1
|
Noda T, Wakizono T, Manabe T, Aoyagi K, Kubota M, Yasui T, Nakagawa T, Nakashima K, Meno C. Sustained Wnt signaling in the mouse inner ear after morphogenesis: In hair cells, supporting cells, and spiral ganglion neurons. Hear Res 2025; 462:109282. [PMID: 40267597 DOI: 10.1016/j.heares.2025.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
The regenerative capacity of inner ear hair cells in mammals varies between the cochlea and the vestibular system. Hair cells in the cochlea lack regenerative ability, whereas those in the vestibular system exhibit limited regenerative potential. However, supporting cells in the cochlea retain proliferative capacity, making them a key focus in auditory regeneration research. Similarly, spiral ganglion neurons actively proliferate until birth but lose this ability within a week postnatally, sharing the regenerative limitations of hair cells. This study investigated the role of the canonical Wnt signaling pathway as a potential regulator of these cells. Wnt signaling plays a crucial role in otic development and inner ear morphogenesis. Using reporter mice, we analyzed the activity of the Wnt canonical pathway in the inner ear at the cellular stages from embryonic to adult stages, assessing fluorescence intensities as an indicator of signaling activity. Our findings demonstrate that Wnt signaling remains active in the vestibular hair cells and in the supporting cells of both the cochlea and vestibule throughout development and into adulthood. In addition, Wnt activity was observed in spiral ganglion neurons up to 7 days after birth, coinciding with their period of proliferative potential. These findings suggest that Wnt signaling is integral to cell proliferation in the inner ear both before and after birth.
Collapse
Affiliation(s)
- Teppei Noda
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan.
| | - Takahiro Wakizono
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan; Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Takahiro Manabe
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan; Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Kei Aoyagi
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan; Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Marie Kubota
- Department of Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tetsuro Yasui
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Takashi Nakagawa
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| |
Collapse
|
2
|
Wang M, Han Y, An W, Wang X, Chen F, Lu J, Meng Y, Li Y, Wang Y, Li J, Zhao C, Chai R, Wang H, Liu W, Xu L. Wnt signalling facilitates neuronal differentiation of cochlear Frizzled10-positive cells in mouse cochlea via glypican 6 modulation. Cell Commun Signal 2025; 23:50. [PMID: 39871249 PMCID: PMC11771042 DOI: 10.1186/s12964-025-02039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025] Open
Abstract
Degeneration of cochlear spiral ganglion neurons (SGNs) leads to irreversible sensorineural hearing loss (SNHL), as SGNs lack regenerative capacity. Although cochlear glial cells (GCs) have some neuronal differentiation potential, their specific identities remain unclear. This study identifies a distinct subpopulation, Frizzled10 positive (FZD10+) cells, as an important type of GC responsible for neuronal differentiation in mouse cochlea. FZD10 + cells can differentiate into various SGN subtypes in vivo, adhering to natural proportions. Wnt signaling enhances the ability of FZD10 + cells to function as neural progenitors and increases the neuronal excitability of the FZD10-derived neurons. Single-cell RNA sequencing analysis characterizes FZD10-derived differentiating cell populations, while crosstalk network analysis identifies multiple signaling pathways and target genes influenced by Wnt signaling that contribute to the function of FZD10 + cells as neural progenitors. Pseudotime analysis maps the differentiation trajectory from proliferated GCs to differentiating neurons. Further experiments indicate that glypican 6 (GPC6) may regulate this neuronal lineage, while GPC6 deficiency diminishes the effects of Wnt signaling on FZD10-derived neuronal differentiation and synapse formation. These findings suggest the critical role of Wnt signaling in the neuronal differentiation derived from cochlear FZD10 + cells and provide insights into the mechanisms potentially involved in this process.
Collapse
Affiliation(s)
- Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yan Li
- Translational Medical Research Centre, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, School of Medicine, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Renjie Chai
- Key Laboratory of Developmental Genes and Human Diseases, School of Medicine, Ministry of Education, Southeast University, Nanjing, 210009, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China.
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China.
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China.
| |
Collapse
|
3
|
Choi JS, Kim KS, Kim HJ. Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity. Int J Mol Sci 2025; 26:758. [PMID: 39859470 PMCID: PMC11765760 DOI: 10.3390/ijms26020758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea. These components share similar structures and neural functions, highlighting the importance of investigating changes in auditory nerve cells in response to gravitational alterations. To address this gap, we studied the functional and structural changes in the inner ear following exposure to hypergravity stimuli. Our findings demonstrate changes in auditory brainstem responses (ABRs) in the cochlea. ABR recordings were used to analyze click thresholds, as well as the amplitude and latency of tone bursts. The click thresholds at all frequencies increased in the group exposed to hypergravity in the long term. Additionally, tone burst results revealed significantly reduced amplitudes at high frequencies and delayed latencies in the hypergravity models. Notably, greater hair cell loss was observed in the middle and basal turns of the cochlea, indicating that mid and high-frequency regions are more vulnerable to hypergravity stimulation. Furthermore, nerve damage on the cochlear surface was evident in subjects exposed to 4G stimulation for 4 weeks. These findings suggest that the inner ear and its neural activity can be functionally and structurally affected by prolonged exposure to hypergravity.
Collapse
Affiliation(s)
- Jin Sil Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea; (J.S.C.); (K.-S.K.)
- Inha Research Institute for Aerospace Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Kyu-Sung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea; (J.S.C.); (K.-S.K.)
- Inha Research Institute for Aerospace Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Hyun Ji Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea; (J.S.C.); (K.-S.K.)
- Inha Research Institute for Aerospace Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
4
|
Liu W, Ming S, Zhao X, Zhu X, Gong Y. Developmental expression of high-mobility group box 1 (HMGB1) in the mouse cochlea. Eur J Histochem 2023; 67:3704. [PMID: 37667832 PMCID: PMC10518653 DOI: 10.4081/ejh.2023.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
The expression changes of high-mobility group box 1 (HMGB1) in the mouse cochlea have recently been implicated in noise-induced hearing loss, suggesting that HMGB1 participates in regulating cochlear function. However, the precise role of HMGB1 in the auditory system remains largely unclear. This study aimed to investigate its function in the developing mouse cochlea by examining the expression pattern of HMGB1 in the mouse cochlea from embryonic day (E) 18.5 to postnatal day (P) 28 using double immunofluorescence on frozen sections. Our findings revealed that HMGB1 was extensively expressed in the cell nucleus across various regions of the mouse cochlea, including the organ of Corti. Furthermore, its expression underwent developmental regulation during mouse cochlear development. Specifically, HMGB1 was found to be localized in the tympanic border cells at each developmental stage, coinciding with the gradual anatomical in this region during development. In addition, HMGB1 was expressed in the greater epithelial ridge (GER) and supporting cells of the organ of Corti, as validated by the supporting cell marker Sox2 at P1 and P8. However, at P14, the expression of HMGB1 disappeared from the GER, coinciding with the degeneration of the GER into the inner sulcus cells. Moreover, we observed that HMGB1 co-localized with Ki-67-positive proliferating cells in several cochlear regions during late embryonic and early postnatal stages, including the GER, the tympanic border cells, cochlear lateral wall, and cochlear nerves. Furthermore, by dual-staining Ki-67 with neuronal marker TUJ1 and glial marker Sox10, we determined the expression of Ki-67 in the neonatal glial cells. Our spatial-temporal analysis demonstrated that HMGB1 exhibited distinct expression patterns during mouse cochlear development. The co-localization of HMGB1 with Ki-67-positive proliferating cells suggested that HMGB1 may play a role in cochlear development.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Shanshan Ming
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Xiaobing Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Xin Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing.
| | - Yuxiang Gong
- Department of Nephrology, Zhongda Hospital, Southeast University, Nanjing.
| |
Collapse
|
5
|
Brown LN, Barth JL, Jafri S, Rumschlag JA, Jenkins TR, Atkinson C, Lang H. Complement factor B is essential for the proper function of the peripheral auditory system. Front Neurol 2023; 14:1214408. [PMID: 37560455 PMCID: PMC10408708 DOI: 10.3389/fneur.2023.1214408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Shabih Jafri
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Tyreek R. Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
6
|
Lang H, Noble KV, Barth JL, Rumschlag JA, Jenkins TR, Storm SL, Eckert MA, Dubno JR, Schulte BA. The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. J Neurosci 2023; 43:5057-5075. [PMID: 37268417 PMCID: PMC10324995 DOI: 10.1523/jneurosci.2234-22.2023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Tyreek R Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shelby L Storm
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Eckert
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
7
|
Yu JI, Cho YH, Seo TB, Kim YP. Effect of combined intervention of exercise and autologous bone marrow stromal cell transplantation on neurotrophic factors and pain-related cascades over time after sciatic nerve injury. J Exerc Rehabil 2023; 19:19-26. [PMID: 36910683 PMCID: PMC9993005 DOI: 10.12965/jer.2244006.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
The purpose of this study was to determine whether combined inter-vention of treadmill exercise and bone marrow stromal cell (BMSC) transplantation would affect the expression of neurotrophic factors in the sciatic nerve injury (SNI) and neuropathic pain-related cascades in ipsilateral lumbar 4-5 dorsal root ganglion (DRG) during the early or late stage of sciatic nerve regeneration. The rats were randomly divided into the normal control group (CONT, n=6), sedentary group (SS, n=24), exercise group (SE, n=24), BMSC transplantation group (SB, n=24), BMSC transplantation+exercise group (SBE, n=24) 1, 2, 3, and 5 weeks after SNI. Single dose of 5×106 harvested BMSC was injected into the injury area sing by a 30 gauge needle. Treadmill exercise was performed at a speed of 8 m/min for 30 min once a day. Tropomyosin-receptor kinase B, brain-derived neurotrophic factor and ciliary neurotrophic fac-tor were significantly upregulated in the SE and SBE groups at 1- and 2-week postinjury than those in the CONT and SS groups, and SB and SBE groups continuously kept up proinflammatory cytokines until the late stage of regeneration. Nuclear factor kappa-light-chain-enhancer of activated B cells, interleukin and tumor necrosis factor alpha in ipsi-lateral DRG were progressively decreased by exercise alone application and/or BMSC transplantation at early and late stage of regeneration. Present results provide reliable information that combined intervention of treadmill exercise and BMSC transplantation might be one of the effective treatment strategies for recovering sciatic nerve injury-induced neuropathic pain over time.
Collapse
Affiliation(s)
- Joo-In Yu
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Young-Pyo Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
8
|
Rumschlag JA, McClaskey CM, Dias JW, Kerouac LB, Noble KV, Panganiban C, Lang H, Harris KC. Age-related central gain with degraded neural synchrony in the auditory brainstem of mice and humans. Neurobiol Aging 2022; 115:50-59. [PMID: 35468552 PMCID: PMC9153923 DOI: 10.1016/j.neurobiolaging.2022.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/22/2022]
Abstract
Aging is associated with auditory nerve (AN) functional deficits and decreased inhibition in the central auditory system, amplifying central responses in a process referred to here as central gain. Although central gain increases response amplitudes, central gain may not restore disrupted response timing. In this translational study, we measured responses putatively generated by the AN and auditory midbrain in younger and older mice and humans. We hypothesized that older mice and humans exhibit increased central gain without an improvement in inter-trial synchrony in the midbrain. Our data demonstrated greater age-related deficits in AN response amplitudes than auditory midbrain response amplitudes, as shown by significant interactions between inferred neural generator and age group, indicating increased central gain in auditory midbrain. However, synchrony decreases with age in both the AN and midbrain responses. These results reveal age-related increases in central gain without concomitant improvements in synchrony, consistent with those predictions based on decreases in inhibition. Persistent decreases in synchrony may contribute to auditory processing deficits in older mice and humans.
Collapse
Affiliation(s)
- Jeffrey A Rumschlag
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, USA.
| | - Carolyn M McClaskey
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - James W Dias
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Lilyana B Kerouac
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kelly C Harris
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
9
|
Bieniussa L, Kahraman B, Skornicka J, Schulte A, Voelker J, Jablonka S, Hagen R, Rak K. Pegylated Insulin-Like Growth Factor 1 attenuates Hair Cell Loss and promotes Presynaptic Maintenance of Medial Olivocochlear Cholinergic Fibers in the Cochlea of the Progressive Motor Neuropathy Mouse. Front Neurol 2022; 13:885026. [PMID: 35720065 PMCID: PMC9203726 DOI: 10.3389/fneur.2022.885026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of “efferent auditory neuropathy.” Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Baran Kahraman
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Skornicka
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Schulte
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Kristen Rak
| |
Collapse
|
10
|
Wang M, Xu L, Han Y, Wang X, Chen F, Lu J, Wang H, Liu W. Regulation of Spiral Ganglion Neuron Regeneration as a Therapeutic Strategy in Sensorineural Hearing Loss. Front Mol Neurosci 2022; 14:829564. [PMID: 35126054 PMCID: PMC8811300 DOI: 10.3389/fnmol.2021.829564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) are the primary neurons on the auditory conduction pathway that relay sound signals from the inner ear to the brainstem. However, because the SGNs lack the regeneration ability, degeneration and loss of SGNs cause irreversible sensorineural hearing loss (SNHL). Besides, the effectiveness of cochlear implant therapy, which is the major treatment of SNHL currently, relies on healthy and adequate numbers of intact SGNs. Therefore, it is of great clinical significance to explore how to regenerate the SGNs. In recent years, a number of researches have been performed to improve the SGNs regeneration strategy, and some of them have shown promising results, including the progress of SGN regeneration from exogenous stem cells transplantation and endogenous glial cells’ reprogramming. Yet, there are challenges faced in the effectiveness of SGNs regeneration, the maturation and function of newly generated neurons as well as auditory function recovery. In this review, we describe recent advances in researches in SGNs regeneration. In the coming years, regenerating SGNs in the cochleae should become one of the leading biological strategies to recover hearing loss.
Collapse
|
11
|
Panganiban CH, Barth JL, Tan J, Noble KV, McClaskey CM, Howard BA, Jafri SH, Dias JW, Harris KC, Lang H. Two distinct types of nodes of Ranvier support auditory nerve function in the mouse cochlea. Glia 2021; 70:768-791. [DOI: 10.1002/glia.24138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
- Wolfson Centre for Age‐Related Diseases King's College London London UK
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology Medical University of South Carolina Charleston South Carolina USA
| | - Junying Tan
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Carolyn M. McClaskey
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Blake A. Howard
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Shabih H. Jafri
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - James W. Dias
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Kelly C. Harris
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
12
|
Burdo S, Di Berardino F, Bruno G. Is auditory neuropathy an appropriate term? A systematic literature review on its aetiology and pathogenesis. ACTA OTORHINOLARYNGOLOGICA ITALICA 2021; 41:496-506. [PMID: 34825666 PMCID: PMC8686806 DOI: 10.14639/0392-100x-n0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/15/2021] [Indexed: 11/23/2022]
Abstract
To clarify the aetio-pathogenesis of Auditory Neuropathy Spectrum Disorder (ANSD), a total of 845 papers were divided into four categories: Review, Audiology, Treatment and Aetiology. Aetiology was the topic analysed categorising papers as: Genetics, Histopathology, Imaging and Medical diseases. Isolated ANs were in relation to Otoferlin, Pejvakin and DIAPH3 deficiency, and the syndromes were mainly Charcot Marie Tooth, Friedreich Ataxia, mitochondrial disorders and those associated with optic neuropathies. In histopathology papers, important information was available from analyses on human premature newborns and on some syndromic neuropathies. From cochlear dysmorphism to cerebral tumours associated with ANs, these are described in what is identified as the Imaging area. Finally, the prevalent clinical pathology was bilirubinopathy, followed by diabetes. In conclusion, AN/ANSDs do not refer to a clear pathological condition, but to an instrumental pattern without any evidence of auditory nerve involvement, except in a few conditions. The terms AN/ANSD are misleading and should be avoided, including terms such as “synaptopathy” or “dis-synchrony”.
Collapse
|
13
|
Wakizono T, Nakashima H, Yasui T, Noda T, Aoyagi K, Okada K, Yamada Y, Nakagawa T, Nakashima K. Growth factors with valproic acid restore injury-impaired hearing by promoting neuronal regeneration. JCI Insight 2021; 6:139171. [PMID: 34806649 PMCID: PMC8663787 DOI: 10.1172/jci.insight.139171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spiral ganglion neurons (SGNs) are primary auditory neurons in the spiral ganglion that transmit sound information from the inner ear to the brain and play an important role in hearing. Impairment of SGNs causes sensorineural hearing loss (SNHL), and it has been thought until now that SGNs cannot be regenerated once lost. Furthermore, no fundamental therapeutic strategy for SNHL has been established other than inserting devices such as hearing aids and cochlear implants. Here we show that the mouse spiral ganglion contains cells that are able to proliferate and indeed differentiate into neurons in response to injury. We suggest that SRY-box transcription factor 2/SRY-box transcription factor 10-double-positive (Sox2/Sox10-double-positive) Schwann cells sequentially started to proliferate, lost Sox10 expression, and became neurons, although the number of new neurons generated spontaneously was very small. To increase the abundance of new neurons, we treated mice with 2 growth factors in combination with valproic acid, which is known to promote neuronal differentiation and survival. This treatment resulted in a dramatic increase in the number of SGNs, accompanied by a partial recovery of the hearing loss induced by injury. Taken together, our findings offer a step toward developing strategies for treatment of SNHL.
Collapse
Affiliation(s)
- Takahiro Wakizono
- Department of Stem Cell Biology and Medicine and.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | - Tetsuro Yasui
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Teppei Noda
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kei Aoyagi
- Department of Stem Cell Biology and Medicine and.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kanako Okada
- Department of Stem Cell Biology and Medicine and
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | |
Collapse
|
14
|
Chen Z, Huang Y, Yu C, Liu Q, Qiu C, Wan G. Cochlear Sox2 + Glial Cells Are Potent Progenitors for Spiral Ganglion Neuron Reprogramming Induced by Small Molecules. Front Cell Dev Biol 2021; 9:728352. [PMID: 34621745 PMCID: PMC8490772 DOI: 10.3389/fcell.2021.728352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) relay the acoustic information to the central auditory circuits. Degeneration of SGNs is a major cause of sensorineural hearing loss and severely affects the effectiveness of cochlear implant therapy. Cochlear glial cells are able to form spheres and differentiate into neurons in vitro. However, the identity of these progenitor cells is elusive, and it is unclear how to differentiate these cells toward functional SGNs. In this study, we found that Sox2+ subpopulation of cochlear glial cells preserves high potency of neuronal differentiation. Interestingly, Sox2 expression was downregulated during neuronal differentiation and Sox2 overexpression paradoxically inhibited neuronal differentiation. Our data suggest that Sox2+ glial cells are potent SGN progenitor cells, a phenotype independent of Sox2 expression. Furthermore, we identified a combination of small molecules that not only promoted neuronal differentiation of Sox2– glial cells, but also removed glial cell identity and promoted the maturation of the induced neurons (iNs) toward SGN fate. In summary, we identified Sox2+ glial subpopulation with high neuronal potency and small molecules inducing neuronal differentiation toward SGNs.
Collapse
Affiliation(s)
- Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chaorong Yu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Wilkerson BA, Zebroski HL, Finkbeiner CR, Chitsazan AD, Beach KE, Sen N, Zhang RC, Bermingham-McDonogh O. Novel cell types and developmental lineages revealed by single-cell RNA-seq analysis of the mouse crista ampullaris. eLife 2021; 10:e60108. [PMID: 34003106 PMCID: PMC8189719 DOI: 10.7554/elife.60108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
This study provides transcriptomic characterization of the cells of the crista ampullaris, sensory structures at the base of the semicircular canals that are critical for vestibular function. We performed single-cell RNA-seq on ampullae microdissected from E16, E18, P3, and P7 mice. Cluster analysis identified the hair cells, support cells and glia of the crista as well as dark cells and other nonsensory epithelial cells of the ampulla, mesenchymal cells, vascular cells, macrophages, and melanocytes. Cluster-specific expression of genes predicted their spatially restricted domains of gene expression in the crista and ampulla. Analysis of cellular proportions across developmental time showed dynamics in cellular composition. The new cell types revealed by single-cell RNA-seq could be important for understanding crista function and the markers identified in this study will enable the examination of their dynamics during development and disease.
Collapse
Affiliation(s)
- Brent A Wilkerson
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Heather L Zebroski
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Connor R Finkbeiner
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Alex D Chitsazan
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Kylie E Beach
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Nilasha Sen
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Renee C Zhang
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Olivia Bermingham-McDonogh
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
16
|
Sekiya T, Holley MC. Cell Transplantation to Restore Lost Auditory Nerve Function is a Realistic Clinical Opportunity. Cell Transplant 2021; 30:9636897211035076. [PMID: 34498511 PMCID: PMC8438274 DOI: 10.1177/09636897211035076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hearing is one of our most important means of communication. Disabling hearing loss (DHL) is a long-standing, unmet problem in medicine, and in many elderly people, it leads to social isolation, depression, and even dementia. Traditionally, major efforts to cure DHL have focused on hair cells (HCs). However, the auditory nerve is also important because it transmits electrical signals generated by HCs to the brainstem. Its function is critical for the success of cochlear implants as well as for future therapies for HC regeneration. Over the past two decades, cell transplantation has emerged as a promising therapeutic option for restoring lost auditory nerve function, and two independent studies on animal models show that cell transplantation can lead to functional recovery. In this article, we consider the approaches most likely to achieve success in the clinic. We conclude that the structure and biochemical integrity of the auditory nerve is critical and that it is important to preserve the remaining neural scaffold, and in particular the glial scar, for the functional integration of donor cells. To exploit the natural, autologous cell scaffold and to minimize the deleterious effects of surgery, donor cells can be placed relatively easily on the surface of the nerve endoscopically. In this context, the selection of donor cells is a critical issue. Nevertheless, there is now a very realistic possibility for clinical application of cell transplantation for several different types of hearing loss.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
- Tetsuji Sekiya, Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan,.
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield, England
| |
Collapse
|
17
|
Kempfle JS, Luu NNC, Petrillo M, Al-Asad R, Zhang A, Edge ASB. Lin28 reprograms inner ear glia to a neuronal fate. Stem Cells 2020; 38:890-903. [PMID: 32246510 PMCID: PMC10908373 DOI: 10.1002/stem.3181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
Sensorineural hearing loss is irreversible and can be caused by loss of auditory neurons. Regeneration of neural cells from endogenous cells may offer a future tool to restore the auditory circuit and to enhance the performance of implantable hearing devices. Neurons and glial cells in the peripheral nervous system are closely related and originate from a common progenitor. Prior work in our lab indicated that in the early postnatal mouse inner ear, proteolipid protein 1 (Plp1) expressing glial cells could act as progenitor cells for neurons in vitro. Here, we used a transgenic mouse model to transiently overexpress Lin28, a neural stem cell regulator, in Plp1-positive glial cells. Lin28 promoted proliferation and conversion of auditory glial cells into neurons in vitro. To study the effects of Lin28 on endogenous glial cells after loss of auditory neurons in vivo, we produced a model of auditory neuropathy by selectively damaging auditory neurons with ouabain. After neural damage was confirmed by the auditory brainstem response, we briefly upregulated the Lin28 in Plp1-expressing inner ear glial cells. One month later, we analyzed the cochlea for neural marker expression by quantitative RT-PCR and immunohistochemistry. We found that transient Lin28 overexpression in Plp1-expressing glial cells induced expression of neural stem cell markers and subsequent conversion into neurons. This suggests the potential for inner ear glia to be converted into neurons as a regeneration therapy for neural replacement in auditory neuropathy.
Collapse
Affiliation(s)
- Judith S. Kempfle
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- University Department of Otolaryngology, Head and Neck Surgery, Tübingen, Germany
| | - Ngoc-Nhi C. Luu
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- University Department of Otolaryngology, Head and Neck Surgery, Zürich, Switzerland
| | - Marco Petrillo
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Reef Al-Asad
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Andrea Zhang
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
18
|
Schwarzer S, Asokan N, Bludau O, Chae J, Kuscha V, Kaslin J, Hans S. Neurogenesis in the inner ear: the zebrafish statoacoustic ganglion provides new neurons from a Neurod/Nestin-positive progenitor pool well into adulthood. Development 2020; 147:dev.176750. [PMID: 32165493 DOI: 10.1242/dev.176750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/25/2020] [Indexed: 01/13/2023]
Abstract
The vertebrate inner ear employs sensory hair cells and neurons to mediate hearing and balance. In mammals, damaged hair cells and neurons are not regenerated. In contrast, hair cells in the inner ear of zebrafish are produced throughout life and regenerate after trauma. However, it is unknown whether new sensory neurons are also formed in the adult zebrafish statoacoustic ganglion (SAG), the sensory ganglion connecting the inner ear to the brain. Using transgenic lines and marker analysis, we identify distinct cell populations and anatomical landmarks in the juvenile and adult SAG. In particular, we analyze a Neurod/Nestin-positive progenitor pool that produces large amounts of new neurons at juvenile stages, which transitions to a quiescent state in the adult SAG. Moreover, BrdU pulse chase experiments reveal the existence of a proliferative but otherwise marker-negative cell population that replenishes the Neurod/Nestin-positive progenitor pool at adult stages. Taken together, our study represents the first comprehensive characterization of the adult zebrafish SAG showing that zebrafish, in sharp contrast to mammals, display continued neurogenesis in the SAG well beyond embryonic and larval stages.
Collapse
Affiliation(s)
- Simone Schwarzer
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Nandini Asokan
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Oliver Bludau
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jeongeun Chae
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Veronika Kuscha
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jan Kaslin
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit. Much of this variability is related to differences in auditory nerve survival, and there has been substantial interest in recent years in exploring potential therapies to improve survival of the cochlear spiral ganglion neurons (SGN) after deafness. Preclinical studies using osmotic pumps and other approaches in deafened animal models to deliver neurotrophic factors (NTs) directly to the cochlea have shown promising results, especially with Brain-Derived Neurotrophic Factor (BDNF). More recent studies have focused on the use of NT gene therapy to force expression of NTs by target cells within the cochlea. This could provide the means for a one-time treatment to promote long-term NT expression and improve neural survival after deafness. This review summarizes the evidence for the efficacy of exogenous NTs in preventing SGN degeneration after hearing loss and reviews the animal research to date suggesting that NT gene therapy can elicit long-term NT expression in the cochlea, resulting in significantly improved SGN and radial nerve fiber survival after deafness. In addition, we discuss NT gene therapy in other non-auditory applications and consider some of the remaining issues with regard to selecting optimal vectors, timing of treatment, and place/method of delivery, etc. that must be resolved prior to considering clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA.
| | - Omar Akil
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA
| | - Hainan Lang
- Dept. of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Room RS613, Charleston, SC, 29414, USA
| |
Collapse
|
20
|
Chen C, Zhong X, Smith DK, Tai W, Yang J, Zou Y, Wang LL, Sun J, Qin S, Zhang CL. Astrocyte-Specific Deletion of Sox2 Promotes Functional Recovery After Traumatic Brain Injury. Cereb Cortex 2020; 29:54-69. [PMID: 29161339 DOI: 10.1093/cercor/bhx303] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022] Open
Abstract
Injury to the adult brain induces activation of local astrocytes, which serves as a compensatory response that modulates tissue damage and recovery. However, the mechanism governing astrocyte activation during brain injury remains largely unknown. Here we provide in vivo evidence that SOX2, a transcription factor critical for stem cells and brain development, is also required for injury-induced activation of adult cortical astrocytes. Genome-wide chromatin immunoprecipitation-seq analysis of mouse cortical tissues reveals that SOX2 binds to regulatory regions of genes associated with signaling pathways that control glial cell activation, such as Nr2e1, Mmd2, Wnt7a, and Akt2. Astrocyte-specific deletion of Sox2 in adult mice greatly diminishes glial response to controlled cortical impact injury and, most unexpectedly, dampens injury-induced cortical loss and benefits behavioral recovery of mice after injury. Together, these results uncover an essential role of SOX2 in somatic cells under pathological conditions and indicate that SOX2-dependent astrocyte activation could be targeted for functional recovery after traumatic brain injury.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jianjing Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jiahong Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Song Qin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Center of Neural Injury and Repair, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| |
Collapse
|
21
|
Li X, Bi Z, Sun Y, Li C, Li Y, Liu Z. In vivo ectopic Ngn1 and Neurod1 convert neonatal cochlear glial cells into spiral ganglion neurons. FASEB J 2020; 34:4764-4782. [PMID: 32027432 DOI: 10.1096/fj.201902118r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Damage or degeneration of inner ear spiral ganglion neurons (SGNs) causes hearing impairment. Previous in vitro studies indicate that cochlear glial cells can be reprogrammed into SGNs, however, it remains unknown whether this can occur in vivo. Here, we show that neonatal glial cells can be converted, in vivo, into SGNs (defined as new SGNs) by simultaneous induction of Neurog1 (Ngn1) and Neurod1. New SGNs express SGN markers, Tuj1, Map2, Prox1, Mafb and Gata3, and reduce glial cell marker Sox10 and Scn7a. The heterogeneity within new SGNs is illustrated by immunostaining and transcriptomic assays. Transcriptomes analysis indicates that well reprogrammed SGNs are similar to type I SGNs. In addition, reprogramming efficiency is positively correlated with the dosage of Ngn1 and Neurod1, but declined with aging. Taken together, our in vivo data demonstrates the plasticity of cochlear neonatal glial cells and the capacity of Ngn1 and Neurod1 to reprogram glial cells into SGNs. Looking ahead, we expect that combination of Neurog1 and Neurod1 along with other factors will further boost the percentage of fully converted (Mafb+/Gata3+) new SGNs.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghong Bi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- University of Chinese Academy of Sciences, Shanghai, China.,Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
22
|
Yokoyama T, Yamamoto Y, Hirakawa M, Kato K, Saino T. Vesicular nucleotide transporter-immunoreactive type I cells associated with P2X3-immunoreactive nerve endings in the rat carotid body. J Comp Neurol 2019; 528:1486-1501. [PMID: 31808543 DOI: 10.1002/cne.24837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022]
Abstract
ATP is the major excitatory transmitter from chemoreceptor type I cells to sensory nerve endings in the carotid body, and has been suggested to be released by exocytosis from these cells. We investigated the mRNA expression and immunohistochemical localization of vesicular nucleotide transporter (VNUT) in the rat carotid body. RT-PCR detected mRNA expression of VNUT in extracts of the tissue. Immunoreactivity for VNUT was localized in a part of type I cells immunoreactive for synaptophysin (SYN), but not in glial-like type II cells immunoreactive for S100 and S100B. Among SYN-immunoreactive type I cells, VNUT immunoreactivity was selectively localized in the sub-population of tyrosine hydroxylase (TH)-immunorective type I cells associated with nerve endings immunoreactive for the P2X3 purinoceptor; however, it was not detected in the sub-population of type I cells immunoreactive for dopamine beta-hydroxylase. Multi-immunolabeling for VNUT, P2X3, and Bassoon revealed that Bassoon-immunoreactive products were localized in type I cells with VNUT immunoreactivity, and accumulated on the contact side of P2X3-immunoreactive nerve endings. These results revealed the selective localization of VNUT in the subpopulation of TH-immunoreactive type I cells attached to sensory nerve endings and suggested that these cells release ATP by exocytosis for chemosensory transmission in the carotid body.
Collapse
Affiliation(s)
- Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Kouki Kato
- Center for Laboratory Animal Science, National Defense Medical College, Tokorozawa, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| |
Collapse
|
23
|
Liu T, Li G, Noble KV, Li Y, Barth JL, Schulte BA, Lang H. Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea. Neurobiol Aging 2019; 80:210-222. [PMID: 31220650 PMCID: PMC6679794 DOI: 10.1016/j.neurobiolaging.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 11/18/2022]
Abstract
Age-related hearing loss (or presbyacusis) is a progressive pathophysiological process. This study addressed the hypothesis that degeneration/dysfunction of multiple nonsensory cell types contributes to presbyacusis by evaluating tissues obtained from young and aged CBA/CaJ mouse ears and human temporal bones. Ultrastructural examination and transcriptomic analysis of mouse cochleas revealed age-dependent pathophysiological alterations in 3 types of neural crest-derived cells, namely intermediate cells in the stria vascularis, outer sulcus cells in the cochlear lateral wall, and satellite cells in the spiral ganglion. A significant decline in immunoreactivity for Kir4.1, an inwardly rectifying potassium channel, was seen in strial intermediate cells and outer sulcus cells in the ears of older mice. Age-dependent alterations in Kir4.1 immunostaining also were observed in satellite cells ensheathing spiral ganglion neurons. Expression alterations of Kir4.1 were observed in these same cell populations in the aged human cochlea. These results suggest that degeneration/dysfunction of neural crest-derived cells maybe an important contributing factor to both metabolic and neural forms of presbyacusis.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Gang Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology, Tinnitus and Hyperacusis Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Yongxi Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jeremy L Barth
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
24
|
Abbas L, Rivolta MN. The use of animal models to study cell transplantation in neuropathic hearing loss. Hear Res 2019; 377:72-87. [PMID: 30921643 DOI: 10.1016/j.heares.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/29/2023]
Abstract
Auditory neuropathy (AN) is a form of sensorineural deafness specifically affecting the conduction of the nerve impulse from the cochlear hair cells to the auditory centres of the brain. As such, the condition is a potential clinical target for 'cell replacement therapy', in which a functioning auditory nerve is regenerated by transplanting an appropriated neural progenitor. In this review, we survey the current literature and examine possible experimental models for this condition, with particular reference to their compatibility as suitable hosts for transplantation. The use of exogenous neurotoxic agents such as ouabain or β-bungarotoxin is discussed, as are ageing and noise-induced synaptopathy models. Lesioning of the nerve by mechanical damage during surgery and the neuropathy resulting from infectious diseases may be very relevant clinically, and we discuss whether there are good models for these situations. We also address genetic models for AN, examining whether the phenotypes truly model the clinical situation in their human counterpart syndromes - we use the example of the hyperbilirubinaemic Gunn rat as a particular instance in this regard.
Collapse
MESH Headings
- Animals
- Auditory Cortex/pathology
- Auditory Cortex/physiopathology
- Auditory Cortex/surgery
- Brain Stem/pathology
- Brain Stem/physiopathology
- Brain Stem/transplantation
- Disease Models, Animal
- Hair Cells, Auditory/pathology
- Hearing
- Hearing Loss, Central/etiology
- Hearing Loss, Central/pathology
- Hearing Loss, Central/physiopathology
- Hearing Loss, Central/surgery
- Hearing Loss, Sensorineural/etiology
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/surgery
- Humans
- Nerve Regeneration
- Neural Conduction
- Neural Stem Cells/transplantation
- Recovery of Function
- Species Specificity
Collapse
Affiliation(s)
- Leila Abbas
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
25
|
Parthasarathy A, Bartlett EL, Kujawa SG. Age-related Changes in Neural Coding of Envelope Cues: Peripheral Declines and Central Compensation. Neuroscience 2019; 407:21-31. [DOI: 10.1016/j.neuroscience.2018.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022]
|
26
|
Stem Cells: A New Hope for Hearing Loss Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:165-180. [PMID: 30915707 DOI: 10.1007/978-981-13-6123-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Permanent hearing loss was considered which cannot be cured since cochlear hair cells and primary afferent neurons cannot be regenerated. In recent years, due to the in-depth study of stem cell and its therapeutic potential, regenerating auditory sensory cells is made possible. By using two strategies of endogenous stem cell activation and exogenous stem cell transplantation, researchers hope to find methods to restore hearing function. However, there are complex factors that need to be considered in the in vivo application of stem cell therapy, such as stem cell-type choice, signaling pathway regulations, transplantation approaches, internal environment of the cochlea, and external stimulation. After years of investigations, some theoretic progress has been made in the treatment of hearing loss using stem cells, but there are also many problems which limited its application that need to be solved. Understanding the future perspective of stem cell therapy in hearing loss, solving the encountered problems, and promoting its development are the common goals of audiological researchers. In this review, we present critical experimental findings of stem cell therapy on treatment of hearing loss and intend to bring hope to researchers and patients.
Collapse
|
27
|
Distribution and morphology of baroreceptors in the rat carotid sinus as revealed by immunohistochemistry for P2X3 purinoceptors. Histochem Cell Biol 2018; 151:161-173. [PMID: 30244428 DOI: 10.1007/s00418-018-1734-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
The morphological characteristics of baroreceptors in the rat carotid sinus were reevaluated by whole-mount preparations with immunohistochemistry for P2X3 purinoceptors using confocal scanning laser microscopy. Immunoreactive nerve endings for P2X3 were distributed in the internal carotid artery proximal to the carotid bifurcation, particularly in the region opposite the carotid body. Some pre-terminal axons in nerve endings were ensheathed by myelin sheaths immunoreactive for myelin basic protein. Pre-terminal axons ramified into several branches that extended two-dimensionally in every direction. The axon terminals of P2X3-immunoreactive nerve endings were flat and leaf-like in shape, and extended hederiform- or knob-like protrusions in the adventitial layer. Some axons and axon terminals with P2X3 immunoreactivity were also immunoreactive for P2X2, and axon terminals were closely surrounded by terminal Schwann cells with S100 or S100B immunoreactivity. These results revealed the detailed morphology of P2X3-immunoreactive nerve endings and suggested that these endings respond to a mechanical deformation of the carotid sinus wall with their flat leaf-like terminals.
Collapse
|
28
|
Ouabain Does Not Induce Selective Spiral Ganglion Cell Degeneration in Guinea Pigs. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1568414. [PMID: 30151372 PMCID: PMC6091334 DOI: 10.1155/2018/1568414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/24/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022]
Abstract
Round window membrane (RWM) application of ouabain is known to selectively destroy type I spiral ganglion cells (SGCs) in cochleas of several rodent species, while leaving hair cells intact. This protocol has been used in rats and Mongolian gerbils, but observations in the guinea pig are conflicting. This is why we reinvestigated the effect of ouabain on the guinea pig cochlea. Ouabain solutions of different concentrations were placed, in a piece of gelfoam, upon the RWM of the right cochleas. Auditory function was assessed using acoustically evoked auditory brainstem responses (aABR). Finally, cochleas were fixed and processed for histological examination. Due to variability within treatment groups, histological data was pooled and three categories based upon general histological observations were defined: cochleas without outer hair cell (OHC) and SGC loss (Category 1), cochleas with OHC loss only (Category 2), and cochleas with OHC and SGC loss (Category 3). Animals treated with 1 mM or 10 mM ouabain showed shifts in hearing thresholds, corresponding with varying histological changes in their cochleas. Most cochleas exhibited complete outer hair cell loss in the basal and middle turns, while some had no changes, together with either moderate or near-complete loss of SGCs. Neither loss of inner hair cells nor histological changes of the stria vascularis were observed in any of the animals. Cochleas in Category 1 had normal aABRs and morphology. On average, in Category 2 OHC loss was 46.0±5.7%, SGC loss was below threshold, ABR threshold shift was 44.9±2.7 dB, and ABR wave II amplitude was decreased by 17.1±3.8 dB. In Category 3 OHC loss was 68.3±6.9%, SGC loss was 49.4±4.3%, ABR threshold shift was 39.0±2.4 dB, and ABR amplitude was decreased by 15.8±1.6 dB. Our results show that ouabain does not solely destroy type I SGCs in the guinea pig cochlea.
Collapse
|
29
|
Noble KV, Reyzer ML, Barth JL, McDonald H, Tuck M, Schey KL, Krug EL, Lang H. Use of Proteomic Imaging Coupled With Transcriptomic Analysis to Identify Biomolecules Responsive to Cochlear Injury. Front Mol Neurosci 2018; 11:243. [PMID: 30065626 PMCID: PMC6056684 DOI: 10.3389/fnmol.2018.00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Exposure to noise or ototoxic agents can result in degeneration of cells in the sensory epithelium and auditory nerve, as well as non-sensory cells of the cochlear lateral wall. However, the molecular mechanisms underlying this pathology remain unclear. The purpose of this study was to localize and identify proteins in the cochlea that are responsive to noise or ototoxic exposure using a complementary proteo-transcriptomic approach. MALDI imaging of cochlear sections revealed numerous protein signals with distinct cochlear localization patterns in both cochlear injury models, of which six were chosen for further investigation. A query of proteomic databases identified 709 candidates corresponding to m/z values for the six proteins. An evaluation of mRNA expression data from our previous studies of these injured models indicated that 208 of the candidates were affected in both injury models. Downstream validation analyses yielded proteins with confirmatory distributions and responses to injury. The combined analysis of MALDI imaging with gene expression data provides a new strategy to identify molecular regulators responsive to cochlear injury. This study demonstrates the applicability of MALDI imaging for investigating protein localization and abundance in frozen sections from animals modeling cochlear pathology.
Collapse
Affiliation(s)
- Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Michael Tuck
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Edward L. Krug
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
30
|
Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing. J Neurosci 2018; 38:7108-7119. [PMID: 29976623 DOI: 10.1523/jneurosci.3240-17.2018] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Aging listeners, even in the absence of overt hearing loss measured as changes in hearing thresholds, often experience impairments processing temporally complex sounds such as speech in noise. Recent evidence has shown that normal aging is accompanied by a progressive loss of synapses between inner hair cells and auditory nerve fibers. The role of this cochlear synaptopathy in degraded temporal processing with age is not yet understood. Here, we used population envelope following responses, along with other hair cell- and neural-based measures from an age-graded series of male and female CBA/CaJ mice to study changes in encoding stimulus envelopes. By comparing responses obtained before and after the application of the neurotoxin ouabain to the inner ear, we demonstrate that we can study changes in temporal processing on either side of the cochlear synapse. Results show that deficits in neural coding with age emerge at the earliest neural stages of auditory processing and are correlated with the degree of cochlear synaptopathy. These changes are seen before losses in neural thresholds and particularly affect the suprathreshold processing of sound. Responses obtained from more central sources show smaller differences with age, suggesting compensatory gain. These results show that progressive cochlear synaptopathy is accompanied by deficits in temporal coding at the earliest neural generators and contribute to the suprathreshold sound processing deficits observed with age.SIGNIFICANCE STATEMENT Aging listeners often experience difficulty hearing and understanding speech in noisy conditions. The results described here suggest that age-related loss of cochlear synapses may be a significant contributor to those performance declines. We observed aberrant neural coding of sounds in the early auditory pathway, which was accompanied by and correlated with an age-progressive loss of synapses between the inner hair cells and the auditory nerve. Deficits first appeared before changes in hearing thresholds and were largest at higher sound levels relevant to real world communication. The noninvasive tests described here may be adapted to detect cochlear synaptopathy in the clinical setting.
Collapse
|
31
|
Zhang ZJ, Guan HX, Yang K, Xiao BK, Liao H, Jiang Y, Zhou T, Hua QQ. Estimation of the status of spiral ganglion neurons and Schwann cells in the auditory neural degeneration mouse using the auditory brainstem response. Acta Otolaryngol 2018; 138:603-609. [PMID: 29553844 DOI: 10.1080/00016489.2018.1436766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CONCLUSION The auditory brainstem response (ABR) wave I threshold, latency and amplitude are insensitive to spiral ganglion neurons (SGNs) degeneration, but are sensitive to the degeneration of Schwann cells and can estimate the status of Schwann cells in a neural degeneration mouse model. The thorough pre-operative ABR assessment would be helpful in predicting cochlear implant performance. OBJECTIVES This study aimed in finding a non-invasive electrophysiological method to evaluate the status of the auditory nerve and the Schwann cells in sensorineural hearing loss (SNHL) and auditory neuropathy (AN) ears, and providing useful information for candidates screening and outcome prediction in cochlear implantation. METHODS The frequency-specific acoustic ABR was recorded in mice. The immunohistochemical staining was performed to detect the SGNs and Schwann cells in mice cochlea. The correlations between ABR wave I metrics and SGNs, Schwann cells were investigated. RESULTS In SNHL and AN mice cochlea, statistically significant correlations between ABR wave I thresholds, latencies and amplitudes at 8, 16, and 32 kHz and their corresponding SGNs densities were found only in wave I amplitude at 8 kHz. While the ABR wave I metrics at all three frequencies showed strong significant correlations with their corresponding Schwann cells densities.
Collapse
Affiliation(s)
- Zhi-Jian Zhang
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong-Xia Guan
- Department of Otolaryngology – Head and Neck Surgery, Hubei Maternal and Child Health Hospital, Wuhan, China
| | - Kun Yang
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo-Kui Xiao
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Liao
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Jiang
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Zhou
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Quan Hua
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Chronic cigarette smoke exposure drives spiral ganglion neuron loss in mice. Sci Rep 2018; 8:5746. [PMID: 29636532 PMCID: PMC5893541 DOI: 10.1038/s41598-018-24166-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
Tobacco use is associated with an increased risk of hearing loss in older individuals, suggesting cigarette smoke (CS) exposure may target the peripheral auditory organs. However, the effects of CS exposure on general cochlear anatomy have not previously been explored. Here we compare control and chronic CS exposed cochleae from adult mice to assess changes in structure and cell survival. Two-photon imaging techniques, including the imaging of second harmonic generation (SHG) and two-photon excitation fluorescence (TPEF) from native molecules, were used to probe the whole cochlear organ for changes. We found evidence for fibrillar collagen accumulation in the spiral ganglion and organ of Corti, consistent with fibrosis. Quantitative TPEF indicated that basal CS-exposed spiral ganglion neurons experienced greater oxidative stress than control neurons, which was confirmed by histological staining for lipid peroxidation products. Cell counts confirmed that the CS-exposed spiral ganglion also contained fewer basal neurons. Taken together, these data support the premise that CS exposure induces oxidative stress in cochlear cells. They also indicate that two-photon techniques may screen cochlear tissues for oxidative stress.
Collapse
|
33
|
Contralateral Suppression of DPOAEs in Mice after Ouabain Treatment. Neural Plast 2018; 2018:6890613. [PMID: 29849563 PMCID: PMC5914095 DOI: 10.1155/2018/6890613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/25/2018] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
Medial olivocochlear (MOC) efferent feedback is suggested to protect the ear from acoustic injury and to increase its ability to discriminate sounds against a noisy background. We investigated whether type II spiral ganglion neurons participate in the contralateral suppression of the MOC reflex. The application of ouabain to the round window of the mouse cochlea selectively induced the apoptosis of the type I spiral ganglion neurons, left the peripherin-immunopositive type II spiral ganglion neurons intact, and did not affect outer hairs, as evidenced by the maintenance of the distorted product otoacoustic emissions (DPOAEs). With the ouabain treatment, the threshold of the auditory brainstem response increased significantly and the amplitude of wave I decreased significantly in the ouabain-treated ears, consistent with the loss of type I neurons. Contralateral suppression was measured as reduction in the amplitude of the 2f1−f2 DPOAEs when noise was presented to the opposite ear. Despite the loss of all the type I spiral ganglion neurons, virtually, the amplitude of the contralateral suppression was not significantly different from the control when the suppressor noise was delivered to the treated cochlea. These results are consistent with the type II spiral ganglion neurons providing the sensory input driving contralateral suppression of the MOC reflex.
Collapse
|
34
|
Meas SJ, Zhang CL, Dabdoub A. Reprogramming Glia Into Neurons in the Peripheral Auditory System as a Solution for Sensorineural Hearing Loss: Lessons From the Central Nervous System. Front Mol Neurosci 2018; 11:77. [PMID: 29593497 PMCID: PMC5861218 DOI: 10.3389/fnmol.2018.00077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Disabling hearing loss affects over 5% of the world’s population and impacts the lives of individuals from all age groups. Within the next three decades, the worldwide incidence of hearing impairment is expected to double. Since a leading cause of hearing loss is the degeneration of primary auditory neurons (PANs), the sensory neurons of the auditory system that receive input from mechanosensory hair cells in the cochlea, it may be possible to restore hearing by regenerating PANs. A direct reprogramming approach can be used to convert the resident spiral ganglion glial cells into induced neurons to restore hearing. This review summarizes recent advances in reprogramming glia in the CNS to suggest future steps for regenerating the peripheral auditory system. In the coming years, direct reprogramming of spiral ganglion glial cells has the potential to become one of the leading biological strategies to treat hearing impairment.
Collapse
Affiliation(s)
- Steven J Meas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Chun-Li Zhang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Noda T, Meas SJ, Nogami J, Amemiya Y, Uchi R, Ohkawa Y, Nishimura K, Dabdoub A. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy. Front Cell Dev Biol 2018; 6:16. [PMID: 29492404 PMCID: PMC5817057 DOI: 10.3389/fcell.2018.00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.
Collapse
Affiliation(s)
- Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Steven J Meas
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yutaka Amemiya
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ryutaro Uchi
- Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koji Nishimura
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Hearing Communication Medical Center, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Perny M, Ting CC, Kleinlogel S, Senn P, Roccio M. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture. Front Cell Neurosci 2017; 11:409. [PMID: 29311837 PMCID: PMC5742223 DOI: 10.3389/fncel.2017.00409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
The peripheral hearing process taking place in the cochlea mainly depends on two distinct sensory cell types: the mechanosensitive hair cells and the spiral ganglion neurons (SGNs). The first respond to the mechanical stimulation exerted by sound pressure waves on their hair bundles by releasing neurotransmitters and thereby activating the latter. Loss of these sensorineural cells is associated with permanent hearing loss. Stem cell-based approaches aiming at cell replacement or in vitro drug testing to identify potential ototoxic, otoprotective, or regenerative compounds have lately gained attention as putative therapeutic strategies for hearing loss. Nevertheless, they rely on efficient and reliable protocols for the in vitro generation of cochlear sensory cells for their implementation. To this end, we have developed a differentiation protocol based on organoid culture systems, which mimics the most important steps of in vivo otic development, robustly guiding mouse embryonic stem cells (mESCs) toward otic sensory neurons (OSNs). The stepwise differentiation of mESCs toward ectoderm was initiated using a quick aggregation method in presence of Matrigel in serum-free conditions. Non-neural ectoderm was induced via activation of bone morphogenetic protein (BMP) signaling and concomitant inhibition of transforming growth factor beta (TGFβ) signaling to prevent mesendoderm induction. Preplacodal and otic placode ectoderm was further induced by inhibition of BMP signaling and addition of fibroblast growth factor 2 (FGF2). Delamination and differentiation of SGNs was initiated by plating of the organoids on a 2D Matrigel-coated substrate. Supplementation with brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) was used for further maturation until 15 days of in vitro differentiation. A large population of neurons with a clear bipolar morphology and functional excitability was derived from these cultures. Immunostaining and gene expression analysis performed at different time points confirmed the transition trough the otic lineage and final expression of the key OSN markers. Moreover, the stem cell-derived OSNs exhibited functional electrophysiological properties of native SGNs. Our established in vitro model of OSNs development can be used for basic developmental studies, for drug screening or for the exploration of their regenerative potential.
Collapse
Affiliation(s)
- Michael Perny
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Ching-Chia Ting
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Pascal Senn
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Marta Roccio
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Brown LN, Xing Y, Noble KV, Barth JL, Panganiban CH, Smythe NM, Bridges MC, Zhu J, Lang H. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea. Front Mol Neurosci 2017; 10:407. [PMID: 29375297 PMCID: PMC5770652 DOI: 10.3389/fnmol.2017.00407] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yazhi Xing
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Nancy M. Smythe
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Mary C. Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Juhong Zhu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
38
|
Wu JS, Vyas P, Glowatzki E, Fuchs PA. Opposing expression gradients of calcitonin-related polypeptide alpha (Calca/Cgrpα) and tyrosine hydroxylase (Th) in type II afferent neurons of the mouse cochlea. J Comp Neurol 2017; 526:425-438. [PMID: 29055051 DOI: 10.1002/cne.24341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Type II spiral ganglion neurons (SGNs) are small caliber, unmyelinated afferents that extend dendritic arbors hundreds of microns along the cochlear spiral, contacting many outer hair cells (OHCs). Despite these many contacts, type II afferents are insensitive to sound and only weakly depolarized by glutamate release from OHCs. Recent studies suggest that type II afferents may be cochlear nociceptors, and can be excited by ATP released during tissue damage, by analogy to somatic pain-sensing C-fibers. The present work compares the expression patterns among cochlear type II afferents of two genes found in C-fibers: calcitonin-related polypeptide alpha (Calca/Cgrpα), specific to pain-sensing C-fibers, and tyrosine hydroxylase (Th), specific to low-threshold mechanoreceptive C-fibers, which was shown previously to be a selective biomarker of type II versus type I cochlear afferents (Vyas et al., ). Whole-mount cochlear preparations from 3-week- to 2-month-old CGRPα-EGFP (GENSAT) mice showed expression of Cgrpα in a subset of SGNs with type II-like peripheral dendrites extending beneath OHCs. Double labeling with other molecular markers confirmed that the labeled SGNs were neither type I SGNs nor olivocochlear efferents. Cgrpα starts to express in type II SGNs before hearing onset, but the expression level declines in the adult. The expression patterns of Cgrpα and Th formed opposing gradients, with Th being preferentially expressed in apical and Cgrpα in basal type II afferent neurons, indicating heterogeneity among type II afferent neurons. The expression of Th and Cgrpα was not mutually exclusive and co-expression could be observed, most abundantly in the middle cochlear turn.
Collapse
Affiliation(s)
- Jingjing Sherry Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pankhuri Vyas
- The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul Albert Fuchs
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Stimulation of synapse formation between stem cell-derived neurons and native brainstem auditory neurons. Sci Rep 2017; 7:13843. [PMID: 29062015 PMCID: PMC5653851 DOI: 10.1038/s41598-017-13764-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/11/2017] [Indexed: 01/05/2023] Open
Abstract
Integration of stem cell-derived cells into native cellular environment remains a challenge in the field. This study developed novel methods to co-culture neural stem cell-derived spiral ganglion-like neurons (ScNs) and mouse auditory cochlear nucleus (CN) neurons to understand whether ScNs of the peripheral nervous system (PNS) synapse with CN neurons of the central nervous system (CNS). ScNs were obtained from neural stem cells that were derived from transgenic mouse pre-labeled with enhanced green fluorescent protein (EGFP), whereas CN neurons were from postnatal mouse primary cultures. ScNs and CN neurons were co-cultured for 4–6 days in the absence or presence of astrocyte-conditioned medium (ACM). Class III β-tubulin (TUJ1)-expressing connections were found between ScNs and CN neurons. Expression of the synaptic vesicle marker SV2 was significantly increased along connections between ScNs and CN neurons in the presence of ACM. Immunodepletion and knockout studies indicated that thrombospodin-1 played an important role in ACM-exerted synaptogenic effects. Newly-generated synapse-like structures expressed glutamatergic marker VGluT1, pre- and post-synaptic proteins. Synaptic vesicle recycling studies suggested functional synaptic vesicle retrieval. These results reveal that stem cell-derived PNS neurons are able to form functional connections with native CNS neurons, which is critical for stem cell-based neural pathway regeneration.
Collapse
|
40
|
Zhang ZJ, Guan HX, Yang K, Xiao BK, Liao H, Jiang Y, Zhou T, Hua QQ. Dose-dependent effects of ouabain on spiral ganglion neurons and Schwann cells in mouse cochlea. Acta Otolaryngol 2017; 137:1017-1023. [PMID: 28503992 DOI: 10.1080/00016489.2017.1324217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed in fully investigating the toxicities of ouabain to mouse cochlea and the related cellular environment, and providing an optimal animal model system for cell transplantation in the treatment of auditory neuropathy (AN) and sensorineural hearing loss (SNHL). METHODS Different dosages of ouabain were applied to mouse round window. The auditory brainstem responses and distortion product otoacoustic emissions were used to evaluate the cochlear function. The immunohistochemical staining and cochlea surface preparation were performed to detect the spiral ganglion neurons (SGNs), Schwann cells and hair cells. RESULTS Ouabain at the dosages of 0.5 mM, 1 mM and 3 mM selectively and permanently destroyed SGNs and their functions, while leaving the hair cells relatively intact. Ouabain at 3 mM resulted in the most severe SGNs loss and induced significant loss of Schwann cells started as early as 7 days and with further damages at 14 and 30 days after ouabain exposure. CONCLUSIONS The application of ouabain to mouse round window induces damages of SGNs and Schwann cells in a dose- and time-dependent manner, this study established a reliable and accurate animal model system of AN and SNHL.
Collapse
Affiliation(s)
- Zhi-Jian Zhang
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong-Xia Guan
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kun Yang
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo-Kui Xiao
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Liao
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Jiang
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Zhou
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Quan Hua
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Abstract
Neurons of the cochleovestibular ganglion (CVG) transmit hearing and balance information to the brain. During development, a select population of early otic progenitors express NEUROG1, delaminate from the otocyst, and coalesce to form the neurons that innervate all inner ear sensory regions. At present, the selection process that determines which otic progenitors activate NEUROG1 and adopt a neuroblast fate is incompletely understood. The transcription factor SOX2 has been implicated in otic neurogenesis, but its requirement in the specification of the CVG neurons has not been established. Here we tested SOX2's requirement during inner ear neuronal specification using a conditional deletion paradigm in the mouse. SOX2 deficiency at otocyst stages caused a near-absence of NEUROG1-expressing neuroblasts, increased cell death in the neurosensory epithelium, and significantly reduced the CVG volume. Interestingly, a milder decrease in neurogenesis was observed in heterozygotes, indicating SOX2 levels are important. Moreover, fate-mapping experiments revealed that the timing of SOX2 expression did not parallel the established vestibular-then-auditory sequence. These results demonstrate that SOX2 is required for the initial events in otic neuronal specification including expression of NEUROG1, although fate-mapping results suggest SOX2 may be required as a competence factor rather than a direct initiator of the neural fate.
Collapse
Affiliation(s)
- Aleta R Steevens
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Jenna C Glatzer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Amy E Kiernan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
42
|
Xu J, Ueno H, Xu CY, Chen B, Weissman IL, Xu PX. Identification of mouse cochlear progenitors that develop hair and supporting cells in the organ of Corti. Nat Commun 2017; 8:15046. [PMID: 28492243 PMCID: PMC5437288 DOI: 10.1038/ncomms15046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/23/2017] [Indexed: 01/20/2023] Open
Abstract
The adult mammalian cochlear sensory epithelium houses two major types of cells, mechanosensory hair cells and underlying supporting cells, and lacks regenerative capacity. Recent evidence indicates that a subset of supporting cells can spontaneously regenerate hair cells after ablation only within the first week postparturition. Here in vivo clonal analysis of mouse inner ear cells during development demonstrates clonal relationship between hair and supporting cells in sensory organs. We report the identification in mouse of a previously unknown population of multipotent stem/progenitor cells that are capable of not only contributing to the hair and supporting cells but also to other cell types, including glia, in cochlea undergoing development, maturation and repair in response to damage. These multipotent progenitors originate from Eya1-expressing otic progenitors. Our findings also provide evidence for detectable regenerative potential in the postnatal cochlea beyond 1 week of age.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hiroo Ueno
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
- Ludwig Center, Stanford University, Stanford, California 94305, USA
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Chelsea Y. Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Binglai Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Irving L. Weissman
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
- Ludwig Center, Stanford University, Stanford, California 94305, USA
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
43
|
Nishimura K, Noda T, Dabdoub A. Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea. PLoS One 2017; 12:e0170568. [PMID: 28118374 PMCID: PMC5261741 DOI: 10.1371/journal.pone.0170568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Primary auditory neurons (PANs) connect cochlear sensory hair cells in the mammalian inner ear to cochlear nucleus neurons in the brainstem. PANs develop from neuroblasts delaminated from the proneurosensory domain of the otocyst and keep maturing until the onset of hearing after birth. There are two types of PANs: type I, which innervate the inner hair cells (IHCs), and type II, which innervate the outer hair cells (OHCs). Glial cells surrounding these neurons originate from neural crest cells and migrate to the spiral ganglion. Several transcription factors are known to regulate the development and differentiation of PANs. Here we systematically examined the spatiotemporal expression of five transcription factors: Sox2, Sox10, Gata3, Mafb, and Prox1 from early delamination at embryonic day (E) 10.5 to adult. We found that Sox2 and Sox10 were initially expressed in the proneurosensory cells in the otocyst (E10.5). By E12.75 both Sox2 and Sox10 were downregulated in the developing PANs; however, Sox2 expression transiently increased in the neurons around birth. Furthermore, both Sox2 and Sox10 continued to be expressed in spiral ganglion glial cells. We also show that Gata3 and Prox1 were first expressed in all developing neurons, followed by a decrease in expression of Gata3 and Mafb in type I PANs and Prox1 in type II PANs as they matured. Moreover, we describe two subtypes of type II neurons based on Peripherin expression. These results suggest that Sox2, Gata3 and Prox1 play a role during neurogenesis as well as maturation of the PANs.
Collapse
Affiliation(s)
- Koji Nishimura
- Shiga Medical Center Research Institute, Moriyama, Shiga, Japan
| | - Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Otolaryngology – Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
McLean WJ, McLean DT, Eatock RA, Edge ASB. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs. Development 2016; 143:4381-4393. [PMID: 27789624 DOI: 10.1242/dev.139840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
Abstract
Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear - the vestibular and cochlear sensory epithelia and the spiral ganglion - by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin.
Collapse
Affiliation(s)
- Will J McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard & MIT, Cambridge, MA 02139, USA
| | - Dalton T McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA .,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard & MIT, Cambridge, MA 02139, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
45
|
Photobiomodulation by laser therapy rescued auditory neuropathy induced by ouabain. Neurosci Lett 2016; 633:165-173. [DOI: 10.1016/j.neulet.2016.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/14/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022]
|
46
|
Lang H, Nishimoto E, Xing Y, Brown LN, Noble KV, Barth JL, LaRue AC, Ando K, Schulte BA. Contributions of Mouse and Human Hematopoietic Cells to Remodeling of the Adult Auditory Nerve After Neuron Loss. Mol Ther 2016; 24:2000-2011. [PMID: 27600399 PMCID: PMC5154482 DOI: 10.1038/mt.2016.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Eishi Nishimoto
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - LaShardai N Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Kiyoshi Ando
- Research Center for Regenerative Medicine, Division of Hematopoiesis, Tokai University School of Medicine, Tokyo, Japan
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
47
|
Schäck L, Budde S, Lenarz T, Krettek C, Gross G, Windhagen H, Hoffmann A, Warnecke A. Induction of neuronal-like phenotype in human mesenchymal stem cells by overexpression of Neurogenin1 and treatment with neurotrophins. Tissue Cell 2016; 48:524-32. [PMID: 27423984 DOI: 10.1016/j.tice.2016.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/18/2016] [Accepted: 06/25/2016] [Indexed: 01/15/2023]
Abstract
AIM OF THE STUDY The induced expression of the transcription factors neurogenin1 (Neurog1) or neuronal differentiation 1 (NeuroD1) has previously been shown to initiate neuronal differentiation in embryonic stem cells (ESC). Human bone marrow-derived mesenchymal stem cells (hBMSCs) are ethically non-controversial stem cells. However, they are not pluripotent. In cochlear implantation, regeneration or replacement of lost spiral ganglion neurons may be a measure for the improvement of implant function. Thus, the aim of the study was to investigate whether the expression of Neurog1 or NeuroD1 is sufficient for induction of neuronal differentiation in hBMSCs. MATERIALS AND METHODS Human BMSCs were transduced with lentivirus expressing NeuroD1 or Neuorg1. Transduced cells were then treated with small molecules that enhanced neuronal differentiation. Markers of neuronal differentiation were evaluated. RESULTS Using quantitative reverse transcription PCR, the up-regulation of transcription factors expressed by developing primary auditory neurons, such as BRN3a (POU4F1) and GATA3, was quantified after induction of Neurog-1 expression. In addition, the expression of the receptor NTRK2 was induced by treatment with its specific ligand BDNF. The induction of expression of the vesicular glutamate transporter 1 was identified on gene and protein level. NeuroD1 seemed not sufficient to induce and maintain neuronal differentiation. CONCLUSIONS Induction of neuronal differentiation by overexpression of Neurog1 initiated important steps for the development of glutamatergic neurons such as the spiral ganglion neurons. However, it seems not sufficient to maintain the glutamatergic spiral ganglion neuron-like phenotype.
Collapse
Affiliation(s)
- Luisa Schäck
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Budde
- Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Christian Krettek
- Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gerhard Gross
- Helmholtz Centre for Infection Research, Department of Gene Regulation and Differentiation, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Henning Windhagen
- Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany.
| |
Collapse
|
48
|
Puligilla C, Kelley MW. Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function. Dev Neurobiol 2016; 77:3-13. [PMID: 27203669 DOI: 10.1002/dneu.22401] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/08/2022]
Abstract
The formation of inner ear sensory epithelia is believed to occur in two steps, initial specification of sensory competent (prosensory) regions followed by determination of specific cell-types, such as hair cells (HCs) and supporting cells. However, studies in which the HC determination factor Atoh1 was ectopically expressed in nonprosensory regions indicated that expression of Atoh1 alone is sufficient to induce HC formation suggesting that prosensory formation may not be a prerequisite for HC development. To test this hypothesis, interactions between Sox2 and Atoh1, which are required for prosensory and HC formation respectively, were examined. Forced expression of Atoh1 in nonprosensory cells resulted in transient expression of Sox2 prior to HC formation, suggesting that expression of Sox2 is required for formation of ectopic HCs. Moreover, Atoh1 overexpression failed to induce HC formation in Sox2 mutants, confirming that Sox2 is required for prosensory competence. To determine whether expression of Sox2 alone is sufficient to induce prosensory identity, Sox2 was transiently activated in a manner that mimicked endogenous expression. Following transient Sox2 activation, nonprosensory cells developed as HCs, a result that was never observed in response to persistent expression of Sox2. These results, suggest a dual role for Sox2 in inner ear formation. Initially, Sox2 is required to specify prosensory competence, but subsequent down-regulation of Sox2 must occur to allow Atoh1 expression, most likely through a direct interaction with the Atoh1 promoter. These results implicate Sox2-mediated changes in prosensory cells as an essential step in their ability to develop as HCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 3-13, 2017.
Collapse
Affiliation(s)
- Chandrakala Puligilla
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, 20982
| |
Collapse
|
49
|
Establishment of a model of cochlear lesions in rats to study potential gene therapy for sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2015; 79:2147-54. [PMID: 26574172 DOI: 10.1016/j.ijporl.2015.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Sensorineural hearing loss seriously influences a patient's daily life, and no effective treatments exist to date. Gene therapy is a potential treatment for regenerating hair cells to restore hearing. METHODS In this study, we established a cochlear lesions model to study hair cell regeneration by co-administration of kanamycin and furosemide. After the injections, we assessed the survival of outer hair cells (OHC), inner hair cells (IHC), supporting cells (SC), spiral ganglion neurons (SGN) and peripheral axons. Moreover, we used two viral vectors to detect the transgene distribution. RESULTS Our results showed at 12h post-treatment, numerous OHC were missing in the basal turn. At 24h post-treatment, all OHCs in basal half of the cochlea were lost, and by 48h, OHC loss had spread to the apical coil. Four days after the injections, all OHCs were absent. At 1mo post-treatment, the organ of Corti had collapsed. In contrast, most of the SC remained 4d after the injections. The loss of SGN and peripheral axons was consistent with this time course post-treatment. The results of transgene distribution suggested the correlative gene can be transferred into the organ of Corti using adenoviruses (AdV) vectors and lentiviruses (LV) vectors in our cochlear lesion model. COMPARISON WITH EXISTING METHOD(S) We assessed the details of HC death at more time point and chosen the time point for gene transfer in this model. CONCLUSIONS We conclude that this cochlear lesion model would be suitable for the study of hair cell regeneration.
Collapse
|
50
|
Stevens SM, Brown LN, Ezell PC, Lang H. The Mouse Round-window Approach for Ototoxic Agent Delivery: A Rapid and Reliable Technique for Inducing Cochlear Cell Degeneration. J Vis Exp 2015. [PMID: 26650771 DOI: 10.3791/53131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Investigators have utilized a wide array of animal models and investigative techniques to study the mammalian auditory system. Much of the basic research involving the cochlea and its associated neural pathways entails exposure of model cochleae to a variety of ototoxic agents. This allows investigators to study the effects of targeted damage to cochlear structures, and in some cases, the self-repair or regeneration of those structures. Various techniques exist for delivery of ototoxic agents to the cochlea. When selecting a particular technique, investigators must consider a number of factors, including the induction of inadvertent systemic toxicity, the amount of cochlear damage produced by the surgical procedure itself, the type of lesion desired, animal survivability, and reproducibility/reliability of results. Currently established techniques include parenteral injection, intra-peritoneal injection, trans-tympanic injection, endolymphatic sac injection, and cochleostomy with perilymphatic perfusion. Each of these methods has been successfully utilized and is well described in the literature; yet, each has various shortcomings. Here, we present a technique for topical application of ototoxic agents directly to the round window niche. This technique is non-invasive to inner ear structures, produces rapid onset of reliably targeted lesions, avoids systemic toxicity, and allows for an intra-animal control (the contra-lateral ear). Results stemming from this approach have helped deeper understanding of auditory pathophysiology, cochlear cell degeneration, and regenerative capacity in response to an acute injury. Future investigations may use this method to conduct interventional studies involving gene therapy and stem cell transplantation to combat hearing loss.
Collapse
Affiliation(s)
- Shawn M Stevens
- Department of Otolaryngology Head and Neck Surgery, Medical University of South Carolina
| | - LaShardai N Brown
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina
| | | | - Hainan Lang
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina;
| |
Collapse
|