1
|
Liu W, Liu C, Zeren D, Wang S, Tan Z, Hang F, Liang X, Xie C, Li K. Biocontrol ability and possible mechanism of Metschnikowia pulcherrima against major diseases of postharvest citrus fruit and its biopreservative application. Int J Food Microbiol 2025; 438:111230. [PMID: 40315557 DOI: 10.1016/j.ijfoodmicro.2025.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
The capability of Metschnikowia pulcherrima to control postharvest citrus diseases was analyzed, with its action mechanisms and preservation performance during storage further explored. In vitro and in vivo tests demonstrated M. pulcherrima significantly inhibited the growth of Penicillium digitatum (P.d), Penicillium italicum (P.i), and Geotrichum citri-aurantii (G.c), and markedly controlled the incidence and progression of these three postharvest diseases. The non-cellular components of M. pulcherrima did not significantly inhibit three pathogens' growth, while its volatile compounds (VOCs) displayed notable inhibitory effects. Moreover, M. pulcherrima exhibited no parasitic effects on the mycelia of three pathogens. Nutritional competition experiment revealed that M. pulcherrima outcompeted the pathogens, utilizing fructose and glucose more rapidly and efficiently in nutrient-poor fruit wounds. Additionally, M. pulcherrima demonstrated a rapid proliferation and colonization ability on citrus fruit wounds and exhibited biofilm formation, thereby effectively preventing pathogen from contacting the fruit. Iron competition experiments indicated that exogenous FeCl3 significantly reduced M. pulcherrima's antifungal activity against P.d, P.i, and G.c, and its diseases control efficacy. Induced resistance tests demonstrated that M. pulcherrima significantly enhanced citrus fruit resistance to three diseases, with a particularly strong effect against sour rot. Storage tests over 180 d revealed that M. pulcherrima treatment significantly decreased the natural decay rate and maintained the quality indicators of citrus fruits. Overall, M. pulcherrima presented considerable potential as a biocontrol agent for effectively managing postharvest diseases in citrus fruits.
Collapse
Affiliation(s)
- Wenqing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chaoyi Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Dexi Zeren
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shupei Wang
- College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, PR China.
| | - Zhimei Tan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Province and Ministry Co-sponsored Collaborative Innovation Center of Canesugar Industry, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China.
| | - Xinquan Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Province and Ministry Co-sponsored Collaborative Innovation Center of Canesugar Industry, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Province and Ministry Co-sponsored Collaborative Innovation Center of Canesugar Industry, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China
| |
Collapse
|
2
|
Nowak A, Steglińska A, Gutarowska B, Kręgiel D. Cyto- and Genotoxicity of Selected Plant Extracts and Microbial Metabolites with Confirmed Activity Against Phytopathogens of Potato Seed ( Solanum tuberosum L.). Molecules 2025; 30:701. [PMID: 39942804 PMCID: PMC11821134 DOI: 10.3390/molecules30030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of this study was to evaluate the cytotoxicity and genotoxicity of potential biocontrol agents for use against phytopathogens of potato seed (Solanum tuberosum L.). Plant extracts from Allium sativum L., Syzygium aromaticum L. Merr. & Perry, Salvia officinalis L., and Curcuma longa L., as well as metabolites of bacteria Lactiplantibacillus plantarum KB2 LAB 03 and yeast Metschnikowia pulcherrima TK1, were investigated. The chemical characteristics of the plant extracts and the metabolic profiles of the tested microorganisms were evaluated by GC-MS. An insect cell line from Spodoptera frugiperda (Sf-9) and human cervix adenocarcinoma cells (HeLa) were used to evaluate cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The single-cell electrophoresis assay was used to estimate DNA damage. The cytotoxicity and genotoxicity of the microbial metabolites depended on their chemical profiles and pH. The plant extracts induced stronger DNA damage in the Sf-9 cell line than in HeLa cells. The garlic (Allium sativum L.) extract showed the highest cytotoxicity against Sf-9 insect cells (IC50 41.6 mg/mL). The sage (Salvia officinalis L.) extract showed the highest cytotoxicity against HeLa cells (IC50 49.6 mg/mL). This study is the first to investigate not only the potential of these novel biocontrol agents for plant disease control, but also their safety for humans and biodiversity within the context of sustainable agriculture.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.S.); (B.G.); (D.K.)
| | | | | | | |
Collapse
|
3
|
Ramudingana P, Makhado N, Kamutando CN, Thantsha MS, Mamphogoro TP. Fungal Biocontrol Agents in the Management of Postharvest Losses of Fresh Produce-A Comprehensive Review. J Fungi (Basel) 2025; 11:82. [PMID: 39852501 PMCID: PMC11766600 DOI: 10.3390/jof11010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Postharvest decay of vegetables and fruits presents a significant threat confronting sustainable food production worldwide, and in the recent times, applying synthetic fungicides has become the most popular technique of managing postharvest losses. However, there are concerns and reported proofs of hazardous impacts on consumers' health and the environment, traceable to the application of chemical treatments as preservatives on fresh produce. Physical methods, on the other hand, cause damage to fresh produce, exposing it to even more infections. Therefore, healthier and more environmentally friendly alternatives to existing methods for managing postharvest decays of fresh produce should be advocated. There is increasing consensus that utilization of biological control agents (BCAs), mainly fungi, represents a more sustainable and effective strategy for controlling postharvest losses compared to physical and chemical treatments. Secretion of antifungal compounds, parasitism, as well as competition for nutrients and space are the most common antagonistic mechanisms employed by these BCAs. This article provides an overview of (i) the methods currently used for management of postharvest diseases of fresh produce, highlighting their limitations, and (ii) the use of biocontrol agents as an alternative strategy for control of such diseases, with emphasis on fungal antagonists, their mode of action, and, more importantly, their advantages when compared to other methods commonly used. We therefore hypothesize that the use of fungal antagonists for prevention of postharvest loss of fresh produce is more effective compared to physical and chemical methods. Finally, particular attention is given to the gaps observed in establishing beneficial microbes as BCAs and factors that hamper their development, particularly in terms of shelf life, efficacy, commercialization, and legislation procedures.
Collapse
Affiliation(s)
- Phathutshedzo Ramudingana
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
- Department of Microbiological Pathology, Tuberculosis Research Unit, Sefako Makgatho Health Sciences University, Molotlegi Road, Ga-Rankuwa, Pretoria 0204, South Africa;
| | - Ndivhuho Makhado
- Department of Microbiological Pathology, Tuberculosis Research Unit, Sefako Makgatho Health Sciences University, Molotlegi Road, Ga-Rankuwa, Pretoria 0204, South Africa;
- National Health Laboratory Services, Dr George Mukhari Tertiary Laboratory, Pretoria 0204, South Africa
| | - Casper Nyaradzai Kamutando
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare 0263, Zimbabwe;
| | - Mapitsi Silvester Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
| | - Tshifhiwa Paris Mamphogoro
- Gastro-Intestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Private Bag X02, Irene, Pretoria 0062, South Africa;
| |
Collapse
|
4
|
Haniffadli A, Ban Y, Rahmat E, Kang CH, Kang Y. Unforeseen current and future benefits of uncommon yeast: the Metschnikowia genus. Appl Microbiol Biotechnol 2024; 108:534. [PMID: 39661197 PMCID: PMC11634920 DOI: 10.1007/s00253-024-13369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Metschnikowia, the single-cell yeast form, is a genus of 85 species in the Saccharomycetales order that developed in both aquatic and terrestrial ecosystems after being found in 1899. This yeast is commonly used to control microbial populations in many biological and artificial conditions, such as fermentation. However, current study of Metschnikowia is limited to biological control features rather than researching on lucrative sectors such as beverage production, bioconversion manufacturing, cosmetics, and the pharmaceutical industry. This review summarizes numerous possible applications of Metschnikowia in human life, including potential secondary metabolites in industrial fields such as cosmetics and pharmaceuticals. Furthermore, Metschnikowia-yeast interaction is mentioned as a potential area for further exploration in terms of co-cultured microbes as biocontrol. Since Metschnikowia yeast arose in a variety of ecosystems, more discussion will be held regarding the interactions between Metschnikowia and their surroundings, particularly in fruits. Finally, the current regulatory challenges of Metschnikowia-based products are examined, and future research opportunities on Metschnikowia utilization are presented. KEY POINTS: • Utilization of Metschnikowia genus in various human aspects. • Promising secondary metabolites produced by Metschnikowia. • Challenge and opportunity on developing Metschnikowia-based products.
Collapse
Affiliation(s)
- Ariranur Haniffadli
- Korean Medicine Convergence Science Major of KIOM School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, Jeollanam-Do, 58245, Republic of Korea
| | - Yeongjun Ban
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, Jeollanam-Do, 58245, Republic of Korea
| | - Endang Rahmat
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - Chang Ho Kang
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Youngmin Kang
- Korean Medicine Convergence Science Major of KIOM School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, Jeollanam-Do, 58245, Republic of Korea.
| |
Collapse
|
5
|
Valentini B, Penna M, Viazzo M, Caprio E, Casacci LP, Barbero F, Stefanini I. Yeasts, arthropods, and environmental matrix: a triad to disentangle the multi-level definition of biodiversity. Sci Rep 2024; 14:20144. [PMID: 39209939 PMCID: PMC11362455 DOI: 10.1038/s41598-024-70327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Our understanding of the spread of yeasts in natural ecosystems remains somewhat limited. The recent momentum of yeast ecology research has unveiled novel habitats and vectors that, alongside human activities, impact yeast communities in their natural environments. Yeasts, as non-airborne microorganisms, rely on animal vectors, predominantly insects. However, the overlooked actor in this interplay is the environmental matrix, a player potentially influencing yeast populations and their vectors. This study aims to delve deeper into the intricate, multi-layered connections between yeast populations and ecosystems, focusing on the interactions between the attributes of the environmental matrix, arthropod diversity, and the mycobiota within a renowned yeast-inhabited framework: the vineyard. To investigate these relationships, we sampled both invertebrate and yeast diversity in six organic and conventional vineyards described in terms of management and landscape composition. We identified 80 different invertebrate taxa and isolated 170 yeast strains belonging to 18 species. Notably, new species-specific yeast-insect associations were observed, including the exclusive association between Candida orthopsilosis and Hymenoptera and between Metschnikowia pulcherrima and Coleoptera. These newly identified potential associations provide valuable insights into insect and yeast physiology, hence holding the promise of enhancing our understanding of yeast and arthropod ecology and their collective impact on overall ecosystem health.
Collapse
Affiliation(s)
- Beatrice Valentini
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Margherita Penna
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Massimiliano Viazzo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Enrico Caprio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy.
| |
Collapse
|
6
|
Aragno J, Fernandez-Valle P, Thiriet A, Grondin C, Legras JL, Camarasa C, Bloem A. Two-Stage Screening of Metschnikowia spp. Bioprotective Properties: From Grape Juice to Fermented Must by Saccharomyces cerevisiae. Microorganisms 2024; 12:1659. [PMID: 39203501 PMCID: PMC11356803 DOI: 10.3390/microorganisms12081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Gluconobacter oxydans (Go) and Brettanomyces bruxellensis (Bb) are detrimental micro-organisms compromising wine quality through the production of acetic acid and undesirable aromas. Non-Saccharomyces yeasts, like Metschnikowia species, offer a bioprotective approach to control spoilage micro-organisms growth. Antagonist effects of forty-six Metschnikowia strains in a co-culture with Go or Bb in commercial grape juice were assessed. Three profiles were observed against Go: no effect, complete growth inhibition, and intermediate bioprotection. In contrast, Metschnikowia strains exhibited two profiles against Bb: no effect and moderate inhibition. These findings indicate a stronger antagonistic capacity against Go compared to Bb. Four promising Metschnikowia strains were selected and their bioprotective impact was investigated at lower temperatures in Chardonnay must. The antagonistic effect against Go was stronger at 16 °C compared to 20 °C, while no significant impact on Bb growth was observed. The bioprotection impact on Saccharomyces cerevisiae fermentation has been assessed. Metschnikowia strains' presence did not affect the fermentation time, but lowered the fermentation rate of S. cerevisiae. An analysis of central carbon metabolism and volatile organic compounds revealed a strain-dependent enhancement in the production of metabolites, including glycerol, acetate esters, medium-chain fatty acids, and ethyl esters. These findings suggest Metschnikowia species' potential for bioprotection in winemaking and wine quality through targeted strain selection.
Collapse
Affiliation(s)
- Julie Aragno
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
| | - Pascale Fernandez-Valle
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
| | - Angèle Thiriet
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
- Microbial Research Infrastructure, 4710-057 Braga, Portugal
| | - Cécile Grondin
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
- Microbial Research Infrastructure, 4710-057 Braga, Portugal
| | - Jean-Luc Legras
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
- Microbial Research Infrastructure, 4710-057 Braga, Portugal
| | - Carole Camarasa
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
| | - Audrey Bloem
- UMR SPO, INRAE, Institut Agro, Université Montpellier, 34060 Montpellier, France; (J.A.); (C.G.); (J.-L.L.); (C.C.)
| |
Collapse
|
7
|
Steglińska A, Nowak A, Janas R, Grzesik M, Śmigielski K, Kręgiel D, Gutarowska B. Chitosan as an Antimicrobial, Anti-Insect, and Growth-Promoting Agent for Potato ( Solanum tuberosum L.) Plants. Molecules 2024; 29:3313. [PMID: 39064892 PMCID: PMC11280303 DOI: 10.3390/molecules29143313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
A growing trend in plant protection is replacing chemical preparations with environmentally friendly biological compositions. Chitosan, due to its biocompatibility, biodegradability, and bioactivity, is an effective agent against plant diseases. The purpose of the study was to evaluate chitosan as a potential biopesticide for potato plants. Three variants of chitosan were tested: high (310-375 kDa, >75% deacetylated), medium (190-310 kDa, 75-85% deacetylated), and low (50-190 kDa, 75-85% deacetylated) molecular weight. The chitosan variants were dissolved in lactic and succinic acids and tested for antibacterial and antifungal properties against eight strains of mould and two strains of bacteria responsible for potato diseases. The possible cytotoxicity of chitosan was evaluated against different cell lines: insect Sf-9, human keratinocyte HaCaT, and human colon carcinoma Caco-2. The bioprotective activities of the chitosan were also evaluated in situ on potato tubers. Chitosan inhibited the growth of almost all the selected phytopathogens. The most active was medium molecular chitosan in lactic acid. This formula was characterized by low toxicity towards human cells and high toxicity towards Sf-9 cells. It was also found to have positive effects on the growth of stems and roots, gas exchange, and chlorophyll index in potato plants. Selected chitosan formulation was proposed as a functional biopesticide for potato protection against phytopathogens.
Collapse
Affiliation(s)
- Aleksandra Steglińska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Regina Janas
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Mieczysław Grzesik
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Krzysztof Śmigielski
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| |
Collapse
|
8
|
Sipiczki M, Czentye K, Kállai Z. High intragenomic, intergenomic, and phenotypic diversity in pulcherrimin-producing Metschnikowia yeasts indicates a special mode of genome evolution. Sci Rep 2024; 14:10521. [PMID: 38714828 PMCID: PMC11076541 DOI: 10.1038/s41598-024-61335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/04/2024] [Indexed: 05/10/2024] Open
Abstract
In molecular systematics, the delimitation of yeast species is based on the notion that the barcode differences are smaller within species than between them. The most widely used barcodes are segments of the chromosomal repeats coding for ribosomal RNAs that are homogenised in yeasts. The analysis of these segments of the type strains of ten species recently merged in Metschnikowia pulcherrima and 37 new isolates demonstrated that this is not the case in this species. The intragenomic diversity significantly exceeded the threshold gaps used to differentiate related yeast species. Large segments of the D1/D2 domains were not diverse within the genomes and could therefore be used to determine the taxonomic affiliation of the isolates. The genome structures of the isolates were compared by RAPD and the RFLP of the mitochondrial DNA. Both patterns were highly heterogeneous. The sequence analysis of the PUL4 gene (a member of the PUL gene cluster involved in pulcherrimin production) revealed very high intragenomic differences, suggesting that the genomes may be chimerised. Three phenotypic traits related to the antimicrobial antagonism characteristic of the species were also highly diverse and prone to reversible segregation resembling epigenetic processes (silencing and reactivation of regulators) rather than mutations and back-mutations. These features make M. pulcherrima unique among yeasts and indicate that it evolves in a non-standard way.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary.
| | - Kinga Czentye
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kállai
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
- Institute of Horticulture, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Sipiczki M. Identification of antagonistic yeasts as potential biocontrol agents: Diverse criteria and strategies. Int J Food Microbiol 2023; 406:110360. [PMID: 37591131 DOI: 10.1016/j.ijfoodmicro.2023.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Plant pathogenic and food spoilage microorganisms cause serious losses in crop production and severe damage during food manufacturing, transportation and storage. Synthetic antimicrobial agents are commonly used to control their propagation and harmful activities. However, the recent trend is shifting from chemicals towards safer and more eco-friendly alternatives. The use of antagonistic microorganisms as biological antimicrobial agents is becoming popular throughout the world to replace chemical agents. High numbers of microorganisms have turned out to exert adverse/inhibitory effects on other microorganisms including pathogens and spoiling strains. However, most of them are only active under laboratory conditions and their activity is sensitive to environmental changes. Only a small number of them can be used to manufacture biological protective products on an industrial scale. Therefore, there is a great need to identify additional antagonists. Yeasts have come to the forefront of attention because antimicrobial antagonism is fairly widespread among them. In the recent years, numerous excellent review articles covered various aspects of the phenomenon of antimicrobial antagonism of yeasts. However, none of them dealt with how antagonistic yeasts can be sought and identified, despite the high number and diverse efficiency of screening and identification procedures. As researchers working in different laboratories use different criteria and different experimental set-ups, a yeast strain found antagonistic in one laboratory may prove to be non-antagonistic in another laboratory. This review aims to provide a comprehensive and partially critical overview of the wide diversity of identification criteria and procedures to help researchers choose appropriate screening and identification strategies.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
10
|
Binati RL, Maule M, Luzzini G, Martelli F, Felis GE, Ugliano M, Torriani S. From bioprotective effects to diversification of wine aroma: Expanding the knowledge on Metschnikowia pulcherrima oenological potential. Food Res Int 2023; 174:113550. [PMID: 37986429 DOI: 10.1016/j.foodres.2023.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Microbial diseases are of major concern in vitiviniculture as they cause grape losses and wine alterations, but the prevention with chemical substances represents a risk to human health and agricultural ecosystem. A promising alternative is the biocontrol and bioprotection activity of non-Saccharomyces yeasts, such as Metschnikowia pulcherrima, which also presents positive oenological traits when used in multistarter fermentations. The aim of this study was to assess the impact of a selected M. pulcherrima strain in the post-harvest withering and vinification of Garganega grapes to produce the sweet 'passito' wine Recioto di Gambellara DOCG (Italy). M. pulcherrima was firstly inoculated on grape at the beginning of the withering process, and afterwards in must for multistarter sequential microfermentation trials with Saccharomyces cerevisiae. Microbiological, chemical, and sensory analyses were carried out to monitor the vinification of treated and control grapes. Grape bunches during withering were a suitable environment for the colonization by M. pulcherrima, which effectively prevented growth of molds. Differences in grape must composition were observed, and the diverse inoculation strategies caused noticeable variations of fermentation kinetics, main oenological parameters, wine aroma profile, and sensory perception. M. pulcherrima proved effective to protect grapes against fungal infections during withering and contribute to alcoholic fermentation generating wine with distinguished aromatic characteristics.
Collapse
Affiliation(s)
- Renato L Binati
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Marzia Maule
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Giovanni Luzzini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Francesco Martelli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy; VUCC-DBT, Verona University Culture Collection - Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Maurizio Ugliano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona, VR, Italy.
| |
Collapse
|
11
|
Wang S, Tan Z, Wang C, Liu W, Hang F, He X, Ye D, Li L, Sun J. Iron Competition as an Important Mechanism of Pulcherrimin-Producing Metschnikowia sp. Strains for Controlling Postharvest Fungal Decays on Citrus Fruit. Foods 2023; 12:4249. [PMID: 38231683 DOI: 10.3390/foods12234249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
This study identified and tested fruit-isolated Metschnikowia yeasts against three major postharvest citrus pathogens, namely, Penicillium digitatum, Penicillium italicum, and Geotrichum citri-aurantii, and further evaluated the impact of FeCl3 on the biocontrol efficiency of pulcherrimin-producing M. pulcherrima strains. Based on the characterization of the pigmented halo surrounding the colonies and the analysis of the D1/D2 domain of 26S rDNA, a total of 46 Metschnikowia sp. were screened and identified. All 46 Metschnikowia strains significantly inhibited the hyphal growth of Penicillium digitatum, Penicillium italicum, and Geotrichum citri-aurantii, and effectively controlled the development of green mold, blue mold and sour rot of citrus fruit. The introduction of exogenous FeCl3 at certain concentrations did not significantly impact the pulcherriminic acid (PA) production of pigmented M. pulcherrima strains, but notably diminished the size of pigmented zones and the biocontrol efficacy against the three pathogens. Iron deficiency sensitivity experiments revealed that P. digitatum and P. italicum exhibited higher sensitivity compared to G. citri-aurantii, indicating that iron dependence varied among the three pathogens. These results suggested that M. pulcherrima strains, capable of producing high yields of PA, possessed great potential for use as biocontrol agents against postharvest citrus diseases. The biocontrol efficacy of these yeasts is mainly attributed to their ability to competitively deplete iron ions in a shared environment, with the magnitude of their pigmented halo directly correlating to their antagonistic capability. It is worth noting that the level of sensitivity of pathogens to iron deficiency might also affect the biocontrol effect of pulcherrimin-producing M. pulcherrima.
Collapse
Affiliation(s)
- Shupei Wang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
- College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Zhimei Tan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chenshu Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wenqing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xuemei He
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Dongqing Ye
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Li Li
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| | - Jian Sun
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Nanning 530007, China
| |
Collapse
|
12
|
Lombardo MF, Panebianco S, Restuccia C, Cirvilleri G. Biocontrol Efficacy of Metschnikowia spp. Yeasts in Organic Vineyards against Major Airborne Diseases of Table Grapes in the Field and in Postharvest. Foods 2023; 12:3508. [PMID: 37761216 PMCID: PMC10528312 DOI: 10.3390/foods12183508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this work was to evaluate the efficacy of two antagonistic yeasts, Metschnikowia pulcherrima strain MPR3 and M. fructicola strain NRRL Y-27328 (commercial product NOLI), applied in addition to the "on-farm biological treatments" (BIO) carried out during the production season, for the containment of powdery mildew and grey mould diseases on organic table grapes 'Italia'. The yeast strains were applied in the field three times, and their efficacy was evaluated during the production season and under postharvest conditions. Overall, M. pulcherrima MPR3 combined with BIO treatments reduced disease incidence caused by Erysiphe necator and disease incidence and severity caused by Botrytis cinerea with values between 67.8% and 86.2%, showing higher efficacy than BIO treatments applied alone and in combination with NOLI. Field treatments based on BIO+MPR3 maintained their performance also during fruit storage, protecting grape berries from grey mould development to a greater extent than the other treatments (disease reduction of about 98%). Thus, the presence of M. pulcherrima MPR3 seems to improve disease management both in the field and in postharvest environments, without negative impacts on grape microbial communities. These findings highlight the potential of M. pulcherrima MPR3 as a promising alternative strategy for disease control in organic vineyards and in postharvest, providing sustainable solutions to improve food quality and safety.
Collapse
Affiliation(s)
| | | | - Cristina Restuccia
- Di3A, Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Via S. Sofia 100, 95123 Catania, Italy; (M.F.L.); (S.P.); (G.C.)
| | | |
Collapse
|
13
|
Abdulsalam RA, Ijabadeniyi OA, Cason ED, Sabiu S. Characterization of Microbial Diversity of Two Tomato Cultivars through Targeted Next-Generation Sequencing 16S rRNA and ITS Techniques. Microorganisms 2023; 11:2337. [PMID: 37764180 PMCID: PMC10534366 DOI: 10.3390/microorganisms11092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Even though the nutritional and economic values of Solanum lycopersicum (tomato) are substantially impacted by microbial spoilage, the available data on its microbial community, particularly during spoilage, are limited and have primarily been characterized using conventional culture-dependent methods. This study employed a targeted high-throughput next-generation sequencing method to longitudinally characterize the microbial diversity of two South African tomato cultivars (jam and round) at varied storage intervals (1, 6, and 12 days). Throughout the storage period, the bacterial communities of the two cultivars were more diverse than the fungal communities. The microbial diversity of both bacteria and fungi was greater and comparable between the cultivars on day 1, but becomes distinct as the storage period increases, with round tomatoes being more diverse than jam tomato, though, on day 12, jam tomato develops greater diversity than round tomato. Overall, the most abundant phyla (though Proteobacteria was most dominant) were Proteobacteria, Firmicutes, and Bacteriodota in the bacterial communities, while Ascomycota and Basidiomycota formed most fungal communities with Ascomycota being dominant. At the genus level, Pantoea and Klebsiella (bacteria), Hanseniaspora, Stemphylium, and Alternaria (fungi) were prevalent. Taken together, this study casts light on a broad microbial diversity profile thus, confirms the cultivars' diversity and abundance differences.
Collapse
Affiliation(s)
- Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa
| | | | - Errol D. Cason
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
14
|
Kregiel D, Czarnecka-Chrebelska KH, Schusterová H, Vadkertiová R, Nowak A. The Metschnikowia pulcherrima Clade as a Model for Assessing Inhibition of Candida spp. and the Toxicity of Its Metabolite, Pulcherrimin. Molecules 2023; 28:5064. [PMID: 37446724 DOI: 10.3390/molecules28135064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Candidiasis is one of the most frequent infections worldwide. In this study, the antimicrobial properties of six strains belonging to the Metschnikowia pulcherrima clade were evaluated against twenty Candida and Candida-related Filobasidiella neoformans var. bacillispora (syn. Cryptococcus neoformans) of different origins, employing the agar cross method. The toxic effect of pulcherrimin, a red metabolite that is responsible for the antimicrobial activities of Metschnikowia spp., was evaluated in various experimental models. The results of agar tests showed that the selected M. pulcherrima strains inhibited the growth of the Candida and non-Candida strains. However, inhibition was dependent on the strain and the environment. The presence of peptone, sodium silicate, and a higher incubation temperature decreased the antifungal action of the M. pulcherrima strains. Pulcherrimin showed cytotoxic and antiproliferative activity, with oxidative stress in cells leading to apoptosis. More research is needed on the mechanism of action of pulcherrimin on somatic cells.
Collapse
Affiliation(s)
- Dorota Kregiel
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Culture Collection of Yeasts, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia
| | | | - Hana Schusterová
- Culture Collection of Yeasts, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia
| | - Renáta Vadkertiová
- Culture Collection of Yeasts, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
15
|
Dikmetas DN, Özer H, Karbancıoglu-Guler F. Biocontrol Potential of Antagonistic Yeasts on In Vitro and In Vivo Aspergillus Growth and Its AFB 1 Production. Toxins (Basel) 2023; 15:402. [PMID: 37368702 DOI: 10.3390/toxins15060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Aspergillus flavus is a major aflatoxin B1, posing significant health concerns to humans, crops, and producer fungi. Due to the undesirable consequences of the usage of synthetic fungicides, biological control using yeasts has gained more attention. In this study, eight isolates of epiphytic yeasts belonging to Moesziomyces sp., Meyerozyma sp. and Metschnikowia sp., which have been identified as antagonists, were isolated from different plants, including grapes, blueberries, hawthorns, hoşkıran, beans and grape leaf. While volatile organic compounds (VOCs) produced by Moesziomyces bullatus DN-FY, Metschnikowia aff. pulcherrima DN-MP and Metschnikowia aff. pulcherrima 32-AMM reduced in vitro A. flavus mycelial growth and sporulation, only VOCs produced by Metschnikowia aff. fructicola 1-UDM were found to be effective at reducing in vitro AFB1 production. All yeasts reduced the mycelial growth of A. flavus by 76-91%, while AFB1 production reduced to 1.26-10.15 ng/g and the control plates' growth was 1773 ng/g. The most effective yeast, Metschnikowia aff. Pulcherrima DN-HS, reduced Aspergillus flavus growth and aflatoxin B1 production on hazelnuts. The AFB1 content on hazelnuts reduced to 333.01 ng/g from 536.74 ng/g. To our knowledge, this is the first report of yeasts isolated from plants being tested as potential biological control agents to reduce AFB1 production on hazelnuts.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Hayrettin Özer
- The Scientific and Technological Research Council of Türkiye (TÜBİTAK), Marmara Research Center (MRC), 41470 Gebze, Türkiye
| | - Funda Karbancıoglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| |
Collapse
|
16
|
Ma Y, Wu M, Qin X, Dong Q, Li Z. Antimicrobial function of yeast against pathogenic and spoilage microorganisms via either antagonism or encapsulation: A review. Food Microbiol 2023; 112:104242. [PMID: 36906324 DOI: 10.1016/j.fm.2023.104242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Contaminations of pathogenic and spoilage microbes on foods are threatening food safety and quality, highlighting the importance of developing antimicrobial agents. According to different working mechanisms, the antimicrobial activities of yeast-based agents were summarized from two aspects: antagonism and encapsulation. Antagonistic yeasts are usually applied as biocontrol agents for the preservation of fruits and vegetables via inactivating spoilage microbes, usually phytopathogens. This review systematically summarized various species of antagonistic yeasts, potential combinations to improve the antimicrobial efficiency, and the antagonistic mechanisms. The wide applications of the antagonistic yeasts are significantly limited by undesirable antimicrobial efficiency, poor environmental resistance, and a narrow antimicrobial spectrum. Another strategy for achieving effective antimicrobial activity is to encapsulate various chemical antimicrobial agents into a yeast-based carrier that has been previously inactivated. This is accomplished by immersing the dead yeast cells with porous structure in an antimicrobial suspension and applying high vacuum pressure to allow the agents to diffuse inside the yeast cells. Typical antimicrobial agents encapsulated in the yeast carriers have been reviewed, including chlorine-based biocides, antimicrobial essential oils, and photosensitizers. Benefiting from the existence of the inactive yeast carrier, the antimicrobial efficiencies and functional durability of the encapsulated antimicrobial agents, such as chlorine-based agents, essential oils, and photosensitizers, are significantly improved compared with the unencapsulated ones.
Collapse
Affiliation(s)
- Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Mengjie Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| |
Collapse
|
17
|
Molecular and Physiological Diversity of Indigenous Yeasts Isolated from Spontaneously Fermented Wine Wort from Ilfov County, Romania. Microorganisms 2022; 11:microorganisms11010037. [PMID: 36677329 PMCID: PMC9861077 DOI: 10.3390/microorganisms11010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Wine yeast research offers the possibility of isolating new strains with distinct metabolic properties due to the geographical location of the vineyard and the processes used in winemaking. Our study deals with the isolation and identification of six yeasts from spontaneously fermented wine wort from Romania and their characterization as new potential starter culture for traditional beverages, for food industry or biomedicine. (2) Materials and methods: The isolates were identified using conventional taxonomy tests, phenotypic phylogeny analysis (Biolog YT), MALDI-TOF mass spectrometry, PCR-RFLP, and sequencing of the ITS1-5,8S-ITS2 rDNA region. The capacity of the yeasts to grow under thermal, ionic, and osmotic stress was determined. The safe status was confirmed by testing virulence and pathogenicity factors. Assays were performed in order to evaluate the growth inhibition of Candida strains and determine the antimicrobial mechanism of action. (3) Results and discussions: The yeast isolates were identified as belonging to the Metschinikowia, Hanseniaspora, Torulaspora, Pichia, and Saccharomyces genera. All the isolates were able to develop under the tested stress conditions and were confirmed as safe. With the exception of S. cerevisiae CMGB-MS1-1, all the isolates showed good antimicrobial activity based on competition for iron ions or production of killer toxins. (4) Conclusions: The results revealed the resistance of our yeasts to environmental conditions related to industrial and biomedical applications and their high potential as starter cultures and biocontrol agents, respectively.
Collapse
|
18
|
Starmerella bacillaris Released in Vineyards at Different Concentrations Influences Wine Glycerol Content Depending on the Vinification Protocols. Foods 2022; 12:foods12010003. [PMID: 36613220 PMCID: PMC9818441 DOI: 10.3390/foods12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Starmerella bacillaris is a non-Saccharomyces yeast proposed for must fermentation together with Saccharomyces cerevisiae because of its high glycerol and moderate volatile acidity production. Furthermore, it was demonstrated that the same S. bacillaris strains that possess interesting technological properties exhibited antifungal activity against Botrytis cinerea, suggesting the release of this yeast in the vineyard. To obtain a positive effect during the following winemaking process, the maintenance of suitable concentrations of S. bacillaris is essential. Therefore, to obtain information on the survival of S. bacillaris, a small-scale field trial was performed. One week before the harvest, two different concentrations of S. bacillaris (106 and 107 cells/mL) were sprayed on Pinot grigio bunches, and the strain concentration was monitored by means of qPCR during the subsequent fermentation process. In addition, the combined effect of different winemaking techniques was evaluated, i.e., the vinification of juice, juice with marc and cryomaceration treatment. Results demonstrated that, under the tested conditions, S. bacillaris released in the vineyard remained viable for one week on grape bunches and increased glycerol content during the subsequent fermentation process. Different vinification protocols influenced cell concentrations. In particular, the cryomaceration treatment, due to the use of low temperature, supported S. bacillaris growth due to its cryotolerant aptitude. The collected data open new perspectives on the control of alcoholic fermentation, involving both vineyard and cellar management.
Collapse
|
19
|
Fungal Communities in Leaves and Roots of Healthy-Looking and Diseased Ulmusglabra. Microorganisms 2022; 10:microorganisms10112228. [PMID: 36363820 PMCID: PMC9697362 DOI: 10.3390/microorganisms10112228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate fungal communities associated with leaves and roots of healthy-looking and declining U. glabra trees. The study was expected to demonstrate whether and how the diversity and composition of fungal communities change in these functional tissues following the infection by Dutch elm disease-causing fungi. The study sites included six U. glabra sites in Lithuania, where leaves and roots were sampled. DNA was isolated from individual samples, amplified using ITS2 rRNA as a marker, and subjected to high-throughput sequencing. The sequence analysis showed the presence of 32,699 high-quality reads, which following clustering, were found to represent 520 non-singleton fungal taxa. In leaves, the fungal species richness was significantly higher in healthy-looking trees than in diseased ones (p < 0.05). In roots, a similar comparison showed that the difference was insignificant (p > 0.05). The most common fungi in all samples of roots were Trichocladium griseum (32.9%), Penicillium restrictum (21.2%), and Unidentified sp. 5238_7 (12.6%). The most common fungi in all samples of leaves were Trichomerium sp. 5238_8 (12.30%), Aureobasidium pullulans (12.03%), Cladosporium sp. 5238_5 (11.73%), and Vishniacozyma carnescens (9.86%). The results showed that the detected richness of fungal taxa was higher in samples collected from healthy-looking trees than from diseased ones, thereby highlighting the negative impact of the Dutch elm disease on the overall fungal diversity.
Collapse
|
20
|
Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mixed fermentation using Saccharomyces cerevisiae and non-Saccharomyces yeasts as starter cultures is well known to improve the complexity of wines and accentuate their characteristics. This study examines the use of controlled mixed fermentations with the Metschnikowia pulcherrima clade, Saccharomyces cerevisiae Tokay, and non-conventional yeasts: Wickerhamomyces anomalus and Dekkera bruxellensis. We investigated the assimilation profiles, enzyme fingerprinting, and metabolic profiles of yeast species, both individually and in mixed systems. The chemical complexity of apple wines was improved using the M. pulcherrima clade as co-starters. M. pulcherrima with S. cerevisiae produced a wine with a lower ethanol content, similar glycerol level, and a higher level of volatilome. However, inoculation with the Dekkera and Wickerhamomyces strains may slightly reduce this effect. The final beneficial effect of co-fermentation with M. pulcherrima may also depend on the type of fruit must.
Collapse
|
21
|
Kregiel D, Nowacka M, Rygala A, Vadkertiová R. Biological Activity of Pulcherrimin from the Meschnikowia pulcherrima Clade. Molecules 2022; 27:molecules27061855. [PMID: 35335219 PMCID: PMC8949601 DOI: 10.3390/molecules27061855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Pulcherrimin is a secondary metabolite of yeasts belonging to the Metschnikowia pulcherrima clade, and pulcherrimin formation is responsible for the antimicrobial action of its producers. Understanding the environmental function of this metabolite can provide insight into various microbial interactions and enables the efficient development of new effective bioproducts and methods. In this study, we evaluated the antimicrobial and antiadhesive action of yeast pulcherrimin, as well as its protective properties under selected stressful conditions. Classical microbiological plate methods, microscopy, and physico-chemical testing were used. The results show that pure pulcherrimin does not have antimicrobial properties, but its unique hydrophilic nature may hinder the adhesion of hydrophilic bacterial cells to abiotic surfaces. Pulcherrimin also proved to be a good cell protectant against UV–C radiation at both high and low temperatures.
Collapse
Affiliation(s)
- Dorota Kregiel
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
- Culture Collection of Yeasts, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia;
- Correspondence: ; Tel.: +48-426-313-247
| | - Maria Nowacka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Anna Rygala
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| | - Renáta Vadkertiová
- Culture Collection of Yeasts, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia;
| |
Collapse
|
22
|
Gianvito PD, Englezos V, Rantsiou K, Cocolin L. Bioprotection strategies in winemaking. Int J Food Microbiol 2022; 364:109532. [PMID: 35033974 DOI: 10.1016/j.ijfoodmicro.2022.109532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 01/30/2023]
Abstract
Worldwide the interest for biological control of food spoilage microorganisms has significantly increased over the last decade. Wine makes no exception to this trend, as consumer demands for wines free of preservatives that are considered negative for human health, increase. Biological control during wine fermentation aims at producing high quality wines, while minimizing, or even eliminating, the use of chemical additives. Its success lies in the inoculation of microorganisms to prevent, inhibit or kill undesired microbes, therefore maintaining wine spoilage at the lowest level. The food industry already makes use of this practice, with dedicated commercial microbes already on the market. In winemaking, there are commercial microbes currently under investigation, particularly with the aim to reduce or replace the use of sulphur dioxide. In this review, the potential of wine yeasts and lactic acid bacteria as bioprotection agents and their mechanisms of action during wine fermentation are presented.
Collapse
Affiliation(s)
- Paola Di Gianvito
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Vasileios Englezos
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Kalliopi Rantsiou
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
23
|
Hicks RH, Moreno-Beltrán M, Gore-Lloyd D, Chuck CJ, Henk DA. The Oleaginous Yeast Metschnikowia pulcherrima Displays Killer Activity against Avian-Derived Pathogenic Bacteria. BIOLOGY 2021; 10:biology10121227. [PMID: 34943142 PMCID: PMC8698481 DOI: 10.3390/biology10121227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Pathogenic bacteria in poultry and the widespread use of antibiotics to manage them are costly in terms of production, environmental risk and human health. Probiotic and other low-cost, non-antibiotic treatments offer attractive alternatives to antibiotic applications, but relatively few of these options exist. In this research, we investigated the potential of an otherwise-useful industrial yeast, Metschnikowia pulcherrima, for the active suppression of poultry pathogenic bacteria. We tested multiple strains of yeast against several important bacterial pathogens and found that the more inhibitory strains of yeast supressed bacterial growth and actively killed the most recalcitrant bacteria. Less aggressive yeast strains could increase the growth of some bacterial strains in some environments. The yeast produced novel molecules in response to the presence of the bacteria and we identified several potential mechanisms by which the yeast inhibited or killed bacteria. Together, these results point towards a useful application of a novel yeast for enhanced, antibiotic-free pathogen control. Abstract Metschnikowia pulcherrima is a non-conventional yeast with potential to be used in biotechnological processes, especially those involving low-cost feedstock exploitation and biocontrol applications. The combination of traits that supports these industrial applications in M. pulcherrima also makes it an attractive option to study in the context of livestock health. In this study, we examined the specific interactions between M. pulcherrima and multiple avian pathogenic bacteria. We tested individual bacteria–yeast interactions and bacterial combinations in both solid and liquid media and in variable nutrient environments. Across multiple isolates of M. pulcherrima, we observed different levels of antimicrobial activity, varying from supporting the growth of competing bacteria through suppression and bacterial killing, and we found that these responses varied depending on the bacterial strains and media. We identified multiple molecular routes, including proteins produced by M. pulcherrima strains, that acted to control these microbial interactions. Furthermore, protein screening revealed that M. pulcherrima strains were induced to produce proteins specifically when exposed to bacterial strains, suggesting that fine-tuned mechanisms allow M. pulcherrima to function as a potential lynchpin in a microbial community.
Collapse
Affiliation(s)
- Robert H. Hicks
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
| | - Mauro Moreno-Beltrán
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
| | - Deborah Gore-Lloyd
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
| | | | - Daniel A. Henk
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
- Correspondence:
| |
Collapse
|
24
|
Ability of Yeast Metabolic Activity to Reduce Sugars and Stabilize Betalains in Red Beet Juice. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To lower the risk of obesity, diabetes, and other related diseases, the WHO recommends that consumers reduce their consumption of sugars. Here, we propose a microbiological method to reduce the sugar content in red beet juice, while incurring only slight losses in the betalain content and maintaining the correct proportion of the other beet juice components. Several yeast strains with different metabolic activities were investigated for their ability to reduce the sugar content in red beet juice, which resulted in a decrease in the extract level corresponding to sugar content from 49.7% to 58.2%. This strategy was found to have the additional advantage of increasing the chemical and microbial stability of the red beet juice. Only slight losses of betalain pigments were noted, to final concentrations of 5.11% w/v and 2.56% w/v for the red and yellow fractions, respectively.
Collapse
|
25
|
Mycobiota in the Carposphere of Sour and Sweet Cherries and Antagonistic Features of Potential Biocontrol Yeasts. Microorganisms 2021; 9:microorganisms9071423. [PMID: 34209423 PMCID: PMC8307871 DOI: 10.3390/microorganisms9071423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Sour cherries (Prunus cerasus L.) and sweet cherries (P. avium L.) are economically important fruits with high potential in the food industry and medicine. In this study, we analyzed fungal communities associated with the carposphere of sour and sweet cherries that were freshly harvested from private plantations and purchased in a food store. Following DNA isolation, a DNA fragment of the ITS2 rRNA gene region of each sample was individually amplified and subjected to high-throughput NGS sequencing. Analysis of 168,933 high-quality reads showed the presence of 690 fungal taxa. Investigation of microbial ASVs diversity revealed plant-dependent and postharvest handling-affected fungal assemblages. Among the microorganisms inhabiting tested berries, potentially beneficial or pathogenic fungi were documented. Numerous cultivable yeasts were isolated from the surface of tested berries and characterized by their antagonistic activity. Some of the isolates, identified as Aureobasidium pullulans, Metschnikowia fructicola, and M. pulcherrima, displayed pronounced activity against potential fungal pathogens and showed attractiveness for disease control.
Collapse
|
26
|
New Isolated Metschnikowia pulcherrima Strains from Apples for Postharvest Biocontrol of Penicillium expansum and Patulin Accumulation. Toxins (Basel) 2021; 13:toxins13060397. [PMID: 34199507 PMCID: PMC8229137 DOI: 10.3390/toxins13060397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Wild yeasts isolated from the surface of apples were screened for antagonistic activity against Penicillium expansum, the main producer of the mycotoxin patulin. Three antagonistic yeasts (Y33, Y29 and Y24) from a total of 90 were found to inhibit P. expansum growth. Identification by ITS region sequence and characterization showed that three selected isolates of yeast should be different strains of Metschnikowia pulcherrima. Several concentrations of the selected yeasts were used to study their in vitro antifungal effectivity against P. expansum on Petri dishes (plates with 63.6 cm2 surface) whereas their potential activity on patulin reduction was studied in liquid medium. Finally, the BCA that had the best in vitro antifungal capacity against P. and the best patulin degradation capacity was selected to be assessed directly on apples. All the selected strains demonstrated antifungal activity in vitro but the most efficient was the strain Y29. Isolated strains were able to reduce patulin content in liquid medium, Y29 being the only strain that completely reduced patulin levels within 120 h. The application of Y29 as biocontrol agent on the surface of apples inoculated with P. expansum, inhibited fungal growth and patulin production during storage. Therefore, the results shown that this yeast strain could be used for the reduction of P. expansum and its mycotoxin in apples or apple-based products by adapting the procedure application.
Collapse
|
27
|
The antagonistic Metschnikowia andauensis produces extracellular enzymes and pulcherrimin, whose production can be promoted by the culture factors. Sci Rep 2021; 11:10593. [PMID: 34011985 PMCID: PMC8134588 DOI: 10.1038/s41598-021-89982-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
Biological control against microbial infections has a great potential as an alternative approach instead of fungicidal chemicals, which can cause environmental pollution. The pigment producer Metschnikowia andauensis belongs to the antagonistic yeasts, but details of the mechanism by which it inhibits growth of other microbes are less known. Our results confirmed its antagonistic capacity on other yeast species isolated from fruits or flowers and demonstrated that the antagonistic capacity was well correlated with the size of the red pigmented zone. We have isolated and characterized its red pigment, which proved to be the iron chelating pulcherrimin. Its production was possible even in the presence of 0.05 mg/ml copper sulphate, which is widely used in organic vineyards because of its antimicrobial properties. Production and localisation of the pulcherrimin strongly depended on composition of the media and other culture factors. Glucose, galactose, disaccharides and the presence of pectin or certain amino acids clearly promoted pigment production. Higher temperatures and iron concentration decreased the diameter of red pigmented zones. The effect of pH on pigment production varied depending of whether it was tested in liquid or solid media. In addition, our results suggest that other mechanisms besides the iron depletion of the culture media may contribute to the antagonistic capacity of M. andauensis.
Collapse
|
28
|
Vinification without Saccharomyces: Interacting Osmotolerant and "Spoilage" Yeast Communities in Fermenting and Ageing Botrytised High-Sugar Wines (Tokaj Essence). Microorganisms 2020; 9:microorganisms9010019. [PMID: 33374579 PMCID: PMC7822429 DOI: 10.3390/microorganisms9010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022] Open
Abstract
The conversion of grape juice to wine starts with complex yeast communities consisting of strains that have colonised the harvested grape and/or reside in the winery environment. As the conditions in the fermenting juice gradually become inhibitory for most species, they are rapidly overgrown by the more adaptable Saccharomyces strains, which then complete the fermentation. However, there are environmental factors that even Saccharomyces cannot cope with. We show that when the sugar content is extremely high, osmotolerant yeasts, usually considered as “spoilage yeasts“, ferment the must. The examination of the yeast biota of 22 botrytised Tokaj Essence wines of sugar concentrations ranging from 365 to 752 g∙L−1 identified the osmotolerant Zygosaccharomyces rouxii, Candida (Starmerella) lactis-condensi and Candida zemplinina (Starmerella bacillaris) as the dominating species. Ten additional species, mostly known as osmotolerant spoilage yeasts or biofilm-producing yeasts, were detected as minor components of the populations. The high phenotypical and molecular (karyotype, mtDNA restriction fragment length polymorphism (RFLP) and microsatellite-primed PCR (MSP-PCR)) diversity of the conspecific strains indicated that diverse clones of the species coexisted in the wines. Genetic segregation of certain clones and interactions (antagonism and crossfeeding) of the species also appeared to shape the fermenting yeast biota.
Collapse
|
29
|
Abstract
Pulcherrimin, a red iron chelate, is produced by some yeasts and bacteria. It plays important ecological roles in many ecosystems, including growth control, biofilm inhibition and photoprotection. In this study, fifteen yeast strains of the genus Metschnikowia were characterized based on their production of pulcherrimin. Yeast pulcherrimin was isolated and its purity assessed using 1H nuclear magnetic resonance spectroscopy. Under experimental conditions, pulcherrimin formation varied depending on both the tested strains and culture media. The best producers formed up to 240 mg/L of pulcherrimin in minimal medium with glucose as the carbon source, supplemented with 0.05% FeCl3 and 0.1% Tween 80. This study presents a new approach to producing high yields of pulcherrimin from yeasts.
Collapse
|
30
|
Rojas-Jimenez K, Grossart HP, Cordes E, Cortés J. Fungal Communities in Sediments Along a Depth Gradient in the Eastern Tropical Pacific. Front Microbiol 2020; 11:575207. [PMID: 33240232 PMCID: PMC7681244 DOI: 10.3389/fmicb.2020.575207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
Deep waters represent the largest biome on Earth and the largest ecosystem of Costa Rica. Fungi play a fundamental role in global biogeochemical cycling in marine sediments, yet, they remain little explored. We studied fungal diversity and community composition in several marine sediments from 16 locations sampled along a bathymetric gradient (from a depth of 380 to 3,474 m) in two transects of about 1,500 km length in the Eastern Tropical Pacific (ETP) of Costa Rica. Sequence analysis of the V7-V8 region of the 18S rRNA gene obtained from sediment cores revealed the presence of 787 fungal amplicon sequence variants (ASVs). On average, we detected a richness of 75 fungal ASVs per sample. Ascomycota represented the most abundant phylum with Saccharomycetes constituting the dominant class. Three ASVs accounted for ca. 63% of all fungal sequences: the yeast Metschnikowia (49.4%), Rhizophydium (6.9%), and Cladosporium (6.7%). We distinguished a cluster composed mainly by yeasts, and a second cluster by filamentous fungi, but we were unable to detect a strong effect of depth and the overlying water temperature, salinity, dissolved oxygen (DO), and pH on the composition of fungal communities. We highlight the need to understand further the ecological role of fungi in deep-sea ecosystems.
Collapse
Affiliation(s)
| | - Hans-Peter Grossart
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Erik Cordes
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Jorge Cortés
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
31
|
Becker R, Ulrich K, Behrendt U, Kube M, Ulrich A. Analyzing Ash Leaf-Colonizing Fungal Communities for Their Biological Control of Hymenoscyphus fraxineus. Front Microbiol 2020; 11:590944. [PMID: 33193255 PMCID: PMC7649789 DOI: 10.3389/fmicb.2020.590944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
The invasive ascomycete Hymenoscyphus fraxineus has been threatening Fraxinus excelsior populations throughout Europe for over two decades. Since the infection and first colonization by the pathogen occurs in leaves, leaf-colonizing microorganisms have been discussed as a barrier and as possible biocontrol agents against the disease. To identify fungal groups with health-supporting potential, we compared the fungal microbiota of compound leaves from susceptible and tolerant ash trees in four ash stands with high H. fraxineus exposure. The fungal communities were analyzed both culture-independently by ITS2 amplicon sequencing and by the taxonomic classification of 1,704 isolates using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) or sequencing of the entire ITS region. The fungal community structure did not show significant differences depending on the health status. However, for several OTUs and a MALDI group, a significantly higher abundance was found in tolerant ash trees. Thus, the yeast Papiliotrema flavescens was significantly increased and accounted for 12.3% of the mycobiome of tolerant ashes (OTU0003), and it had also a distinctly higher abundance among the isolates. The filamentous ascomycete Sarocladium strictum was increased 24-fold among the isolates of tolerant trees, but its abundance was comparably low. An in vitro screening for the growth inhibition of the pathogen via cocultivation resulted in 28 yeast-like isolates and 79 filamentous fungi with antagonistic activity. A statistical cocultivation test on two H. fraxineus strains confirmed six of the yeast-like isolates that suppressed H. fraxineus significantly, from 39-50%, two of them through a fungicidal effect. The highest inhibition rates among the yeasts were found for three isolates belonging to Aureobasidium pullulans and P. flavescens. The cocultivation test of the filamentous isolates revealed higher effects compared to the yeasts. Four isolates showed significant inhibition of both H. fraxineus strains with a rate of 72-100%, and five further isolates inhibited only one H. fraxineus strain significantly. The most effective isolates were members of the genus Cladosporium. During the next step, in planta tests will be necessary to verify the efficacy of the antagonistic isolates and to assess their suitability as biocontrol agents.
Collapse
Affiliation(s)
- Regina Becker
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Kristina Ulrich
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, Waldsieversdorf, Germany
| | - Undine Behrendt
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Michael Kube
- Integrative Infection Biology Crops-Livestock, University of Hohenheim, Stuttgart, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
32
|
Melvydas V, Svediene J, Skridlaite G, Vaiciuniene J, Garjonyte R. In vitro inhibition of Saccharomyces cerevisiae growth by Metschnikowia spp. triggered by fast removal of iron via two ways. Braz J Microbiol 2020; 51:1953-1964. [PMID: 32780266 DOI: 10.1007/s42770-020-00357-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 11/28/2022] Open
Abstract
Simple and convenient innovative assays in vitro demonstrating Metschnikowia spp. competition with Saccharomyces cerevisiae for an essential nutrient iron are presented. The tested Metschnikowia strains possess a common genetically determined property of secreting a pulcherriminic acid which in the presence of iron (III) ions forms an insoluble red pigment pulcherrimin. Both initial accumulation in growing Metschnikowia cells and subsequent precipitation in the form of pulcherrimin in the media contribute to iron removal by functioning cells. The predominant way depends on the strain. Due to fast elimination of iron, the growth of S. cerevisiae can be inhibited by tested Metschnikowia strains at concentrations of elemental iron in the media not exceeding 12 mg kg-1. Inhibition can be regulated by additional supply of microquantities of iron onto the surface of the solid medium within 20-24 h. At relatively low concentrations of elemental iron (below 1 mg kg-1), additional supplements of iron onto the surface provide an advancement in understanding the inhibition possibilities and enable the assay control. Microscopy observations revealed that Metschnikowia chlamydospores are involved in iron removal at relatively high iron concentrations. The results may find application in development of new methodologies and strategies for biocontrol or inhibition of pathogenic microorganisms.
Collapse
Affiliation(s)
| | - Jurgita Svediene
- Nature Research Centre, Akademijos 2, LT-08412, Vilnius, Lithuania
| | | | - Jurate Vaiciuniene
- State Research Institute, Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10222, Vilnius, Lithuania
| | - Rasa Garjonyte
- State Research Institute, Center for Physical Sciences and Technology, Sauletekio ave. 3, LT-10222, Vilnius, Lithuania.
| |
Collapse
|
33
|
Fernandez-San Millan A, Farran I, Larraya L, Ancin M, Arregui LM, Veramendi J. Plant growth-promoting traits of yeasts isolated from Spanish vineyards: benefits for seedling development. Microbiol Res 2020; 237:126480. [PMID: 32402946 DOI: 10.1016/j.micres.2020.126480] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/04/2020] [Accepted: 03/28/2020] [Indexed: 01/10/2023]
Abstract
It is known that some microorganisms can enhance plant development. However, the use of yeasts as growth-promoting agents has been poorly investigated. The aim of this study was the characterisation of a collection of 69 yeast strains isolated from Spanish vineyards. Phytobeneficial attributes such as solubilisation of nutrients, synthesis of active biomolecules and cell wall-degrading enzyme production were analysed. Strains that revealed multiple growth-promoting characteristics were identified. The in vitro co-culture of Nicotiana benthamiana with yeast isolates showed enhancement of plant growth in 10 strains (up to 5-fold higher shoot dry weight in the case of Hyphopichia pseudoburtonii Hp-54), indicating a beneficial direct yeast-plant interaction. In addition, 18 out of the 69 strains increased dry weight and the number of roots per seedling when tobacco seeds were inoculated. Two of these, Pichia dianae Pd-2 and Meyerozyma guilliermondii Mg-11, also increased the chlorophyll content. The results in tobacco were mostly reproduced in lettuce with these two strains, which demonstrates that the effect of the yeast-plant interaction is not species-specific. In addition, the yeast collection was evaluated in maize seedlings grown in soil in a phytotron. Three isolates (Debaryomyces hansenii Dh-67, Lachancea thermotolerans Lt-69 and Saccharomyces cerevisiae Sc-6) promoted seedling development (increases of 10 % in dry weight and chlorophyll content). In conclusion, our data confirm that several yeast strains can promote plant growth and could be considered for the development of biological fertiliser treatments.
Collapse
Affiliation(s)
- A Fernandez-San Millan
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain.
| | - I Farran
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain.
| | - L Larraya
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain.
| | - M Ancin
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain.
| | - L M Arregui
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain.
| | - J Veramendi
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain.
| |
Collapse
|
34
|
Sipiczki M. Metschnikowia pulcherrima and Related Pulcherrimin-Producing Yeasts: Fuzzy Species Boundaries and Complex Antimicrobial Antagonism. Microorganisms 2020; 8:E1029. [PMID: 32664630 PMCID: PMC7409158 DOI: 10.3390/microorganisms8071029] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/30/2022] Open
Abstract
Yeasts affiliated with the Metschnikowia pulcherrima clade (subclade) of the large ascomycetous genus Metschnikowia frequently turn out to produce the characteristic maroon-red pulcherrimin when tested for pigment production and prove to exert antagonistic effects on many types of microorganisms. The determination of the exact taxonomic position of the strains is hampered by the shortage of distinctive morphological and physiological properties of the species of the clade and the lack of rDNA barcode gaps. The rDNA repeats of the type strains of the species are not homogenized and are assumed to evolve by a birth-and-death mechanism combined with reticulation. The taxonomic division is further hampered by the incomplete biological (reproductive) isolation of the species: certain type strains can be hybridized and genome sequencing revealed chimeric genome structures in certain strains that might have evolved from interspecies hybrids (alloploid genome duplication). Various mechanisms have been proposed for the antimicrobial antagonism. One is related to pulcherrimin production. The diffusible precursor of pulcherrimin, the pulcherriminic acid is secreted by the cells into the environment where it forms the insoluble pulcherrimin with the ferric ions. The lack of free iron caused by the immobilization of ferric ions inhibits the growth of many microorganisms. Recent results of research into the complexity of the taxonomic division of the pulcherrimin-producing Metschnikowia yeasts and the mechanism(s) underlying their antimicrobial antagonism are discussed in this review.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
35
|
Nardi T. Microbial Resources as a Tool for Enhancing Sustainability in Winemaking. Microorganisms 2020; 8:microorganisms8040507. [PMID: 32252445 PMCID: PMC7232173 DOI: 10.3390/microorganisms8040507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
In agriculture, the wine sector is one of the industries most affected by the sustainability issue. It is responsible for about 0.3% of annual global greenhouse gas emissions from anthropogenic activities. Sustainability in vitiviniculture was firstly linked to vineyard management, where the use of fertilizers, pesticides and heavy metals is a major concern. More recently, the contribution of winemaking, from grape harvest to bottling, has also been considered. Several cellar processes could be improved for reducing the environmental impact of the whole chain, including microbe-driven transformations. This paper reviews the potential of microorganisms and interactions thereof as a natural, environmentally friendly tool to improve the sustainability aspects of winemaking, all along the production chain. The main phases identified as potentially interesting for exploiting microbial activities to lower inputs are: (i) pre-fermentative stages, (ii) alcoholic fermentation, (iii) stage between alcoholic and malolactic fermentation, (iv) malolactic fermentation, (v) stabilization and spoilage risk management, and (vi) by-products and wastewater treatment. The presence of proper yeast or bacterial strains, the management and timing of inoculation of starter cultures, and some appropriate technological modifications that favor selected microbial activities can lead to several positive effects, including (among other) energy savings, reduction of chemical additives such as sulfites, and reuse of certain residues.
Collapse
Affiliation(s)
- Tiziana Nardi
- CREA-Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| |
Collapse
|