exhibited similar organ specificity, but distinct transcript intensity during different vegetative processes. The relatively abundant expression of BnGS1-1 and BnGS2 at specific organs during different vegetative processes indicates that they have critical roles in nitrogen uptake and assimilation relating to forage and growth characteristics. The BnGS1-2 mRNA levels were remarkably upregulated in the phloem, xylem and stems during the fiber development stage, suggesting a correlation with fiber development. Therefore, the non-overlapping transcript intensity of BnGS genes in different tissues regulates ramie growth and development during different vegetative processes.
Collapse
|
31
|
Characterization of ferredoxin-dependent glutamine-oxoglutarate amidotransferase (Fd-GOGAT) genes and their relationship with grain protein content QTL in wheat. PLoS One 2014; 9:e103869. [PMID: 25099972 PMCID: PMC4123923 DOI: 10.1371/journal.pone.0103869] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Background In higher plants, inorganic nitrogen is assimilated via the glutamate synthase cycle or GS-GOGAT pathway. GOGAT enzyme occurs in two distinct forms that use NADH (NADH-GOGAT) or Fd (Fd-GOGAT) as electron carriers. The goal of the present study was to characterize wheat Fd-GOGAT genes and to assess the linkage with grain protein content (GPC), an important quantitative trait controlled by multiple genes. Results We report the complete genomic sequences of the three homoeologous A, B and D Fd-GOGAT genes from hexaploid wheat (Triticum aestivum) and their localization and characterization. The gene is comprised of 33 exons and 32 introns for all the three homoeologues genes. The three genes show the same exon/intron number and size, with the only exception of a series of indels in intronic regions. The partial sequence of the Fd-GOGAT gene located on A genome was determined in two durum wheat (Triticum turgidum ssp. durum) cvs Ciccio and Svevo, characterized by different grain protein content. Genomic differences allowed the gene mapping in the centromeric region of chromosome 2A. QTL analysis was conducted in the Svevo×Ciccio RIL mapping population, previously evaluated in 5 different environments. The study co-localized the Fd-GOGAT-A gene with the marker GWM-339, identifying a significant major QTL for GPC. Conclusions The wheat Fd-GOGAT genes are highly conserved; both among the three homoeologous hexaploid wheat genes and in comparison with other plants. In durum wheat, an association was shown between the Fd-GOGAT allele of cv Svevo with increasing GPC - potentially useful in breeding programs.
Collapse
|
32
|
Bao A, Zhao Z, Ding G, Shi L, Xu F, Cai H. Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS One 2014; 9:e95581. [PMID: 24743556 PMCID: PMC3990726 DOI: 10.1371/journal.pone.0095581] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield.
Collapse
Affiliation(s)
- Aili Bao
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhuqing Zhao
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Colasuonno P, Maria MA, Blanco A, Gadaleta A. Description of durum wheat linkage map and comparative sequence analysis of wheat mapped DArT markers with rice and Brachypodium genomes. BMC Genet 2013; 14:114. [PMID: 24304553 PMCID: PMC3866978 DOI: 10.1186/1471-2156-14-114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 01/29/2023] Open
Abstract
Background The importance of wheat to the world economy, together with progresses in high-throughput next-generation DNA sequencing, have accelerated initiatives of genetic research for wheat improvement. The availability of high density linkage maps is crucial to identify genotype-phenotype associations, but also for anchoring BAC contigs to genetic maps, a strategy followed for sequencing the wheat genome. Results Here we report a genetic linkage map in a durum wheat segregating population and the study of mapped DArT markers. The linkage map consists of 126 gSSR, 31 EST-SSR and 351 DArT markers distributed in 24 linkage groups for a total length of 1,272 cM. Through bioinformatic approaches we have analysed 327 DArT clones to reveal their redundancy, syntenic and functional aspects. The DNA sequences of 174 DArT markers were assembled into a non-redundant set of 60 marker clusters. This explained the generation of clusters in very small chromosome regions across genomes. Of these DArT markers, 61 showed highly significant (Expectation < E-10) BLAST similarity to gene sequences in public databases of model species such as Brachypodium and rice. Based on sequence alignments, the analysis revealed a mosaic gene conservation, with 54 and 72 genes present in rice and Brachypodium species, respectively. Conclusions In the present manuscript we provide a detailed DArT markers characterization and the basis for future efforts in durum wheat map comparing.
Collapse
Affiliation(s)
| | | | | | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, Bari 70126, Italy.
| |
Collapse
|