1
|
Gąsior F, Klasa W, Potrykus K. How to quantify magic spots - a brief overview of (p)ppGpp detection and quantitation methods. Front Mol Biosci 2025; 12:1574135. [PMID: 40201240 PMCID: PMC11976733 DOI: 10.3389/fmolb.2025.1574135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Guanosine tetra- and penta-phosphates, collectively known as (p)ppGpp, are well-known second messengers of cellular stress responses in bacteria and plants. Their intracellular concentration is tightly regulated and can vary widely-from undetectable levels under optimal growth conditions, through intermediate concentrations, to extremely high levels that match or even exceed GTP concentrations when cells are exposed to severe stress. Importantly, the effects exerted by (p)ppGpp are often concentration-dependent, making their quantitative analysis a crucial aspect of studying cellular responses to stress. To gain a deeper understanding of the regulatory mechanisms associated with (p)ppGpp, it is essential to monitor its accumulation in vivo and conduct detailed molecular studies in vitro. Various methods have been developed for detecting and quantifying (p)ppGpp, enabling researchers to track its levels in living cells and analyse its function under controlled laboratory conditions. In this work, we provide an overview of the available techniques for (p)ppGpp detection and quantification. We present their advantages, limitations, and potential applications in research on metabolic regulation and cellular stress responses.
Collapse
Affiliation(s)
| | | | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
2
|
Zegarra V, Weiland P, Plitzko PA, Thiery J, Czech L, Willmund F, Bedrunka P, Bange G. Structural and mechanistic basis for the regulation of the chloroplast signal recognition particle by (p)ppGpp. FEBS Lett 2025. [PMID: 39935135 DOI: 10.1002/1873-3468.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
The alarmones (p)ppGpp play a critical role in chloroplasts by acting as signalling molecules that regulate gene expression, protein synthesis and chloroplast (cp) development, particularly in response to stress and nutrient availability. However, the underlying molecular mechanisms are still poorly understood. Here, we show that (p)ppGpp binds to the GTPase-containing NG domains of the chloroplast signal recognition particle (SRP) and its receptor, preventing their GTP-dependent association through a competitive mechanism. The structure of (cp)FtsY bound to ppGpp reveals that the alarmone employs the same binding mode as its GDP counterpart and hinders chloroplast SRP:FtsY complex formation via its pyrophosphate moiety. Consequently, (p)ppGpp also inhibits the mutual stimulation of the two GTPases present in the (cp)SRP54:FtsY complex. Taken together, our findings provide the first description of how the alarmones (p)ppGpp may regulate the SRP-dependent protein trafficking pathway in plants.
Collapse
Affiliation(s)
- Victor Zegarra
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Center for Tumor Biology and Immunology, Department of Medicine, Philipps-University Marburg, Germany
| | - Pauline Anka Plitzko
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Julia Thiery
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
| | - Laura Czech
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
| | - Felix Willmund
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Biology, Philipps-University Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
3
|
Goto M, Nemoto T, Sakoda K, Sakurai A, Imamura S, Masuda S. Improved plant biomass production under low nitrogen conditions through conditional accumulation of the second messenger, guanosine tetraphosphate, in chloroplasts and mitochondria. FRONTIERS IN PLANT SCIENCE 2025; 15:1524665. [PMID: 39872205 PMCID: PMC11770007 DOI: 10.3389/fpls.2024.1524665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
To enhance plant biomass production under low nitrogen conditions, we employed a method to artificially and temporarily accumulate the bacterial second messenger, guanosine tetraphosphate (ppGpp), to modify plastidial or mitochondrial metabolism. Specifically, we fused a chloroplast or mitochondrial transit-peptide to the N-terminus of the bacterial ppGpp synthase YjbM, which was conditionally expressed by an estrogen-inducible promoter in Arabidopsis. The resulting recombinant Arabidopsis plants exhibited estrogen-dependent ppGpp accumulation in chloroplasts or mitochondria and showed reduced fresh weight compared to wild type (WT) plants when grown on agar-solidified plates containing a certain amount of estrogen. This finding aligns with the previous study indicating that plastidial ppGpp levels can influence plant biomass production. When the recombinant plants were grown in the soil with estrogen and low nitrogen-containing water at specific time intervals, they exhibited greater fresh weight than WT plants. These results suggest that the conditional accumulation of ppGpp in not only chloroplasts, but also in mitochondria can lead to improved plant biomass production in soil with low nitrogen applications.
Collapse
Affiliation(s)
- Mina Goto
- Department of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Takanari Nemoto
- Department of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Kazuma Sakoda
- Space Environment and Energy Laboratories, NTT Corporation, Musashino-shi, Japan
| | - Atsushi Sakurai
- Space Environment and Energy Laboratories, NTT Corporation, Musashino-shi, Japan
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, NTT Corporation, Musashino-shi, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| |
Collapse
|
4
|
Inazu M, Nemoto T, Omata Y, Suzuki S, Ono S, Kanno Y, Seo M, Oikawa A, Masuda S. Complete Loss of RelA and SpoT Homologs in Arabidopsis Reveals the Importance of the Plastidial Stringent Response in the Interplay between Chloroplast Metabolism and Plant Defense Response. PLANT & CELL PHYSIOLOGY 2024; 65:631-643. [PMID: 37925598 DOI: 10.1093/pcp/pcad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The highly phosphorylated nucleotide, guanosine tetraphosphate (ppGpp), functions as a secondary messenger in bacteria and chloroplasts. The accumulation of ppGpp alters plastidial gene expression and metabolism, which are required for proper photosynthetic regulation and robust plant growth. However, because four plastid-localized ppGpp synthases/hydrolases function redundantly, the impact of the loss of ppGpp-dependent stringent response on plant physiology remains unclear. We used CRISPR/Cas9 technology to generate an Arabidopsis thaliana mutant lacking all four ppGpp synthases/hydrolases and characterized its phenotype. The mutant showed over 20-fold less ppGpp levels than the wild type under normal growth conditions and exhibited leaf chlorosis and increased expression of defense-related genes as well as salicylic acid and jasmonate levels upon transition to nitrogen-starvation conditions. These results demonstrate that proper levels of ppGpp in plastids are required for controlling not only plastid metabolism but also phytohormone signaling, which is essential for plant defense.
Collapse
Affiliation(s)
- Masataka Inazu
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takanari Nemoto
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yuto Omata
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Sae Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Sumire Ono
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
5
|
Turkan S, Kulasek M, Zienkiewicz A, Mierek-Adamska A, Skrzypek E, Warchoł M, Szydłowska-Czerniak A, Bartoli J, Field B, Dąbrowska GB. Guanosine tetraphosphate (ppGpp) is a new player in Brassica napus L. seed development. Food Chem 2024; 436:137648. [PMID: 37852071 DOI: 10.1016/j.foodchem.2023.137648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
Rapeseed oil, constituting 12% of global vegetable oil production, is susceptible to quality degradation due to stress-induced incomplete seed degreening, fatty acid oxidation, or poor nutrient accumulation. We hypothesise that the hyperphosphorylated nucleotide alarmone ppGpp (guanosine tetraphosphate), acts as a pivotal regulator of these processes, given its established roles in nutrient management, degreening, and ROS regulation in leaves. Using qPCR, UHPLC-MS/MS, and biochemical methods, our study delves into the impact of ppGpp on seed nutritional value. We observed a positive correlation between ppGpp levels and desiccation, and a negative correlation with photosynthetic pigment levels. Trends in antioxidant activity suggest that ppGpp may negatively influence peroxidases, which are safeguarding against chlorophyll decomposition. Notably, despite increasing ppGpp levels, sugars, proteins and oils appear unaffected. This newfound role of ppGpp in seed development suggests it regulates the endogenous antioxidant system during degreening and desiccation, preserving nutritional quality. Further validation through mutant-based research is needed.
Collapse
Affiliation(s)
- Sena Turkan
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Milena Kulasek
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Agnieszka Zienkiewicz
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Edyta Skrzypek
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Marzena Warchoł
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Julia Bartoli
- Aix Marseille Univ, CNRS, LISM, UMR7255, IMM FR 3479, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009 Marseille, France.
| | - Grażyna B Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
6
|
Ontai-Brenning A, Hamchand R, Crawford JM, Goodman AL. Gut microbes modulate (p)ppGpp during a time-restricted feeding regimen. mBio 2023; 14:e0190723. [PMID: 37971266 PMCID: PMC10746209 DOI: 10.1128/mbio.01907-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Mammals do not eat continuously, instead concentrating their feeding to a restricted portion of the day. This behavior presents the mammalian gut microbiota with a fluctuating environment with consequences for host-microbiome interaction, infection risk, immune response, drug metabolism, and other aspects of health. We demonstrate that in mice, gut microbes elevate levels of an intracellular signaling molecule, (p)ppGpp, during the fasting phase of a time-restricted feeding regimen. Disabling this response in a representative human gut commensal species significantly reduces colonization during this host-fasting phase. This response appears to be general across species and conserved across mammalian gut communities, highlighting a pathway that allows healthy gut microbiomes to maintain stability in an unstable environment.
Collapse
Affiliation(s)
- Amy Ontai-Brenning
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Jason M. Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Andrew L. Goodman
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Qiu D, Lange E, Haas TM, Prucker I, Masuda S, Wang YL, Felix G, Schaaf G, Jessen HJ. Bacterial Pathogen Infection Triggers Magic Spot Nucleotide Signaling in Arabidopsis thaliana Chloroplasts through Specific RelA/SpoT Homologues. J Am Chem Soc 2023. [PMID: 37437195 PMCID: PMC10375528 DOI: 10.1021/jacs.3c04445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Magic spot nucleotides (p)ppGpp are important signaling molecules in bacteria and plants. In the latter, RelA-SpoT homologue (RSH) enzymes are responsible for (p)ppGpp turnover. Profiling of (p)ppGpp is more difficult in plants than in bacteria due to lower concentrations and more severe matrix effects. Here, we report that capillary electrophoresis mass spectrometry (CE-MS) can be deployed to study (p)ppGpp abundance and identity in Arabidopsis thaliana. This goal is achieved by combining a titanium dioxide extraction protocol and pre-spiking with chemically synthesized stable isotope-labeled internal reference compounds. The high sensitivity and separation efficiency of CE-MS enables monitoring of changes in (p)ppGpp levels in A. thaliana upon infection with the pathogen Pseudomonas syringae pv. tomato (PstDC3000). We observed a significant increase of ppGpp post infection that is also stimulated by the flagellin peptide flg22 only. This increase depends on functional flg22 receptor FLS2 and its interacting kinase BAK1 indicating that pathogen-associated molecular pattern (PAMP) receptor-mediated signaling controls ppGpp levels. Transcript analyses showed an upregulation of RSH2 upon flg22 treatment and both RSH2 and RSH3 after PstDC3000 infection. Arabidopsis mutants deficient in RSH2 and RSH3 activity display no ppGpp accumulation upon infection and flg22 treatment, supporting the involvement of these synthases in PAMP-triggered innate immune responses to pathogens within the chloroplast.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Esther Lange
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Isabel Prucker
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yan L Wang
- Institute of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Department of Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Georg Felix
- Institute of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Department of Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
kamruzzaman S, Bulbul L, Alam MZ, Rahman MM. GABA content and an antioxidant profile positively correlated with the anticonvulsive activity of Microcos paniculata in acute seizure mice. Heliyon 2023; 9:e18295. [PMID: 37539232 PMCID: PMC10395524 DOI: 10.1016/j.heliyon.2023.e18295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
This study evaluated the effects of different parts of M. paniculata (MP) extracts on convulsions and antioxidant activities in mice. Six polyphenolic compounds were identified, where epicatechin and quercetin have been identified in the highest amounts (23.01 and 32.23 mg/100 g of dry MP extract, respectively) in MP leaf and stem extracts, using Ultra Performance Liquid Chromatography. 7-day oral administration of MP at doses of 100, 200, and 400 mg/kg body weight (BW) significantly reduced convulsions and reduced mortality rates compared with seizure inducer groups. Antioxidant potentials were measured by superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS), and reduced glutathione (GSH) content in whole-brain homogenates. Gamma-aminobutyric acid (GABA) levels significantly increased in leaves and stem-treated groups, suggesting that MP leaves and stems have potent antioxidant properties that can attenuate convulsions by modulating the GABAergic system and antioxidant activities.
Collapse
Affiliation(s)
- S.M. kamruzzaman
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Latifa Bulbul
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Zahir Alam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | |
Collapse
|
9
|
Protein-Ligand Interactions in Scarcity: The Stringent Response from Bacteria to Metazoa, and the Unanswered Questions. Int J Mol Sci 2023; 24:ijms24043999. [PMID: 36835415 PMCID: PMC9965611 DOI: 10.3390/ijms24043999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other stress conditions. Much of our insight into this phenomenon derives from the role of hyperphosphorylated guanosine derivatives (pppGpp, ppGpp, pGpp; guanosine penta-, tetra- and tri-phosphate, respectively) that are synthesized on starvation cues and act as messengers or alarmones. These molecules, collectively referred to here as (p)ppGpp, orchestrate a complex network of biochemical steps that eventually lead to the repression of stable RNA synthesis, growth, and cell division, while promoting amino acid biosynthesis, survival, persistence, and virulence. In this analytical review, we summarize the mechanism of the major signaling pathways in the stringent response, consisting of the synthesis of the (p)ppGpp, their interaction with RNA polymerase, and diverse factors of macromolecular biosynthesis, leading to differential inhibition and activation of specific promoters. We also briefly touch upon the recently reported stringent-like response in a few eukaryotes, which is a very disparate mechanism involving MESH1 (Metazoan SpoT Homolog 1), a cytosolic NADPH phosphatase. Lastly, using ppGpp as an example, we speculate on possible pathways of simultaneous evolution of alarmones and their multiple targets.
Collapse
|
10
|
Mehrez M, Romand S, Field B. New perspectives on the molecular mechanisms of stress signalling by the nucleotide guanosine tetraphosphate (ppGpp), an emerging regulator of photosynthesis in plants and algae. THE NEW PHYTOLOGIST 2023; 237:1086-1099. [PMID: 36349398 PMCID: PMC10107265 DOI: 10.1111/nph.18604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The nucleotides guanosine tetraphosphate and guanosine pentaphosphate (together (p)ppGpp) are found in a wide range of prokaryotic and eukaryotic organisms where they are associated with stress signalling. In this review, we will discuss recent research highlighting the role of (p)ppGpp signalling as a conserved regulator of photosynthetic activity in the chloroplasts of plants and algae, and the latest discoveries that open up new perspectives on the emerging roles of (p)ppGpp in acclimation to environmental stress. We explore how rapid advances in the study of (p)ppGpp signalling in prokaryotes are now revealing large gaps in our understanding of the molecular mechanisms of signalling by (p)ppGpp and related nucleotides in plants and algae. Filling in these gaps is likely to lead to the discovery of conserved as well as new plant- and algal-specific (p)ppGpp signalling mechanisms that will offer new insights into the taming of the chloroplast and the regulation of stress tolerance.
Collapse
Affiliation(s)
- Marwa Mehrez
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar2092TunisTunisia
| | - Shanna Romand
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| | - Ben Field
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| |
Collapse
|
11
|
Ma C, Zeng W, Li J, Meng Q, Peng Y. Metabolomic pathway regulation to achieve optimal control of inorganic carbon in anammox process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158653. [PMID: 36169022 DOI: 10.1016/j.scitotenv.2022.158653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The significance of inorganic carbon (IC) for anaerobic ammonium oxidation (anammox) bacteria has been verified. However, the regulation of metabolic pathways under IC stress is not clear, limiting the optimization of IC supply. In this study, the regulatory pathways at IC concentration of 5-150 mg/L were explored to achieve optimal control of IC. The results show that the changes of metabolic pathway under IC stress determined anammox characteristics. At IC concentration of 5 mg/L, the anammox activity distinctly decreased due to the guanosine tetraphosphate (ppGpp) -mediated regulation under IC limitation. With less than 15 mg/L of IC, the decrease of carbon fixation limited the biosynthesis of gluconeogenesis and amino acids, causing the decline of extracellular polymeric substance synthesis. With more than 50 mg/L of IC, the improvement of purine and pyrimidine metabolism enhanced the electron transport capacity and growth potential of anammox bacteria. This study provides metabolic insights into IC influence on anammox consortia and a novel method of IC concentration optimization using metabolomics analysis.
Collapse
Affiliation(s)
- Chenyang Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jianmin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Harchouni S, England S, Vieu J, Romand S, Aouane A, Citerne S, Legeret B, Alric J, Li-Beisson Y, Menand B, Field B. Guanosine tetraphosphate (ppGpp) accumulation inhibits chloroplast gene expression and promotes super grana formation in the moss Physcomitrium (Physcomitrella) patens. THE NEW PHYTOLOGIST 2022; 236:86-98. [PMID: 35715975 DOI: 10.1111/nph.18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The nucleotides guanosine tetraphosphate and pentaphosphate (or (p)ppGpp) are implicated in the regulation of chloroplast function in plants. (p)ppGpp signalling is best understood in the model vascular plant Arabidopsis thaliana in which it acts to regulate plastid gene expression to influence photosynthesis, plant development and immunity. However, little information is known about the conservation or diversity of (p)ppGpp signalling in other land plants. We studied the function of ppGpp in the moss Physcomitrium (previously Physcomitrella) patens using an inducible system for triggering ppGpp accumulation. We used this approach to investigate the effects of ppGpp on chloroplast function, photosynthesis and growth. We demonstrate that ppGpp accumulation causes a dramatic drop in photosynthetic capacity by inhibiting chloroplast gene expression. This was accompanied by the unexpected reorganisation of the thylakoid system into super grana. Surprisingly, these changes did not affect gametophore growth, suggesting that bryophytes and vascular plants may have different tolerances to defects in photosynthesis. Our findings point to the existence of both highly conserved and more specific targets of (p)ppGpp signalling in the land plants that may reflect different growth strategies.
Collapse
Affiliation(s)
- Seddik Harchouni
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Samantha England
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Julien Vieu
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Shanna Romand
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Aicha Aouane
- Aix-Marseille Université, CNRS, Institut de Biologie du Developpement de Marseille (IBDM), 13009, Marseille, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Bertrand Legeret
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance, 13108, France
| | - Jean Alric
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance, 13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance, 13108, France
| | - Benoît Menand
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Benjamin Field
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| |
Collapse
|
13
|
Ito K, Ito D, Goto M, Suzuki S, Masuda S, Iba K, Kusumi K. Regulation of ppGpp Synthesis and Its Impact on Chloroplast Biogenesis during Early Leaf Development in Rice. PLANT & CELL PHYSIOLOGY 2022; 63:919-931. [PMID: 35428891 DOI: 10.1093/pcp/pcac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Guanosine tetraphosphate (ppGpp) is known as an alarmone that mediates bacterial stress responses. In plants, ppGpp is synthesized in chloroplasts from GTP and ATP and functions as a regulator of chloroplast gene expression to affect photosynthesis and plant growth. This observation indicates that ppGpp metabolism is closely related to chloroplast function, but the regulation of ppGpp and its role in chloroplast differentiation are not well understood. In rice, ppGpp directly inhibits plastidial guanylate kinase (GKpm), a key enzyme in GTP biosynthesis. GKpm is highly expressed during early leaf development in rice, and the GKpm-deficient mutant, virescent-2 (v2), develops chloroplast-deficient chlorotic leaves under low-temperature conditions. To examine the relationship between GTP synthesis and ppGpp homeostasis, we generated transgenic rice plants over-expressing RSH3, a protein known to act as a ppGpp synthase. When RSH3 was overexpressed in v2, the leaf chlorosis was more severe. Although the RSH3 overexpression in the wild type caused no visible effects, pulse amplitude modulation fluorometer measurements indicated that photosynthetic rates were reduced in this line. This finding implies that the regulation of ppGpp synthesis in rice is involved in the maintenance of the GTP pool required to regulate plastid gene expression during early chloroplast biogenesis. We further investigated changes in the expressions of RelA/SpoT Homolog (RSH) genes encoding ppGpp synthases and hydrolases during the same period. Comparing the expression of these genes with the cellular ppGpp content suggests that the basal ppGpp level is determined by the antagonistic action of multiple RSH enzymatic activities during early leaf development in rice.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka, 819-0395 Japan
| | - Doshun Ito
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501 Japan
| | - Mina Goto
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501 Japan
| | - Sae Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501 Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501 Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka, 819-0395 Japan
| | - Kensuke Kusumi
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka, 819-0395 Japan
| |
Collapse
|
14
|
Pei C, Lu D, Liu D, Pang G. Development of a nanozyme-based electrochemical sensor for detection of stringent response. Anal Chim Acta 2022; 1201:339602. [DOI: 10.1016/j.aca.2022.339602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 12/01/2022]
|
15
|
Cohen H, Adani B, Cohen E, Piscon B, Azriel S, Desai P, Bähre H, McClelland M, Rahav G, Gal-Mor O. The ancestral stringent response potentiator, DksA has been adapted throughout Salmonella evolution to orchestrate the expression of metabolic, motility, and virulence pathways. Gut Microbes 2022; 14:1997294. [PMID: 34923900 PMCID: PMC8726615 DOI: 10.1080/19490976.2021.1997294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DksA is a conserved RNA polymerase-binding protein known to play a key role in the stringent response of proteobacteria species, including many gastrointestinal pathogens. Here, we used RNA-sequencing of Escherichia coli, Salmonella bongori and Salmonella enterica serovar Typhimurium, together with phenotypic comparison to study changes in the DksA regulon, during Salmonella evolution. Comparative RNA-sequencing showed that under non-starved conditions, DksA controls the expression of 25%, 15%, and 20% of the E. coli, S. bongori, and S. enterica genes, respectively, indicating that DksA is a pleiotropic regulator, expanding its role beyond the canonical stringent response. We demonstrate that DksA is required for the growth of these three enteric bacteria species in minimal medium and controls the expression of the TCA cycle, glycolysis, pyrimidine biosynthesis, and quorum sensing. Interestingly, at multiple steps during Salmonella evolution, the type I fimbriae and various virulence genes encoded within SPIs 1, 2, 4, 5, and 11 have been transcriptionally integrated under the ancestral DksA regulon. Consequently, we show that DksA is necessary for host cells invasion by S. Typhimurium and S. bongori and for intracellular survival of S. Typhimurium in bone marrow-derived macrophages (BMDM). Moreover, we demonstrate regulatory inversion of the conserved motility-chemotaxis regulon by DksA, which acts as a negative regulator in E. coli, but activates this pathway in S. bongori and S. enterica. Overall, this study demonstrates the regulatory assimilation of multiple horizontally acquired virulence genes under the DksA regulon and provides new insights into the evolution of virulence genes regulation in Salmonella spp.
Collapse
Affiliation(s)
- Helit Cohen
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Boaz Adani
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Emiliano Cohen
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Bar Piscon
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Shalhevet Azriel
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Prerak Desai
- Janssen Research & Development, LLC, Raritan, New Jersey, USA,Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Heike Bähre
- Hannover Medical School, Research Core Unit Metabolomics, Hannover, Germany
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Galia Rahav
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel,Contact Ohad Gal-Mor The Infectious Diseases Research Laboratory Sheba Medical Cente, Tel-Hashomer, Israel
| |
Collapse
|
16
|
Romand S, Abdelkefi H, Lecampion C, Belaroussi M, Dussenne M, Ksas B, Citerne S, Caius J, D'Alessandro S, Fakhfakh H, Caffarri S, Havaux M, Field B. A guanosine tetraphosphate (ppGpp) mediated brake on photosynthesis is required for acclimation to nitrogen limitation in Arabidopsis. eLife 2022; 11:e75041. [PMID: 35156611 PMCID: PMC8887892 DOI: 10.7554/elife.75041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Guanosine pentaphosphate and tetraphosphate (together referred to as ppGpp) are hyperphosphorylated nucleotides found in bacteria and the chloroplasts of plants and algae. In plants and algae artificial ppGpp accumulation can inhibit chloroplast gene expression, and influence photosynthesis, nutrient remobilization, growth, and immunity. However, it is so far unknown whether ppGpp is required for abiotic stress acclimation in plants. Here, we demonstrate that ppGpp biosynthesis is necessary for acclimation to nitrogen starvation in Arabidopsis. We show that ppGpp is required for remodeling the photosynthetic electron transport chain to downregulate photosynthetic activity and for protection against oxidative stress. Furthermore, we demonstrate that ppGpp is required for coupling chloroplastic and nuclear gene expression during nitrogen starvation. Altogether, our work indicates that ppGpp is a pivotal regulator of chloroplast activity for stress acclimation in plants.
Collapse
Affiliation(s)
- Shanna Romand
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| | - Hela Abdelkefi
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyTunisTunisia
| | - Cécile Lecampion
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| | | | - Melanie Dussenne
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| | - Brigitte Ksas
- Aix-Marseille University, CEA, CNRS, BIAM, SAVE TeamSaint-Paul-lez-DuranceFrance
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-SaclayVersaillesFrance
| | - Jose Caius
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
| | | | - Hatem Fakhfakh
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyTunisTunisia
- University of Carthage, Faculty of Sciences of BizerteBizerteTunisia
| | - Stefano Caffarri
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS, BIAM, SAVE TeamSaint-Paul-lez-DuranceFrance
| | - Ben Field
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| |
Collapse
|
17
|
Li H, Nian J, Fang S, Guo M, Huang X, Zhang F, Wang Q, Zhang J, Bai J, Dong G, Xin P, Xie X, Chen F, Wang G, Wang Y, Qian Q, Zuo J, Chu J, Ma X. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice. J Genet Genomics 2022; 49:469-480. [DOI: 10.1016/j.jgg.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
|
18
|
Goto M, Oikawa A, Masuda S. Metabolic changes contributing to large biomass production in the Arabidopsis ppGpp-accumulating mutant under nitrogen deficiency. PLANTA 2022; 255:48. [PMID: 35079894 DOI: 10.1007/s00425-022-03835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The Arabidopsis ppGpp-overproducing mutant indicates a larger biomass than wild type by modulated amino-acid metabolism under nitrogen-limiting conditions. The regulatory nucleotide, guanosine 3', 5'-bis(pyrophosphate; ppGpp)-originally identified in Escherichia coli-controls gene expression and enzyme activities in the bacteria and plastids of plant cells. We recently reported that the ppGpp over-producing mutant of Arabidopsis thaliana had a larger shoot weight than wild type (WT), especially under nutrient-deficient conditions. However, the mechanisms behind the influence of ppGpp on plant growth and biomass remain elusive. To understand the impact of the ppGpp accumulation on plant growth, we characterized metabolic changes in the ppGpp-overproducing mutant upon transition from nitrogen-rich to nitrogen-limiting concentrations. We found that the fresh weight of the mutant was significantly larger than WT when the total nitrogen source (KNO3 and NH4NO3) concentration was below 0.9 mM. When the nitrogen content in the medium decreased, aromatic and branched-chain amino acids increased in WT due to accelerated protein degradation and/or attenuated protein synthesis. These amino-acid levels in the ppGpp over-accumulating mutant decreased upon nitrogen deficiency. The results suggest that the ppGpp-overaccumulation affects amino-acid and protein homeostasis and facilitates growth under nitrogen-limiting conditions.
Collapse
Affiliation(s)
- Mina Goto
- Department of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
- Present Address: Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Shinji Masuda
- Department of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
19
|
Ma C, Zeng W, Meng Q, Wang C, Peng Y. Identification of partial denitrification granulation enhanced by low C/N ratio in the aspect of metabolomics and quorum sensing. CHEMOSPHERE 2022; 286:131895. [PMID: 34435576 DOI: 10.1016/j.chemosphere.2021.131895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Partial denitrification granular sludge (PDGS) and denitrification granular sludge (DGS) play an important role in nitrogen removal from wastewater. However, the inherent cause of aggregation capacity related to the ratio of COD to nitrogen (COD/N) is still unclear. In this study, metabolomics analysis was combined with microbiological analyses, granular performance and extracellular polymeric substances (EPS) structure to explore the granulation mechanism at different influent COD/N ratios. The results showed that the higher COD/N ratio selectively enhanced the gluconeogenesis pathway, purine and pyrimidine metabolism pathway, resulting in more extracellular polysaccharide (PS) excretion and floc sludge. The absence of carbon source weakened tricarboxylic acid cycle (TCA) reaction, resulting in NAD+ and ADP decrease, nitrite accumulation and change of microbial community structure. The amino acids biosynthesis pathway was enhanced under low COD/N ratio, which promoted the hydrophobicity of EPS. PDGS had stronger Acyl-homoserine lactones (AHLs)-based quorum sensing (QS) than DGS during the operational period. CO8-HSL, C8-HSL and C6-HSL, as the main form of AHLs, played a dominating role in DGS and PDGS. Batch tests illustrated that adding AHLs obviously improved the synthesis of the amino acids, threonine (Thr), tryptophan (Trp), methionine (Met) and glycine (Gly). Dosing AHLs regulated PS synthesis only at a high COD/N ratio. The glucose-6P, glycerate-3p and UDP-Glc were up-regulated only in DSG, which increased the hydrophilic groups in EPS. The results not only provided the new insights into the metabolism of denitrifying granular sludge, but also indicated the application potential of the technologies regarding start-up and operation of granule sludge.
Collapse
Affiliation(s)
- Chenyang Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Chunyan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
20
|
Braun F, Recalde A, Bähre H, Seifert R, Albers SV. Putative Nucleotide-Based Second Messengers in the Archaeal Model Organisms Haloferax volcanii and Sulfolobus acidocaldarius. Front Microbiol 2021; 12:779012. [PMID: 34880846 PMCID: PMC8646023 DOI: 10.3389/fmicb.2021.779012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Research on nucleotide-based second messengers began in 1956 with the discovery of cyclic adenosine monophosphate (3',5'-cAMP) by Earl Wilbur Sutherland and his co-workers. Since then, a broad variety of different signaling molecules composed of nucleotides has been discovered. These molecules fulfill crucial tasks in the context of intracellular signal transduction. The vast majority of the currently available knowledge about nucleotide-based second messengers originates from model organisms belonging either to the domain of eukaryotes or to the domain of bacteria, while the archaeal domain is significantly underrepresented in the field of nucleotide-based second messenger research. For several well-stablished eukaryotic and/or bacterial nucleotide-based second messengers, it is currently not clear whether these signaling molecules are present in archaea. In order to shed some light on this issue, this study analyzed cell extracts of two major archaeal model organisms, the euryarchaeon Haloferax volcanii and the crenarchaeon Sulfolobus acidocaldarius, using a modern mass spectrometry method to detect a broad variety of currently known nucleotide-based second messengers. The nucleotides 3',5'-cAMP, cyclic guanosine monophosphate (3',5'-cGMP), 5'-phosphoadenylyl-3',5'-adenosine (5'-pApA), diadenosine tetraphosphate (Ap4A) as well as the 2',3'-cyclic isomers of all four RNA building blocks (2',3'-cNMPs) were present in both species. In addition, H. volcanii cell extracts also contain cyclic cytosine monophosphate (3',5'-cCMP), cyclic uridine monophosphate (3',5'-cUMP) and cyclic diadenosine monophosphate (3',5'-c-di-AMP). The widely distributed bacterial second messengers cyclic diguanosine monophosphate (3',5'-c-di-GMP) and guanosine (penta-)/tetraphosphate [(p)ppGpp] could not be detected. In summary, this study gives a comprehensive overview on the presence of a large set of currently established or putative nucleotide-based second messengers in an eury- and a crenarchaeal model organism.
Collapse
Affiliation(s)
- Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Alejandra Recalde
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| | - Roland Seifert
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
In Silico Study of the RSH ( RelA/ SpoT Homologs) Gene Family and Expression Analysis in Response to PGPR Bacteria and Salinity in Brassica napus. Int J Mol Sci 2021; 22:ijms221910666. [PMID: 34639007 PMCID: PMC8509286 DOI: 10.3390/ijms221910666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Among several mechanisms involved in the plant stress response, synthesis of guanosine tetra and pentaphosphates (alarmones), homologous to the bacterial stringent response, is of crucial importance. Plant alarmones affect, among others, photosynthetic activity, metabolite accumulation, and nutrient remobilization, and thus regulate plant growth and development. The plant RSH (RelA/SpoT homolog) genes, that encode synthetases and/or hydrolases of alarmones, have been characterized in a limited number of plant species, e.g., Arabidopsis thaliana, Oryza sativa, and Ipomoea nil. Here, we used dry-to-wet laboratory research approaches to characterize RSH family genes in the polyploid plant Brassica napus. There are 12 RSH genes in the genome of rapeseed that belong to four types of RSH genes: 6 RSH1, 2 RSH2, 3 RSH3, and 1 CRSH. BnRSH genes contain 13-24 introns in RSH1, 2-6 introns in RSH2, 1-6 introns in RSH3, and 2-3 introns in the CRSH genes. In the promoter regions of the RSH genes, we showed the presence of regulatory elements of the response to light, plant hormones, plant development, and abiotic and biotic stresses. The wet-lab analysis showed that expression of BnRSH genes is generally not significantly affected by salt stress, but that the presence of PGPR bacteria, mostly of Serratia sp., increased the expression of BnRSH significantly. The obtained results show that BnRSH genes are differently affected by biotic and abiotic factors, which indicates their different functions in plants.
Collapse
|
22
|
Frosi G, Ferreira-Neto JRC, Bezerra-Neto JP, Lima LLD, Morais DADL, Pandolfi V, Kido EA, Maia LC, Santos MG, Benko-Iseppon AM. Reference genes for quantitative real-time PCR normalization of Cenostigma pyramidale roots under salt stress and mycorrhizal association. Genet Mol Biol 2021; 44:e20200424. [PMID: 34061138 PMCID: PMC8167929 DOI: 10.1590/1678-4685-gmb-2020-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
Cenostigma pyramidale is a native legume of the Brazilian semiarid region which performs symbiotic association with arbuscular mycorrhizal fungi (AMF), being an excellent model for studying genes associated with tolerance against abiotic and biotic stresses. In RT-qPCR approach, the use of reference genes is mandatory to avoid incorrect interpretation of the relative expression. This study evaluated the stability of ten candidate reference genes (CRGs) from C. pyramidale root tissues under salt stress (three collection times) and associated with AMF (three different times of salinity). The de novo transcriptome was obtained via RNA-Seq sequencing. Three algorithms were used to calculate the stability of CRGs under different conditions: (i) global (Salt, Salt+AMF, AMF and Control, and collection times), (ii) only non-inoculated plants, and (iii) AMF (only inoculated plants). HAG2, SAC1, aRP3 were the most stable CRGs for global and AMF assays, whereas HAG2, SAC1, RHS1 were the best for salt stress assay. This CRGs were used to validate the relative expression of two up-regulated transcripts in Salt2h (RAP2-3 and PIN8). Our study provides the first set of reference genes for C. pyramidale under salinity and AMF, supporting future researches on gene expression with this species.
Collapse
Affiliation(s)
- Gabriella Frosi
- Universidade Federal de Pernambuco, Departamento de Botânica, Recife, PE, Brazil.,Université de Sherbrooke, Départament de Biologie, Faculté des Sciences, Sherbrooke, QC, Canada
| | | | | | - Laís Luana de Lima
- Universidade Federal de Pernambuco, Departamento de Botânica, Recife, PE, Brazil
| | | | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil
| | - Ederson Akio Kido
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil
| | - Leonor Costa Maia
- Universidade Federal de Pernambuco, Departamento de Micologia, Recife, PE, Brazil
| | - Mauro Guida Santos
- Universidade Federal de Pernambuco, Departamento de Botânica, Recife, PE, Brazil
| | | |
Collapse
|
23
|
Avilan L, Lebrun R, Puppo C, Citerne S, Cuiné S, Li‐Beisson Y, Menand B, Field B, Gontero B. ppGpp influences protein protection, growth and photosynthesis in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2021; 230:1517-1532. [PMID: 33595847 PMCID: PMC8252717 DOI: 10.1111/nph.17286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Chloroplasts retain elements of a bacterial stress response pathway that is mediated by the signalling nucleotides guanosine penta- and tetraphosphate ((p)ppGpp). In the model flowering plant Arabidopsis, ppGpp acts as a potent regulator of plastid gene expression and influences photosynthesis, plant growth and development. However, little is known about ppGpp metabolism or its evolution in other photosynthetic eukaryotes. Here, we studied the function of ppGpp in the diatom Phaeodactylum tricornutum using transgenic lines containing an inducible system for ppGpp accumulation. We used these lines to investigate the effects of ppGpp on growth, photosynthesis, lipid metabolism and protein expression. We demonstrate that ppGpp accumulation reduces photosynthetic capacity and promotes a quiescent-like state with reduced proliferation and ageing. Strikingly, using nontargeted proteomics, we discovered that ppGpp accumulation also leads to the coordinated upregulation of a protein protection response in multiple cellular compartments. Our findings highlight the importance of ppGpp as a fundamental regulator of chloroplast function across different domains of life, and lead to new questions about the molecular mechanisms and roles of (p)ppGpp signalling in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Luisana Avilan
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
- Centre for Enzyme InnovationSchool of Biological SciencesInstitute of Biological and Biomedical SciencesUniversity of PortsmouthPortsmouthPO1 2DYUK
| | - Regine Lebrun
- Plate‐forme ProtéomiqueMarseille Protéomique (MaP)IMM FR 3479, 31 Chemin Joseph AiguierMarseille13009France
| | - Carine Puppo
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| | - Sylvie Citerne
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Stephane Cuiné
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Yonghua Li‐Beisson
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Benoît Menand
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Ben Field
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Brigitte Gontero
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| |
Collapse
|
24
|
Bai K, Chen X, Jiang N, Lyu Q, Li J, Luo L. Extraction and detection of guanosine 5'-diphosphate-3'-diphosphate in amino acid starvation cells of Clavibacter michiganensis. Braz J Microbiol 2021; 52:1573-1580. [PMID: 33837930 DOI: 10.1007/s42770-021-00488-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
Guanosine 5'-diphosphate-3'-diphosphate (ppGpp) is a small molecule nucleotide alarmone that can accumulate under the amino acid starvation state and trigger the stringent response. This study reported the extraction of ppGpp from the Gram-positive bacteria Clavibacter michiganensis through methods using formic acid, lysozyme, or methanol. Following extraction, ppGpp was detected through ultra-high-performance liquid chromatography (UHPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The methanol method showed the highest extraction efficiency for ppGpp among the three methods tested. C. michiganensis cells in exponential growth phase was induced in amino acid starvation by serine hydroxamate (SHX) and used for ppGpp extraction and detection. When using the methanol extraction method, the results showed that ppGpp concentrations in SHX-treated samples were 15.645 nM, 17.656 nM, 20.372 nM, and 19.280 nM at 0 min, 15 min, 30 min and 1 h, respectively, when detected using LC-MS/MS. This is the first report on ppGpp extraction and detection in Clavibacter providing a new idea and approach for nucleotide detection and extraction in bacteria.
Collapse
Affiliation(s)
- Kaihong Bai
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xing Chen
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Na Jiang
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qingyang Lyu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Jianqiang Li
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Laixin Luo
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
25
|
Krüger L, Herzberg C, Wicke D, Bähre H, Heidemann JL, Dickmanns A, Schmitt K, Ficner R, Stülke J. A meet-up of two second messengers: the c-di-AMP receptor DarB controls (p)ppGpp synthesis in Bacillus subtilis. Nat Commun 2021; 12:1210. [PMID: 33619274 PMCID: PMC7900238 DOI: 10.1038/s41467-021-21306-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
Many bacteria use cyclic di-AMP as a second messenger to control potassium and osmotic homeostasis. In Bacillus subtilis, several c-di-AMP binding proteins and RNA molecules have been identified. Most of these targets play a role in controlling potassium uptake and export. In addition, c-di-AMP binds to two conserved target proteins of unknown function, DarA and DarB, that exclusively consist of the c-di-AMP binding domain. Here, we investigate the function of the c-di-AMP-binding protein DarB in B. subtilis, which consists of two cystathionine-beta synthase (CBS) domains. We use an unbiased search for DarB interaction partners and identify the (p)ppGpp synthetase/hydrolase Rel as a major interaction partner of DarB. (p)ppGpp is another second messenger that is formed upon amino acid starvation and under other stress conditions to stop translation and active metabolism. The interaction between DarB and Rel only takes place if the bacteria grow at very low potassium concentrations and intracellular levels of c-di-AMP are low. We show that c-di-AMP inhibits the binding of DarB to Rel and the DarB–Rel interaction results in the Rel-dependent accumulation of pppGpp. These results link potassium and c-di-AMP signaling to the stringent response and thus to the global control of cellular physiology. In several bacteria, cyclic di-AMP mediates potassium (K+) and osmotic homeostasis. Here, the authors show that DarB, a Bacillus subtilis protein previously reported to bind cyclic di-AMP, interacts with the (p)ppGpp synthetase/hydrolase Rel in a K+-dependent manner in turn leading to Rel-dependent accumulation of pppGpp under conditions of K+ starvation.
Collapse
Affiliation(s)
- Larissa Krüger
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Dennis Wicke
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jana L Heidemann
- Department of Molecular Structural Biology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Service Unit LCMS Protein Analytics, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
26
|
Ono S, Suzuki S, Ito D, Tagawa S, Shiina T, Masuda S. Plastidial (p)ppGpp Synthesis by the Ca2+-Dependent RelA-SpoT Homolog Regulates the Adaptation of Chloroplast Gene Expression to Darkness in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 61:2077-2086. [PMID: 33089303 DOI: 10.1093/pcp/pcaa124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
In bacteria, the hyper-phosphorylated nucleotide, guanosine 3',5'-bis(pyrophosphate) (ppGpp), functions as a secondary messenger under stringent conditions. ppGpp levels are controlled by two distinct enzymes, namely RelA and SpoT, in Escherichia coli. RelA-SpoT homologs (RSHs) are also conserved in plants where they function in the plastids. The model plant Arabidopsis thaliana contains four RSHs: RSH1, RSH2, RSH3 and Ca2+-dependent RSH (CRSH). Genetic characterizations of RSH1, RSH2 and RSH3 were undertaken, which showed that the ppGpp-dependent plastidial stringent response significantly influences plant growth and stress acclimation. However, the physiological significance of CRSH-dependent ppGpp synthesis remains unclear, as no crsh-null mutant has been available. Here, to investigate the function of CRSH, a crsh-knockout mutant of Arabidopsis was constructed using a site-specific gene-editing technique, and its phenotype was characterized. A transient increase in ppGpp was observed for 30 min in the wild type (WT) after the light-to-dark transition, but this increase was not observed in the crsh mutant. Similar analyses were performed with the rsh2-rsh3 double and rsh1-rsh2-rsh3 triple mutants and showed that the transient increments of ppGpp in the mutants were higher than those in the WT. The increase in ppGpp in the WT and rsh2 rsh3 accompanied decrements in the mRNA levels of some plastidial genes transcribed by the plastid-encoded plastid RNA polymerase. These results indicate that the transient increase in ppGpp at night is due to CRSH-dependent ppGpp synthesis and that the ppGpp level is maintained by the hydrolytic activities of RSH1, RSH2 and RSH3 to accustom plastidial gene expression to darkness.
Collapse
Affiliation(s)
- Sumire Ono
- Graduate School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Sae Suzuki
- Graduate School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Doshun Ito
- Graduate School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Shota Tagawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Shinji Masuda
- Graduate School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
27
|
Ito D, Kawamura H, Oikawa A, Ihara Y, Shibata T, Nakamura N, Asano T, Kawabata SI, Suzuki T, Masuda S. ppGpp functions as an alarmone in metazoa. Commun Biol 2020; 3:671. [PMID: 33188280 PMCID: PMC7666150 DOI: 10.1038/s42003-020-01368-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/09/2020] [Indexed: 01/20/2023] Open
Abstract
Guanosine 3′,5′-bis(pyrophosphate) (ppGpp) functions as a second messenger in bacteria to adjust their physiology in response to environmental changes. In recent years, the ppGpp-specific hydrolase, metazoan SpoT homolog-1 (Mesh1), was shown to have important roles for growth under nutrient deficiency in Drosophila melanogaster. Curiously, however, ppGpp has never been detected in animal cells, and therefore the physiological relevance of this molecule, if any, in metazoans has not been established. Here, we report the detection of ppGpp in Drosophila and human cells and demonstrate that ppGpp accumulation induces metabolic changes, cell death, and eventually lethality in Drosophila. Our results provide the evidence of the existence and function of the ppGpp-dependent stringent response in animals. Ito et al. succeed in detecting guanosine tetraphosphate (ppGpp) in measurable levels in metazoan, specifically in Drosophila. They further demonstrate that the ppGpp-specific hydrolase, metazoan SpoT homolog-1 (Mesh1), is necessary, at least in certain conditions, to maintain low ppGpp levels, hence providing insights into the role of Mesh1 as a ppGpp hydrolase in vivo.
Collapse
Affiliation(s)
- Doshun Ito
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hinata Kawamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Yuta Ihara
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshio Shibata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | | | - Takashi Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
28
|
Imholz NCE, Noga MJ, van den Broek NJF, Bokinsky G. Calibrating the Bacterial Growth Rate Speedometer: A Re-evaluation of the Relationship Between Basal ppGpp, Growth, and RNA Synthesis in Escherichia coli. Front Microbiol 2020; 11:574872. [PMID: 33042085 PMCID: PMC7527470 DOI: 10.3389/fmicb.2020.574872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/25/2020] [Indexed: 01/20/2023] Open
Abstract
The molecule guanosine tetraphophosphate (ppGpp) is most commonly considered an alarmone produced during acute stress. However, ppGpp is also present at low concentrations during steady-state growth. Whether ppGpp controls the same cellular targets at both low and high concentrations remains an open question and is vital for understanding growth rate regulation. It is widely assumed that basal ppGpp concentrations vary inversely with growth rate, and that the main function of basal ppGpp is to regulate transcription of ribosomal RNA in response to environmental conditions. Unfortunately, studies to confirm this relationship and to define regulatory targets of basal ppGpp are limited by difficulties in quantifying basal ppGpp. In this Perspective we compare reported concentrations of basal ppGpp in E. coli and quantify ppGpp within several strains using a recently developed analytical method. We find that although the inverse correlation between ppGpp and growth rate is robust across strains and analytical methods, absolute ppGpp concentrations do not absolutely determine RNA synthesis rates. In addition, we investigated the consequences of two separate RNA polymerase mutations that each individually reduce (but do not abolish) sensitivity to ppGpp and find that the relationship between ppGpp, growth rate, and RNA content of single-site mutants remains unaffected. Both literature and our new data suggest that environmental conditions may be communicated to RNA polymerase via an additional regulator. We conclude that basal ppGpp is one of potentially several agents controlling ribosome abundance and DNA replication initiation, but that evidence for additional roles in controlling macromolecular synthesis requires further study.
Collapse
Affiliation(s)
- Nicole C E Imholz
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Marek J Noga
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Niels J F van den Broek
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
29
|
Spira B, Ospino K. Diversity in E. coli (p)ppGpp Levels and Its Consequences. Front Microbiol 2020; 11:1759. [PMID: 32903406 PMCID: PMC7434938 DOI: 10.3389/fmicb.2020.01759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
(p)ppGpp is at the core of global bacterial regulation as it controls growth, the most important aspect of life. It would therefore be expected that at least across a species the intrinsic (basal) levels of (p)ppGpp would be reasonably constant. On the other hand, the historical contingency driven by the selective pressures on bacterial populations vary widely resulting in broad genetic polymorphism. Given that (p)ppGpp controls the expression of many genes including those involved in the bacterial response to environmental challenges, it is not surprising that the intrinsic levels of (p)ppGpp would also vary considerably. In fact, null mutations or less severe genetic polymorphisms in genes associated with (p)ppGpp synthesis and hydrolysis are common. Such variation can be observed in laboratory strains, in natural isolates as well as in evolution experiments. High (p)ppGpp levels result in low growth rate and high tolerance to environmental stresses. Other aspects such as virulence and antimicrobial resistance are also influenced by the intrinsic levels of (p)ppGpp. A case in point is the production of Shiga toxin by certain E. coli strains which is inversely correlated to (p)ppGpp basal level. Conversely, (p)ppGpp concentration is positively correlated to increased tolerance to different antibiotics such as β-lactams, vancomycin, and others. Here we review the variations in intrinsic (p)ppGpp levels and its consequences across the E. coli species.
Collapse
Affiliation(s)
- Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Katia Ospino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Quantification of guanosine triphosphate and tetraphosphate in plants and algae using stable isotope-labelled internal standards. Talanta 2020; 219:121261. [PMID: 32887152 DOI: 10.1016/j.talanta.2020.121261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Guanosine tetraphosphate (G4P) and guanosine pentaphosphate (G5P) are signalling nucleotides found in bacteria and photosynthetic eukaryotes that are implicated in a wide-range of processes including stress acclimation, developmental transitions and growth control. Measurements of G4P/G5P levels are essential for studying the diverse roles of these nucleotides. However, G4P/G5P quantification is particularly challenging in plants and algae due to lower cellular concentrations, compartmentalization and high metabolic complexity. Despite recent advances the speed and accuracy of G4P quantification in plants and algae can still be improved. Here, we report a new approach for rapid and accurate G4P quantification which relies on the use of synthesized stable isotope-labelled as internal standards. We anticipate that this approach will accelerate research into the function of G4P signaling in plants, algae and other organisms.
Collapse
|
31
|
Haas TM, Qiu D, Häner M, Angebauer L, Ripp A, Singh J, Koch HG, Jessen-Trefzer C, Jessen HJ. Four Phosphates at One Blow: Access to Pentaphosphorylated Magic Spot Nucleotides and Their Analysis by Capillary Electrophoresis. J Org Chem 2020; 85:14496-14506. [PMID: 32502348 PMCID: PMC7684580 DOI: 10.1021/acs.joc.0c00841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
complex phosphorylation pattern of natural and modified pentaphosphorylated
magic spot nucleotides is generated in a highly efficient way. A cyclic
pyrophosphoryl phosphoramidite (cPyPA) reagent is used to introduce
four phosphates on nucleosides regioselectively in a one-flask key
transformation. The obtained magic spot nucleotides are used to develop
a capillary electrophoresis UV detection method, enabling nucleotide
assignment in complex bacterial extracts.
Collapse
Affiliation(s)
- Thomas M Haas
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Institute of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany.,CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
32
|
Schäfer H, Beckert B, Frese CK, Steinchen W, Nuss AM, Beckstette M, Hantke I, Driller K, Sudzinová P, Krásný L, Kaever V, Dersch P, Bange G, Wilson DN, Turgay K. The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis. PLoS Genet 2020; 16:e1008275. [PMID: 32176689 PMCID: PMC7098656 DOI: 10.1371/journal.pgen.1008275] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 03/26/2020] [Accepted: 02/26/2020] [Indexed: 11/24/2022] Open
Abstract
Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.
Collapse
Affiliation(s)
- Heinrich Schäfer
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Wieland Steinchen
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Aaron M. Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Hantke
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | | | - Petra Sudzinová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Volkhard Kaever
- Hannover Medical School, Research Core Unit Metabolomics, Hannover, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| |
Collapse
|
33
|
Zhu M, Mori M, Hwa T, Dai X. Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination. Nat Microbiol 2019; 4:2347-2356. [PMID: 31451774 PMCID: PMC6903697 DOI: 10.1038/s41564-019-0543-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022]
Abstract
Tight coordination between transcription and translation is crucial to maintaining the integrity of gene expression in bacteria, yet how bacteria manage to coordinate these two processes remains unclear. Possible direct physical coupling between the RNA polymerase and ribosome has been thoroughly investigated in recent years. Here, we quantitatively characterize the transcriptional kinetics of Escherichia coli under different growth conditions. Transcriptional and translational elongation remain coordinated under various nutrient conditions, as previously reported. However, transcriptional elongation was not affected under antibiotics that slowed down translational elongation. This result was also found by introducing nonsense mutation that completely dissociated transcription from translation. Our data thus provide direct evidence that translation is not required to maintain the speed of transcriptional elongation. In cases where transcription and translation are dissociated, our study provides quantitative characterization of the resulting process of premature transcriptional termination (PTT). PTT-mediated polarity caused by translation-targeting antibiotics substantially affected the coordinated expression of genes in several long operons, contributing to the key physiological effects of these antibiotics. Our results also suggest a model in which the coordination between transcriptional and translational elongation under normal growth conditions is implemented by guanosine tetraphosphate.
Collapse
Affiliation(s)
- Manlu Zhu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Matteo Mori
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, CA, USA.
| | - Xiongfeng Dai
- School of Life Sciences, Central China Normal University, Wuhan, China.
| |
Collapse
|
34
|
RSH enzyme diversity for (p)ppGpp metabolism in Phaeodactylum tricornutum and other diatoms. Sci Rep 2019; 9:17682. [PMID: 31776430 PMCID: PMC6881373 DOI: 10.1038/s41598-019-54207-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
The nucleotides guanosine tetraphosphate and pentaphosphate (together known as (p)ppGpp or magic spot) are produced in plant plastids from GDP/GTP and ATP by RelA-SpoT homologue (RSH) enzymes. In the model plant Arabidopsis (p)ppGpp regulates chloroplast transcription and translation to affect growth, and is also implicated in acclimation to stress. However, little is known about (p)ppGpp metabolism or its evolution in other photosynthetic eukaryotes. Here we studied (p)ppGpp metabolism in the marine diatom Phaeodactylum tricornutum. We identified three expressed RSH genes in the P. tricornutum genome, and determined the enzymatic activity of the corresponding enzymes by heterologous expression in bacteria. We showed that two P. tricornutum RSH are (p)ppGpp synthetases, despite substitution of a residue within the active site believed critical for activity, and that the third RSH is a bifunctional (p)ppGpp synthetase and hydrolase, the first of its kind demonstrated in a photosynthetic eukaryote. A broad phylogenetic analysis then showed that diatom RSH belong to novel algal RSH clades. Together our work significantly expands the horizons of (p)ppGpp signalling in the photosynthetic eukaryotes by demonstrating an unexpected functional, structural and evolutionary diversity in RSH enzymes from organisms with plastids derived from red algae.
Collapse
|
35
|
Prusińska JM, Boniecka J, Dąbrowska GB, Goc A. Identification and characterization of the Ipomoea nil RelA/SpoT Homologs (InRSHs) and potential directions of their transcriptional regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:161-176. [PMID: 31084869 DOI: 10.1016/j.plantsci.2019.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Although the stringent response has been known for more than half a century and has been well studied in bacteria, only the research of the past 19 years revealed that the homologous mechanism is conserved in plants. The plant RelA/SpoT Homolog (RSH) genes have been identified and characterized in a limited number of plant species, whereas products of their catalytic activities, (p)ppGpp (alarmones), have been shown to accumulate mainly in chloroplasts. Here, we identified full-length sequences of the Ipomoea nil RSH genes (InRSH1, InRSH2 and InCRSH), determined their copy number in the I. nil genome as well as the structural conservancy between InRSHs and their Arabidopsis and rice orthologs. We showed that InRSHs are differentially expressed in I. nil organ tissues and that only InRSH2 is upregulated in response to salt, osmotic and drought stress. Our results of the E. coli relA/spoT mutant complementation test suggest that InRSH1 is likely a (p)ppGpp hydrolase, InCRSH - synthetase and InRSH2 shows both activities. Finally, we referred our results to the recently published I. nil genomic and proteomic data and uncovered the complexity of the I. nil RSH family as well as potential ways of the InRSH transcriptional regulation.
Collapse
Affiliation(s)
- Justyna M Prusińska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland.
| | - Justyna Boniecka
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Grażyna B Dąbrowska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Anna Goc
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
36
|
Zhu M, Dai X. Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli. Nucleic Acids Res 2019; 47:4684-4693. [PMID: 30916318 PMCID: PMC6511861 DOI: 10.1093/nar/gkz211] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding how bacteria coordinate gene expression with biomass growth to adapt to various stress conditions remains a grand challenge in biology. Stress response is often associated with dramatic accumulation of cellular guanosine tetra- or penta-phosphate (p)ppGpp (also known as 'magic spot'), which is a key second messenger participating in regulating various biochemical and physiological processes of bacteria. Despite of the extensive studies on the mechanism of gene regulation by (p)ppGpp during stringent response, the connection between (p)ppGpp and bacterial steady-state exponential growth remains elusive. Here, we establish a versatile genetic approach to systematically perturb the (p)ppGpp level of Escherichia coli through titrating either the single-function (p)ppGpp synthetase or the singe-function (p)ppGpp hydrolase and quantitatively characterize cell growth and gene expression. Strikingly, increased and decreased (p)ppGpp levels both cause remarkable growth suppression of E. coli. From a coarse-grained insight, we demonstrate that increased (p)ppGpp levels limit ribosome synthesis while decreased (p)ppGpp levels limit the expression of metabolic proteins, both resulting in non-optimal resource allocation. Our study reveals a profound role of (p)ppGpp in regulating bacterial growth through governing global resource allocation. Moreover, we highlight the Mesh1 (p)ppGpp hydrolase from Drosophila melanogaster as a powerful genetic tool for interrogating bacterial (p)ppGpp physiology.
Collapse
Affiliation(s)
- Manlu Zhu
- School of life sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xiongfeng Dai
- School of life sciences, Central China Normal University, Wuhan, Hubei Province, China
| |
Collapse
|
37
|
Patacq C, Chaudet N, Létisse F. Absolute Quantification of ppGpp and pppGpp by Double-Spike Isotope Dilution Ion Chromatography-High-Resolution Mass Spectrometry. Anal Chem 2018; 90:10715-10723. [PMID: 30110552 DOI: 10.1021/acs.analchem.8b00829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) play a central role in the adaptation of bacterial and plant cells to nutritional and environmental stresses and in bacterial resistance to antibiotics. These compounds have historically been detected and quantified by two-dimensional thin-layer chromatography of 32P-radiolabeled nucleotides. We report a new method to quantify ppGpp and pppGpp in complex biochemical matrix using ion chromatography coupled to high-resolution mass spectrometry. The method is based on isotopic dilution mass spectrometry (IDMS) using 13C to accurately quantify the nucleotides. However, the loss of a phosphate group from pppGpp during the sample preparation process results in the erroneous quantification of ppGpp. This bias was corrected by adding an extra 15N isotope dilution dimension. This double-spike IDMS method was applied to quantify the ppGpp and pppGpp in Escherichia coli and in a mutant strain deleted for gppA (encoding the ppGpp phosphohydrolase) before and after exposure of both strains to serine hydroxamate, known to trigger the accumulation of these nucleotides.
Collapse
Affiliation(s)
- Clément Patacq
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse , CNRS, INRA, INSA, 31077 Toulouse , France.,Département de Bioprocédés R&D , Sanofi Pasteur , 69280 Marcy-L'Etoile , France
| | - Nicolas Chaudet
- Département de Bioprocédés R&D , Sanofi Pasteur , 69280 Marcy-L'Etoile , France
| | - Fabien Létisse
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse , CNRS, INRA, INSA, 31077 Toulouse , France.,Université Paul Sabatier, Université de Toulouse , 31330 Toulouse , France
| |
Collapse
|
38
|
Jin H, Lao YM, Zhou J, Zhang HJ, Cai ZH. A rapid UHPLC-HILIC method for algal guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and the potential separation mechanism. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:143-153. [PMID: 30170292 DOI: 10.1016/j.jchromb.2018.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/20/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
A fast and facile hydrophilic interaction liquid chromatography (HILIC) method was developed and applied to quantify physiologically important ppGpp and its analogues in a tough sample, the astaxanthin-accumulating alga Hameatococcus pluvialis. The method is able to analyze simultaneously seven nucleotides, including ppGpp at the order of pmol g-1 cells within 12 min. Mechanism on the elution order was investigated. It was found that 1) phosphate salt competed for the amide groups on the HILIC column with the phosphate groups of the nucleotides; 2) intramolecular hydrogen bonds might contribute to the elution order by offsetting and reducing the number of free hydrogen acceptor/donor of the nucleotide molecules interacting with the amide groups. This is the first HILIC method for ppGpp, which is feasible and applicable to a wide range of samples, especially tough samples, e.g., algae and plants.
Collapse
Affiliation(s)
- Hui Jin
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Yong Min Lao
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Huai Jin Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Zhong Hua Cai
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
39
|
Field B. Green magic: regulation of the chloroplast stress response by (p)ppGpp in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2797-2807. [PMID: 29281108 DOI: 10.1093/jxb/erx485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
The hyperphosphorylated nucleotides guanosine pentaphosphate and tetraphosphate [together referred to as (p)ppGpp, or 'magic spot'] orchestrate a signalling cascade in bacteria that controls growth under optimal conditions and in response to environmental stress. (p)ppGpp is also found in the chloroplasts of plants and algae where it has also been shown to accumulate in response to abiotic stress. Recent studies suggest that (p)ppGpp is a potent inhibitor of chloroplast gene expression in vivo, and is a significant regulator of chloroplast function that can influence both the growth and the development of plants. However, little is currently known about how (p)ppGpp is wired into eukaryotic signalling pathways, or how it may act to enhance fitness when plants or algae are exposed to environmental stress. This review discusses our current understanding of (p)ppGpp metabolism and its extent in plants and algae, and how (p)ppGpp signalling may be an important factor that is capable of influencing growth and stress acclimation in this major group of organisms.
Collapse
Affiliation(s)
- Ben Field
- Aix Marseille Univ, CEA, CNRS, France
| |
Collapse
|
40
|
Imamura S, Nomura Y, Takemura T, Pancha I, Taki K, Toguchi K, Tozawa Y, Tanaka K. The checkpoint kinase TOR (target of rapamycin) regulates expression of a nuclear-encoded chloroplast RelA-SpoT homolog (RSH) and modulates chloroplast ribosomal RNA synthesis in a unicellular red alga. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:327-339. [PMID: 29441718 DOI: 10.1111/tpj.13859] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/11/2017] [Accepted: 01/23/2018] [Indexed: 05/14/2023]
Abstract
Chloroplasts are plant organelles that carry out oxygenic photosynthesis. Chloroplast biogenesis depends upon chloroplast ribosomes and their translational activity. However, regulation of chloroplast ribosome biogenesis remains an important unanswered question. In this study, we found that inhibition of target of rapamycin (TOR), a general eukaryotic checkpoint kinase, results in a decline in chloroplast ribosomal RNA (rRNA) transcription in the unicellular red alga, Cyanidioschyzon merolae. Upon TOR inhibition, transcriptomics and other analyses revealed increased expression of a nuclear-encoded chloroplast RelA-SpoT homolog (RSH) gene (CmRSH4b), which encodes a homolog of the guanosine 3'-diphosphate 5'-diphosphate (ppGpp) synthetases that modulate rRNA synthesis in bacteria. Using an Escherichia coli mutant lacking ppGpp, CmRSH4b was demonstrated to have ppGpp synthetase activity. Expression analysis of a green fluorescent protein-fused protein indicated that CmRSH4b localizes to the chloroplast, and overexpression of the CmRSH4b gene resulted in a decrease of chloroplast rRNA synthesis concomitant with growth inhibition and reduction of chloroplast size. Biochemical analyses using C. merolae cell lysates or purified recombinant proteins revealed that ppGpp inhibits bacteria-type RNA polymerase-dependent chloroplast rRNA synthesis as well as a chloroplast guanylate kinase. These results suggest that CmRSH4b-dependent ppGpp synthesis in chloroplasts is an important regulator of chloroplast rRNA transcription. Nuclear and mitochondrial rRNA transcription were both reduced by TOR inhibition, suggesting that the biogeneses of the three independent ribosome systems are interconnected by TOR in plant cells.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuhta Nomura
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Imran Pancha
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Keiko Taki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazuki Toguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
41
|
Honoki R, Ono S, Oikawa A, Saito K, Masuda S. Significance of accumulation of the alarmone (p)ppGpp in chloroplasts for controlling photosynthesis and metabolite balance during nitrogen starvation in Arabidopsis. PHOTOSYNTHESIS RESEARCH 2018; 135:299-308. [PMID: 28536785 DOI: 10.1007/s11120-017-0402-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
The regulatory nucleotides, guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and guanosine 5'-diphosphate 3'-diphosphate (ppGpp), were originally identified in Escherichia coli, and control a large set of gene expression and enzyme activities. The (p)ppGpp-dependent control of cell activities is referred to as the stringent response. A growing number of (p)ppGpp synthase/hydrolase homologs have been identified in plants, which are localized in plastids in Arabidopsis thaliana. We recently reported that the Arabidopsis mutant overproducing ppGpp in plastids showed dwarf chloroplasts, and transcript levels in the mutant plastids were significantly suppressed. Furthermore, the mutant showed more robust growth than the wild type (WT), especially under nutrient-deficient conditions, although the mechanisms are unclear. To better understand the impact of the ppGpp accumulation on plant responses to nutrient deficiency, photosynthetic activities and metabolic changes in the ppGpp-overproducing mutant were characterized here. Upon transition to the nitrogen-deficient conditions, the mutant showed reduction of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) contents, and effective and maximum quantum yield of photosystem II compared with WT. The mutant also showed more obvious changes in key metabolite levels including some amino acid contents than WT; similar metabolic change is known to be critical for plants to maintain carbon-nitrogen balance in their cells. These results suggest that artificially overproducing ppGpp modulates the organelle functions that play an important role in controlling photosynthetic performance and metabolite balance during nitrogen starvation.
Collapse
Affiliation(s)
- Rina Honoki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Sumire Ono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
- Earth-life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
| |
Collapse
|
42
|
Abdelkefi H, Sugliani M, Ke H, Harchouni S, Soubigou‐Taconnat L, Citerne S, Mouille G, Fakhfakh H, Robaglia C, Field B. Guanosine tetraphosphate modulates salicylic acid signalling and the resistance of Arabidopsis thaliana to Turnip mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:634-646. [PMID: 28220595 PMCID: PMC6638062 DOI: 10.1111/mpp.12548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 05/21/2023]
Abstract
Chloroplasts can act as key players in the perception and acclimatization of plants to incoming environmental signals. A growing body of evidence indicates that chloroplasts play a critical role in plant immunity. Chloroplast function can be regulated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp]. In plants, (p)ppGpp levels increase in response to abiotic stress and to plant hormones which are involved in abiotic and biotic stress signalling. In this study, we analysed the transcriptome of Arabidopsis plants that over-accumulate (p)ppGpp, and unexpectedly found a decrease in the levels of a broad range of transcripts for plant defence and immunity. To determine whether (p)ppGpp is involved in the modulation of plant immunity, we analysed the susceptibility of plants with different levels of (p)ppGpp to Turnip mosaic virus (TuMV) carrying a green fluorescent protein (GFP) reporter. We found that (p)ppGpp accumulation was associated with increased susceptibility to TuMV and reduced levels of the defence hormone salicylic acid (SA). In contrast, plants with lower (p)ppGpp levels showed reduced susceptibility to TuMV, and this was associated with the precocious up-regulation of defence-related genes and increased SA content. We have therefore demonstrated a new link between (p)ppGpp metabolism and plant immunity in Arabidopsis.
Collapse
Affiliation(s)
- Hela Abdelkefi
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar, 2092 Elmanar TunisTunisia
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Matteo Sugliani
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Hang Ke
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Seddik Harchouni
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Ludivine Soubigou‐Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Paris‐Sud, Université Evry, Université Paris‐Saclay, Bâtiment 630Orsay91405France
- Paris Diderot, Sorbonne Paris‐CitéInstitute of Plant Sciences Paris‐Saclay IPS2, Bâtiment 630Orsay91405France
| | - Sylvie Citerne
- Institut Jean‐Pierre Bourgin, INRA, AgroParisTech, CNRSUniversité Paris‐SaclayVersailles78000France
| | - Gregory Mouille
- Institut Jean‐Pierre Bourgin, INRA, AgroParisTech, CNRSUniversité Paris‐SaclayVersailles78000France
| | - Hatem Fakhfakh
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar, 2092 Elmanar TunisTunisia
| | - Christophe Robaglia
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Ben Field
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| |
Collapse
|
43
|
Boniecka J, Prusińska J, Dąbrowska GB, Goc A. Within and beyond the stringent response-RSH and (p)ppGpp in plants. PLANTA 2017; 246:817-842. [PMID: 28948393 PMCID: PMC5633626 DOI: 10.1007/s00425-017-2780-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/17/2017] [Indexed: 05/06/2023]
Abstract
Plant RSH proteins are able to synthetize and/or hydrolyze unusual nucleotides called (p)ppGpp or alarmones. These molecules regulate nuclear and chloroplast transcription, chloroplast translation and plant development and stress response. Homologs of bacterial RelA/SpoT proteins, designated RSH, and products of their activity, (p)ppGpp-guanosine tetra-and pentaphosphates, have been found in algae and higher plants. (p)ppGpp were first identified in bacteria as the effectors of the stringent response, a mechanism that orchestrates pleiotropic adaptations to nutritional deprivation and various stress conditions. (p)ppGpp accumulation in bacteria decreases transcription-with exception to genes that help to withstand or overcome current stressful situations, which are upregulated-and translation as well as DNA replication and eventually reduces metabolism and growth but promotes adaptive responses. In plants, RSH are nuclei-encoded and function in chloroplasts, where alarmones are produced and decrease transcription, translation, hormone, lipid and metabolites accumulation and affect photosynthetic efficiency and eventually plant growth and development. During senescence, alarmones coordinate nutrient remobilization and relocation from vegetative tissues into seeds. Despite the high conservancy of RSH protein domains among bacteria and plants as well as the bacterial origin of plant chloroplasts, in plants, unlike in bacteria, (p)ppGpp promote chloroplast DNA replication and division. Next, (p)ppGpp may also perform their functions in cytoplasm, where they would promote plant growth inhibition. Furthermore, (p)ppGpp accumulation also affects nuclear gene expression, i.a., decreases the level of Arabidopsis defense gene transcripts, and promotes plants susceptibility towards Turnip mosaic virus. In this review, we summarize recent findings that show the importance of RSH and (p)ppGpp in plant growth and development, and open an area of research aiming to understand the function of plant RSH in response to stress.
Collapse
Affiliation(s)
- Justyna Boniecka
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Prusińska
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Grażyna B Dąbrowska
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| | - Anna Goc
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
44
|
Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16. Appl Environ Microbiol 2017; 83:AEM.00755-17. [PMID: 28455332 DOI: 10.1128/aem.00755-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
In this study, we constructed a set of Ralstonia eutropha H16 strains with single, double, or triple deletions of the (p)ppGpp synthase/hydrolase (spoT1), (p)ppGpp synthase (spoT2), and/or polyhydroxybutyrate (PHB) depolymerase (phaZa1 or phaZa3) gene, and we determined the impact on the levels of (p)ppGpp and on accumulated PHB. Mutants with deletions of both the spoT1 and spoT2 genes were unable to synthesize detectable amounts of (p)ppGpp and accumulated only minor amounts of PHB, due to PhaZa1-mediated depolymerization of PHB. In contrast, unusually high levels of PHB were found in strains in which the (p)ppGpp concentration was increased by the overexpression of (p)ppGpp synthase (SpoT2) and the absence of (p)ppGpp hydrolase. Determination of (p)ppGpp levels in wild-type R. eutropha under different growth conditions and induction of the stringent response by amino acid analogs showed that the concentrations of (p)ppGpp during the growth phase determine the amount of PHB remaining in later growth phases by influencing the efficiency of the PHB mobilization system in stationary growth. The data reported for a previously constructed ΔspoT2 strain (C. J. Brigham, D. R. Speth, C. Rha, and A. J. Sinskey, Appl Environ Microbiol 78:8033-8044, 2012, https://doi.org/10.1128/AEM.01693-12) were identified as due to an experimental error in strain construction, and our results are in contrast to the previous indication that the spoT2 gene product is essential for PHB accumulation in R. eutrophaIMPORTANCE Polyhydroxybutyrate (PHB) is an important intracellular carbon and energy storage compound in many prokaryotes and helps cells survive periods of starvation and other stress conditions. Research activities in several laboratories over the past 3 decades have shown that both PHB synthase and PHB depolymerase are constitutively expressed in most PHB-accumulating bacteria, such as Ralstonia eutropha This implies that PHB synthase and depolymerase activities must be well regulated in order to avoid a futile cycle of simultaneous PHB synthesis and PHB degradation (mobilization). Previous reports suggested that the stringent response in Rhizobium etli and R. eutropha is involved in the regulation of PHB metabolism. However, the levels of (p)ppGpp and the influence of those levels on PHB accumulation and PHB mobilization have not yet been determined for any PHB-accumulating species. In this study, we optimized a (p)ppGpp extraction procedure and a high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based detection method for the quantification of (p)ppGpp in R. eutropha This enabled us to study the relationship between the concentrations of (p)ppGpp and the accumulated levels of PHB in the wild type and in several constructed mutant strains. We show that overproduction of the alarmone (p)ppGpp correlated with reduced growth and massive overproduction of PHB. In contrast, in the absence of (p)ppGpp, mobilization of PHB was dramatically enhanced.
Collapse
|
45
|
Khatun A, Rahman M, Rahman MM, Hossain H, Jahan IA, Nesa ML. Antioxidant, Antinociceptive and CNS Activities of Viscum orientale and High Sensitive Quantification of Bioactive Polyphenols by UPLC. Front Pharmacol 2016; 7:176. [PMID: 27445814 PMCID: PMC4926526 DOI: 10.3389/fphar.2016.00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/06/2016] [Indexed: 01/14/2023] Open
Abstract
Viscum orientale Willd. (Loranthaceae) has long been used in traditional medicine to treat pain, neuropharmacological disorders and various forms of tumor but not yet been reported. The aim of this study is to rationalize the traditional medicinal use of this plant by evaluating the methanol extract of V. orientale leaves (MEVOL) for anti-nociceptive, CNS depressant and antioxidant activities and to quantify the bioactive polyphenols present in this plant. Five polyphenolic compounds namely gallic acid, vanillic acid, caffeic acid, ellagic acid, and quercetin (17.54, 8.99, 99.61, 4523.31, and 100.15 mg/100 g of dry weight, respectively) have been identified in MEVOL using Ultra Performance Liquid Chromatography. Qualitative antioxidant activity determined by Thin Layer Chromatography indicated the presence of antioxidants. In quantitative antioxidant test using 2,2-diphenyl 1-picrylhydrazyl, MEVOL exhibited strong free antioxidant activity in a dose dependant manner (IC50 = 6.63 μg/ml) compared with ascorbic acid (IC50 = 1.91 μg/ml) and butylatedhydroxyanisole (IC50 = 2.27 μg/ml) controls. Total phenolic content determined using Folin Ciocaltu reagent was found to be 73.4 mg gallic acid equivalent/g of extract, while flavonoid content estimated using aluminum chloride colorimetric method was 170.7 mg quercetin equivalent/g of extract. Anti-nociceptive activity of MEVOL measured using acetic acid and formalin induced pain models in mice was significant (p < 0.001). MEVOL showed 65.6 and 88.8% writhing inhibition at 300 and 500 mg/kg body weight, respectively, comparing with standard diclofenac-Na (75.2% inhibition) at 25 mg/kg body weight in acetic acid induced pain model. In formalin induced pain model, paw licking was inhibited 45.93 and 56.4% in early phase and 55.66 and 72.64% in late phase at 300 and 500 mg/kg body weight, respectively, while diclofenac-Na inhibited 60.47 and 61.32% in early and late phase at 10 mg/kg body weight, respectively. In neuropharmacological activity test, overall behavioral test significantly reinforced CNS depressant activity. Spontaneous motor activities were reduced (p < 0.05) in both hole cross and open field tests compared with diazepam. Antioxidant activity of MEVOL is likely due to the phenolic and flavonoid compounds present within the leaf tissues. This study reveals significant in vivo anti-nociceptive and CNS depressant activities which justifies traditional medicinal applications of V. orientale.
Collapse
Affiliation(s)
- Amina Khatun
- Phytochemistry and Pharmacology Research Laboratory, Department of Pharmacy, School of Science, Engineering and Technology, Manarat International UniversityDhaka, Bangladesh; Southern Cross Plant Science, Southern Cross University, LismoreNew South Wales, Australia
| | - Mahmudur Rahman
- Southern Cross Plant Science, Southern Cross University, LismoreNew South Wales, Australia; Department of Pharmacy, Faculty of Health Sciences, Northern University BangladeshDhaka, Bangladesh
| | - Md Mahfizur Rahman
- Phytochemistry and Pharmacology Research Laboratory, Department of Pharmacy, School of Science, Engineering and Technology, Manarat International University Dhaka, Bangladesh
| | - Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research Dhaka, Bangladesh
| | - Ismet A Jahan
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research Dhaka, Bangladesh
| | - Mst Luthfun Nesa
- Department of Pharmacy, Atish Dipankar University of Science and Technology Dhaka, Bangladesh
| |
Collapse
|
46
|
Ihara Y, Masuda S. Cytosolic ppGpp accumulation induces retarded plant growth and development. PLANT SIGNALING & BEHAVIOR 2016; 11:e1132966. [PMID: 26825398 PMCID: PMC4883912 DOI: 10.1080/15592324.2015.1132966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In bacteria a second messenger, guanosine 5'-diphosphate 3'-diphosphate (ppGpp), synthesized upon nutrient starvation, controls many gene expressions and enzyme activities, which is necessary for growth under changeable environments. Recent studies have shown that ppGpp synthase and hydrolase are also conserved in eukaryotes, although their functions are not well understood. We recently showed that ppGpp-overaccumulation in Arabidopsis chloroplasts results in robust growth under nutrient-limited conditions, demonstrating that the bacterial-like stringent response at least functions in plastids. To test if ppGpp also functions in the cytosol, we constructed the transgenic Arabidopsis expressing Bacillus subtilis ppGpp synthase gene yjbM. Upon induction of the gene, the mutant synthesizes ∼10-20-fold higher levels of ppGpp, and its fresh weight was reduced to ˜80% that of the wild type. These results indicate that cytosolic ppGpp negatively regulates plant growth and development.
Collapse
Affiliation(s)
- Yuta Ihara
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, Japan
- Earth-life Science Institute, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
47
|
Maekawa M, Honoki R, Ihara Y, Sato R, Oikawa A, Kanno Y, Ohta H, Seo M, Saito K, Masuda S. Impact of the plastidial stringent response in plant growth and stress responses. NATURE PLANTS 2015; 1:15167. [PMID: 27251712 DOI: 10.1038/nplants.2015.167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/01/2015] [Indexed: 05/06/2023]
Abstract
The regulatory nucleotide guanosine 5'-diphosphate 3'-diphosphate (ppGpp), which was originally identified in Escherichia coli, controls the expression of a large gene set and many enzyme activities. The ppGpp-dependent control of cell activities is referred to as the stringent response. Recently, genes responsible for the synthesis and degradation of ppGpp have been identified not only in bacteria, but also in eukaryotes, including plants and animals, indicating that the stringent response is, unexpectedly, widely conserved. However, the exact function of the eukaryotic stringent response remains elusive. Here, we isolated an Arabidopsis mutant that overproduces ppGpp in chloroplasts. This mutant shows metabolite reduction, dwarf chloroplasts and significantly suppressed plastidial transcription and translation. Under nutrient-deficient conditions, the mutant shows more robust growth than the wild type. These results indicate that the ppGpp-dependent control of the organelle function is crucial for the systematic growth of host organisms.
Collapse
Affiliation(s)
- Mikika Maekawa
- Graduate School of Bioscience &Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Rina Honoki
- Graduate School of Bioscience &Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuta Ihara
- Graduate School of Bioscience &Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Ryoichi Sato
- Graduate School of Bioscience &Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Hiroyuki Ohta
- Graduate School of Bioscience &Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Shinji Masuda
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- Center for Biological Resources &Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|