1
|
Liu Q, Jia Y, Li Y, Geng S, Yu Y, Wang Z, Wang X, Fu N, Zeng J, Su X, Li H, Wang H. Potential Functions and Transmission Dynamics of Fungi Associated with Anoplophora glabripennis Across Different Life Stages, Between Sexes, and Between Habitats. INSECTS 2025; 16:273. [PMID: 40266779 PMCID: PMC11943397 DOI: 10.3390/insects16030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/25/2025]
Abstract
The fungi residing in the gut and associated habitats play a crucial role in the growth and development of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a wood-boring pest. Yet, how they are acquired and maintained across generations, and their respective roles throughout the life cycle, remain unknown. To this end, we used high-throughput ITS sequencing analysis to characterize the fungal composition and diversity associated with A. glabripennis across three different life stages, between sexes, and between its habitats. Overall, the fungi composition was stage specific, with adult gut communities being more diverse than those of larvae and eggs. Male fungal communities differed significantly, while frass and female communities were more similar to each other. The top 10 most abundant genera were investigated, with Fusarium consistently observed in all samples and exhibiting the highest overall abundance. Function predictions revealed the presence of potentially beneficial fungi that may support A. glabripennis invasion across all groups. Additionally, we observed complex network structures in the fungal communities associated with eggs and males, and stronger positive correlations in those of eggs and newly hatched larvae. Source tracking analysis suggested that these fungi were vertically transmitted, following a transmission pathway of 'female gut-frass-egg-larval gut', occurring via frass deposited in oviposition sites. Our findings provide a nuanced understanding of the intricate interactions among plants, insects, and fungi, shedding light on the acquisition, maintenance, and roles of gut-associated fungi in A. glabripennis.
Collapse
Affiliation(s)
- Qing Liu
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Yuanting Jia
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Yishuo Li
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Shilong Geng
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Yanqi Yu
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Zhangyan Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Xinru Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Ningning Fu
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Jianyong Zeng
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoyu Su
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
2
|
Liu J, Sun Y, Liu M, Gou C, Li H, Yang F, Lu J. Isolation and Identification of Apiospora intestini from Hedera nepalensis Leaf Blight and Determination of Antagonism of Phomopsis sp. Curr Microbiol 2025; 82:103. [PMID: 39869227 DOI: 10.1007/s00284-024-04016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/28/2024] [Indexed: 01/28/2025]
Abstract
In order to identify the pathogen responsible for Hedera nepalensis leaf blight and investigate effective biocontrol strategies, samples were collected from 10 significantly infected areas at Southwest Forestry University; four to six infected leaves were gathered from each area, followed by the isolation and purification of strains from the infected plant leaves using tissue isolation and hyphae-purification techniques. We conducted an examination of the biological characteristics and compared the inhibitory effects of different concentrations of Phomopsis sp. (50%, 25%, 16.7%, 12.5%, and 10%) with 20 µg/mL of synthetic fungicides (Mancozeb, Carbendazim, Polyoxin, and Hymexazol) on the pathogen, while also assessing the control efficacy of Phomopsis sp. against the pathogen in the greenhouse. The internal transcribed spacer (ITS) region, β-tubulin (TUB), and translation elongation factor 1-alpha (TEF) analysis revealed that the highly virulent strain causing H. nepalensis leaf blight was Apiospora intestini. Additionally, it was found that 25% Phomopsis sp. significantly inhibited Apiospora intestini when compared to synthetic fungicides, and Phomopsis sp. supernatant possesses both protective and curative effects against the plant diseases caused by Apiospora intestini. The results of this study serve as a reference for the prevention and treatment of H. nepalensis leaf blight.
Collapse
Affiliation(s)
- Jian Liu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Yajiao Sun
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Mian Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Chaojin Gou
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Huali Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Fazhong Yang
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Junjia Lu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
3
|
Petrović K, Orzali L, Krsmanović S, Valente MT, Tolimir M, Pavlov J, Riccioni L. Genetic Diversity and Pathogenicity of the Fusarium Species Complex on Soybean in Serbia. PLANT DISEASE 2024; 108:1851-1860. [PMID: 38311795 DOI: 10.1094/pdis-11-23-2450-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Using morphological and cultural characteristics for identification, 36 Fusarium isolates were recovered from diseased roots, stems, and seeds of soybean from several localities throughout Vojvodina Province, Serbia. Based on molecular characterization, 12 Fusarium species were identified: F. acuminatum, F. avenaceum, F. commune, F. equiseti, F. graminearum, F. incarnatum, F. oxysporum, F. proliferatum, F. solani, F. sporotrichioides, F. subglutinans, and F. tricinctum. The elongation factor 1-α-based phylogeny grouped the isolates into 12 well-supported clades, but polymorphisms among sequences in some clades suggested the use of the species complex concept: (i) F. incarnatum-equiseti species complex (FIESC)-F. incarnatum and F. equiseti; (ii) F. oxysporum species complex (FOSC)-F. oxysporum; (iii) F. solani species complex (FSSC)-F. solani; and (iv) F. acuminatum/F. avenaceum/F. tricinctum species complex (FAATSC)-F. acuminatum, F. avenaceum, and F. tricinctum. Pathogenicity tests showed that the most aggressive species causing soybean seed rot were F. sporotrichioides, F. graminearum, FIESC, and F. avenaceum. Furthermore, F. subglutinans, FSSC, and F. proliferatum showed a high percentage of pathogenicity on soybean seeds (80 to 100%), whereas variability in pathogenicity occurred within isolates of F. tricinctum. FOSC, F. commune, and F. acuminatum had the lowest pathogenicity. To our knowledge, this is the first study of the characterization of Fusarium species on soybean in Serbia. This study provides valuable information about the composition of Fusarium species and pathogenicity that will be used in further research on soybean resistance to Fusarium-based diseases.
Collapse
Affiliation(s)
- Kristina Petrović
- Maize Research Institute "Zemun Polje", Belgrade 11185, Serbia
- BioSense Institute, University of Novi Sad, Novi Sad 21001, Serbia
| | - Laura Orzali
- Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy
| | | | - Maria Teresa Valente
- Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy
| | - Miodrag Tolimir
- Maize Research Institute "Zemun Polje", Belgrade 11185, Serbia
| | - Jovan Pavlov
- Maize Research Institute "Zemun Polje", Belgrade 11185, Serbia
| | - Luca Riccioni
- Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy (deceased)
| |
Collapse
|
4
|
Hamilton R, Jacobs JL, McCoy AG, Kelly HM, Bradley CA, Malvick DK, Rojas JA, Chilvers MI. Multistate Sensitivity Monitoring of Fusarium virguliforme to the SDHI Fungicides Fluopyram and Pydiflumetofen in the United States. PLANT DISEASE 2024; 108:1602-1611. [PMID: 38127633 DOI: 10.1094/pdis-11-23-2465-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Sudden death syndrome (SDS), caused by Fusarium virguliforme, is an important yield-limiting disease of soybean (Glycine max). From 1996 to 2022, cumulative yield losses attributed to SDS in North America totaled over 25 million metric tons, which was valued at over US $7.8 billion. Seed treatments are widely used to manage SDS by reducing early season soybean root infection by F. virguliforme. Fluopyram (succinate dehydrogenase inhibitor [SDHI] - FRAC 7), a fungicide seed treatment for SDS management, has been registered for use on soybean in the United States since 2014. A baseline sensitivity study conducted in 2014 evaluated 130 F. virguliforme isolates collected from five states to fluopyram in a mycelial growth inhibition assay and reported a mean EC50 of 3.35 mg/liter. This baseline study provided the foundation for the objectives of this research: to detect any statistically significant change in fluopyram sensitivity over time and geographical regions within the United States and to investigate sensitivity to the fungicide pydiflumetofen. We repeated fluopyram sensitivity testing on a panel of 80 historical F. virguliforme isolates collected from 2006 to 2013 (76 of which were used in the baseline study) and conducted testing on 123 contemporary isolates collected from 2016 to 2022 from 11 states. This study estimated a mean absolute EC50 of 3.95 mg/liter in isolates collected from 2006 to 2013 and a mean absolute EC50 of 4.19 mg/liter in those collected in 2016 to 2022. There was no significant change in fluopyram sensitivity (P = 0.1) identified between the historical and contemporary isolates. A subset of 23 isolates, tested against pydiflumetofen under the same conditions, estimated an absolute mean EC50 of 0.11 mg/liter. Moderate correlation was detected between fluopyram and pydiflumetofen sensitivity estimates (R = 0.53; P < 0.001). These findings enable future fluopyram and pydiflumetofen resistance monitoring and inform current soybean SDS management strategies in a regional and national context.
Collapse
Affiliation(s)
- Ryan Hamilton
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Janette L Jacobs
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Austin G McCoy
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Heather M Kelly
- Department of Entomology and Plant Pathology, The University of Tennessee Institute of Agriculture, Jackson, TN 38301
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445
| | - Dean K Malvick
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - J Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| | - Martin I Chilvers
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
5
|
Lario LD, Gonzalez C, Meini MR, Pillaca-Pullo OS, Zuricaray D, Español L, Scandiani MM, Luque A, Casati P, Spampinato CP. Exploring soybean cultivar susceptibility to sudden death syndrome: Insights into isoflavone responses and biocontrol potential. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111951. [PMID: 38072331 DOI: 10.1016/j.plantsci.2023.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Sudden Death Syndrome (SDS) caused by Fusarium tucumaniae is a significant threat to soybean production in Argentina. This study assessed the susceptibility of SY 3 × 7 and SPS 4 × 4 soybeans cultivars to F. tucumaniae and studied changes in root isoflavone levels after infection. Additionally, the biocontrol potential of plant-growth promoting rhizobacteria (PGPR) against SDS was also examined. Our results demonstrated that the SY 3 × 7 cultivar exhibited higher disease severity and total fresh weight loss than SPS 4 × 4. Both cultivars showed induction of daidzein, glycitein, and genistein in response to infection, with the partially resistant cultivar displaying significantly higher daidzein levels than the susceptible cultivar at 14 days post infection (dpi) (2.74 vs 2.17-fold), declining to a lesser extent at 23 dpi (0.94 vs 0.35-fold, respectively). However, daidzein was not able to inhibit F. tucumaniae growth in in vitro assays probably due to its conversion to an isoflavonoid phytoalexin which would ultimately be an effective fungal inhibitor. Furthermore, the PGPR bacterium Bacillus amyloliquefaciens BNM340 displayed antagonistic activity against F. tucumaniae and reduced SDS symptoms in infected plants. This study sheds light on the varying susceptibility of soybean cultivars to SDS, offers insights into isoflavone responses during infection, and demonstrates the potential of PGPR as a biocontrol strategy for SDS management, providing ways for disease control in soybean production.
Collapse
Affiliation(s)
- Luciana Daniela Lario
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, Rosario 2000, Argentina.
| | - Camila Gonzalez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - María Rocío Meini
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | | | - Daniela Zuricaray
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, Rosario 2000, Argentina
| | - Laureano Español
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - María Mercedes Scandiani
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| | - Alicia Luque
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Claudia Patricia Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|
6
|
da Silva LL, Tian H, Schemerhorn B, Xu JR, Cai G. Genome-Wide Informative Microsatellite Markers and Population Structure of Fusarium virguliforme from Argentina and the USA. J Fungi (Basel) 2023; 9:1109. [PMID: 37998914 PMCID: PMC10672573 DOI: 10.3390/jof9111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Soybean sudden death syndrome (SDS) is a destructive disease that causes substantial yield losses in South and North America. Whereas four Fusarium species were identified as the causal agents, F. virguliforme is the primary SDS-causing pathogen in North America and it also contributes substantially to SDS in Argentina. In this study, we comparatively analyzed genome assemblies of four F. virguliforme strains and identified 29 informative microsatellite markers. Sixteen of the 29 markers were used to investigate the genetic diversity and population structure of this pathogen in a collection of 90 strains from Argentina and the USA. A total of 37 multilocus genotypes (MLGs) were identified, including 10 MLGs in Argentina and 26 in the USA. Only MLG2, the most dominant MLG, was found in both countries. Analyses with three different approaches showed that these MLGs could be grouped into three clusters. Cluster IA consisting of four MLGs exclusively from the USA has much higher genetic diversity than the other two clusters, suggesting that it may be the ancestral cluster although additional data are necessary to support this hypothesis. Clusters IB and II consisted of 13 and 21 MLGs, respectively. MLGs belonging to these two clusters were present in all four sampled states in Argentina and all five sampled states in the USA.
Collapse
Affiliation(s)
- Leandro Lopes da Silva
- Crop Production and Pest Control Research Unit, Agricultural Research Service, United States Department of Agriculture (USDA), West Lafayette, IN 47907, USA
| | - Huan Tian
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, USA
| | - Brandi Schemerhorn
- Crop Production and Pest Control Research Unit, Agricultural Research Service, United States Department of Agriculture (USDA), West Lafayette, IN 47907, USA
| | - Jin-Rong Xu
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, USA
| | - Guohong Cai
- Crop Production and Pest Control Research Unit, Agricultural Research Service, United States Department of Agriculture (USDA), West Lafayette, IN 47907, USA
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Pereira DS, Hilário S, Gonçalves MFM, Phillips AJL. Diaporthe Species on Palms: Molecular Re-Assessment and Species Boundaries Delimitation in the D. arecae Species Complex. Microorganisms 2023; 11:2717. [PMID: 38004729 PMCID: PMC10673533 DOI: 10.3390/microorganisms11112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Due to cryptic diversification, phenotypic plasticity and host associations, multilocus phylogenetic analyses have become the most important tool in accurately identifying and circumscribing species in the Diaporthe genus. However, the application of the genealogical concordance criterion has often been overlooked, ultimately leading to an exponential increase in novel Diaporthe spp. Due to the large number of species, many lineages remain poorly understood under the so-called species complexes. For this reason, a robust delimitation of the species boundaries in Diaporthe is still an ongoing challenge. Therefore, the present study aimed to resolve the species boundaries of the Diaporthe arecae species complex (DASC) by implementing an integrative taxonomic approach. The Genealogical Phylogenetic Species Recognition (GCPSR) principle revealed incongruences between the individual gene genealogies. Moreover, the Poisson Tree Processes' (PTPs) coalescent-based species delimitation models identified three well-delimited subclades represented by the species D. arecae, D. chiangmaiensis and D. smilacicola. These results evidence that all species previously described in the D. arecae subclade are conspecific, which is coherent with the morphological indistinctiveness observed and the absence of reproductive isolation and barriers to gene flow. Thus, 52 Diaporthe spp. are reduced to synonymy under D. arecae. Recent population expansion and the possibility of incomplete lineage sorting suggested that the D. arecae subclade may be considered as ongoing evolving lineages under active divergence and speciation. Hence, the genetic diversity and intraspecific variability of D. arecae in the context of current global climate change and the role of D. arecae as a pathogen on palm trees and other hosts are also discussed. This study illustrates that species in Diaporthe are highly overestimated, and highlights the relevance of applying an integrative taxonomic approach to accurately circumscribe the species boundaries in the genus Diaporthe.
Collapse
Affiliation(s)
- Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Sandra Hilário
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal;
- Faculty of Sciences, Biology Department, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Micael F. M. Gonçalves
- Faculty of Sciences, Biology Department, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
- Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
8
|
Hosseini B, Voegele RT, Link TI. Diagnosis of Soybean Diseases Caused by Fungal and Oomycete Pathogens: Existing Methods and New Developments. J Fungi (Basel) 2023; 9:jof9050587. [PMID: 37233298 DOI: 10.3390/jof9050587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Soybean (Glycine max) acreage is increasing dramatically, together with the use of soybean as a source of vegetable protein and oil. However, soybean production is affected by several diseases, especially diseases caused by fungal seed-borne pathogens. As infected seeds often appear symptomless, diagnosis by applying accurate detection techniques is essential to prevent propagation of pathogens. Seed incubation on culture media is the traditional method to detect such pathogens. This method is simple, but fungi have to develop axenically and expert mycologists are required for species identification. Even experts may not be able to provide reliable type level identification because of close similarities between species. Other pathogens are soil-borne. Here, traditional methods for detection and identification pose even greater problems. Recently, molecular methods, based on analyzing DNA, have been developed for sensitive and specific identification. Here, we provide an overview of available molecular assays to identify species of the genera Diaporthe, Sclerotinia, Colletotrichum, Fusarium, Cercospora, Septoria, Macrophomina, Phialophora, Rhizoctonia, Phakopsora, Phytophthora, and Pythium, causing soybean diseases. We also describe the basic steps in establishing PCR-based detection methods, and we discuss potentials and challenges in using such assays.
Collapse
Affiliation(s)
- Behnoush Hosseini
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Ralf Thomas Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Tobias Immanuel Link
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| |
Collapse
|
9
|
Mao HC, Sun Y, Tao C, Deng X, Xu X, Shen Z, Zhang L, Zheng Z, Huang Y, Hao Y, Zhou G, Liu S, Li R, Guo K, Tian Z, Shen Q. Rhizosphere Microbiota Promotes the Growth of Soybeans in a Saline-Alkali Environment under Plastic Film Mulching. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091889. [PMID: 37176946 PMCID: PMC10180738 DOI: 10.3390/plants12091889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
The rhizosphere microbiota plays a critical and crucial role in plant health and growth, assisting plants in resisting adverse stresses, including soil salinity. Plastic film mulching is an important method to adjust soil properties and improve crop yield, especially in saline-alkali soil. However, it remains unclear whether and to what extent the association between these improvements and rhizosphere microbiota exists. Here, from a field survey and a greenhouse mesocosm experiment, we found that mulching plastic films on saline-alkali soil can promote the growth of soybeans in the field. Results of the greenhouse experiment showed that soybeans grew better in unsterilized saline-alkali soil than in sterilized saline-alkali soil under plastic film mulching. By detecting the variations in soil properties and analyzing the high-throughput sequencing data, we found that with the effect of film mulching, soil moisture content was effectively maintained, soil salinity was obviously reduced, and rhizosphere bacterial and fungal communities were significantly changed. Ulteriorly, correlation analysis methods were applied. The optimization of soil properties ameliorated the survival conditions of soil microbes and promoted the increase in relative abundance of potential beneficial microorganisms, contributing to the growth of soybeans. Furthermore, the classification of potential key rhizosphere microbial OTUs were identified. In summary, our study suggests the important influence of soil properties as drivers on the alteration of rhizosphere microbial communities and indicates the important role of rhizosphere microbiota in promoting plant performance in saline-alkali soil under plastic film mulching.
Collapse
Affiliation(s)
- Han-Cheng Mao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Bio-Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifei Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Bio-Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Bio-Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Bio-Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Bio-Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenquan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Bio-Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Laijie Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Bio-Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zehui Zheng
- Institute of Environment and Ecology, Shandong Normal University, No. 88, Wenhuadong Road, Lixia District, Ji'nan 250014, China
| | - Yanhua Huang
- Institute of Environment and Ecology, Shandong Normal University, No. 88, Wenhuadong Road, Lixia District, Ji'nan 250014, China
| | - Yongren Hao
- Institute of Environment and Ecology, Shandong Normal University, No. 88, Wenhuadong Road, Lixia District, Ji'nan 250014, China
| | - Guoan Zhou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shulin Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Bio-Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Guo
- Institute of Environment and Ecology, Shandong Normal University, No. 88, Wenhuadong Road, Lixia District, Ji'nan 250014, China
| | - Zhixi Tian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Bio-Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
11
|
Kamali-Sarvestani S, Mostowfizadeh-Ghalamfarsa R, Salmaninezhad F, Cacciola SO. Fusarium and Neocosmospora Species Associated with Rot of Cactaceae and Other Succulent Plants. J Fungi (Basel) 2022; 8:364. [PMID: 35448595 PMCID: PMC9024871 DOI: 10.3390/jof8040364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 01/31/2023] Open
Abstract
Infections by Fusarium and Fusarium-like species on cacti and other succulent plants cause the syndrome known as Fusarium dry rot and soft rot. There are only few records of Fusarium species as pathogens of cacti and other succulent plants from Iran. The objective of this study was the identification and characterization of fusarioid species recovered from ornamental succulents in Shiraz County, Iran. Three fusarioid species, including F. oxysporum, F. proliferatum, and Neocosmospora falciformis (formerly F. falciforme), were recovered from 29 diverse species of cacti and other succulents with symptoms of Fusarium dry rot and soft rot. The three fungal species were identified on the basis of morphological characters and the phylogenetic analysis of the translation elongation factor1-α (tef1) nuclear gene. The F. oxysporum isolates were identified as F. oxysporum f. sp. opuntiarum. The pathogenicity of the three fusarioid species was tested on a range of economically important ornamental succulents, mostly in the Cactaceae family. The three species showed a broad host spectrum and induced different types of symptoms on inoculated plants, including soft and dry rot, chlorosis, necrotic spots, wilt, drying, root and crown rot. This is the first report of N. falciformis as a pathogen of succulent plants worldwide.
Collapse
Affiliation(s)
- Sahar Kamali-Sarvestani
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.K.-S.); (F.S.)
| | | | - Fatemeh Salmaninezhad
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.K.-S.); (F.S.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy
| |
Collapse
|
12
|
Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Diversity of Some of the Major Fungal Pathogens of Soybean and Potential Management Options. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Biocontrol Potential of Bradyrhizobium japonicum Against Soybean Sudden Death Syndrome in Irrigated and Non-irrigated Fields. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Bandara AY, Weerasooriya DK, Trexler RV, Bell TH, Esker PD. Soybean Roots and Soil From High- and Low-Yielding Field Sites Have Different Microbiome Composition. Front Microbiol 2021; 12:675352. [PMID: 34917042 PMCID: PMC8669749 DOI: 10.3389/fmicb.2021.675352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
The occurrence of high- (H) and low- (L) yielding field sites within a farm is a commonly observed phenomenon in soybean cultivation. Site topography, soil physical and chemical attributes, and soil/root-associated microbial composition can contribute to this phenomenon. In order to better understand the microbial dynamics associated with each site type (H/L), we collected bulk soil (BS), rhizosphere soil (RS), and soybean root (R) samples from historically high and low yield sites across eight Pennsylvania farms at V1 (first trifoliate) and R8 (maturity) soybean growth stages (SGS). We extracted DNA extracted from collected samples and performed high-throughput sequencing of PCR amplicons from both the fungal ITS and prokaryotic 16S rRNA gene regions. Sequences were then grouped into amplicon sequence variants (ASVs) and subjected to network analysis. Based on both ITS and 16S rRNA gene data, a greater network size and edges were observed for all sample types from H-sites compared to L-sites at both SGS. Network analysis suggested that the number of potential microbial interactions/associations were greater in samples from H-sites compared to L-sites. Diversity analyses indicated that site-type was not a main driver of alpha and beta diversity in soybean-associated microbial communities. L-sites contained a greater percentage of fungal phytopathogens (ex: Fusarium, Macrophomina, Septoria), while H-sites contained a greater percentage of mycoparasitic (ex: Trichoderma) and entomopathogenic (ex: Metarhizium) fungal genera. Furthermore, roots from H-sites possessed a greater percentage of Bradyrhizobium and genera known to contain plant growth promoting bacteria (ex: Flavobacterium, Duganella). Overall, our results revealed that there were differences in microbial composition in soil and roots from H- and L-sites across a variety of soybean farms. Based on our findings, we hypothesize that differences in microbial composition could have a causative relationship with observed within-farm variability in soybean yield.
Collapse
Affiliation(s)
- Ananda Y. Bandara
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
| | - Dilooshi K. Weerasooriya
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
| | - Ryan V. Trexler
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
| | - Terrence H. Bell
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, United States
| | - Paul D. Esker
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
16
|
Rodriguez MC, Sautua F, Scandiani M, Carmona M, Asurmendi S. Current recommendations and novel strategies for sustainable management of soybean sudden death syndrome. PEST MANAGEMENT SCIENCE 2021; 77:4238-4248. [PMID: 33942966 DOI: 10.1002/ps.6458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
The increase in food production requires reduction of the damage caused by plant pathogens, minimizing the environmental impact of management practices. Soil-borne pathogens are among the most relevant pathogens that affect soybean crop yield. Soybean sudden death syndrome (SDS), caused by several distinct species of Fusarium, produces significant yield losses in the leading soybean-producing countries in North and South America. Current management strategies for SDS are scarce since there are no highly resistant cultivars and only a few fungicide seed treatments are available. Because of this, innovative approaches for SDS management need to be developed. Here, we summarize recently explored strategies based on plant nutrition, biological control, priming of plant defenses, host-induced gene silencing, and the development of new SDS-resistance cultivars using precision breeding techniques. Finally, sustainable management of SDS should also consider cultural control practices with minimal environmental impact. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria C Rodriguez
- Instituto de Agrobiotecnología y Biología Molecular, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Sautua
- Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Scandiani
- Centro de Referencia de Micología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo Carmona
- Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
17
|
Geiser DM, Al-Hatmi AMS, Aoki T, Arie T, Balmas V, Barnes I, Bergstrom GC, Bhattacharyya MK, Blomquist CL, Bowden RL, Brankovics B, Brown DW, Burgess LW, Bushley K, Busman M, Cano-Lira JF, Carrillo JD, Chang HX, Chen CY, Chen W, Chilvers M, Chulze S, Coleman JJ, Cuomo CA, de Beer ZW, de Hoog GS, Del Castillo-Múnera J, Del Ponte EM, Diéguez-Uribeondo J, Di Pietro A, Edel-Hermann V, Elmer WH, Epstein L, Eskalen A, Esposto MC, Everts KL, Fernández-Pavía SP, da Silva GF, Foroud NA, Fourie G, Frandsen RJN, Freeman S, Freitag M, Frenkel O, Fuller KK, Gagkaeva T, Gardiner DM, Glenn AE, Gold SE, Gordon TR, Gregory NF, Gryzenhout M, Guarro J, Gugino BK, Gutierrez S, Hammond-Kosack KE, Harris LJ, Homa M, Hong CF, Hornok L, Huang JW, Ilkit M, Jacobs A, Jacobs K, Jiang C, Jiménez-Gasco MDM, Kang S, Kasson MT, Kazan K, Kennell JC, Kim HS, Kistler HC, Kuldau GA, Kulik T, Kurzai O, Laraba I, Laurence MH, Lee T, Lee YW, Lee YH, Leslie JF, Liew ECY, Lofton LW, Logrieco AF, López-Berges MS, Luque AG, Lysøe E, Ma LJ, Marra RE, Martin FN, May SR, McCormick SP, McGee C, Meis JF, Migheli Q, Mohamed Nor NMI, Monod M, Moretti A, Mostert D, Mulè G, et alGeiser DM, Al-Hatmi AMS, Aoki T, Arie T, Balmas V, Barnes I, Bergstrom GC, Bhattacharyya MK, Blomquist CL, Bowden RL, Brankovics B, Brown DW, Burgess LW, Bushley K, Busman M, Cano-Lira JF, Carrillo JD, Chang HX, Chen CY, Chen W, Chilvers M, Chulze S, Coleman JJ, Cuomo CA, de Beer ZW, de Hoog GS, Del Castillo-Múnera J, Del Ponte EM, Diéguez-Uribeondo J, Di Pietro A, Edel-Hermann V, Elmer WH, Epstein L, Eskalen A, Esposto MC, Everts KL, Fernández-Pavía SP, da Silva GF, Foroud NA, Fourie G, Frandsen RJN, Freeman S, Freitag M, Frenkel O, Fuller KK, Gagkaeva T, Gardiner DM, Glenn AE, Gold SE, Gordon TR, Gregory NF, Gryzenhout M, Guarro J, Gugino BK, Gutierrez S, Hammond-Kosack KE, Harris LJ, Homa M, Hong CF, Hornok L, Huang JW, Ilkit M, Jacobs A, Jacobs K, Jiang C, Jiménez-Gasco MDM, Kang S, Kasson MT, Kazan K, Kennell JC, Kim HS, Kistler HC, Kuldau GA, Kulik T, Kurzai O, Laraba I, Laurence MH, Lee T, Lee YW, Lee YH, Leslie JF, Liew ECY, Lofton LW, Logrieco AF, López-Berges MS, Luque AG, Lysøe E, Ma LJ, Marra RE, Martin FN, May SR, McCormick SP, McGee C, Meis JF, Migheli Q, Mohamed Nor NMI, Monod M, Moretti A, Mostert D, Mulè G, Munaut F, Munkvold GP, Nicholson P, Nucci M, O'Donnell K, Pasquali M, Pfenning LH, Prigitano A, Proctor RH, Ranque S, Rehner SA, Rep M, Rodríguez-Alvarado G, Rose LJ, Roth MG, Ruiz-Roldán C, Saleh AA, Salleh B, Sang H, Scandiani MM, Scauflaire J, Schmale DG, Short DPG, Šišić A, Smith JA, Smyth CW, Son H, Spahr E, Stajich JE, Steenkamp E, Steinberg C, Subramaniam R, Suga H, Summerell BA, Susca A, Swett CL, Toomajian C, Torres-Cruz TJ, Tortorano AM, Urban M, Vaillancourt LJ, Vallad GE, van der Lee TAJ, Vanderpool D, van Diepeningen AD, Vaughan MM, Venter E, Vermeulen M, Verweij PE, Viljoen A, Waalwijk C, Wallace EC, Walther G, Wang J, Ward TJ, Wickes BL, Wiederhold NP, Wingfield MJ, Wood AKM, Xu JR, Yang XB, Yli-Mattila T, Yun SH, Zakaria L, Zhang H, Zhang N, Zhang SX, Zhang X. Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic Fusarium that Includes the Fusarium solani Species Complex. PHYTOPATHOLOGY 2021; 111:1064-1079. [PMID: 33200960 DOI: 10.1094/phyto-08-20-0330-le] [Show More Authors] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.
Collapse
Affiliation(s)
- David M Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | | | - Takayuki Aoki
- Genetic Resources Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tsutomu Arie
- Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Gary C Bergstrom
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | | | - Cheryl L Blomquist
- Plant Pest Diagnostics Branch, California Department of Food and Agriculture, Sacramento, CA 95832, U.S.A
| | - Robert L Bowden
- Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture Agricultural Research Service (USDA-ARS), Manhattan, KS 66506, U.S.A
| | - Balázs Brankovics
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Daren W Brown
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Lester W Burgess
- Sydney Institute of Agriculture, Faculty of Science, University of Sydney, Sydney, Australia
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - José F Cano-Lira
- Mycology Unit and IISPV, Universitat Rovira i Virgili Medical School, Reus, Spain
| | - Joseph D Carrillo
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chi-Yu Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, People's Republic of China
| | - Martin Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Sofia Chulze
- Research Institute on Mycology and Mycotoxicology, National Scientific and Technical Research Council, National University of Rio Cuarto, Rio Cuarto, Córdoba, Argentina
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | | | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - G Sybren de Hoog
- Department of Medical Mycology and Infectious Diseases, Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | | | - Wade H Elmer
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | | | - Kathryne L Everts
- Wye Research and Education Center, University of Maryland, Queenstown, MD 21658, U.S.A
| | - Sylvia P Fernández-Pavía
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | | | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rasmus J N Frandsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Stanley Freeman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Kevin K Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, U.S.A
| | - Tatiana Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, St. Petersburg-Pushkin, Russia
| | | | - Anthony E Glenn
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, U.S.A
| | - Scott E Gold
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, U.S.A
| | - Thomas R Gordon
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Nancy F Gregory
- Department of Plant and Soil Sciences, University of Delaware, DE 19716, U.S.A
| | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Josep Guarro
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| | - Beth K Gugino
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | | | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Linda J Harris
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Mónika Homa
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Cheng-Fang Hong
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - László Hornok
- Institute of Plant Protection, Szent István University, Gödöllő, Hungary
| | - Jenn-Wen Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Sarıçam, Adana, Turkey
| | - Adriaana Jacobs
- Biosystematics Unit, Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - Karin Jacobs
- Department of Microbiology, Stellenbosch University, Matieland, South Africa
| | - Cong Jiang
- College of Plant Protection, Northwest Agriculture and Forestry University, Xianyang, People's Republic of China
| | - María Del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Matthew T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, U.S.A
| | - Kemal Kazan
- CSIRO Agriculture and Food, St. Lucia, Australia
| | - John C Kennell
- Biology Department, St. Louis University, St. Louis, MO 63101, U.S.A
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - H Corby Kistler
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Gretchen A Kuldau
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Oliver Kurzai
- German National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Imane Laraba
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Matthew H Laurence
- Australian Institute of Botanical Science, Royal Botanic Garden and Domain Trust, Sydney, Australia
| | - Theresa Lee
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Edward C Y Liew
- Australian Institute of Botanical Science, Royal Botanic Garden and Domain Trust, Sydney, Australia
| | - Lily W Lofton
- Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, GA 30605, U.S.A
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | - Manuel S López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Alicia G Luque
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Referencia de Micología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien, Ås, Norway
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Robert E Marra
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Frank N Martin
- Crop Improvement and Protection Research Unit, ARS-USDA, Salinas, CA 93905, U.S.A
| | - Sara R May
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Chyanna McGee
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Jacques F Meis
- Department of Medical Mycology and Infectious Diseases, Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Quirico Migheli
- Dipartimento di Agraria and Nucleo Ricerca Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| | - N M I Mohamed Nor
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Michel Monod
- Laboratoire de Mycologie, Service de Dermatologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Antonio Moretti
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | - Diane Mostert
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | | | - Gary P Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Marcio Nucci
- Hospital Universitário, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milano, Milan, Italy
| | - Ludwig H Pfenning
- Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais State, Brazil
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Stéphane Ranque
- Institut Hospitalier Universitaire Méditerranée Infection, Aix Marseille University, Marseille, France
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Martijn Rep
- Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerardo Rodríguez-Alvarado
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | - Lindy Joy Rose
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Mitchell G Roth
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Carmen Ruiz-Roldán
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Amgad A Saleh
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Baharuddin Salleh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - María Mercedes Scandiani
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Referencia de Micología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jonathan Scauflaire
- Centre de Recherche et de Formation Agronomie, Haute Ecole Louvain en Hainaut, Montignies-sur-Sambre, Belgium
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A
| | | | - Adnan Šišić
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Jason A Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - Christopher W Smyth
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, U.S.A
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ellie Spahr
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, U.S.A
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Emma Steenkamp
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Christian Steinberg
- Agroécologie, AgroSup Dijon, INRAE, University of Bourgogne Franche-Comté, Dijon, France
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Brett A Summerell
- Australian Institute of Botanical Science, Royal Botanic Garden and Domain Trust, Sydney, Australia
| | - Antonella Susca
- Institute of Sciences of Food Production, Research National Council, Bari, Italy
| | - Cassandra L Swett
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | | | - Terry J Torres-Cruz
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Anna M Tortorano
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Theo A J van der Lee
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Dan Vanderpool
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Anne D van Diepeningen
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Eduard Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, South Africa
| | - Marcele Vermeulen
- Department of Microbial Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Paul E Verweij
- Department of Medical Mycology and Infectious Diseases, Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Matieland, South Africa
| | - Cees Waalwijk
- Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Emma C Wallace
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Grit Walther
- German National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Jie Wang
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94702
| | - Todd J Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, Peoria, IL 61604, U.S.A
| | - Brian L Wickes
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, U.S.A
| | - Nathan P Wiederhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229, U.S.A
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ana K M Wood
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Jin-Rong Xu
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229, U.S.A
| | - Xiao-Bing Yang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| | - Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, People's Republic of China
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, U.S.A
| | - Sean X Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, U.S.A
| | - Xue Zhang
- College of Plant Protection, Northwest Agriculture and Forestry University, Xianyang, People's Republic of China
| |
Collapse
|
18
|
Benítez-Malvido J, Rodríguez-Alvarado G, Álvarez-Añorve M, Ávila-Cabadilla LD, del-Val E, Lira-Noriega A, Gregorio-Cipriano R. Antagonistic Interactions Between Fusaria Species and Their Host Plants Are Influenced by Host Taxonomic Distance: A Case Study From Mexico. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.615857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interactions between cultivated and wild plants with their fungal pathogens have strong ecological, evolutionary and economic implications. Antagonistic interactions, however, have been scantily studied in an applied context by using ecological networks, phylogeny and spatial ecology concurrently. In this study, we describe for the first time, the topological structure of plant-fungi networks involving species of the genus Fusarium and their native and introduced (exotic) cultivated host plants in Mexico. For this, we based our study on a recent database describing the attack on 75 native and introduced plant species, including 35 species of the genus Fusarium. Host plant species varied in their degree of phylogenetical relatedness (Monocots and Dicots) and spatial geographical distribution. Therefore, we also tested whether or not plant-Fusarium networks are phylogenetically structured and highlighted the spatial correlation between pathogens and their host plants across the country. In general, the pathogen-plant network is more specialized and compartmentalized in closely related taxa. Closely related hosts are more likely to share the same pathogenic Fusarium species. Host plants are present in different ecosystems and climates, with regions having more cultivated plant species presenting the highest number of fusaria pathogens. From an economic standpoint, different species of the same taxonomic family may be more susceptible to being attacked by the same species of Fusarium, whereas from an ecological standpoint the movement of pathogens may expose wild and cultivated plants to new diseases. Our study highlights the relevance of interaction intimacy in structuring trophic relationships between plants and fusaria species in native and introduced species. Furthermore, we show that the analytical tools regarding host distribution and phylogeny could permit a rapid assessment of which plant species in a region are most likely to be attacked by a given fusaria.
Collapse
|
19
|
Lynn KMT, Wingfield MJ, Durán A, Oliveira LSS, de Beer ZW, Barnes I. Novel Fusarium mutualists of two Euwallacea species infesting Acacia crassicarpa in Indonesia. Mycologia 2021; 113:536-558. [PMID: 33835895 DOI: 10.1080/00275514.2021.1875708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several species in the Euwallacea fornicatus complex have emerged as important pests of woody plants globally, particularly in habitats where they are invasive aliens. These beetles live in obligate symbioses with fungi in the genus Fusarium. In this study, we identified Euwallacea spp. and their fungal mutualists that have emerged as pests of planted Acacia crassicarpa in Riau, Indonesia. Morphological identification and phylogenetic analyses of the mitochondrial cytochrome oxidase c subunit I (COI) gene confirmed that E. similis and E. perbrevis are the most abundant beetles infesting these trees. Multilocus phylogenetic analyses of their fungal mutualists revealed their nonspecific association with six Fusarium species. These included F. rekanum and five novel Fusarium mutualists within the Fusarium solani species complex (FSSC), four of which reside in the Ambrosia Fusarium Clade (AFC). These new species are described here as F. akasia, F. awan, F. mekan, F. variasi, and F. warna.
Collapse
Affiliation(s)
- Kira M T Lynn
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Alvaro Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd., Pangkalan Kerinci 28300, Riau, Indonesia
| | - Leonardo S S Oliveira
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd., Pangkalan Kerinci 28300, Riau, Indonesia
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
20
|
Crous P, Lombard L, Sandoval-Denis M, Seifert K, Schroers HJ, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, Kema G, Lamprecht S, Cai L, Rossman A, Stadler M, Summerbell R, Taylor J, Ploch S, Visagie C, Yilmaz N, Frisvad J, Abdel-Azeem A, Abdollahzadeh J, Abdolrasouli A, Akulov A, Alberts J, Araújo J, Ariyawansa H, Bakhshi M, Bendiksby M, Ben Hadj Amor A, Bezerra J, Boekhout T, Câmara M, Carbia M, Cardinali G, Castañeda-Ruiz R, Celis A, Chaturvedi V, Collemare J, Croll D, Damm U, Decock C, de Vries R, Ezekiel C, Fan X, Fernández N, Gaya E, González C, Gramaje D, Groenewald J, Grube M, Guevara-Suarez M, Gupta V, Guarnaccia V, Haddaji A, Hagen F, Haelewaters D, Hansen K, Hashimoto A, Hernández-Restrepo M, Houbraken J, Hubka V, Hyde K, Iturriaga T, Jeewon R, Johnston P, Jurjević Ž, Karalti İ, Korsten L, Kuramae E, Kušan I, Labuda R, Lawrence D, Lee H, Lechat C, Li H, Litovka Y, Maharachchikumbura S, Marin-Felix Y, Matio Kemkuignou B, Matočec N, McTaggart A, Mlčoch P, Mugnai L, Nakashima C, Nilsson R, Noumeur S, Pavlov I, Peralta M, Phillips A, Pitt J, Polizzi G, Quaedvlieg W, Rajeshkumar K, Restrepo S, Rhaiem A, Robert J, Robert V, Rodrigues A, et alCrous P, Lombard L, Sandoval-Denis M, Seifert K, Schroers HJ, Chaverri P, Gené J, Guarro J, Hirooka Y, Bensch K, Kema G, Lamprecht S, Cai L, Rossman A, Stadler M, Summerbell R, Taylor J, Ploch S, Visagie C, Yilmaz N, Frisvad J, Abdel-Azeem A, Abdollahzadeh J, Abdolrasouli A, Akulov A, Alberts J, Araújo J, Ariyawansa H, Bakhshi M, Bendiksby M, Ben Hadj Amor A, Bezerra J, Boekhout T, Câmara M, Carbia M, Cardinali G, Castañeda-Ruiz R, Celis A, Chaturvedi V, Collemare J, Croll D, Damm U, Decock C, de Vries R, Ezekiel C, Fan X, Fernández N, Gaya E, González C, Gramaje D, Groenewald J, Grube M, Guevara-Suarez M, Gupta V, Guarnaccia V, Haddaji A, Hagen F, Haelewaters D, Hansen K, Hashimoto A, Hernández-Restrepo M, Houbraken J, Hubka V, Hyde K, Iturriaga T, Jeewon R, Johnston P, Jurjević Ž, Karalti İ, Korsten L, Kuramae E, Kušan I, Labuda R, Lawrence D, Lee H, Lechat C, Li H, Litovka Y, Maharachchikumbura S, Marin-Felix Y, Matio Kemkuignou B, Matočec N, McTaggart A, Mlčoch P, Mugnai L, Nakashima C, Nilsson R, Noumeur S, Pavlov I, Peralta M, Phillips A, Pitt J, Polizzi G, Quaedvlieg W, Rajeshkumar K, Restrepo S, Rhaiem A, Robert J, Robert V, Rodrigues A, Salgado-Salazar C, Samson R, Santos A, Shivas R, Souza-Motta C, Sun G, Swart W, Szoke S, Tan Y, Taylor J, Taylor P, Tiago P, Váczy K, van de Wiele N, van der Merwe N, Verkley G, Vieira W, Vizzini A, Weir B, Wijayawardene N, Xia J, Yáñez-Morales M, Yurkov A, Zamora J, Zare R, Zhang C, Thines M. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol 2021; 98:100116. [PMID: 34466168 PMCID: PMC8379525 DOI: 10.1016/j.simyco.2021.100116] [Show More Authors] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
Collapse
Key Words
- Apiognomonia platani (Lév.) L. Lombard
- Atractium ciliatum Link
- Atractium pallidum Bonord.
- Calloria tremelloides (Grev.) L. Lombard
- Cephalosporium sacchari E.J. Butler
- Cosmosporella cavisperma (Corda) Sand.-Den., L. Lombard & Crous
- Cylindrodendrum orthosporum (Sacc. & P. Syd.) L. Lombard
- Dialonectria volutella (Ellis & Everh.) L. Lombard & Sand.-Den.
- Fusarium aeruginosum Delacr.
- Fusarium agaricorum Sarrazin
- Fusarium albidoviolaceum Dasz.
- Fusarium aleyrodis Petch
- Fusarium amentorum Lacroix
- Fusarium annuum Leonian
- Fusarium arcuatum Berk. & M.A. Curtis
- Fusarium aridum O.A. Pratt
- Fusarium armeniacum (G.A. Forbes et al.) L.W. Burgess & Summerell
- Fusarium arthrosporioides Sherb.
- Fusarium asparagi Delacr.
- Fusarium batatas Wollenw.
- Fusarium biforme Sherb.
- Fusarium buharicum Jacz. ex Babajan & Teterevn.-Babajan
- Fusarium cactacearum Pasin. & Buzz.-Trav.
- Fusarium cacti-maxonii Pasin. & Buzz.-Trav.
- Fusarium caudatum Wollenw.
- Fusarium cavispermum Corda
- Fusarium cepae Hanzawa
- Fusarium cesatii Rabenh.
- Fusarium citriforme Jamal.
- Fusarium citrinum Wollenw.
- Fusarium citrulli Taubenh.
- Fusarium clavatum Sherb.
- Fusarium coccinellum Kalchbr.
- Fusarium cromyophthoron Sideris
- Fusarium cucurbitae Taubenh.
- Fusarium cuneiforme Sherb.
- Fusarium delacroixii Sacc.
- Fusarium dimerum var. nectrioides Wollenw.
- Fusarium echinatum Sand.-Den. & G.J. Marais
- Fusarium epicoccum McAlpine
- Fusarium eucheliae Sartory, R. Sartory & J. Mey.
- Fusarium fissum Peyl
- Fusarium flocciferum Corda
- Fusarium gemmiperda Aderh.
- Fusarium genevense Dasz.
- Fusarium graminearum Schwabe
- Fusarium graminum Corda
- Fusarium heterosporioides Fautrey
- Fusarium heterosporum Nees & T. Nees
- Fusarium idahoanum O.A. Pratt
- Fusarium juruanum Henn.
- Fusarium lanceolatum O.A. Pratt
- Fusarium lateritium Nees
- Fusarium loncheceras Sideris
- Fusarium longipes Wollenw. & Reinking
- Fusarium lyarnte J.L. Walsh, Sangal., L.W. Burgess, E.C.Y. Liew & Summerell
- Fusarium malvacearum Taubenh.
- Fusarium martii f. phaseoli Burkh.
- Fusarium muentzii Delacr.
- Fusarium nigrum O.A. Pratt
- Fusarium oxysporum var. asclerotium Sherb.
- Fusarium palczewskii Jacz.
- Fusarium palustre W.H. Elmer & Marra
- Fusarium polymorphum Matr.
- Fusarium poolense Taubenh.
- Fusarium prieskaense G.J. Marais & Sand.-Den.
- Fusarium prunorum McAlpine
- Fusarium pusillum Wollenw.
- Fusarium putrefaciens Osterw.
- Fusarium redolens Wollenw.
- Fusarium reticulatum Mont.
- Fusarium rhizochromatistes Sideris
- Fusarium rhizophilum Corda
- Fusarium rhodellum McAlpine
- Fusarium roesleri Thüm.
- Fusarium rostratum Appel & Wollenw.
- Fusarium rubiginosum Appel & Wollenw.
- Fusarium rubrum Parav.
- Fusarium samoense Gehrm.
- Fusarium scirpi Lambotte & Fautrey
- Fusarium secalis Jacz.
- Fusarium spinaciae Hungerf.
- Fusarium sporotrichioides Sherb.
- Fusarium stercoris Fuckel
- Fusarium stilboides Wollenw.
- Fusarium stillatum De Not. ex Sacc.
- Fusarium sublunatum Reinking
- Fusarium succisae Schröt. ex Sacc.
- Fusarium tabacivorum Delacr.
- Fusarium trichothecioides Wollenw.
- Fusarium tritici Liebman
- Fusarium tuberivorum Wilcox & G.K. Link
- Fusarium tumidum var. humi Reinking
- Fusarium ustilaginis Kellerm. & Swingle
- Fusarium viticola Thüm.
- Fusarium werrikimbe J.L. Walsh, L.W. Burgess, E.C.Y. Liew & B.A. Summerell
- Fusarium willkommii Lindau
- Fusarium xylarioides Steyaert
- Fusarium zygopetali Delacr.
- Fusicolla meniscoidea L. Lombard & Sand.-Den.
- Fusicolla quarantenae J.D.P. Bezerra, Sand.-Den., Crous & Souza-Motta
- Fusicolla sporellula Sand.-Den. & L. Lombard
- Fusisporium andropogonis Cooke ex Thüm.
- Fusisporium anthophilum A. Braun
- Fusisporium arundinis Corda
- Fusisporium avenaceum Fr.
- Fusisporium clypeaster Corda
- Fusisporium culmorum Wm.G. Sm.
- Fusisporium didymum Harting
- Fusisporium elasticae Thüm.
- Fusisporium episphaericum Cooke & Ellis
- Fusisporium flavidum Bonord.
- Fusisporium hordei Wm.G. Sm.
- Fusisporium incarnatum Roberge ex Desm.
- Fusisporium lolii Wm.G. Sm.
- Fusisporium pandani Corda
- Gibberella phyllostachydicola W. Yamam.
- Hymenella aurea (Corda) L. Lombard
- Hymenella spermogoniopsis (Jul. Müll.) L. Lombard & Sand.-Den.
- Luteonectria Sand.-Den., L. Lombard, Schroers & Rossman
- Luteonectria albida (Rossman) Sand.-Den. & L. Lombard
- Luteonectria nematophila (Nirenberg & Hagedorn) Sand.-Den. & L. Lombard
- Macroconia bulbipes Crous & Sand.-Den.
- Macroconia phlogioides Sand.-Den. & Crous
- Menispora penicillata Harz
- Multi-gene phylogeny
- Mycotoxins
- Nectriaceae
- Neocosmospora
- Neocosmospora epipeda Quaedvl. & Sand.-Den.
- Neocosmospora floridana (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora merkxiana Quaedvl. & Sand.-Den.
- Neocosmospora neerlandica Crous & Sand.-Den.
- Neocosmospora nelsonii Crous & Sand.-Den.
- Neocosmospora obliquiseptata (T. Aoki et al.) L. Lombard & Sand.-Den.
- Neocosmospora pseudopisi Sand.-Den. & L. Lombard
- Neocosmospora rekana (Lynn & Marinc.) L. Lombard & Sand.-Den.
- Neocosmospora tuaranensis (T. Aoki et al.) L. Lombard & Sand.-Den.
- Nothofusarium Crous, Sand.-Den. & L. Lombard
- Nothofusarium devonianum L. Lombard, Crous & Sand.-Den.
- Novel taxa
- Pathogen
- Scolecofusarium L. Lombard, Sand.-Den. & Crous
- Scolecofusarium ciliatum (Link) L. Lombard, Sand.-Den. & Crous
- Selenosporium equiseti Corda
- Selenosporium hippocastani Corda
- Selenosporium sarcochroum Desm
- Selenosporium urticearum Corda.
- Setofusarium (Nirenberg & Samuels) Crous & Sand.-Den.
- Setofusarium setosum (Samuels & Nirenberg) Sand.-Den. & Crous.
- Sphaeria sanguinea var. cicatricum Berk.
- Sporotrichum poae Peck.
- Stylonectria corniculata Gräfenhan, Crous & Sand.-Den.
- Stylonectria hetmanica Akulov, Crous & Sand.-Den.
- Taxonomy
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - K.A. Seifert
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - H.-J. Schroers
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
| | - P. Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Escuela de Biología and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - J. Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Y. Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - G.H.J. Kema
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - S.C. Lamprecht
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, Western Cape, South Africa
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - A.Y. Rossman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, 97330, USA
| | - M. Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - J.W. Taylor
- Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA, 94720-3102, USA
| | - S. Ploch
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - A.M. Abdel-Azeem
- Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - J. Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - A. Abdolrasouli
- Department of Medical Microbiology, King's College Hospital, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A. Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022, Kharkiv, Ukraine
| | - J.F. Alberts
- Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
| | - J.P.M. Araújo
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - H.A. Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - M. Bakhshi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - M. Bendiksby
- Natural History Museum, University of Oslo, Norway
- Department of Natural History, NTNU University Museum, Trondheim, Norway
| | - A. Ben Hadj Amor
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - J.D.P. Bezerra
- Setor de Micologia/Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Rua 235 - s/n – Setor Universitário - CEP: 74605-050, Universidade Federal de Goiás/Federal University of Goiás, Goiânia, Brazil
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M.P.S. Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - M. Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina – Universidad de la República, Av. A. Navarro 3051, Montevideo, Uruguay
| | - G. Cardinali
- Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, 74 Perugia, Italy
| | - R.F. Castañeda-Ruiz
- Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Académico Titular de la Academia de Ciencias de, Cuba
| | - A. Celis
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - V. Chaturvedi
- Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, USA
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000, Neuchatel, Switzerland
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806, Görlitz, Germany
| | - C.A. Decock
- Mycothèque de l'Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, B-1348, Louvain-la-Neuve, Belgium
| | - R.P. de Vries
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - N.B. Fernández
- Laboratorio de Micología Clínica, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - E. Gaya
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - C.D. González
- Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | - D. Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logroño, 26007, Spain
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - M. Grube
- Institut für Biologie, Karl-Franzens-Universität Graz, Holteigasse 6, 8010, Graz, Austria
| | - M. Guevara-Suarez
- Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - V.K. Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - V. Guarnaccia
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, 10095, Grugliasco, TO, Italy
| | | | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - D. Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, 9000, Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - K. Hansen
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden
| | - A. Hashimoto
- Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | | | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K.D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
| | - T. Iturriaga
- Cornell University, 334 Plant Science Building, Ithaca, NY, 14850, USA
| | - R. Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - P.R. Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ, 08077, USA
| | - İ. Karalti
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
| | - L. Korsten
- Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
| | - E.E. Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
- Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - I. Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - R. Labuda
- University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, 3430 Tulln a.d. Donau, Austria
| | - D.P. Lawrence
- University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - H.B. Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
| | - C. Lechat
- Ascofrance, 64 route de Chizé, 79360, Villiers-en-Bois, France
| | - H.Y. Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.A. Litovka
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - S.S.N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Y. Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - B. Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - N. Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - A.R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
| | - P. Mlčoch
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - L. Mugnai
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, 50144, Firenze, Italy
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - R.H. Nilsson
- Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | - S.R. Noumeur
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
| | - I.N. Pavlov
- V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russia
- Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russia
| | - M.P. Peralta
- Laboratorio de Micodiversidad y Micoprospección, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
| | - A.J.L. Phillips
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016, Lisbon, Portugal
| | - J.I. Pitt
- Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW, 2164, Australia
| | - G. Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - W. Quaedvlieg
- Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, 1435 EW, Rijsenhout, the Netherlands
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra, 411 004, India
| | - S. Restrepo
- Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogotá, Colombia
| | - A. Rhaiem
- Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
| | | | - V. Robert
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - C. Salgado-Salazar
- USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD, 20705, USA
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - A.C.S. Santos
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - R.G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
| | - C.M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - G.Y. Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - W.J. Swart
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | | | - Y.P. Tan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland, 4102, Australia
| | - J.E. Taylor
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - P.V. Tiago
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociências, Cidade Universitária, Av. Prof. Moraes Rego, s/n, Recife, PE, CEP: 50670-901, Brazil
| | - K.Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300, Eger, Hungary
| | | | - N.A. van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - G.J.M. Verkley
- Westerdijk Fungal Biodiversity Institute, 3508 AD, Utrecht, the Netherlands
| | - W.A.S. Vieira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - A. Vizzini
- Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, I-10125, Torino, Italy
| | - B.S. Weir
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
| | - N.N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - J.W. Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - M.J. Yáñez-Morales
- Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, 56230 Edo. de Mexico, Mexico
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - J.C. Zamora
- Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
| | - R. Zare
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - C.L. Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, D-60438, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Kulik T, Bilska K, Żelechowski M. Promising Perspectives for Detection, Identification, and Quantification of Plant Pathogenic Fungi and Oomycetes through Targeting Mitochondrial DNA. Int J Mol Sci 2020; 21:E2645. [PMID: 32290169 PMCID: PMC7177237 DOI: 10.3390/ijms21072645] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungi and oomycetes encompass many pathogens affecting crops worldwide. Their effective control requires screening pathogens across the local and international trade networks along with the monitoring of pathogen inocula in the field. Fundamentals to all of these concerns are their efficient detection, identification, and quantification. The use of molecular markers showed the best promise in the field of plant pathogen diagnostics. However, despite the unquestionable benefits of DNA-based methods, two significant limitations are associated with their use. The first limitation concerns the insufficient level of sensitivity due to the very low and uneven distribution of pathogens in plant material. The second limitation pertains to the inability of widely used diagnostic assays to detect cryptic species. Targeting mtDNA appears to provide a solution to these challenges. Its high copy number in microbial cells makes mtDNA an attractive target for developing highly sensitive assays. In addition, previous studies on different pathogen taxa indicated that mitogenome sequence variation could improve cryptic species delimitation accuracy. This review sheds light on the potential application of mtDNA for pathogen diagnostics. This paper covers a brief description of qPCR and DNA barcoding as two major strategies enabling the diagnostics of plant pathogenic fungi and oomycetes. Both strategies are discussed along with the potential use of mtDNA, including their strengths and weaknesses.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Maciej Żelechowski
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| |
Collapse
|
22
|
Lynn KMT, Wingfield MJ, Durán A, Marincowitz S, Oliveira LSS, de Beer ZW, Barnes I. Euwallacea perbrevis (Coleoptera: Curculionidae: Scolytinae), a confirmed pest on Acacia crassicarpa in Riau, Indonesia, and a new fungal symbiont; Fusarium rekanum sp. nov. Antonie van Leeuwenhoek 2020; 113:803-823. [DOI: 10.1007/s10482-020-01392-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023]
|
23
|
Roth MG, Oudman KA, Griffin A, Jacobs JL, Sang H, Chilvers MI. Diagnostic qPCR Assay to Detect Fusarium brasiliense, a Causal Agent of Soybean Sudden Death Syndrome and Root Rot of Dry Bean. PLANT DISEASE 2020; 104:246-254. [PMID: 31644390 DOI: 10.1094/pdis-01-19-0016-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Species within clade 2 of the Fusarium solani species complex (FSSC) are significant pathogens of dry bean (Phaseolus vulgaris) and soybean (Glycine max), causing root rot and/or sudden death syndrome (SDS). These species are morphologically difficult to distinguish and often require molecular tools for proper diagnosis to a species level. Here, a TaqMan probe-based quantitative PCR (qPCR) assay was developed to distinguish Fusarium brasiliense from other closely related species within clade 2 of the FSSC. The assay displays high specificity against close relatives and high sensitivity, with a detection limit of 100 fg. This assay was able to detect F. brasiliense from purified mycelia, infected dry bean roots, and soil samples throughout Michigan. When multiplexed with an existing qPCR assay specific to Fusarium virguliforme, accurate quantification of both F. brasiliense and F. virguliforme was obtained, which can facilitate accurate diagnoses and identify coinfections with a single reaction. The assay is compatible with multiple qPCR thermal cycling platforms and will be helpful in providing accurate detection of F. brasiliense. Management of root rot and SDS pathogens in clade 2 of the FSSC is challenging and must be done proactively, because no midseason management strategies currently exist. However, accurate detection can facilitate management decisions for subsequent growing seasons to successfully manage these pathogens.
Collapse
Affiliation(s)
- Mitchell G Roth
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
- Genetics Graduate Program, Michigan State University, East Lansing, MI 48824
| | - Kjersten A Oudman
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
| | - Amanda Griffin
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
| | - Janette L Jacobs
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
| | - Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
- Genetics Graduate Program, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
24
|
Abstract
The fungal genus Fusarium is one of the most important groups of plant-pathogenic fungi and affects a huge diversity of crops in all climatic zones across the globe. In addition, it is also a human pathogen and produces several extremely important mycotoxins in food products that have deleterious effects on livestock and humans. These fungi have been plagued over the past century by different perspectives of what constitutes the genus Fusarium and how many species occur within the genus. Currently, there are conflicting views on the generic boundaries and what defines a species that impact disease diagnosis, management, and biosecurity legislation. An approach to defining and identifying Fusarium that places the needs of the community of users (especially, in this case, phytopathologists) to the forefront is presented in this review.
Collapse
Affiliation(s)
- Brett A Summerell
- Royal Botanic Garden and Domain Trust, Sydney, New South Wales 2000, Australia;
| |
Collapse
|
25
|
Aggressiveness and molecular characterization of Fusarium spp. associated with foot rot and wilt in Tomato in Sinaloa, Mexico. 3 Biotech 2019; 9:276. [PMID: 31245240 DOI: 10.1007/s13205-019-1808-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022] Open
Abstract
Fusarium wilt is one of the main limiting factors for tomato production in Mexico. One thousand and fifty isolates were obtained from vascular tissues tomato plants showing wilt and yellowing symptoms in Sinaloa, Mexico. The pathogenic isolates were evaluated through phylogenetic analysis of the TEF-1α gene and ITS region, morphological markers and pathogenicity tests. Within the 15 pathogenic Fusarium isolates, 7 were identified as F. oxysporum and 8 as F. falciforme. Phylogenetic analysis of Fusarium oxysporum f. sp. lycopersici and Fusarium falciforme isolates confirmed that both populations are constituted by distinct phylogenetic lineages. The isolates showed differences in aggressiveness; F. falciforme was the most aggressive. Isolates of both complexes triggered similar aerial symptoms of yellowing and darkening of the vascular tissues in tomato plants. But only F. falciforme isolates triggered necrosis in the plant crowns. Morphological markers allowed differentiating isolates from distinct complexes but not differentiating between lineages.
Collapse
|
26
|
Wang J, Sang H, Jacobs JL, Oudman KA, Hanson LE, Chilvers MI. Soybean Sudden Death Syndrome Causal Agent Fusarium brasiliense Present in Michigan. PLANT DISEASE 2019; 103:1234-1243. [PMID: 30932735 DOI: 10.1094/pdis-08-18-1332-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sudden death syndrome (SDS), caused by members of Fusarium solani species complex (FSSC) clade 2, is a major and economically important disease in soybean worldwide. The primary causal agent of SDS isolated to date in North America has been F. virguliforme. In 2014 and 2016, SDS symptoms were found in two soybean fields located on the same farm in Michigan. Seventy Fusarium strains were isolated from roots of the SDS-symptomatic soybeans in two fields. Phylogenetic analysis of partial sequences of elongation factor-1α, the nuclear ribosomal DNA intergenic spacer region, and the RNA polymerase II beta subunit revealed that the primary FSSC species isolated was F. brasiliense (58 and 36% in each field) and the remaining Fusarium strains were identified as F. cuneirostrum, F. phaseoli, an undescribed Fusarium sp. from FSSC clade 2, and strains in FSSC clade 5 and FSSC clade 11. Molecular identification was supported with morphological analysis and a pathogenicity assay. The soybean seedling pathogenicity assay indicated that F. brasiliense was capable of causing typical foliar SDS symptoms. Both root rot and foliar disease severity were variable by strain, just as they are in F. virguliforme. Both FSSC 5 and FSSC 11 strains were also capable of causing root rot, but SDS foliar symptoms were not detected. To our knowledge, this is the first report of F. brasiliense causing SDS in soybean in the United States and the first report of F. cuneirostrum, F. phaseoli, an as-yet-unnamed Fusarium sp., and strains in FSSC clade 5 and FSSC clade 11 associated with or causing root rot of soybean in Michigan.
Collapse
Affiliation(s)
- Jie Wang
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824; and
| | - Hyunkyu Sang
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824; and
| | - Janette L Jacobs
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824; and
| | - Kjersten A Oudman
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824; and
| | - Linda E Hanson
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824; and
- 2 Sugar Beet and Bean Research Unit, U.S. Department of Agriculture Agricultural Research Service, Michigan State University, East Lansing, MI 48824
| | - Martin I Chilvers
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824; and
| |
Collapse
|
27
|
Roth MG, Chilvers MI. A protoplast generation and transformation method for soybean sudden death syndrome causal agents Fusarium virguliforme and F. brasiliense. Fungal Biol Biotechnol 2019; 6:7. [PMID: 31123591 PMCID: PMC6518667 DOI: 10.1186/s40694-019-0070-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022] Open
Abstract
Background Soybean production around the globe faces significant annual yield losses due to pests and diseases. One of the most significant causes of soybean yield loss annually in the U.S. is sudden death syndrome (SDS), caused by soil-borne fungi in the Fusarium solani species complex. Two of these species, F. virguliforme and F. brasiliense, have been discovered in the U.S. The genetic mechanisms that these pathogens employ to induce root rot and SDS are largely unknown. Previous methods describing F. virguliforme protoplast generation and transformation have been used to study gene function, but these methods lack important details and controls. In addition, no reports of protoplast generation and genetic transformation have been made for F. brasiliense. Results We developed a new protocol for developing fungal protoplasts in these Fusarium species and test the protoplasts for the ability to take up foreign DNA. We show that wild-type strains of F. virguliforme and F. brasiliense are sensitive to the antibiotics hygromycin and nourseothricin, but strains transformed with resistance genes displayed resistance to these antibiotics. In addition, integration of fluorescent protein reporter genes demonstrates that the foreign DNA is expressed and results in a functional protein, providing fluorescence to both pathogens. Conclusions This protocol provides significant details for reproducibly producing protoplasts and transforming F. virguliforme and F. brasiliense. The protocol can be used to develop high quality protoplasts for further investigations into genetic mechanisms of growth and pathogenicity of F. virguliforme and F. brasiliense. Fluorescent strains developed in this study can be used to investigate temporal colonization and potential host preferences of these species. Electronic supplementary material The online version of this article (10.1186/s40694-019-0070-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mitchell G Roth
- 1Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, 48824 MI USA.,2Genetics Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, 48824 MI USA
| | - Martin I Chilvers
- 1Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, 48824 MI USA.,2Genetics Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, 48824 MI USA
| |
Collapse
|
28
|
Abdelsamad NA, MacIntosh GC, Leandro LFS. Induction of ethylene inhibits development of soybean sudden death syndrome by inducing defense-related genes and reducing Fusarium virguliforme growth. PLoS One 2019; 14:e0215653. [PMID: 31116746 PMCID: PMC6530837 DOI: 10.1371/journal.pone.0215653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
Ethylene is a gaseous hormone that regulates plant responses to biotic and abiotic stresses. To investigate the importance of ethylene in soybean resistance to Fusarium virguliforme (Fv), the causal agent of sudden death syndrome (SDS), soybean cultivars Williams 82 (SDS-susceptible) and MN1606 (SDS-resistant) were treated 24 h before and 24h after Fv inoculation with either ethephon (ethylene inducer), cobalt chloride (ethylene biosynthesis inhibitor), or 1-MCP (ethylene perception inhibitor). Inoculated plants were grown for 21 days at 24°C in the greenhouse and then evaluated for SDS severity and expression of soybean defense genes. In both cultivars, plants treated with ethephon showed lower SDS foliar severity compared to the other treatments, whereas those treated with cobalt chloride or 1-MCP showed the same or higher SDS foliar severity compared to the water-treated control. Ethephon application resulted in activation of genes involved in ethylene biosynthesis, such as ethylene synthase (ACS) and ethylene oxidase (ACO), and genes involved in soybean defense response, such as pathogenesis-related protein (PR), basic peroxidase (IPER), chalcone synthase (CHS), and defense-associated transcription factors. Cobalt chloride and 1-MCP treatments had little or no effect on the expression of these genes. In addition, ethephon had a direct inhibitory effect on in-vitro growth of Fv on PDA media. Our results suggest that ethephon application inhibits SDS development directly by slowing Fv growth and/or by inducing soybean ethylene signaling and the expression of defense related genes.
Collapse
Affiliation(s)
- Noor A. Abdelsamad
- San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, CA, United States of America
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Leonor F. S. Leandro
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
29
|
Zhou X, O’Donnell K, Kim HS, Proctor RH, Doehring G, Cao ZM. Heterothallic sexual reproduction in three canker-inducing tree pathogens within the Fusarium torreyae species complex. Mycologia 2018; 110:710-725. [DOI: 10.1080/00275514.2018.1491766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xue Zhou
- College of Forestry, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| | - Kerry O’Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604
| | - Hye-Seon Kim
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604
| | - Gail Doehring
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604
| | - Zhi-Min Cao
- College of Forestry, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Rosati RG, Lario LD, Hourcade ME, Cervigni GDL, Luque AG, Scandiani MM, Spampinato CP. Primary metabolism changes triggered in soybean leaves by Fusarium tucumaniae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:91-100. [PMID: 30080645 DOI: 10.1016/j.plantsci.2018.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Sudden death syndrome (SDS) of soybean can be caused by at least four distinct Fusarium species, with F. tucumaniae being the main causal agent in Argentina. The fungus is a soil-borne pathogen that is largely confined to the roots, but damage also reaches aerial part of the plant and interveinal chlorosis and necrosis, followed by premature defoliation can be observed. In this study, two genetically diverse soybean cultivars, one susceptible (NA 4613) and one partially resistant (DM 4670) to SDS infection, were inoculated with F. tucumaniae or kept uninoculated. Leaf samples at 7, 10, 14 and 25 days post-inoculation (dpi) were chosen for analysis. With the aim of detecting early markers that could potentially discriminate the cultivar response to SDS, gas chromatography-mass spectrometry (GC-MS) analyses and biochemical studies were performed. Metabolic analyses show higher levels of several amino acids in the inoculated than in the uninoculated susceptible cultivar starting at 10 dpi. Biochemical studies indicate that pigment contents and Rubisco level were reduced while class III peroxidase activity was increased in the inoculated susceptible plant at 10 dpi. Taken together, our results indicate that the pathogen induced an accumulation of amino acids, a decrease of the photosynthetic activity, and an increase of plant-specific peroxidase activity in the susceptible cultivar before differences of visible foliar symptoms between genotypes could be observed, thus suggesting that metabolic and biochemical approaches may contribute to a rapid characterization of the cultivar response to SDS.
Collapse
Affiliation(s)
- Romina G Rosati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Luciana D Lario
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Mónica E Hourcade
- Laboratorio de Cromatografía Gaseosa y Espectrometría de Masas, Sala de Instrumental Central, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Gerardo D L Cervigni
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alicia G Luque
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María M Scandiani
- Centro de Referencia de Micología (CEREMIC), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
31
|
Brzostowski LF, Pruski TI, Hartman GL, Bond JP, Wang D, Cianzio SR, Diers BW. Field evaluation of three sources of genetic resistance to sudden death syndrome of soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1541-1552. [PMID: 29663054 DOI: 10.1007/s00122-018-3096-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE Despite numerous challenges, field testing of three sources of genetic resistance to sudden death syndrome of soybean provides information to more effectively improve resistance to this disease in cultivars. Sudden death syndrome (SDS) of soybean [Glycine max (L.) Merrill] is a disease that causes yield loss in soybean growing regions across the USA and worldwide. While several quantitative trait loci (QTL) for SDS resistance have been mapped, studies to further evaluate these QTL are limited. The objective of our research was to map SDS resistance QTL and to test the effect of mapped resistance QTL on foliar symptoms when incorporated into elite soybean backgrounds. We mapped a QTL from Ripley to chromosome 10 (CHR10) and a QTL from PI507531 to chromosomes 1 and 18 (CHR1 and 18). Six populations were then developed to test the following QTL: cqSDS-001, with resistance originating from PI567374, CHR10, CHR1, and CHR18. The populations which segregated for resistant and susceptible QTL alleles were field tested in multiple environments and evaluated for SDS foliar symptoms. While foliar disease development was variable across environments and populations, a significant effect of each QTL on disease was detected within at least one environment. This includes the detection of cqSDS-001 in three genetic backgrounds. The QTL allele from the resistant parents was associated with greater resistance than the susceptible alleles for all QTL and backgrounds with the exception of the allele for CHR18, where the opposite occurred. This study highlights the importance and difficulties of evaluating QTL and the need for multi-year SDS field testing. The information presented in this study can aid breeders in making decisions to improve resistance to SDS.
Collapse
Affiliation(s)
| | | | - Glen L Hartman
- Department of Crop Sci, University of Illinois, Urbana, IL, 61801, USA
- USDA-Agricultural Research Service, Urbana, IL, 61801, USA
| | - Jason P Bond
- Department of Plant, Soil, and Ag. Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dechun Wang
- Department of Crop and Soil Sci, Michigan State University, East Lansing, MI, 48824, USA
| | - Silvia R Cianzio
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Brian W Diers
- Department of Crop Sci, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
32
|
Na F, Carrillo JD, Mayorquin JS, Ndinga-Muniania C, Stajich JE, Stouthamer R, Huang YT, Lin YT, Chen CY, Eskalen A. Two Novel Fungal Symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of Kuroshio Shot Hole Borer (Euwallacea sp. nr. fornicatus) Cause Fusarium Dieback on Woody Host Species in California. PLANT DISEASE 2018; 102:1154-1164. [PMID: 30673440 DOI: 10.1094/pdis-07-17-1042-re] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Shot hole borer (SHB)-Fusarium dieback (FD) is a new pest-disease complex affecting numerous tree species in California and is vectored by two distinct, but related ambrosia beetles (Euwallacea sp. nr. fornicatus) called polyphagous shot hole borer (PSHB) and Kuroshio shot hole borer (KSHB). These pest-disease complexes cause branch dieback and tree mortality on numerous wildland and landscape tree species, as well as agricultural tree species, primarily avocado. The recent discovery of KSHB in California initiated an investigation of fungal symbionts associated with the KSHB vector. Ten isolates of Fusarium sp. and Graphium sp., respectively, were recovered from the mycangia of adult KSHB females captured in three different locations within San Diego County and compared with the known symbiotic fungi of PSHB. Multigene phylogenetic analyses of the internal transcribed spacer region (ITS), translation elongation factor-1 alpha (TEF1-α), and RNA polymerase II subunit (RPB1, RPB2) regions as well as morphological comparisons revealed that two novel fungal associates Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. obtained from KSHB were related to, but distinct from the fungal symbionts F. euwallaceae and G. euwallaceae associated with PSHB in California. Pathogenicity tests on healthy, young avocado plants revealed F. kuroshium and G. kuroshium to be pathogenic. Lesion lengths from inoculation of F. kuroshium were found to be significantly shorter compared with those caused by F. euwallaceae, while no difference in symptom severity was detected between Graphium spp. associated with KSHB and PSHB. These findings highlight the pest disease complexes of KSHB-FD and PSHB-FD as distinct, but collective threats adversely impacting woody hosts throughout California.
Collapse
Affiliation(s)
- Francis Na
- Department of Plant Pathology and Microbiology, University of California, Riverside, 92521
| | - Joseph D Carrillo
- Department of Plant Pathology and Microbiology, University of California, Riverside, 92521
| | - Joey S Mayorquin
- Department of Plant Pathology and Microbiology, University of California, Riverside, 92521
| | - Cedric Ndinga-Muniania
- Department of Plant Pathology and Microbiology, University of California, Riverside, 92521
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology, University of California, Riverside, 92521
| | | | - Yin-Tse Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC, and School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville
| | - Yu-Ting Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Chi-Yu Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Akif Eskalen
- Department of Plant Pathology and Microbiology, University of California, Riverside, 92521
| |
Collapse
|
33
|
Laraba I, Keddad A, Boureghda H, Abdallah N, Vaughan MM, Proctor RH, Busman M, O’Donnell K. Fusarium algeriense, sp. nov., a novel toxigenic crown rot pathogen of durum wheat from Algeria is nested in the Fusarium burgessii species complex. Mycologia 2018. [DOI: 10.1080/00275514.2018.1425067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Imane Laraba
- Laboratoire de Phytopathologie et de Biologie Moléculaire, Département de Botanique, École Nationale Supérieure Agronomique, Algiers, Algeria
| | - Abdelaziz Keddad
- Laboratoire de Phytopathologie et de Biologie Moléculaire, Département de Botanique, École Nationale Supérieure Agronomique, Algiers, Algeria
| | - Houda Boureghda
- Laboratoire de Phytopathologie et de Biologie Moléculaire, Département de Botanique, École Nationale Supérieure Agronomique, Algiers, Algeria
| | - Nora Abdallah
- Laboratoire de Phytopathologie et de Biologie Moléculaire, Département de Botanique, École Nationale Supérieure Agronomique, Algiers, Algeria
| | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604-3999
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604-3999
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604-3999
| | - Kerry O’Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604-3999
| |
Collapse
|
34
|
Islam KT, Bond JP, Fakhoury AM. FvSTR1, a striatin orthologue in Fusarium virguliforme, is required for asexual development and virulence. Appl Microbiol Biotechnol 2017; 101:6431-6445. [PMID: 28643182 DOI: 10.1007/s00253-017-8387-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 02/07/2023]
Abstract
The soil-borne fungus Fusarium virguliforme causes sudden death syndrome (SDS), one of the most devastating diseases of soybean in North and South America. Despite the importance of SDS, a clear understanding of the fungal pathogenicity factors that affect the development of this disease is still lacking. We have identified FvSTR1, a F. virguliforme gene, which encodes a protein similar to a family of striatin proteins previously reported to regulate signalling pathways, cell differentiation, conidiation, sexual development, and virulence in filamentous fungi. Striatins are multi-domain proteins that serve as scaffolding units in the striatin-interacting phosphatase and kinase (STRIPAK) complex in fungi and animals. To address the function of a striatin homologue in F. virguliforme, FvSTR1 was disrupted and functionally characterized using a gene knock out strategy. The resulting Fvstr1 mutants were largely impaired in conidiation and pigmentation, and displayed defective conidia and conidiophore morphology compared to the wild-type and ectopic transformants. Greenhouse virulence assays revealed that the disruption of FvSTR1 resulted in complete loss of virulence in F. virguliforme. Microtome studies using fluorescence microscopy showed that the Fvstr1 mutants were defective in their ability to colonize the vascular system. The Fvstr1 mutants also showed a reduced transcript level of genes involved in asexual reproduction and in the production of secondary metabolites. These results suggest that FvSTR1 has a critical role in asexual development and virulence in F. virguliforme.
Collapse
Affiliation(s)
- Kazi T Islam
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jason P Bond
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Ahmad M Fakhoury
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
35
|
Giachero ML, Marquez N, Gallou A, Luna CM, Declerck S, Ducasse DA. An In Vitro Method for Studying the Three-Way Interaction between Soybean, Rhizophagus irregularis and the Soil-Borne Pathogen Fusarium virguliforme. FRONTIERS IN PLANT SCIENCE 2017; 8:1033. [PMID: 28670321 PMCID: PMC5472683 DOI: 10.3389/fpls.2017.01033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/29/2017] [Indexed: 05/03/2023]
Abstract
In this work, we described an in vitro system adequate for investigating the pathosystem soybean/arbuscular mycorrhizal fungi (AMF)/Fusarium virguliforme. Pre-mycorrhized plantlets with Rhizophagus irregularis were infected by F. virguliforme either locally via a plug of gel supporting mycelium (Method 1) or via a macroconidia suspension applied to the medium surface (Method 2). Root colonization by the AMF and infection by the pathogen were similar to the usual observations in pot experiments. Within a period of 18 days, more than 20% of the roots were colonized by the AMF and infection by the pathogen was observed in all the plants. In presence of AMF, a decrease in symptoms and in the level of root tissue infection was noticed. With Method 1, smaller necrotic lesions were observed in the pre-mycorrhized plantlets. In Method 2, pathogen infection was slower but more homogenous. These results demonstrated the suitability of the in vitro cultivation system to study the pathosystem soybean/AMF/F. virguliforme. We propose this in vitro cultivation system for studying the mechanisms involved in the biocontrol conferred by AMF against F. virguliforme in soybean.
Collapse
Affiliation(s)
- María L. Giachero
- Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | - Nathalie Marquez
- Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasCórdoba, Argentina
| | - Adrien Gallou
- Centro Nacional de Referencia de Control BiológicoTecomán, Mexico
| | - Celina M. Luna
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias – Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | - Stéphane Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Daniel A. Ducasse
- Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| |
Collapse
|
36
|
Wang J, Bradley CA, Stenzel O, Pedersen DK, Reuter-Carlson U, Chilvers MI. Baseline Sensitivity of Fusarium virguliforme to Fluopyram Fungicide. PLANT DISEASE 2017; 101:576-582. [PMID: 30677357 DOI: 10.1094/pdis-09-16-1250-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluopyram, a succinate dehydrogenase inhibitor (SDHI) fungicide, was recently registered for use as a soybean seed treatment for management of sudden death syndrome (SDS) caused by Fusarium virguliforme. Although registered and now used commercially, in vitro baseline fungicide sensitivity of F. virguliforme to fluopyram has not yet been established. In this study, the baseline sensitivity of F. virguliforme to fluopyram was determined using in vitro growth of mycelium and germination of conidia assays with two collections of F. virguliforme isolates. A total of 130 and 75 F. virguliforme isolates were tested using the mycelial growth and conidia germination assays, respectively, including a core set of isolates that were tested with both assays. In the mycelial growth inhibition assay, 113 out of 130 isolates (86.9%) were inhibited 50% by effective concentrations (EC50) less than 5 µg/ml with a mean EC50 of 3.35 µg/ml. For the conidia germination assay, 73 out of 75 isolates (97%) were determined to have an estimated EC50 of less than 5 µg/ml with a mean EC50 value of 2.28 µg/ml. In a subset of 20 common isolates that were phenotyped with both assays, conidia germination of F. virguliforme was determined to be more sensitive to fluopyram (mean EC50 = 2.28 µg/ml) than mycelial growth (mean EC50 = 3.35 µg/ml). Hormetic effects were observed in the mycelial growth inhibition assay as 22% of the isolates demonstrated more growth on medium amended with the lowest fluopyram concentration (1 µg/ml), as compared with the nonfluopyram amended control. It was not possible to determine EC50 values for nine out of 185 isolates (4.8%), as those isolates were not inhibited by 50% even at the highest fluopyram concentrations of 100 µg/ml for mycelial growth and 20 µg/ml for conidia germination inhibition assays. On the whole, the F. virguliforme population appears to be sensitive to fluopyram, and this study enables future monitoring of fungicide sensitivity.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| | - Carl A Bradley
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Olivia Stenzel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| | | | | | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
37
|
Marshall J, Qiao X, Baumbach J, Xie J, Dong L, Bhattacharyya MK. Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean. Sci Rep 2017; 7:44365. [PMID: 28295054 PMCID: PMC5353701 DOI: 10.1038/srep44365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 11/08/2022] Open
Abstract
Time-lapse microscopic-photography allows in-depth phenotyping of microorganisms. Here we report development of such a system using a microfluidic device, generated from polydimethylsiloxane and glass slide, placed on a motorized stage of a microscope for conducting time-lapse microphotography of multiple observations in 20 channels simultaneously. We have demonstrated the utility of the device in studying growth, germination and sporulation in Fusarium virguliforme that causes sudden death syndrome in soybean. To measure the growth differences, we developed a polyamine oxidase fvpo1 mutant in this fungus that fails to grow in minimal medium containing polyamines as the sole nitrogen source. Using this system, we demonstrated that the conidiospores of the pathogen take an average of five hours to germinate. During sporulation, it takes an average of 10.5 h for a conidiospore to mature and get detached from its conidiophore for the first time. Conidiospores are developed in a single conidiophore one after another. The microfluidic device enabled quantitative time-lapse microphotography reported here should be suitable for screening compounds, peptides, micro-organisms to identify fungitoxic or antimicrobial agents for controlling serious plant pathogens. The device could also be applied in identifying suitable target genes for host-induced gene silencing in pathogens for generating novel disease resistance in crop plants.
Collapse
Affiliation(s)
- Jill Marshall
- G303 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Xuan Qiao
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Jordan Baumbach
- G303 Agronomy Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Jingyu Xie
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | - Liang Dong
- 2115 Coover Hall, Iowa State University, Ames, IA 50011-1010, USA
| | | |
Collapse
|
38
|
Dupont J, Jacquet C, Dennetière B, Lacoste S, Bousta F, Orial G, Cruaud C, Couloux A, Roquebert MF. Invasion of the French Paleolithic painted cave of Lascaux by members of theFusarium solanispecies complex. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Sandrine Lacoste
- Département Systématique & Evolution, Unité Taxonomie-Collections, Muséum national d’histoire naturelle, CP 39, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | | | - Geneviève Orial
- Laboratoire de recherche des monuments historiques, Pôle microbiologie, 29 rue de Paris, 77420 Champs sur Marne, France
| | | | - Arnaud Couloux
- Genoscope. Centre National de Sequençage. 2, rue Gaston Crémieux, CP5706, 91057 Evry Cedex, France
| | - Marie-France Roquebert
- Département Systématique & Evolution, Unité Taxonomie-Collections, Muséum national d’histoire naturelle, CP 39, 57 rue Cuvier, 75231 Paris Cedex 05, France
| |
Collapse
|
39
|
Aoki T, Smith JA, Mount LL, Geiser DM, O’Donnell K. Fusarium torreyae sp. nov., a pathogen causing canker disease of Florida torreya (Torreya taxifolia), a critically endangered conifer restricted to northern Florida and southwestern Georgia. Mycologia 2017; 105:312-9. [DOI: 10.3852/12-262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takayuki Aoki
- Genetic Resources Center (MAFF), National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Jason A. Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611-0680
| | - Lacey L. Mount
- Dellavalle Laboratory Inc., Fresno, California 93728-1298
| | - David M. Geiser
- Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kerry O’Donnell
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 60604-3999
| |
Collapse
|
40
|
Edwards J, Auer D, de Alwis SK, Summerell B, Aoki T, Proctor RH, Busman M, O’Donnell K. Fusarium agapanthi sp. nov., a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy. Mycologia 2017; 108:981-992. [DOI: 10.3852/15-333] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/13/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Sri-Kanthi de Alwis
- AgriBio Centre for AgriBiosciences, Department of Economic Development, Jobs, Transport & Resources, 5 Ring Road, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Brett Summerell
- Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia
| | - Takayuki Aoki
- Genetic Resources Center (MAFF), National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | - Kerry O’Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604-3999
| |
Collapse
|
41
|
Tewoldemedhin YT, Lamprecht SC, Vaughan MM, Doehring G, O'Donnell K. Soybean SDS in South Africa is Caused by Fusarium brasiliense and a Novel Undescribed Fusarium sp. PLANT DISEASE 2017; 101:150-157. [PMID: 30682303 DOI: 10.1094/pdis-05-16-0729-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean sudden death syndrome (SDS) was detected in South Africa for the first time during pathogen surveys conducted in 2013 to 2014. The primary objective of this study was to characterize the 16 slow-growing Fusarium strains that were isolated from the roots of symptomatic plants. Molecular phylogenetic analyses of a portion of translation elongation factor 1-α (TEF1) and the nuclear ribosomal intergenic spacer region (IGS rDNA) indicated that the etiological agents were Fusarium brasiliense and a novel, undescribed Fusarium sp. This is the first report of F. brasiliense outside of Brazil and Argentina and the novel Fusarium sp. causing soybean SDS. Koch's postulates were completed for both fusaria on seven soybean cultivars that are commercially available in South Africa. Results of the pathogenicity experiment revealed that the strains of F. brasiliense and Fusarium sp. differed in aggressiveness to soybean, as reflected in differences in foliar symptoms, root rot, and reduction in shoot length. Cell-free culture filtrates of the two soybean SDS pathogens from South Africa and two positive control strains of F. virguliforme from the United States induced typical SDS symptoms on susceptible soybean cultivars in a whole-seedling assay, indicating that they contained phytotoxins.
Collapse
Affiliation(s)
- Yared T Tewoldemedhin
- ARC-Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599, Western Cape, South Africa
| | - Sandra C Lamprecht
- ARC-Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599, Western Cape, South Africa
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Peoria, IL 61604
| | - Gail Doehring
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Peoria, IL 61604
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Peoria, IL 61604
| |
Collapse
|
42
|
Ngaki MN, Wang B, Sahu BB, Srivastava SK, Farooqi MS, Kambakam S, Swaminathan S, Bhattacharyya MK. Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants. PLoS One 2016; 11:e0163106. [PMID: 27760122 PMCID: PMC5070833 DOI: 10.1371/journal.pone.0163106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/04/2016] [Indexed: 12/13/2022] Open
Abstract
Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.
Collapse
Affiliation(s)
- Micheline N. Ngaki
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Bing Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Binod B. Sahu
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Subodh K. Srivastava
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Mohammad S. Farooqi
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Sekhar Kambakam
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | | | | |
Collapse
|
43
|
Zhou X, O'Donnell K, Aoki T, Smith JA, Kasson MT, Cao ZM. Two novel Fusarium species that cause canker disease of prickly ash (Zanthoxylum bungeanum) in northern China form a novel clade with Fusarium torreyae. Mycologia 2016; 108:668-81. [PMID: 27055569 DOI: 10.3852/15-189] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/16/2016] [Indexed: 01/23/2023]
Abstract
Canker disease of prickly ash (Zanthoxylum bungeanum) has caused a decline in the production of this economically important spice in northern China in the past 25 y. To identify the etiological agent, 38 fungal isolates were recovered from symptomatic tissues from trees in five provinces in China. These isolates were identified by conducting BLASTN queries of NCBI GenBank and phylogenetic analyses of DNA sequence data from the nuclear ribosomal internal transcribed spacer region (ITS rDNA), a portion of the translation elongation factor 1-α (TEF1) gene, and genes encoding RNA polymerase II largest (RPB1) and second largest (RPB2) subunits. Results of these analyses suggested that 30/38 isolates belonged to two novel fusaria most closely related to the Florida torreya (Torreya taxifolia Arn.) pathogen, Fusarium torreyae in Florida and Georgia. These three canker-inducing tree pathogens form a novel clade within Fusarium here designated the F. torreyae species complex (FTOSC). BLASTN queries of GenBank also revealed that 5/38 isolates recovered from cankers represented an undescribed phylogenetic species within the F. solani species complex (FSSC) designated FSSC 6. Stem inoculations of three fusaria on Z. bungeanum resulted in consistent canker symptoms from which these three fusaria were recovered. The two novel fusaria, however, induced significantly larger lesions than FSSC 6. Herein, the two novel prickly ash pathogens are formally described as F. zanthoxyli and F. continuum.
Collapse
Affiliation(s)
- Xue Zhou
- College of Forestry, Northwest A&F University, Taicheng Road, Yangling, Shaanxi, China 712100
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604-3999
| | - Takayuki Aoki
- Genetic Resources Center (MAFF), National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Jason A Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611-0680
| | - Matthew T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506-6108
| | - Zhi-Min Cao
- College of Forestry, Northwest A&F University, Taicheng Road, Yangling, Shaanxi, China 712100
| |
Collapse
|
44
|
Wang J, Chilvers MI. Development and characterization of microsatellite markers for Fusarium virguliforme and their utility within clade 2 of the Fusarium solani species complex. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Swaminathan S, Abeysekara NS, Liu M, Cianzio SR, Bhattacharyya MK. Quantitative trait loci underlying host responses of soybean to Fusarium virguliforme toxins that cause foliar sudden death syndrome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:495-506. [PMID: 26678962 DOI: 10.1007/s00122-015-2643-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 11/21/2015] [Indexed: 06/05/2023]
Abstract
KEY MESSAGE Soybean deploys multiple genetic mechanisms to confer tolerance to Fusarium virguliforme toxins. This study revealed that F. virguliforme culture filtrates could be used in mapping QTL underlying foliar SDS resistance. Sudden death syndrome (SDS) is a major soybean disease throughout most of the soybean growing regions in the world including the United States. The disease is caused by the fungal pathogen, Fusarium virguliforme (Fv). The fungus produces several toxins that are responsible for development of interveinal leaf chlorosis and necrosis, which are typical foliar SDS symptoms. Growing of resistant cultivars has been the most effective method in controlling the disease. The objective of the present study was to identify quantitative trait loci (QTL) underlying host responses of soybean to Fv toxins present in culture filtrates. To accomplish this objective, two recombinant inbred line (RIL) populations, AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582), segregating for SDS resistance were evaluated for foliar symptom development by applying two screening protocols, the stem cutting and the root feeding assays. The AX19286 population revealed two major and seven minor QTL for SDS resistance. In the AX19287 population, we identified five major QTL and three minor QTL. The two QTL mapped to Chromosome 7 [molecular linkage group (MLG) M] and Chromosome 20 (MLG I) are most likely novel, and were detected through screening of the AX19287 population with stem cutting and root feeding assays, respectively. This study established that Fv culture filtrates could be employed in mapping QTL underlying foliar SDS resistance. The outcomes of the research also suggest that multiple genetic mechanisms might be used by soybean to overcome the toxic effects of the toxins secreted by the pathogen into culture filtrates.
Collapse
Affiliation(s)
| | - Nilwala S Abeysekara
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Min Liu
- Visiting Scholar, Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- Department of Agronomy, Shenyang Agricultural University, 120 Dongling Ave., Shenyang, 110866, Liaoning, China
| | - Silvia R Cianzio
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
46
|
Coleman JJ. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. MOLECULAR PLANT PATHOLOGY 2016; 17:146-58. [PMID: 26531837 PMCID: PMC6638333 DOI: 10.1111/mpp.12289] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Members of the Fusarium solani species complex (FSSC) are capable of causing disease in many agriculturally important crops. The genomes of some of these fungi include supernumerary chromosomes that are dispensable and encode host-specific virulence factors. In addition to genomics, this review summarizes the known molecular mechanisms utilized by members of the FSSC in establishing disease. TAXONOMY Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Hypocreales; Family Nectriaceae; Genus Fusarium. HOST RANGE Members of the FSSC collectively have a very broad host range, and have been subdivided previously into formae speciales. Recent phylogenetic analysis has revealed that formae speciales correspond to biologically and phylogenetically distinct species. DISEASE SYMPTOMS Typically, FSSC causes foot and/or root rot of the infected host plant, and the degree of necrosis correlates with the severity of the disease. Symptoms on above-ground portions of the plant can vary greatly depending on the specific FSSC pathogen and host plant, and the disease may manifest as wilting, stunting and chlorosis or lesions on the stem and/or leaves. CONTROL Implementation of agricultural management practices, such as crop rotation and timing of planting, can reduce the risk of crop loss caused by FSSC. If available, the use of resistant varieties is another means to control disease in the field. USEFUL WEBSITES http://genome.jgi-psf.org/Necha2/Necha2.home.html.
Collapse
Affiliation(s)
- Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
47
|
Costa SS, Matos KS, Tessmann DJ, Seixas CDS, Pfenning LH. Fusarium paranaense sp. nov., a member of the Fusarium solani species complex causes root rot on soybean in Brazil. Fungal Biol 2016; 120:51-60. [PMID: 26693684 DOI: 10.1016/j.funbio.2015.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 11/26/2022]
Abstract
Isolates of Fusarium obtained from soybean plants showing symptoms of root rot collected in subtropical southern and tropical central Brazil were characterized based on phylogenetic analyses, sexual crossing, morphology, and pathogenicity tests. A novel species within the Fusarium solani species complex (FSSC) causing soybean root rot is formally described herein as Fusarium paranaense. This species can be distinguished from the other soybean root rot pathogens in the FSSC, which are commonly associated with soybean sudden death syndrome (SDS) based on analyses of the combined DNA sequences of translation elongation factor 1-α and the second largest subunit of RNA polymerase II and on interspecies mating compatibility. Bayesian and maximum parsimony phylogenetic analyses showed that isolates of F. paranaense formed a distinct group in clade 3 of the FSSC in contrast to the pathogens currently known to cause SDS, which are in clade 2. Female fertile tester strains were developed that can be used for the identification of this new species in the FSSC based on sexual crosses. All isolates were heterothallic and belonged to a distinct mating population. Fusarium tucumaniae, a known SDS pathogen, was found in the subtropical southern region of the country.
Collapse
Affiliation(s)
- Sarah S Costa
- Departamento de Fitopatologia, Universidade Federal de Lavras, 37200-000 Lavras, MG, Brazil
| | - Kedma S Matos
- Departamento de Fitopatologia, Universidade Federal de Lavras, 37200-000 Lavras, MG, Brazil
| | - Dauri J Tessmann
- Departamento de Agronomia, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | | | - Ludwig H Pfenning
- Departamento de Fitopatologia, Universidade Federal de Lavras, 37200-000 Lavras, MG, Brazil.
| |
Collapse
|
48
|
Kandel YR, Haudenshield JS, Srour AY, Islam KT, Fakhoury AM, Santos P, Wang J, Chilvers MI, Hartman GL, Malvick DK, Floyd CM, Mueller DS, Leandro LFS. Multilaboratory Comparison of Quantitative PCR Assays for Detection and Quantification of Fusarium virguliforme from Soybean Roots and Soil. PHYTOPATHOLOGY 2015; 105:1601-11. [PMID: 26368513 DOI: 10.1094/phyto-04-15-0096-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to accurately detect and quantify Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, in samples such as plant root tissue and soil is extremely valuable for accurate disease diagnoses and to address research questions. Numerous quantitative real-time polymerase chain reaction (qPCR) assays have been developed for this pathogen but their sensitivity and specificity for F. virguliforme have not been compared. In this study, six qPCR assays were compared in five independent laboratories using the same set of DNA samples from fungi, plants, and soil. Multicopy gene-based assays targeting the ribosomal DNA intergenic spacer (IGS) or the mitochondrial small subunit (mtSSU) showed relatively high sensitivity (limit of detection [LOD] = 0.05 to 5 pg) compared with a single-copy gene (FvTox1)-based assay (LOD = 5 to 50 pg). Specificity varied greatly among assays, with the FvTox1 assay ranking the highest (100%) and two IGS assays being slightly less specific (95 to 96%). Another IGS assay targeting four SDS-causing fusaria showed lower specificity (70%), while the two mtSSU assays were lowest (41 and 47%). An IGS-based assay showed consistently highest sensitivity (LOD = 0.05 pg) and specificity and inclusivity above 94% and, thus, is suggested as the most useful qPCR assay for F. virguliforme diagnosis and quantification. However, specificity was also above 94% in two other assays and their selection for diagnostics and research will depend on objectives, samples, and materials used. These results will facilitate both fundamental and disease management research pertinent to SDS.
Collapse
Affiliation(s)
- Yuba R Kandel
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - James S Haudenshield
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Ali Y Srour
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Kazi Tariqul Islam
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Ahmad M Fakhoury
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Patricia Santos
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Jie Wang
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Martin I Chilvers
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Glen L Hartman
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Dean K Malvick
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Crystal M Floyd
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Daren S Mueller
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Leonor F S Leandro
- First, twelfth, and thirteenth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; second and ninth authors: United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801; third, fourth, and fifth authors: Department of Plant, Soil and Ag. Systems, Southern Illinois University, Carbondale 62901; sixth author: Department of Biochemistry and Molecular Biology, UNR 1664, N. Virginia St. MS 330, Reno, NV; seventh, and eighth authors: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824; and tenth and eleventh authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108
| |
Collapse
|
49
|
Chehri K, Salleh B, Zakaria L. Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. MICROBIAL ECOLOGY 2015; 69:457-471. [PMID: 25238930 PMCID: PMC4356886 DOI: 10.1007/s00248-014-0494-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Members of Fusarium solani species complex (FSSC) have been known as plant, animal, and human pathogens. Nevertheless, the taxonomic status of such an important group of fungi is still very confusing and many new species as well as lineages have been elucidated recently. Unfortunately, most of the new taxa came from temperate and subtropical regions. Therefore, the objectives of the present study were to identify strains of FSSC recovered from different sources in Malaysia. In the present study, 55 strains belonging to the FSSC were examined and phylogenetically analyzed on the basis of internal transcribed spacer (ITS) regions and partial translation elongation factor-1 (TEF-1α) sequences. Based on morphological features, a total of 55 strains were selected for molecular studies. Based on morphological features, the strains were classified into four described Fusarium species, namely Fusarium keratoplasticum, Fusarium falciforme, FSSC 5, and Fusarium cf. ensiforme, and one unknown phylogenetic species was introduced. Although the data obtained from morphological and molecular studies sufficiently supported each other, the phylogenetic trees based on ITS and TEF-1α dataset clearly distinguished closely related species and distinctly separated all morphological taxa. All members of FSSC in this research were reported for the first time for Malaysian mycoflora.
Collapse
Affiliation(s)
- Khosrow Chehri
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia,
| | | | | |
Collapse
|
50
|
Xiang Y, Scandiani MM, Herman TK, Hartman GL. Optimizing Conditions of a Cell-Free Toxic Filtrate Stem Cutting Assay to Evaluate Soybean Genotype Responses to Fusarium Species that Cause Sudden Death Syndrome. PLANT DISEASE 2015; 99:502-507. [PMID: 30699546 DOI: 10.1094/pdis-08-14-0791-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell-free toxic culture filtrates from Fusarium virguliforme, the causal fungus of soybean sudden death syndrome (SDS), cause foliar symptoms on soybean stem cuttings similar to those obtained from root inoculations in whole plants and those observed in production fields. The objectives of this study were to (i) optimize the production conditions for F. virguliforme cell-free toxic culture filtrates and the incubation conditions of the stem cutting assay used to test the toxicity of the cell-free toxic culture filtrates, and (ii) use the optimized assay and a whole plant root inoculation assay to compare four SDS-causing isolates on a panel of selected soybean genotypes. Area under the disease progress curve (AUDPC) values were highest (P = 0.05) when cuttings were immersed in culture filtrate of fungus grown in soybean dextrose broth, in filtrate produced from the fungus grown for 18 or 22 days, and when stem cuttings were incubated at 30°C. AUDPC values and shoot dry weights from the whole plant root inoculations and the AUDPC values from the stem cutting assay differed (P < 0.05) among nine soybean genotypes tested with F. virguliforme and F. tucumaniae isolates, and the AUDPC values from the two assays were positively correlated (r = 0.44 at P < 0.0001).
Collapse
Affiliation(s)
- Y Xiang
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - M M Scandiani
- Centro de Referencia de Micología, Fac. de Cs Bioq. y Farm. UNR, Suipacha 531, Rosario, Argentina
| | - T K Herman
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - G L Hartman
- USDA-Agricultural Research Services and Department of Crop Sciences, University of Illinois, Urbana 61801
| |
Collapse
|