1
|
Manmuan S, Sirirak T, Tubtimsri S, Petchsomrit A, Chuenbarn T. Phytochemical analysis, antioxidant activity, and cytotoxic effects of Caulerpa lentillifera extracts inducing cell apoptosis and sub-G/G0-G1 cell cycle arrest in KON oral cancer cells. BMC Complement Med Ther 2025; 25:101. [PMID: 40069755 PMCID: PMC11899751 DOI: 10.1186/s12906-025-04835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Marine algae have excellent phytoconstituents with notable biological activity and bioactive therapeutic benefits, but the anti-oral cancer activity of Caulerpa lentillifera (C. lentillifera) has not been widely studied. This study aimed to explore the anti-cancer properties of C. lentillifera to gain insights into possible treatment approaches. METHODS The three C. lentillifera extracts were prepared using the maceration method with methanol (CLM), ethanol (CLE), and acetone (CLA). The chemical composition of extracts of C. lentillifera was investigated. Its metabolite profiles were selectively further investigated using the LC-QTOF MS/MS technique and their antioxidative activity was evaluated. The cytotoxic effect on KON cells and MRC-5 cells was assessed using the MTT test. Morphological changes and apoptosis were examined through Hoechst 33,258 and AO double staining, while DAPI and FDA double labeling were used to observe the nucleus and cytoplasm. Using a flow cytometer, the percentage of cell cycle arrest was calculated and the fraction of cell death was examined. RESULTS The CLA exhibited higher quantities of TPC, TFC, chlorophyll a, and chlorophyll b compared to the CLM and CLE. The LC-QTOF MS/MS analysis revealed ten major phytochemicals in the CLA. The three C. lentillifera extracts exhibited antioxidative activity, with the CLE demonstrating significantly higher antioxidant activity compared to the CLM and CLA. In-vitro, the KON oral cancer cells exhibited sensitivity to CLA, CLE, and CLM in that order. The three extracts induced ROS-mediated cell death as well as disruption of mitochondrial membrane potential, with concentrations at IC40, IC60, and IC80 leading to apoptosis within 24 h. Furthermore, the cell cycle of KON cells was blocked in sub-G and G0-G1 by all three extracts. Notably, the extracts significantly impeded colony growth, migration, and invasion. The increase in cellular uptake was measured using the TEER test. CONCLUSION The findings showed that C. lentillifera has several functional metabolites, antioxidative activity, and strong anti-tumor properties. According to these results, C. lentillifera extracts may be utilized to treat oral cancer.
Collapse
Affiliation(s)
- Suwisit Manmuan
- Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand.
| | - Thanchanok Sirirak
- Division of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Sukannika Tubtimsri
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Arpa Petchsomrit
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Tiraniti Chuenbarn
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
2
|
Zhang Y, Wu W, Shi Y, Huang Y, Dai T, Ke L, Chen L, Chen M, Wang Q. Apoptosis-Inducing and Proliferation-Inhibiting Effects of Doramectin on Mz-ChA-1 Human Cholangiocarcinoma Cells. Int J Mol Sci 2024; 25:13440. [PMID: 39769205 PMCID: PMC11676298 DOI: 10.3390/ijms252413440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Cholangiocarcinoma is a malignant tumor that emerges in the intrahepatic or extrahepatic bile ducts. Doramectin (DOR), a third-generation derivative of avermectins (AVMs), is renowned for its low toxicity and high efficiency. However, no research has hitherto focused on the anti-cholangiocarcinoma effects of these drugs. In this study, we undertook a preliminary exploration of the mechanism through which DOR inhibits the viability of human cholangiocarcinoma cells (Mz-ChA-1) via transcriptome analysis and molecular validation at the cellular level. The results indicated that DOR could suppress the growth and proliferation of Mz-ChA-1 cells in a dose-dependent manner. Moreover, it significantly diminished their migration and invasion abilities. Cell cycle analysis disclosed arrest in the G1 phase, accompanied by an increase in p21 expression and a decrease in the levels of the cyclin E1 and CDK2 proteins. Additionally, DOR induced apoptosis via the ROS-triggered mitochondrial pathway. This was attested by an elevation in the BAX/BCL-2 ratio, the activation of caspase 3/7 and the cleavage of PARP1. These mechanistic insights underscore DOR's potential as a therapeutic agent against cholangiocarcinoma.
Collapse
Affiliation(s)
- Yunfang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Wei Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Yan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Ting Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Lina Ke
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Lizhu Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| | - Mingliang Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (Y.Z.); (W.W.); (Y.S.); (Y.H.); (T.D.); (L.K.); (L.C.)
| |
Collapse
|
3
|
Chen S, Sun D, Zhang S, Xu L, Wang N, Li H, Xu X, Wei F. TIN2 modulates FOXO1 mitochondrial shuttling to enhance oxidative stress-induced apoptosis in retinal pigment epithelium under hyperglycemia. Cell Death Differ 2024; 31:1487-1505. [PMID: 39080375 PMCID: PMC11519896 DOI: 10.1038/s41418-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 10/30/2024] Open
Abstract
Progressive dysfunction of the retinal pigment epithelium (RPE) and the adjacent photoreceptor cells in the outer retina plays a pivotal role in the pathogenesis of diabetic retinopathy (DR). Here, we observed a marked increase in oxidative stress-induced apoptosis in parallel with higher expression of telomeric protein TIN2 in RPE cells under hyperglycemia in vivo and in vitro. Delving deeper, we confirm that high glucose-induced elevation of mitochondria-localized TIN2 compromises mitochondrial activity and weakens the intrinsic antioxidant defense, thereby leading to the activation of mitochondria-dependent apoptotic pathways. Mechanistically, mitochondrial TIN2 promotes the phosphorylation of FOXO1 and its relocation to the mitochondria. Such translocation of transcription factor FOXO1 not only promotes its binding to the D-loop region of mitochondrial DNA-resulting in the inhibition of mitochondrial respiration-but also hampers its availability to nuclear target DNA, thereby undermining the intrinsic antioxidant defense. Moreover, TIN2 knockdown effectively mitigates oxidative-induced apoptosis in diabetic mouse RPE by preserving mitochondrial homeostasis, which concurrently prevents secondary photoreceptor damage. Our study proposes the potential of TIN2 as a promising molecular target for therapeutic interventions for diabetic retinopathy, which emphasizes the potential significance of telomeric proteins in the regulation of metabolism and mitochondrial function. Created with BioRender ( https://www.biorender.com/ ).
Collapse
Affiliation(s)
- Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Li Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
4
|
Wang H, Wei Z, Xu C, Fang F, Wang Z, Zhong Y, Wang X. Nuclear receptor 4A1 ameliorates UUO-induced renal fibrosis by inhibiting the PI3K/AKT pathway. Sci Rep 2024; 14:24787. [PMID: 39433882 PMCID: PMC11494048 DOI: 10.1038/s41598-024-76219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
As an ultra-early response gene, Nuclear receptor 4A1 (NR4A1) has been reported to be involved in the development of various diseases through various pathological pathways, but its specific mechanism in chronic kidney disease (CKD) is unknown currently. Our study showed that the expression of NR4A1 was reduced in unilateral ureteral obstruction (UUO) mice and it could exacerbate UUO-induced renal pathological injury when knocked down NR4A1 in UUO mice. We found that the knockdown of NR4A1 could promote angiogenesis, renal inflammation, and cell apoptosis to aggravate renal fibrosis induced by UUO. As an agonist of NR4A1, Cytosporone B (Csn-B) could inhibit the renal fibrosis by attenuating angiogenesis, renal inflammation and cell apoptosis. In addition, the PI3K/AKT pathway was activated with NR4A1 knockdown in vivo and in vitro experiments. In conclusion, our study demonstrates that NR4A1 can ameliorate renal fibrosis. Furthermore, we speculate that its underlying mechanism may be related to the activation of PI3K/AKT pathway according to our present results.
Collapse
Affiliation(s)
- Hongshuang Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Ziheng Wei
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Chang Xu
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Zheng Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Hebei Key Laboratory of Integrative Medicine On Liver-Kidney Patterns, Shijiazhuang, 050091, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yan Zhong
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Hebei Key Laboratory of Integrative Medicine On Liver-Kidney Patterns, Shijiazhuang, 050091, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Xiangting Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Hebei Key Laboratory of Integrative Medicine On Liver-Kidney Patterns, Shijiazhuang, 050091, China.
| |
Collapse
|
5
|
Chang H, Cheng S, Xing G, Huang C, Zhang C, Qian W, Li J. Vincristine exposure impairs mouse oocyte quality by inducing spindle defects and early apoptosis. IUBMB Life 2024; 76:345-356. [PMID: 38009728 DOI: 10.1002/iub.2797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Vincristine (VCR) is a microtubule-destabilizing chemotherapeutic agent commonly administered for the treatment of cancers in patients, which can induce severe side effects including neurotoxicity. In context of the effects on female fertility, ovarian toxicity has been found in patients and mice model after VCR exposure. However, the influence of VCR exposure on oocyte quality has not been elucidated. We established VCR exposure in vitro and in vivo model. The results indicated in vitro VCR exposure contributed to failure of oocyte maturation through inducing defects in spindle assembly, activation of SAC, oxidative stress, mitochondrial dysfunction, and early apoptosis, which were confirmed by using in vivo exposure model. Moreover, in vivo VCR exposure caused aneuploidy, reduced oocyte-sperm binding ability, and the number of cortical granules in mouse oocyte cortex. Taken together, this study demonstrated that VCR could cause meiotic arrest and poor quality of mouse oocyte.
Collapse
Affiliation(s)
- Haoya Chang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Siyu Cheng
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital (Peking University Binhai Hospital), Tianjin, China
| | - Chenyang Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chunhui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weiping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Liu Y, Zhang Z, He Y, Li R, Zhang Y, Liu H, Wang Y, Ma W. Mitochondria protective and anti-apoptotic effects of peripheral benzodiazepine receptor and its ligands on the treatment of asthma in vitro and vivo. J Inflamm (Lond) 2024; 21:11. [PMID: 38641850 PMCID: PMC11031857 DOI: 10.1186/s12950-024-00383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/03/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Asthma is a prevalent respiratory inflammatory disease. Abnormal apoptosis of bronchial epithelial cells is one of the major factors in the progression of asthma. Peripheral benzodiazepine receptors are highly expressed in bronchial epithelial cells, which act as a component of the mitochondrial permeability transition pore to regulate its opening and closing and apoptosis of bronchial epithelial cells. We aimed to investigate the mechanisms by which peripheral benzodiazepine receptor and its ligands, agonist 4'-Chlorodiazepam (Ro5-4864) and antagonist 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK 11,195), modulate the mitochondrial function and cell apoptosis in the treatment of asthma. METHODS In vitro study, Ro5-4864 and PK 11,195 were utilized to pretreat cells prior to the inflammatory injury induced by Lipopolysaccharide. The reactive oxygen species, the apoptosis of cell, the mitochondrial membrane potentials, the ultrastructures of the mitochondria and the expression levels of peripheral benzodiazepine receptors and apoptosis-related proteins and genes were detected. In vivo study, mice were administrated intraperitoneally with Ro5-4864 and PK 11,195 before sensitized and challenged by ovalbumin. Serum IgE and bronchoalveolar lavage fluid cytokines were detected, and lung tissues were underwent the histopathological examination. RESULTS The ligands of peripheral benzodiazepine receptor counteracted the effects of the increase of reactive oxygen species, the elevated extent of apoptosis, the decrease of mitochondrial membrane potentials and the disruption of mitochondrial ultrastructures induced by Lipopolysaccharide. The ligands also promoted the expression of anti-apoptosis-related proteins and genes and inhibited the expression of pro-apoptosis-related proteins and genes. Besides, the ligands reduced the levels of serum IgE and bronchoalveolar lavage fluid cytokines in asthmatic mice and attenuated the histopathological damage of lungs. CONCLUSION Peripheral benzodiazepine receptor serves as a potential therapeutic target for the treatment of asthma, with its ligands exerting mitochondrial protective and anti-apoptotic effects on bronchial epithelial cells.
Collapse
Affiliation(s)
- Yurui Liu
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Zhengze Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Yuewen He
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Ruogen Li
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Yuhao Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Hao Liu
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Yong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China.
| |
Collapse
|
7
|
Su L, Xu J, Lu C, Gao K, Hu Y, Xue C, Yan X. Nano-flow cytometry unveils mitochondrial permeability transition process and multi-pathway cell death induction for cancer therapy. Cell Death Discov 2024; 10:176. [PMID: 38622121 PMCID: PMC11018844 DOI: 10.1038/s41420-024-01947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Mitochondrial permeability transition (mPT)-mediated mitochondrial dysfunction plays a pivotal role in various human diseases. However, the intricate details of its mechanisms and the sequence of events remain elusive, primarily due to the interference caused by Bax/Bak-induced mitochondrial outer membrane permeabilization (MOMP). To address these, we have developed a methodology that utilizes nano-flow cytometry (nFCM) to quantitatively analyze the opening of mitochondrial permeability transition pore (mPTP), dissipation of mitochondrial membrane potential ( Δ Ψm), release of cytochrome c (Cyt c), and other molecular alternations of isolated mitochondria in response to mPT induction at the single-mitochondrion level. It was identified that betulinic acid (BetA) and antimycin A can directly induce mitochondrial dysfunction through mPT-mediated mechanisms, while cisplatin and staurosporine cannot. In addition, the nFCM analysis also revealed that BetA primarily induces mPTP opening through a reduction in Bcl-2 and Bcl-xL protein levels, along with an elevation in ROS content. Employing dose and time-dependent strategies of BetA, for the first time, we experimentally verified the sequential occurrence of mPTP opening and Δ Ψm depolarization prior to the release of Cyt c during mPT-mediated mitochondrial dysfunction. Notably, our study uncovers a simultaneous release of cell-death-associated factors, including Cyt c, AIF, PNPT1, and mtDNA during mPT, implying the initiation of multiple cell death pathways. Intriguingly, BetA induces caspase-independent cell death, even in the absence of Bax/Bak, thereby overcoming drug resistance. The presented findings offer new insights into mPT-mediated mitochondrial dysfunction using nFCM, emphasizing the potential for targeting such dysfunction in innovative cancer therapies and interventions.
Collapse
Affiliation(s)
- Liyun Su
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jingyi Xu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Cheng Lu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kaimin Gao
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yunyun Hu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Chengfeng Xue
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
8
|
Zhu J, Zhu J, Xie H, Tang J, Miao Y, Cai L, Hildebrandt P, Han XX. In Situ Raman Spectroscopy Reveals Cytochrome c Redox-Controlled Modulation of Mitochondrial Membrane Permeabilization That Triggers Apoptosis. NANO LETTERS 2024; 24:370-377. [PMID: 38154104 DOI: 10.1021/acs.nanolett.3c04129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The selective interaction of cytochrome c (Cyt c) with cardiolipin (CL) is involved in mitochondrial membrane permeabilization, an essential step for the release of apoptosis activators. The structural basis and modulatory mechanism are, however, poorly understood. Here, we report that Cyt c can induce CL peroxidation independent of reactive oxygen species, which is controlled by its redox states. The structural basis of the Cyt c-CL binding was unveiled by comprehensive spectroscopic investigation and mass spectrometry. The Cyt c-induced permeabilization and its effect on membrane collapse, pore formation, and budding are observed by confocal microscopy. Moreover, cytochrome c oxidase dysfunction is found to be associated with the initiation of Cyt c redox-controlled membrane permeabilization. These results verify the significance of a redox-dependent modulation mechanism at the early stage of apoptosis, which can be exploited for the design of cytochrome c oxidase-targeted apoptotic inducers in cancer therapy.
Collapse
Affiliation(s)
- Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiangnan Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Han Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Miao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
9
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM, Jung SH, Jung JY. Piperine Induces Apoptosis and Autophagy in HSC-3 Human Oral Cancer Cells by Regulating PI3K Signaling Pathway. Int J Mol Sci 2023; 24:13949. [PMID: 37762259 PMCID: PMC10530752 DOI: 10.3390/ijms241813949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, therapies for treating oral cancer have various side effects; therefore, research on treatment methods employing natural substances is being conducted. This study aimed to investigate piperine-induced apoptosis and autophagy in HSC-3 human oral cancer cells and their effects on tumor growth in vivo. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that piperine reduced the viability of HSC-3 cells and 4',6-diamidino-2-phenylindole staining, annexin-V/propidium iodide staining, and analysis of apoptosis-related protein expression confirmed that piperine induces apoptosis in HSC-3 cells. Additionally, piperine-induced autophagy was confirmed by the observation of increased acidic vesicular organelles and autophagy marker proteins, demonstrating that autophagy in HSC-3 cells induces apoptosis. Mechanistically, piperine induced apoptosis and autophagy by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in HSC-3 cells. We also confirmed that piperine inhibits oral cancer tumor growth in vivo via antitumor effects related to apoptosis and PI3K signaling pathway inhibition. Therefore, we suggest that piperine can be considered a natural anticancer agent for human oral cancer.
Collapse
Affiliation(s)
- Eun-Ji Han
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Eun-Young Choi
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Su-Ji Jeon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Sang-Woo Lee
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Jun-Mo Moon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Soo-Hyun Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Ji-Youn Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
- Research Institute for Natural Products, Kongju National University, Yesan-gun 32439, Republic of Korea
| |
Collapse
|
10
|
Zentar H, Jannus F, Medina-O’Donnell M, El Mansouri AE, Fernández A, Justicia J, Alvarez-Manzaneda E, Reyes-Zurita FJ, Chahboun R. Synthesis of Tricyclic Pterolobirin H Analogue: Evaluation of Anticancer and Anti-Inflammatory Activities and Molecular Docking Investigations. Molecules 2023; 28:6208. [PMID: 37687037 PMCID: PMC10489156 DOI: 10.3390/molecules28176208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Pterolobirin H (3), a cassane diterpene isolated from the roots of Pterolobium macropterum, exhibits important anti-inflammatory and anticancer properties. However, its relatively complex tetracyclic structure makes it difficult to obtain by chemical synthesis, thus limiting the studies of its biological activities. Therefore, we present here a short route to obtain a rational simplification of pterolobirin H (3) and some intermediates. The anti-inflammatory activity of these compounds was assayed in LPS-stimulated RAW 264.7 macrophages. All compounds showed potent inhibition of NO production, with percentages between 54 to 100% at sub-cytotoxic concentrations. The highest anti-inflammatory effect was shown for compounds 15 and 16. The simplified analog 16 revealed potential NO inhibition properties, being 2.34 higher than that of natural cassane pterolobirin H (3). On the other hand, hydroxyphenol 15 was also demonstrated to be the strongest NO inhibitor in RAW 264.7 macrophages (IC50 NO = 0.62 ± 0.21 μg/mL), with an IC50NO value 28.3 times lower than that of pterolobirin H (3). Moreover, the anticancer potential of these compounds was evaluated in three cancer cell lines: HT29 colon cancer cells, Hep-G2 hepatoma cells, and B16-F10 murine melanoma cells. Intermediate 15 was the most active against all the selected tumor cell lines. Compound 15 revealed the highest cytotoxic effect with the lowest IC50 value (IC50 = 2.45 ± 0.29 μg/mL in HT29 cells) and displayed an important apoptotic effect through an extrinsic pathway, as evidenced in the flow cytometry analysis. Furthermore, the Hoechst staining assay showed that analog 15 triggered morphological changes, including nuclear fragmentation and chromatin condensation, in treated HT29 cells. Finally, the in silico studies demonstrated that cassane analogs exhibit promising binding affinities and docking performance with iNOS and caspase 8, which confirms the obtained experimental results.
Collapse
Affiliation(s)
- Houda Zentar
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (F.J.); (M.M.-O.)
| | - Fatin Jannus
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (F.J.); (M.M.-O.)
| | - Marta Medina-O’Donnell
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (F.J.); (M.M.-O.)
| | - Az-eddine El Mansouri
- Chemistry Department, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Antonio Fernández
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
| | - José Justicia
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
| | - Enrique Alvarez-Manzaneda
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
| | - Fernando J. Reyes-Zurita
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (F.J.); (M.M.-O.)
| | - Rachid Chahboun
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
| |
Collapse
|
11
|
Huang J, Su J, Hou Z, Li J, Li Z, Zhu Z, Liu S, Yang Z, Yin X, Yu G. Cytocompatibility of Ti 3C 2T x MXene with Red Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms. Chem Res Toxicol 2023; 36:347-359. [PMID: 36791021 PMCID: PMC10032211 DOI: 10.1021/acs.chemrestox.2c00154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 02/16/2023]
Abstract
Two-dimensional (2D) nanomaterials have been widely used in biomedical applications because of their biocompatibility. Considering the high risk of exposure of the circulatory system to Ti3C2Tx, we studied the cytocompatibility of Ti3C2Tx MXene with red blood cells (RBCs) and human umbilical vein endothelial cells (HUVECs) and showed that Ti3C2Tx had excellent compatibility with the two cell lines. Ti3C2Tx at a concentration as high as 200 μg/mL caused a negligible percent hemolysis of 0.8%. By contrast, at the same treatment concentration, graphene oxide (GO) caused a high percent hemolysis of 50.8%. Scanning electron microscopy revealed that RBC structures remained intact in the Ti3C2Tx treatment group, whereas those in the GO group completely deformed, sunk, and shrunk, which resulted in the release of cell contents. This difference can be largely ascribed to the distinct surficial properties of the two nanosheets. In specific, the fully covered surface-terminating -O and -OH groups leading to Ti3C2Tx had a very hydrophilic surface, thereby hindering its penetration into the highly hydrophobic interior of the cell membrane. However, the strong direct van der Waals attractions coordinated with hydrophobic interactions between the unoxidized regions of GO and the lipid hydrophobic tails can still damage the integrity of the cell membranes. In addition, the sharp and keen-edged corners of GO may also facilitate its relatively strong cell membrane damage effects than Ti3C2Tx. Thus, the excellent cell membrane compatibility of Ti3C2Tx nanosheets and their ultraweak capacity to provoke excessive ROS generation endowed them with much better compatibility with HUVECs than GO nanosheets. These results indicate that Ti3C2Tx has much better cytocompatibility than GO and provide a valuable reference for the future biomedical applications of Ti3C2Tx.
Collapse
Affiliation(s)
- Jian Huang
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Juan Su
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhenyu Hou
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zheming Li
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhu Zhu
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Shengtang Liu
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiuhua Yin
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center
of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Yu
- Department
of Data and Information, The Children’s
Hospital Zhejiang University School of Medicine, Hangzhou 310052, China
- Sino-Finland
Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China
- National
Clinical Research Center for Child Health, Hangzhou 310052, China
- Polytechnic
Institute, Zhejiang University, Hangzhou 310052, China
| |
Collapse
|
12
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
13
|
Bouchendhomme T, Soret M, Devin A, Pasdois P, Grard T, Lencel P. Differentiating between fresh and frozen-thawed fish fillets by mitochondrial permeability measurement. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Zhang TG, Miao CY. Mitochondrial transplantation as a promising therapy for mitochondrial diseases. Acta Pharm Sin B 2022; 13:1028-1035. [PMID: 36970208 PMCID: PMC10031255 DOI: 10.1016/j.apsb.2022.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial diseases are a group of inherited or acquired metabolic disorders caused by mitochondrial dysfunction which may affect almost all the organs in the body and present at any age. However, no satisfactory therapeutic strategies have been available for mitochondrial diseases so far. Mitochondrial transplantation is a burgeoning approach for treatment of mitochondrial diseases by recovery of dysfunctional mitochondria in defective cells using isolated functional mitochondria. Many models of mitochondrial transplantation in cells, animals, and patients have proved effective via various routes of mitochondrial delivery. This review presents different techniques used in mitochondrial isolation and delivery, mechanisms of mitochondrial internalization and consequences of mitochondrial transplantation, along with challenges for clinical application. Despite some unknowns and challenges, mitochondrial transplantation would provide an innovative approach for mitochondrial medicine.
Collapse
Affiliation(s)
| | - Chao-yu Miao
- Corresponding author. Tel: +86 21 81871271; fax: +86 21 65493951.
| |
Collapse
|
15
|
Elucidating the Anti-Tumorigenic Efficacy of Oltipraz, a Dithiolethione, in Glioblastoma. Cells 2022; 11:cells11193057. [PMID: 36231019 PMCID: PMC9562012 DOI: 10.3390/cells11193057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, displays a highly infiltrative growth pattern and remains refractory to chemotherapy. Phytochemicals carrying specificity and low cytotoxicity may serve as potent and safer alternatives to conventional chemotherapy for treating GBM. We have evaluated the anticancer effects of Oltipraz (Olt), a synthetic dithiolethione found in many vegetables, including crucifers. While Olt exposure was non-toxic to the HEK-293 cell line, it impaired the cell growth in three GBM cell lines (LN18, LN229, and U-87 MG), arresting those at the G2/M phase. Olt-exposed GBM cells induced the generation of reactive oxygen species (ROS), mitochondrial depolarization, caspase 3/7-mediated apoptosis, nuclear condensation, and DNA fragmentation, and decreased glutathione, a natural ROS scavenger, as well as vimentin and β-catenin, the EMT-associated markers. Its effect on a subpopulation of GBM cells exhibiting glioblastoma stem cell (GSCs)-like characteristics revealed a reduced expression of Oct4, Sox2, CD133, CD44, and a decrease in ALDH+, Nestin+ and CD44+ cells. In contrast, there was an increase in the expression of GFAP and GFAP+ cells. The Olt also significantly suppressed the oncosphere-forming ability of cells. Its efficacy was further validated in vivo, wherein oral administration of Olt could suppress the ectopically established GBM tumor growth in SCID mice. However, there was no alteration in body weight, organ ratio, and biochemical parameters, reflecting the absence of any toxicity otherwise. Together, our findings could demonstrate the promising chemotherapeutic efficacy of Olt with potential implications in treating GBM.
Collapse
|
16
|
Descatoire M, Fritzen R, Rotman S, Kuntzelman G, Leber XC, Droz-Georget S, Thrasher AJ, Traggiai E, Candotti F. Critical role of WASp in germinal center tolerance through regulation of B cell apoptosis and diversification. Cell Rep 2022; 38:110474. [PMID: 35263577 DOI: 10.1016/j.celrep.2022.110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/18/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
A main feature of Wiskott-Aldrich syndrome (WAS) is increased susceptibility to autoimmunity. A key contribution of B cells to development of these complications has been demonstrated through studies of samples from affected individuals and mouse models of the disease, but the role of the WAS protein (WASp) in controlling peripheral tolerance has not been specifically explored. Here we show that B cell responses remain T cell dependent in constitutive WASp-deficient mice, whereas selective WASp deletion in germinal center B cells (GCBs) is sufficient to induce broad development of self-reactive antibodies and kidney pathology, pointing to loss of germinal center tolerance as a primary cause leading to autoimmunity. Mechanistically, we show that WASp is upregulated in GCBs and regulates apoptosis and plasma cell differentiation in the germinal center and that the somatic hypermutation-derived diversification is the basis of autoantibody development.
Collapse
Affiliation(s)
- Marc Descatoire
- Laboratory of Inherited Immune Disorders, Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | | | - Samuel Rotman
- Service of Clinical Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | - Stephanie Droz-Georget
- Laboratory of Inherited Immune Disorders, Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adrian J Thrasher
- University College of London, Great Ormond Street Institute of Child Health, London, UK
| | | | - Fabio Candotti
- Laboratory of Inherited Immune Disorders, Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Lan YY, Chen YH, Liu C, Tung KL, Wu YT, Lin SC, Wu CH, Chang HY, Chen YC, Huang BM. Role of JNK activation in paclitaxel-induced apoptosis in human head and neck squamous cell carcinoma. Oncol Lett 2021; 22:705. [PMID: 34457060 PMCID: PMC8358625 DOI: 10.3892/ol.2021.12966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
It has been reported that paclitaxel activates cell cycle arrest and increases caspase protein expression to induce apoptosis in head and neck squamous cell carcinoma (HNSCC) cell lines. However, the potential signaling pathway regulating this apoptotic phenomenon remains unclear. The present study used OEC-M1 cells to investigate the underlying molecular mechanism of paclitaxel-induced apoptosis. Following treatment with paclitaxel, cell viability was assessed via the MTT assay. Necrosis, apoptosis, cell cycle and mitochondrial membrane potential (∆Ψm) were analyzed via flow cytometric analyses, respectively. Western blot analysis was performed to detect the expression levels of proteins associated with the MAPK and caspase signaling pathways. The results demonstrated that low-dose paclitaxel (50 nM) induced apoptosis but not necrosis in HNSCC cells. In addition, paclitaxel activated the c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38 mitogen-activated protein kinase. The paclitaxel-activated JNK contributed to paclitaxel-induced apoptosis, activation of caspase-3, -6, -7, -8 and -9, and reduction of ∆Ψm. In addition, caspase-8 and -9 inhibitors, respectively, significantly decreased paclitaxel-induced apoptosis. Notably, Bid was truncated following treatment with paclitaxel. Taken together, the results of the present study suggest that paclitaxel-activated JNK is required for caspase activation and loss of ∆Ψm, which results in apoptosis of HNSCC cells. These results may provide mechanistic basis for designing more effective paclitaxel-combining regimens to treat HNSCC.
Collapse
Affiliation(s)
- Yu-Yan Lan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Ying-Hui Chen
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Cheng Liu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C.,Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Kuo-Lung Tung
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Yen-Ting Wu
- Department of Pathology, Golden Hospital, Pingtung 90049, Taiwan, R.O.C
| | - Sheng-Chieh Lin
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Chin-Han Wu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C
| | - Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
18
|
Mitochondrial Dysfunction and Alterations in Mitochondrial Permeability Transition Pore (mPTP) Contribute to Apoptosis Resistance in Idiopathic Pulmonary Fibrosis Fibroblasts. Int J Mol Sci 2021; 22:ijms22157870. [PMID: 34360637 PMCID: PMC8346102 DOI: 10.3390/ijms22157870] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by increased activation of fibroblasts/myofibroblasts. Previous reports have shown that IPF fibroblasts are resistant to apoptosis, but the mechanisms remain unclear. Since inhibition of the mitochondrial permeability transition pore (mPTP) has been implicated in the resistance to apoptosis, in this study, we analyzed the role of mitochondrial function and the mPTP on the apoptosis resistance of IPF fibroblasts under basal conditions and after mitomycin C-induced apoptosis. We measured the release of cytochrome c, mPTP opening, mitochondrial calcium release, oxygen consumption, mitochondrial membrane potential, ADP/ATP ratio, ATP concentration, and mitochondrial morphology. We found that IPF fibroblasts were resistant to mitomycin C-induced apoptosis and that calcium, a well-established activator of mPTP, is decreased as well as the release of pro-apoptotic proteins such as cytochrome c. Likewise, IPF fibroblasts showed decreased mitochondrial function, while mPTP was less sensitive to ionomycin-induced opening. Although IPF fibroblasts did not present changes in the mitochondrial membrane potential, we found a fragmented mitochondrial network with scarce, thinned, and disordered mitochondria with reduced ATP levels. Our findings demonstrate that IPF fibroblasts are resistant to mitomycin C-induced apoptosis and that altered mPTP opening contributes to this resistance. In addition, IPF fibroblasts show mitochondrial dysfunction evidenced by a decrease in respiratory parameters.
Collapse
|
19
|
Justice Ndlovu M, Patrick Bagla V, Phenius Mokgotho M, Ephraim Makgatho M, Moss Matsebatlela T. Potential anticancer activity of Acetone extracts of Toona cilliata, Seriphium plumosum and Schkuhria pinnata on HeLa cervical cancer cells. Afr Health Sci 2021; 21:663-672. [PMID: 34795721 PMCID: PMC8568207 DOI: 10.4314/ahs.v21i2.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Cervical cancer is common in women in less developed regions of the world. The plant biomolecules can be employed for synergistic activity with chemo- and radiotherapy. This combinations might result in reduced toxicity and increased efficacy of the treatment regimen. Objectives The anti-HeLa cells activity of the acetone extracts of S. plumosum, T. cilliata and S. pinnata was assessed using different parameters. Methods Secondary metabolite detection and antioxidant activity quantification were determined using the DPPH and ferric iron reducing assays. HeLa cell growth inhibition and mechanistics were assessed by employing MTT and Annexin-V flous assays. Results Observations revealed the presence of phenolic, flavonoids, tannins steroids and coumarins in all the plants extracts. High amount of total phenolic and flavonoid content were detected in S. plumosum and T. cilliata. S. plumosum extract had the best DPPH scavenging activity and ferric reducing powers. Conclusion Observable concentration dependent cell proliferation inhibition by test materials was exhibited. The leaf extracts from T. cilliata, S. plumosum and S. pinnata contain compounds of various polarities with free-radical, antioxidant and anti-cancerous activities that may play a beneficial role in treatment.
Collapse
|
20
|
Soumya T, Lakshmipriya T, Klika KD, Jayasree PR, Manish Kumar PR. Anticancer potential of rhizome extract and a labdane diterpenoid from Curcuma mutabilis plant endemic to Western Ghats of India. Sci Rep 2021; 11:552. [PMID: 33436696 PMCID: PMC7803788 DOI: 10.1038/s41598-020-79414-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
Zingiberaceae plants are well known for their use in ethnomedicine. Curcuma mutabilis Škorničk., M. Sabu & Prasanthk., is an endemic Zingiberaceae species from Western Ghats of Kerala, India. Here, we report for the first time, the anticancer potential of petroleum ether extract from C. mutabilis rhizome (CMRP) and a novel labdane diterpenoid, (E)-14, 15-epoxylabda-8(17), 12-dien-16-al (Cm epoxide) isolated from it. CMRP was found to be a mixture of potent bioactive compounds including Cm epoxide. Both the extract and the compound displayed superior antiproliferative activity against several human cancer cell lines, without any display of cytotoxicity towards normal human cells such as peripheral blood derived lymphocytes and erythrocytes. CMRP treatment resulted in phosphatidylserine externalization, increase in the levels of intracellular ROS, Ca2+, loss of mitochondrial membrane potential as well as fragmentation of genomic DNA. Analyses of transcript profiling and immunostained western blots of extract-treated cancer cells confirmed induction of apoptosis by both intrinsic and extrinsic pathways. The purified compound, Cm epoxide, was also found to induce apoptosis in many human cancer cell types tested. Both CMRP and the Cm epoxide were found to be pharmacologically safe in terms of acute toxicity assessment using Swiss albino mice model. Further, molecular docking interactions of Cm epoxide with selected proteins involved in cell survival and death were also indicative of its druggability. Overall, our findings reveal that the endemic C. mutabilis rhizome extract and the compound Cm epoxide isolated from it are potential candidates for development of future cancer chemotherapeutics.
Collapse
Affiliation(s)
- T Soumya
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India
| | - T Lakshmipriya
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P R Jayasree
- School of Health Sciences, University of Calicut, Malappuram, 673635, Kerala, India
| | - P R Manish Kumar
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India.
| |
Collapse
|
21
|
Theart RP, Kriel J, du Toit A, Loos B, Niesler TR. Mitochondrial event localiser (MEL) to quantitativelydescribe fission, fusion and depolarisation in the three-dimensional space. PLoS One 2020; 15:e0229634. [PMID: 33378337 PMCID: PMC7773280 DOI: 10.1371/journal.pone.0229634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial fission and fusion play an important role not only in maintaining mitochondrial homeostasis but also in preserving overall cellular viability. However, quantitative analysis based on the three-dimensional localisation of these highly dynamic mitochondrial events in the cellular context has not yet been accomplished. Moreover, it remains largely uncertain where in the mitochondrial network depolarisation is most likely to occur. We present the mitochondrial event localiser (MEL), a method that allows high-throughput, automated and deterministic localisation and quantification of mitochondrial fission, fusion and depolarisation events in large three-dimensional microscopy time-lapse sequences. In addition, MEL calculates the number of mitochondrial structures as well as their combined and average volume for each image frame in the time-lapse sequence. The mitochondrial event locations can subsequently be visualised by superposition over the fluorescence micrograph z-stack. We apply MEL to both control samples as well as to cells before and after treatment with hydrogen peroxide (H2O2). An average of 9.3/7.2/2.3 fusion/fission/depolarisation events per cell were observed respectively for every 10 sec in the control cells. With peroxide treatment, the rate initially shifted toward fusion with and average of 15/6/3 events per cell, before returning to a new equilibrium not far from that of the control cells, with an average of 6.2/6.4/3.4 events per cell. These MEL results indicate that both pre-treatment and control cells maintain a fission/fusion equilibrium, and that depolarisation is higher in the post-treatment cells. When individually validating mitochondrial events detected with MEL, for a representative cell for the control and treated samples, the true-positive events were 47%/49%/14% respectively for fusion/fission/depolarisation events. We conclude that MEL is a viable method of quantitative mitochondrial event analysis.
Collapse
Affiliation(s)
- Rensu P. Theart
- Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- * E-mail:
| | - Jurgen Kriel
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - André du Toit
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Thomas R. Niesler
- Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
22
|
Yu K, Pan J, Husamelden E, Zhang H, He Q, Wei Y, Tian M. Aggregation-induced Emission Based Fluorogens for Mitochondria-targeted Tumor Imaging and Theranostics. Chem Asian J 2020; 15:3942-3960. [PMID: 33025759 DOI: 10.1002/asia.202001100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/02/2020] [Indexed: 12/15/2022]
Abstract
Occurrence and development of cancer are multifactorial and multistep processes which involve complicated cellular signaling pathways. Mitochondria, as the energy producer in cells, play key roles in tumor cell growth and division. Since mitochondria of tumor cells have a more negative membrane potential than those of normal cells, several fluorescent imaging probes have been developed for mitochondria-targeted imaging and photodynamic therapy. Conventional fluorescent dyes suffer from aggregation-caused quenching effect, while novel aggregation-induced emission (AIE) probes are ideal candidates for biomedical applications due to their large stokes shift, strong photo-bleaching resistance, and high quantum yield. This review aims to introduce the recent advances in the design and application of mitochondria-targeted AIE probes. The comprehensive review focuses on the structure-property relationship of these imaging probes, expecting to inspire the development of more practical and versatile AIE fluorogens (AIEgens) as tumor imaging and therapy agents for preclinical and clinical use.
Collapse
Affiliation(s)
- Kaiwu Yu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
| | - Jiayue Pan
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| | - Elkawad Husamelden
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| |
Collapse
|
23
|
Shi F, Li W, Zhao H, He Y, Jiang Y, Ni J, Abbasi B, Rui R, Ju S. Microcystin-LR exposure results in aberrant spindles and induces apoptosis in porcine oocytes. Theriogenology 2020; 158:358-367. [PMID: 33038821 DOI: 10.1016/j.theriogenology.2020.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Microcystin-LR (MC-LR), as a well-known hepatotoxin, was recently found to accumulate in gonads and induce a variety of reproductive damages in zebrafish, mice and other model organisms, however, little information is available on whether MC-LR has toxic effects on the mammalian oocytes, especially in livestock species. In this study, the effects of MC-LR on meiotic maturation of porcine oocytes were investigated, and the potential mechanism of MC-LR toxicity was explored. Germinal vesicle (GV)-stage oocytes were exposed to 0, 20, 40 and 60 μM MC-LR, respectively, during the in vitro maturation for 44 h, and the results showed that the first polar body (PbI) extrusion rate of the oocytes decreased significantly when the MC-LR concentration reached 40 (P < 0.01) or 60 μM (P < 0.001). After treated with 60 μM MC-LR for 44 h, a significant higher percentage of the oocytes arrested at anaphase-telophase I (ATI) stage (P < 0.01). Laser scanning confocal results further confirmed that a significantly larger proportion of the 60 μM MC-LR-treated oocytes exhibited aberrant spindles and misaligned chromosomes, suggesting a failure of spindle assembly and homologous chromosome segregation during the ATI stage. Furthermore, the ROS levels in the 60 μM MC-LR-exposed oocytes were significantly higher than the control group (P < 0.01), while the expression of antioxidant related genes (SOD1, CAT and GPX) were much lower compared with control group, indicating that oxidative stress was induced and the antioxidant capacity of oocytes was depleted by 60 μM MC-LR treatment. Additionally, markedly decreased mitochondrial membrane potential (MMP) (P < 0.01) and significantly higher incidence of early apoptosis (P < 0.01) were observed in the 60 μM MC-LR-treated oocytes, suggesting that MC-LR exposure induced apoptosis in porcine oocytes. Moreover, the protein expression of PP2A was remarkably inhibited, whereas the expression of p53, BAX, Caspase3 and Cleaved-caspase3 were prominently increased in the 60 μM MC-LR-exposed oocytes. Together, these results suggested that 60 μM of MC-LR exposure can induce oxidative stress, and lead to aberrant spindles, impaired MMP, and trigger apoptosis, which eventually result in failure of porcine oocyte maturation.
Collapse
Affiliation(s)
- Fengyao Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Wenhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Hongyu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yao Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jun Ni
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Benazir Abbasi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
24
|
Singh AR, Gu JJ, Zhang Q, Torka P, Sundaram S, Mavis C, Hernandez-Ilizaliturri FJ. Metformin sensitizes therapeutic agents and improves outcome in pre-clinical and clinical diffuse large B-cell lymphoma. Cancer Metab 2020; 8:10. [PMID: 32647571 PMCID: PMC7336499 DOI: 10.1186/s40170-020-00213-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The treatment of diffuse large B-cell lymphoma (DLBCL) is limited by the development of resistance to therapy, and there is a need to develop novel therapeutic strategies for relapsed and refractory aggressive lymphoma. Metformin is an oral agent for type 2 diabetes that has been shown to decrease cancer risk and lower mortality in other types of cancer. METHODS We performed a retrospective analysis of the RPCCC database looking at patients with DLBCL treated with front-line chemotherapy. We also performed pre-clinical studies looking at the effect of metformin on cell viability, cell number, Ki67, ATP production, apoptosis, ROS production, mitochondrial membrane potential, cell cycle, effect with chemotherapeutic agents, and rituximab. Finally, we studied mouse models to see the anti-tumor effect of metformin. RESULTS Among diabetic patients, metformin use was associated with improved progression-free survival (PFS) and overall survival (OS) compared to diabetic patients not on metformin. Our pre-clinical studies showed metformin is itself capable of anti-tumor effects and causes cell cycle arrest in the G1 phase. Metformin induces apoptosis, ROS production, and increased mitochondrial membrane permeability. Metformin exhibited additive/synergistic effects when combined with traditional chemotherapy or rituximab in vitro. In vivo, metformin in combination with rituximab showed improved survival compared with rituximab monotherapy. CONCLUSIONS Our retrospective analysis showed that metformin with front-line chemotherapy in diabetic patients resulted in improved PFS and OS. Our pre-clinical studies demonstrate metformin has potential to re-sensitize resistant lymphoma to the chemo-immunotherapy and allow us to develop a hypothesis as to its activity in DLBCL.
Collapse
Affiliation(s)
| | - Juan J. Gu
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
- Department Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Qunling Zhang
- Department of Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Pallawi Torka
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Suchitra Sundaram
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Cory Mavis
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
- Department Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Francisco J. Hernandez-Ilizaliturri
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
- Department Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| |
Collapse
|
25
|
Yurtdaş-Kırımlıoğlu G, Görgülü Ş, Berkman MS. Novel approaches to cancer therapy with ibuprofen-loaded Eudragit® RS 100 and/or octadecylamine-modified PLGA nanoparticles by assessment of their effects on apoptosis. Drug Dev Ind Pharm 2020; 46:1133-1149. [DOI: 10.1080/03639045.2020.1776319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Şennur Görgülü
- bMedicinal Plant, Drug and Scientific Research Application and Research Center, Anadolu University (AUBİBAM), Eskişehir, Turkey
| | - Murat Sami Berkman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
26
|
Ren N, Chen L, Li B, Rankin GO, Chen YC, Tu Y. Purified Tea ( Camellia sinensis (L.) Kuntze) Flower Saponins Induce the p53-Dependent Intrinsic Apoptosis of Cisplatin-Resistant Ovarian Cancer Cells. Int J Mol Sci 2020; 21:E4324. [PMID: 32560563 PMCID: PMC7352341 DOI: 10.3390/ijms21124324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023] Open
Abstract
Ovarian cancer is currently ranked at fifth in cancer deaths among women. Patients who have undergone cisplatin-based chemotherapy can experience adverse effects or become resistant to treatment, which is a major impediment for ovarian cancer treatment. Natural products from plants have drawn great attention in the fight against cancer recently. In this trial, purified tea (Camellia sinensis (L.) Kuntze) flower saponins (PTFSs), whose main components are Chakasaponin I and Chakasaponin IV, inhibited the growth and proliferation of ovarian cancer cell lines A2780/CP70 and OVCAR-3. Flow cytometry, caspase activity and Western blotting analysis suggested that such inhibitory effects of PTFSs on ovarian cancer cells were attributed to the induction of cell apoptosis through the intrinsic pathway rather than extrinsic pathway. The p53 protein was then confirmed to play an important role in PTFS-induced intrinsic apoptosis, and the levels of its downstream proteins such as caspase families, Bcl-2 families, Apaf-1 and PARP were regulated by PTFS treatment. In addition, the upregulation of p53 expression by PTFSs were at least partly induced by DNA damage through the ATM/Chk2 pathway. The results help us to understand the mechanisms underlying the effects of PTFSs on preventing and treating platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Ning Ren
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Lianfu Chen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Bo Li
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
| | - Gary O. Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Yi Charlie Chen
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Youying Tu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
| |
Collapse
|
27
|
Gaonkar S, Savanur MA, Nadaf AA, Najare MS, Mantur S, Garbhagudi M, Mulla SI, Khazi IAM. Novel pyrazolo[3,4‐
d
]pyrimidine derivatives inhibit human cancer cell proliferation and induce apoptosis by ROS generation. Arch Pharm (Weinheim) 2020; 353:e1900296. [DOI: 10.1002/ardp.201900296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Supreet Gaonkar
- Department of Studies in ChemistryKarnatak UniversityDharwad Karnataka India
| | | | - AfraQuasar A. Nadaf
- Department of Studies in ChemistryKarnatak UniversityDharwad Karnataka India
| | - Mahesh S. Najare
- Department of Studies in ChemistryKarnatak UniversityDharwad Karnataka India
| | - Shivaraj Mantur
- Department of Studies in ChemistryKarnatak UniversityDharwad Karnataka India
| | | | - Sikandar I. Mulla
- Department of BiochemistrySchool of Applied SciencesREVA UniversityBangalore Karnataka India
| | | |
Collapse
|
28
|
Bower AJ, Sorrells JE, Li J, Marjanovic M, Barkalifa R, Boppart SA. Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:6408-6421. [PMID: 31853407 PMCID: PMC6913390 DOI: 10.1364/boe.10.006408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 05/04/2023]
Abstract
Programmed cell death, or apoptosis, is an essential process in development and homeostasis, and disruptions in associated pathways are responsible for a wide variety of diseases such as cancer, developmental abnormalities, and Alzheimer's disease. On the other hand, cell death, in many cases, is the desired outcome of therapeutic treatments targeting diseases such as cancer. Recently, metabolic imaging based on two-photon fluorescence microscopy has been developed and shown to be highly sensitive to certain cell death processes, most notably apoptosis, thus having the potential as an advanced label-free screening tool. However, the typically low acquisition rates of this imaging technique have resulted in a limited throughput approach, allowing only a small population of cells to be tracked at well-separated time points. To address this limitation, a high-speed two-photon fluorescence lifetime imaging microscopy (2P-FLIM) platform capable of video-rate imaging is applied to study and further characterize the metabolic dynamics associated with cell death. Building upon previous work demonstrating the capabilities of this system, this microscope is utilized to study rapid metabolic changes during cell death induction, such as dose-dependency of metabolic response, response in invasive vs. noninvasive cancer cells, and response in an apoptosis-resistant cell line, which is further shown to undergo autophagy in response to toxic stimuli. Results from these experiments show that the early apoptosis-related metabolic dynamics are strongly correlated with important cellular parameters including responsiveness to apoptosis-inducing stimuli. The high speed and sensitivity of the presented imaging approach enables new investigations into this highly dynamic and complex process.
Collapse
Affiliation(s)
- Andrew J. Bower
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Janet E. Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joanne Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
29
|
BID and the α-bisabolol-triggered cell death program: converging on mitochondria and lysosomes. Cell Death Dis 2019; 10:889. [PMID: 31767857 PMCID: PMC6877650 DOI: 10.1038/s41419-019-2126-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023]
Abstract
α-Bisabolol (BSB) is a plant-derived sesquiterpene alcohol able to trigger regulated cell death in transformed cells, while deprived of the general toxicity in several mouse models. Here, we investigated the involvement of lysosomal and mitochondrial compartments in the cytotoxic effects of BSB, with a specific focus on the BH3-only activator protein BID. We found that BSB particularly accumulated in cancer cell lines, displaying a higher amount of lipid rafts as compared to normal blood cells. By means of western blotting and microscopy techniques, we documented rapid BSB-induced BID translocation to lysosomes and mitochondria, both of them becoming dysfunctional. Lysosomal membranes were permeabilized, thus blocking the cytoprotective autophagic flux and provoking cathepsin B leakage into the cytosol. Multiple flow cytometry-based experiments demonstrated the loss of mitochondrial membrane potential due to pore formation across the lipid bilayer. These parallel events converged on neoplastic cell death, an outcome significantly prevented by BID knockdown. Therefore, BSB promoted BID redistribution to the cell death executioner organelles, which in turn activated anti-autophagic and proapoptotic mechanisms. This is an example of how xenohormesis can be exploited to modulate basic cellular programs in cancer.
Collapse
|
30
|
Garzón F, Coimbra D, Parcerisas A, Rodriguez Y, García JC, Soriano E, Rama R. NeuroEPO Preserves Neurons from Glutamate-Induced Excitotoxicity. J Alzheimers Dis 2019; 65:1469-1483. [PMID: 30175978 DOI: 10.3233/jad-180668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many experimental studies show that erythropoietin (EPO) has a neuroprotective action in the brain. EPO in acute and chronic neurological disorders, particularly in stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, has neuroprotective effects. We previously reported the neuroprotective effect of NeuroEPO, a low sialic form of EPO, against oxidative stress induced by glutamate excitotoxicity. In this paper, we analyze the effect of NeuroEPO against apoptosis induced by glutamate excitotoxicity in primary neuronal cultures obtained from the forebrains of Wistar rat embryos after 17 days of gestation. Excitotoxicity was induced after nine days of in vitro culture by treatment with a culture medium containing 100μM glutamate for 15 min. To withdraw glutamate, a new medium containing 100 ng NeuroEPO/mL was added. Apoptosis was analyzed after 24 h. Images obtained by phase contrast microscopy show that neurons treated with glutamate exhibit cell body shrinkage, loss of dendrites that do not make contact with neighboring cells, and that NeuroEPO was able to preserve the morphological characteristics of the control. Immunocytochemistry images show that the culture is essentially pure in neurons; that glutamate causes cell mortality, and that this is partially avoided when the culture medium is supplemented with NeuroEPO. Activation of intrinsic apoptotic pathways was analyzed. The decreases in Bcl-2/Bax ratio, increase in the release of cytochrome c, and in the expression and activity of caspase-3 observed in cells treated with glutamate, were restored by NeuroEPO. The results from this study show that NeuroEPO protects cortical neurons from glutamate-induced apoptosis via upregulation of Bcl-2 and inhibit glutamate-induced activation of caspase-3.
Collapse
Affiliation(s)
- Fernando Garzón
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Department of Animal Health, University of Nariño, Colombia
| | - Débora Coimbra
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Yamila Rodriguez
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba.,Center of Molecular Immunology (CIM), Havana, Cuba
| | - Julio Cesar García
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba.,National Center for Animals Breeding (Cenpalab), Havana, Cuba
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d'Hebron Institute of Research, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Ramón Rama
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| |
Collapse
|
31
|
Qin S, Yin J, Huang S, Lin J, Fang Z, Zhou Y, Huang K. Astragaloside IV Protects Ethanol-Induced Gastric Mucosal Injury by Preventing Mitochondrial Oxidative Stress and the Activation of Mitochondrial Pathway Apoptosis in Rats. Front Pharmacol 2019; 10:894. [PMID: 31474858 PMCID: PMC6704233 DOI: 10.3389/fphar.2019.00894] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Alcohol consumption affects gastric mucosa by multiple and complex mechanisms depending either by direct contact of ethanol or by indirect biological damage induced by its metabolite acetaldehyde. The present study aims at further investigating the mechanism of ethanol-induced gastric mucosa injury and the protective effect of astragaloside IV (AS-IV) in an aspect of mitochondrial oxidative stress and mitochondrial pathway of apoptosis. Using an array of experimental approaches, we have shown that the development of mitochondrial oxidative stress and associated apoptosis play crucial roles in the pathogenesis of gastric injury induced by ethanol. AS-IV inhibits mitochondrial oxidative stress by scavenging accumulation of malondialdehyde and decreasing the consumption of glutathione. AS-IV also prevents ethanol-induced apoptosis by modulating the activity of caspase-3 and caspase-9, the expression of Bax/Bcl-2, and the release of cytochrome C and apoptosis inducing factor. Moreover, AS-IV reduces ethanol-mediated activation of caspase-8 and breakage of Bid. This study thus indicates that AS-IV prevented ethanol-induced gastric damage by blocking activation of mitochondrial oxidative stress and mitochondrial pathway of apoptosis induced by ethanol in the gastric mucosa.
Collapse
Affiliation(s)
- Shumin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjin Yin
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaogang Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyu Lin
- Fujian Provincial Institute of Traditional Chinese Medicin, Fuzhou, China
| | - Zhigang Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunsong Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Keer Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
32
|
Zheng JH, Xie L, Li N, Fu ZY, Tan XF, Tao R, Qin T, Chen MH. PD98059 protects the brain against mitochondrial-mediated apoptosis and autophagy in a cardiac arrest rat model. Life Sci 2019; 232:116618. [PMID: 31265854 DOI: 10.1016/j.lfs.2019.116618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
AIMS Mitochondrial dysfunction has been regarded as one of the hallmarks of cerebral ischemia-reperfusion injury. In previous studies, we have provided evidence that the extracellular signaling pathway (ERK) 1/2 inhibitor PD98059 improved the neurological deficits by modulating antioxidant and anti-apoptotic activities in rats subjected to cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Since oxidative stress can activate mitochondria-dependent apoptosis and autophagy, we further explored the effects of PD98059 on mitochondria involved with apoptosis and autophagy in rat CA model. MATERIALS AND METHODS We disposed PD98059 in CA/CPR rats, tested the mitochondrial-mediated apoptosis pathway in brain tissues at 24 h post-resuscitation by mitochondrial permeability transition pores (MPTP), cytochrome c (CytC), BCL-2, BAX, caspase-3, as well as autophagy by LC3, Beclin-1, and p62. Furthermore, we explored the relationship of dynamin-related protein 1 (Drp1) with apoptosis and autophagy. KEY FINDINGS Our study showed that PD98059 decreased the openings of MPTP, CytC release, caspase3 activation, apoptotic indices, LC3-II, Beclin-1and increased P62. PD98059 also inhibited mitochondria-dependent apoptosis and the activity of autophagy in a dose-dependent manner in rat cerebral cortices at 24 h post-resuscitation. The generation of phosphorylated Drp1-616 was down-regulated accompanied by a decrease of TUNEL-positive cells and LC3 in dual immunostaining after PD98059 inhibited activation of ERK signaling pathway in a dose-dependent manner in rat cerebral cortices at 24 h post-resuscitation. SIGNIFICANCE PD98059 protects the brain against mitochondrial-mediated apoptosis and autophagy at 24 h post-resuscitation in rats subjected to CA/CPR, which is linked with the downregulation of Drp1 expression.
Collapse
Affiliation(s)
- Jun-Hui Zheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Lu Xie
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Nuo Li
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Zhao-Yin Fu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Xiao-Feng Tan
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Ran Tao
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Tao Qin
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Meng-Hua Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China.
| |
Collapse
|
33
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
34
|
Zhu Z, Shen W, Tian S, Yang B, Zhao H. F3, a novel active fraction of Valeriana jatamansi Jones induces cell death via DNA damage in human breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:245-254. [PMID: 30797986 DOI: 10.1016/j.phymed.2018.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/16/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND F3 is a novel fraction, for the first time isolated from Valeriana jatamansi Jones, which is a traditional Chinese folk medicine. Its anti-cancer potential and the underlying molecular mechanisms have not been well elucidated. PURPOSE This study aims to investigate the anti-cancer effects of F3 on human breast cancer cell lines and its underlying mechanisms. METHODS MTT assay was first performed to detect the effect of F3 on cell viability in human breast cancer cell lines and human mammary epithelial MCF-10A cells. Cell apoptosis, mitochondrial membrane potential and ROS level were detected by flow cytometry. Comet and immunofluorescence assays were utilized to assess DNA damage and expression of γ-H2AX. Autophagy were observed by AO staining and fluorescence microscopy. The expression of relative proteins was detected by western blotting. The xenograft model in nude mice was used to elucidate the effect of F3 on tumor growth and DNA damage in vivo. RESULTS F3 could significantly inhibit the growth of breast cancer cells in concentration-dependent manner by inducing apoptosis and has no obvious inhibitory effect of the growth on MCF-10A cells. Mechanistic studies demonstrated that F3-induced apoptosis was mediated by DNA damage as presented by DNA strand breaks and γ-H2AX activation that might be attacked by ROS accumulation. This triggered several key molecular events involving activation of MAPKs pathway. Further study showed that F3 induced autophagy with the autophagosome formation and increased LC3-II levels. Finally, in vivo study, F3 exhibited a potential antitumor effect and induced DNA damage in MDA-MB-231 xenografts. CONCLUSION The antitumorigenic activity of F3 was found in vitro and in vivo. These data suggest that F3 may be a potential natural active fraction for the treatment of human breast cancer.
Collapse
Affiliation(s)
- Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gaoke Rd, Hangzhou, Zhejiang 311402, China
| | - Weifeng Shen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gaoke Rd, Hangzhou, Zhejiang 311402, China
| | - Shasha Tian
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gaoke Rd, Hangzhou, Zhejiang 311402, China
| | - Bo Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gaoke Rd, Hangzhou, Zhejiang 311402, China.
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gaoke Rd, Hangzhou, Zhejiang 311402, China.
| |
Collapse
|
35
|
Park C, Kwon DH, Hwang SJ, Han MH, Jeong JW, Hong SH, Cha HJ, Hong SH, Kim GY, Lee HJ, Kim S, Kim HS, Choi YH. Protective Effects of Nargenicin A1 against Tacrolimus-Induced Oxidative Stress in Hirame Natural Embryo Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16061044. [PMID: 30909475 PMCID: PMC6466173 DOI: 10.3390/ijerph16061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Tacrolimus is widely used as an immunosuppressant to reduce the risk of rejection after organ transplantation, but its cytotoxicity is problematic. Nargenicin A1 is an antibiotic extracted from Nocardia argentinensis and is known to have antioxidant activity, though its mode of action is unknown. The present study was undertaken to evaluate the protective effects of nargenicin A1 on DNA damage and apoptosis induced by tacrolimus in hirame natural embryo (HINAE) cells. We found that reduced HINAE cell survival by tacrolimus was due to the induction of DNA damage and apoptosis, both of which were prevented by co-treating nargenicin A1 or N-acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger, with tacrolimus. In addition, apoptosis induction by tacrolimus was accompanied by increases in ROS generation and decreases in adenosine triphosphate (ATP) levels caused by mitochondrial dysfunction, and these changes were significantly attenuated in the presence of nargenicin A1, which further indicated tacrolimus-induced apoptosis involved an oxidative stress-associated mechanism. Furthermore, nargenicin A1 suppressed tacrolimus-induced B-cell lymphoma-2 (Bcl-2) down-regulation, Bax up-regulation, and caspase-3 activation. Collectively, these results demonstrate that nargenicin A1 protects HINAE cells against tacrolimus-induced DNA damage and apoptosis, at least in part, by scavenging ROS and thus suppressing the mitochondrial-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea.
| | - Da Hye Kwon
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
| | - Su Jung Hwang
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Korea.
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 17104, Korea.
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea.
| | - Su-Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - Hyo-Jong Lee
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Korea.
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
| |
Collapse
|
36
|
Song L, Zhang W, Chen H, Zhang X, Wu H, Ma M, Wang Z, Gu N, Zhang Y. Apoptosis-promoting effect of rituximab-conjugated magnetic nanoprobes on malignant lymphoma cells with CD20 overexpression. Int J Nanomedicine 2019; 14:921-936. [PMID: 30787607 PMCID: PMC6363495 DOI: 10.2147/ijn.s185458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Cancer targeting nanoprobes with precisely designed physicochemical properties may show enhanced pharmacological targeting and therapeutic efficacy. As a widely used commercialized antibody, rituximab has been in clinical use for three decades and has lengthened or even saved thousands of lives. However, many people cannot benefit from rituximab treatment because of drug resistance or side effects. Methods In this study, a 13-nm rituximab-conjugated magnetic nanoparticle was developed as a therapeutic nanoprobe targeting CD20 overexpressing malignant lymphoma cells to enhance the treatment effects of rituximab. The magnetic cores (2,3-dimercaptosuccinicacid modified Fe3O4 nanoparticles, Fe3O4@DMSA) of the nanoprobes with an average diameter of 6.5 nm were synthesized using a co-precipitation method. Rituximab was then conjugated on the surface of Fe3O4@DMSA using a cross-linking agent (carbodiimide/N-hydroxysulfosuccinimide sodium salt). Based on theoretical calculations, approximately one antibody was coupled with one nanoparticle, excluding the multivalent antibody effect. Results Cell targeting experiments and magnetic resonance (MR) signal and T2 measurements showed that the Fe3O4@DMSA@Ab nanoprobes have specific binding affinity for CD20-positive cells. Compared to rituximab and Fe3O4@DMSA, Fe3O4@DMSA@Ab nanoprobes significantly reduced cell viability and promoted Raji cell apoptosis. Initiating events of apoptosis, including increased intracellular calcium and reactive oxygen species, were observed in nanoprobe-treated Raji cells. Nanoprobe-treated Raji cells also showed the most drastic decrease in mitochondrial membrane potential and Bcl-2 expression, compared to rituximab and Fe3O4@DMSA-treated Raji cells. Conclusion These results indicate that Fe3O4@DMSA@Ab nanoprobes have the potential to serve as MRI tracers and therapeutic agents for CD20-positive cells.
Collapse
Affiliation(s)
- Lina Song
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, People's Republic of China, ; .,Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Wei Zhang
- The Jiangsu Province Research Institute for Clinical Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210009, People's Republic of China
| | - Hong Chen
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Xizhi Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, People's Republic of China, ;
| | - Haoan Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, People's Republic of China, ;
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, People's Republic of China, ;
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, People's Republic of China, ;
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, People's Republic of China, ;
| |
Collapse
|
37
|
Martins WK, Santos NF, Rocha CDS, Bacellar IOL, Tsubone TM, Viotto AC, Matsukuma AY, Abrantes ABDP, Siani P, Dias LG, Baptista MS. Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy 2019; 15:259-279. [PMID: 30176156 PMCID: PMC6333451 DOI: 10.1080/15548627.2018.1515609] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023] Open
Abstract
Cells challenged by photosensitized oxidations face strong redox stresses and rely on autophagy to either survive or die. However, the use of macroautophagy/autophagy to improve the efficiency of photosensitizers, in terms of inducing cell death, remains unexplored. Here, we addressed the concept that a parallel damage in the membranes of mitochondria and lysosomes leads to a scenario of autophagy malfunction that can greatly improve the efficiency of the photosensitizer to cause cell death. Specific damage to these organelles was induced by irradiation of cells pretreated with 2 phenothiazinium salts, methylene blue (MB) and 1,9-dimethyl methylene blue (DMMB). At a low concentration level (10 nM), only DMMB could induce mitochondrial damage, leading to mitophagy activation, which did not progress to completion because of the parallel damage in lysosome, triggering cell death. MB-induced photodamage was perceived almost instantaneously after irradiation, in response to a massive and nonspecific oxidative stress at a higher concentration range (2 µM). We showed that the parallel damage in mitochondria and lysosomes activates and inhibits mitophagy, leading to a late and more efficient cell death, offering significant advantage (2 orders of magnitude) over photosensitizers that cause unspecific oxidative stress. We are confident that this concept can be used to develop better light-activated drugs. Abbreviations: ΔΨm: mitochondrial transmembrane inner potential; AAU: autophagy arbitrary units; ATG5, autophagy related 5; ATG7: autophagy related 7; BAF: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CF: carboxyfluorescein; CTSB: cathepsin B; CVS: crystal violet staining; DCF: dichlorofluorescein; DCFH2: 2',7'-dichlorodihydrofluorescein; DMMB: 1,9-dimethyl methylene blue; ER: endoplasmic reticulum; HaCaT: non-malignant immortal keratinocyte cell line from adult human skin; HP: hydrogen peroxide; LC3B-II: microtubule associated protein 1 light chain 3 beta-II; LMP: lysosomal membrane permeabilization; LTG: LysoTracker™ Green DND-26; LTR: LysoTracker™ Red DND-99; 3-MA: 3-methyladenine; MB: methylene blue; mtDNA: mitochondrial DNA; MitoSOX™: red mitochondrial superoxide probe; MTDR: MitoTracker™ Deep Red FM; MTO: MitoTracker™ Orange CMTMRos; MT-ND1: mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; MTT: methylthiazolyldiphenyl-tetrazolium bromide; 1O2: singlet oxygen; OH. hydroxil radical; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PBS: phosphate-buffered saline; PI: propidium iodide; PDT: photodynamic therapy; PS: photosensitizer; QPCR: gene-specific quantitative PCR-based; Rh123: rhodamine 123; ROS: reactive oxygen species RTN: rotenone; SQSTM1/p62: sequestosome 1; SUVs: small unilamellar vesicles; TBS: Tris-buffered saline.
Collapse
Affiliation(s)
- Waleska K. Martins
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-graduação Stricto Sensue Pesquisa, Universidade Anhanguera de São Paulo, São Paulo, Brazil
| | - Nayra Fernandes Santos
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Cleidiane de Sousa Rocha
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-graduação Stricto Sensue Pesquisa, Universidade Anhanguera de São Paulo, São Paulo, Brazil
| | - Isabel O. L. Bacellar
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Tayana Mazin Tsubone
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cláudia Viotto
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | | | - Aline B. de P. Abrantes
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Siani
- FFCLRP, Departamento de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luís Gustavo Dias
- FFCLRP, Departamento de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio S. Baptista
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Shan S, Xie Y, Zhao H, Niu J, Zhang S, Zhang X, Li Z. Bound polyphenol extracted from jujube pulp triggers mitochondria-mediated apoptosis and cell cycle arrest of HepG2 cell in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
39
|
Xi J, Li M, Jing B, An M, Yu C, Pinnock CB, Zhu Y, Lam MT, Liu H. Long-Circulating Amphiphilic Doxorubicin for Tumor Mitochondria-Specific Targeting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43482-43492. [PMID: 30479120 PMCID: PMC6893847 DOI: 10.1021/acsami.8b17399] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mitochondria have emerged as a novel target for cancer chemotherapy primarily due to their central roles in energy metabolism and apoptosis regulation. Here, we report a new molecular approach to achieve high levels of tumor- and mitochondria-selective deliveries of the anticancer drug doxorubicin. This is achieved by molecular engineering, which functionalizes doxorubicin with a hydrophobic lipid tail conjugated by a solubility-promoting poly(ethylene glycol) polymer (amphiphilic doxorubicin or amph-DOX). In vivo, the amphiphile conjugated to doxorubicin exhibits a dual function: (i) it binds avidly to serum albumin and hijacks albumin's circulating and transporting pathways, resulting in prolonged circulation in blood, increased accumulation in tumor, and reduced exposure to the heart; (ii) it also redirects doxorubicin to mitochondria by altering the drug molecule's intracellular sorting and transportation routes. Efficient mitochondrial targeting with amph-DOX causes a significant increase of reactive oxygen species levels in tumor cells, resulting in markedly improved antitumor efficacy than the unmodified doxorubicin. Amphiphilic modification provides a simple strategy to simultaneously increase the efficacy and safety of doxorubicin in cancer chemotherapy.
Collapse
Affiliation(s)
- Jingchao Xi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Meng Li
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Myunggi An
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Chunsong Yu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Cameron B. Pinnock
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Mai T. Lam
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
40
|
Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B 2018; 8:862-880. [PMID: 30505656 PMCID: PMC6251809 DOI: 10.1016/j.apsb.2018.05.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial targeting is a promising approach for solving current issues in clinical application of chemotherapy and diagnosis of several disorders. Here, we discuss direct conjugation of mitochondrial-targeting moieties to anticancer drugs, antioxidants and sensor molecules. Among them, the most widely applied mitochondrial targeting moiety is triphenylphosphonium (TPP), which is a delocalized cationic lipid that readily accumulates and penetrates through the mitochondrial membrane due to the highly negative mitochondrial membrane potential. Other moieties, including short peptides, dequalinium, guanidine, rhodamine, and F16, are also known to be promising mitochondrial targeting agents. Direct conjugation of mitochondrial targeting moieties to anticancer drugs, antioxidants and sensors results in increased cytotoxicity, anti-oxidizing activity and sensing activity, respectively, compared with their non-targeting counterparts, especially in drug-resistant cells. Although many mitochondria-targeted anticancer drug conjugates have been investigated in vitro and in vivo, further clinical studies are still needed. On the other hand, several mitochondria-targeting antioxidants have been analyzed in clinical phases I, II and III trials, and one conjugate has been approved for treating eye disease in Russia. There are numerous ongoing studies of mitochondria-targeted sensors.
Collapse
Key Words
- (Fx, r)3, (l-cyclohexyl alanine-d-arginine)3
- 4-AT, 4-amino-TEMPO
- 5-FU, 5-Fluorouracil
- AD, Alzheimer׳s disease
- AIE, aggregation-induced emission
- ATP, adenosine triphosphate
- Anticancer agents
- Antioxidants
- Arg, arginine
- Aβ, beta amyloid
- BODIPY, boron-dipyrromethene
- C-dots, carbon dots
- CAT, catalase
- COX, cytochrome c oxidase
- CZBI, carbazole and benzo[e]indolium
- CoA, coenzyme A
- DDS, drug delivery system
- DEPMPO, 5-(diethylphosphono)-5-methyl-1-pyrroline N-oxide
- DIPPMPO, 5-(diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide
- DQA, dequalinium
- Direct conjugation
- Dmt, dimethyltyrosine
- EPR, enhanced permeability and retention
- F16, (E)-4-(1H-indol-3-ylvinyl)-N-methylpyridinium iodide
- GPX, glutathione peroxidase
- GS, gramicidin S
- HTPP, 5-(4-hydroxy-phenyl)-10,15,20-triphenylporphyrin
- IMM, inner mitochondrial membrane
- IMS, intermembrane space
- IOA, imidazole-substituted oleic acid
- LA, lipoic acid
- LAH2, dihydrolipoic acid
- Lys, lysine
- MET, mesenchymal-epithelial transition
- MLS, mitochondria localization sequences
- MPO, myeloperoxidase
- MPP, mitochondria-penetrating peptides
- MitoChlor, TPP-chlorambucil
- MitoE, TPP-vitamin E
- MitoLA, TPP-lipoic acid
- MitoQ, TPP-ubiquinone
- MitoVES, TPP-vitamin E succinate
- Mitochondria-targeting
- Nit, nitrooxy
- NitDOX, nitrooxy-DOX
- OMM, outer mitochondrial membrane
- OXPHOS, oxidative phosphorylation
- PD, Parkinson׳s disease
- PDT, photodynamic therapy
- PET, photoinduced electron transfer
- PS, photosensitizer
- PTPC, permeability transition pore complex
- Phe, phenylalanine
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- SS peptide, Szeto-Schiller peptides
- Sensing agents
- SkQ1, Skulachev ion-quinone
- TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl
- TPEY-TEMPO, [2-(1-oxyl-2,2,6,6-tetramethylpiperidin-4-ylimino)-ethyl]-triphenyl-phosphonium
- TPP, triphenylphosphonium
- Tyr, tyrosine
- VDAC/ANT, voltage-dependent anion channel/adenine nucleotide translocase
- VES, vitamin E succinate
- XO, xanthine oxidase
- mitoTEMPO, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium)
- mtCbl, (Fx,r)3-chlorambucil
- mtDNA, mitochondrial DNA
- mtPt, mitochondria-targeting (Fx,r)3-platinum(II)
- nDNA, nuclear DNA
- αTOS, alpha-tocopheryl succinate.
Collapse
Affiliation(s)
- Gantumur Battogtokh
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Yeon Su Choi
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Dong Seop Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Sang Jun Park
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
41
|
Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation. Curr Allergy Asthma Rep 2018; 18:63. [PMID: 30267163 DOI: 10.1007/s11882-018-0817-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Allergen is an umbrella term for irritants of diverse origin. Along with other offenders such as pathogens, mutagens, xenobiotics, and pollutants, allergens can be grouped as inflammatory agents. Danger-associated molecular patterns (DAMPs) are altered metabolism products of necrotic or stressed cells, which are deemed as alarm signals by the innate immune system. Like inflammation, DAMPs play a role in correcting the altered physiological state, but in excess, they can be lethal due to their signal transduction roles. In a vicious loop, inflammatory agents are DAMP generators and DAMPs create a pro-inflammatory state. Only a handful of DAMPs such as uric acid, mtDNA, extracellular ATP, HSPs, amyloid β, S100, HMGB1, and ECM proteins have been studied till now. A large number of DAMPs are still obscure, in need to be unveiled. The identification and functional characterization of those DAMPs in inflammation pathways can be insightful. RECENT FINDINGS As inflammation and immune activation have been implicated in almost all pathologies, studies on them have been intensified in recent times. Consequently, the pathologic mechanisms of various DAMPs have emerged. Following PRR ligation, the activation of inflammasome, MAPK, and NF-kB is some of the common pathways. The limited number of recognized DAMPs are only a fraction of the vast array of other DAMPs. In fact, any misplaced or abnormal level of metabolite can be a DAMP. Sophisticated analysis studies can reveal the full profile of the DAMPs. Lowering the level of DAMPs is useful therapeutic intervention but certainly not as effective as avoiding the DAMP generators, i.e., the inflammatory agents. So, rather than mitigating DAMPs, efforts should be focused on the elimination of inflammatory agents.
Collapse
|
42
|
Keshavarz-Bahaghighat H, Sepand MR, Ghahremani MH, Aghsami M, Sanadgol N, Omidi A, Bodaghi-Namileh V, Sabzevari O. Acetyl-L-Carnitine Attenuates Arsenic-Induced Oxidative Stress and Hippocampal Mitochondrial Dysfunction. Biol Trace Elem Res 2018; 184:422-435. [PMID: 29189995 DOI: 10.1007/s12011-017-1210-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023]
Abstract
Augmentation of mitochondrial oxidative stress through activating a series of deadly events has implicated as the main culprit of arsenic toxicity and therapeutic approaches based on improving mitochondrial function hold a great promise for attenuating the arsenic-induced toxicity. Acetyl-L-carnitine (ALC) through balancing the coenzyme A (CoA)/acyl-CoA ratio plays an important role in mitochondrial metabolism and thereby can help protect hippocampal neurons from oxidative damage. In the present study, we aimed to explore the effect of arsenic interactions on the mitochondrial function in the hippocampus of rats. Rats were randomly divided into five groups of control (distilled water), sodium arsenite (NaAsO2, 20 mg/kg), and co-treatment of NaAsO2 with various doses of ALC in three groups (100, 200, 300 mg/kg) and were treated orally for 21 consecutive days. Our results point out that arsenic exposure caused oxidative stress in rats' hippocampus, which led to the reactive oxygen species (ROS) generation, mitochondrial swelling, the collapse of the mitochondrial membrane potential, and release of cytochrome c. It also altered Bcl-2/Bax expression ratio and increased caspase-3 and caspase-9 activities. Furthermore, arsenic exposure via activation of NF-κB and microglia increased inflammation. ALC could concentration-dependently counteract the arsenic-induced oxidative stress, modulate the antioxidant defense capacity, and improve mitochondrial functions. In addition, ALC decreased the expression of both death-associated proteins and of inflammatory markers. These findings indicate that ALC improved the arsenic-induced hippocampal mitochondrial dysfunction which underlines the importance of ALC in providing a possible therapeutic strategy for the prevention of arsenic-induced neurodegeneration.
Collapse
Affiliation(s)
- Hedieh Keshavarz-Bahaghighat
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mehdi Aghsami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Nima Sanadgol
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
- Young Researchers and Elite Club, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - Ameneh Omidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Bodaghi-Namileh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran.
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Dey T, Dutta P, Manna P, Kalita J, Boruah HPD, Buragohain AK, Unni B. Anti-Proliferative Activities of Vasicinone on Lung Carcinoma Cells Mediated via Activation of Both Mitochondria-Dependent and Independent Pathways. Biomol Ther (Seoul) 2018; 26:409-416. [PMID: 29310422 PMCID: PMC6029685 DOI: 10.4062/biomolther.2017.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/11/2017] [Accepted: 08/14/2017] [Indexed: 11/07/2022] Open
Abstract
Vasicinone, a quinazoline alkaloid from Adhatoda vasica Nees. is well known for its bronchodilator activity. However its antiproliferative activities is yet to be elucidated. Here-in we investigated the anti-proliferative effect of vasicinone and its underlying mechanism against A549 lung carcinoma cells. The A549 cells upon treatment with various doses of vasicinone (10, 30, 50, 70 µM) for 72 h showed significant decrease in cell viability. Vasicinone treatment also showed DNA fragmentation, LDH leakage, and disruption of mitochondrial potential, and lower wound healing ability in A549 cells. The Annexin V/PI staining showed disrupted plasma membrane integrity and permeability of PI in treated cells. Moreover vasicinone treatment also lead to down regulation of Bcl-2, Fas death receptor and up regulation of PARP, BAD and cytochrome c, suggesting the anti-proliferative nature of vasicinone which mediated apoptosis through both Fas death receptors as well as Bcl-2 regulated signaling. Furthermore, our preliminary studies with vasicinone treatment also showed to lower the ROS levels in A549 cells and have potential free radical scavenging (DPPH, Hydroxyl) activity and ferric reducing power in cell free systems. Thus combining all, vasicinone may be used to develop a new therapeutic agent against oxidative stress induced lung cancer.
Collapse
Affiliation(s)
- Tapan Dey
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, India
| | - Prachurjya Dutta
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Prasenjit Manna
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Jatin Kalita
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Hari Prasanna Deka Boruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Alak Kumar Buragohain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, India
| | - Balagopalan Unni
- Biological Sciences, Assam Downtown University, Guwahati 781026, India
| |
Collapse
|
44
|
Grazioli S, Pugin J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front Immunol 2018; 9:832. [PMID: 29780380 PMCID: PMC5946030 DOI: 10.3389/fimmu.2018.00832] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Over the recent years, much has been unraveled about the pro-inflammatory properties of various mitochondrial molecules once they are leaving the mitochondrial compartment. On entering the cytoplasm or the extracellular space, mitochondrial DAMPs (also known as mitochondrial alarmins) can become pro-inflammatory and initiate innate and adaptive immune responses by activating cell surface and intracellular receptors. Current evidence indicates that uncontrolled and excessive release of mitochondrial DAMPs is associated with severity, has prognosis value in human diseases, and contributes to the dysregulated process observed in numerous inflammatory and autoimmune conditions, as well as in ischemic heart disease and cancer. Herein, we review that the expanding research field of mitochondrial DAMPs in innate immune responses and the current knowledge on the association between mitochondrial DAMPs and human diseases.
Collapse
Affiliation(s)
- Serge Grazioli
- Pediatric Intensive Care Unit, Department of Pediatrics, University Hospital of Geneva, University of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérôme Pugin
- Intensive Care Unit, Department of Anesthesiology, Faculty of Medicine, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
45
|
Abstract
Ultimately, the common final pathway of any glomerular disease is podocyte effacement, podocyte loss, and, eventually, glomerular scarring. There has been a long-standing debate on the underlying mechanisms for podocyte depletion, ranging from necrosis and apoptosis to detachment of viable cells from the glomerular basement membrane. However, this debate still continues because additional pathways of programmed cell death have been reported in recent years. Interestingly, viable podocytes can be isolated out of the urine of proteinuric patients easily, emphasizing the importance of podocyte detachment in glomerular diseases. In contrast, detection of apoptosis and other pathways of programmed cell death in podocytes is technically challenging. In fact, we still are lacking direct evidence showing, for example, the presence of apoptotic bodies in podocytes, leaving the question unanswered as to whether podocytes undergo mechanisms of programmed cell death. However, understanding the mechanisms leading to podocyte depletion is of particular interest because future therapeutic strategies might interfere with these to prevent glomerular scarring. In this review, we summarize our current knowledge on podocyte cell death, the different molecular pathways and experimental approaches to study these, and, finally, focus on the mechanisms that prevent the onset of programmed cell death.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
46
|
Li Y, Gu Z, Zhang C, Li S, Zhang L, Zhou G, Wang S, Zhang J. Synthesis, characterization and ROS-mediated antitumor effects of palladium(II) complexes of curcuminoids. Eur J Med Chem 2017; 144:662-671. [PMID: 29289889 DOI: 10.1016/j.ejmech.2017.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Based on the synthesis of curcumin and its derivatives from aromatic aldehydes, a novel series of palladium(II) complexes with curcumin (or its derivatives) and 2,2'-bipyridine have been synthesized through a directed self-assembly approach that involves spontaneous deprotonation of the curcuminoid ligands in H2O/acetone solution. These complexes have been characterized by 1H (13C) NMR, HRMS and elemental analysis. Crystal structure of 3h has been determined by X-ray diffraction analysis. Their cytotoxicity was tested by MTT. The preliminary results showed that complexes 3d, 3f, 3h have significant inhibition on proliferation of three carcinoma cells such as MCF-7, HeLa and A549 cells, which were more active than cisplatin. Further mechanistic studies indicated that the tested complex 3h arrested the cell cycle in the S phase and can disrupted mitochondrial membrane potential and induced tumor cell apoptosis through reactive oxygen species (ROS)-dependent pathway.
Collapse
Affiliation(s)
- Yanci Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenyu Gu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Can Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Shenghui Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Liang Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Guoqiang Zhou
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Shuxiang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
47
|
Li T, Wang L. Riparsaponin isolated from Homonoia riparia Lour induces apoptosis of oral cancer cells. Oncol Lett 2017; 14:6841-6846. [PMID: 29163704 DOI: 10.3892/ol.2017.7043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/21/2017] [Indexed: 11/05/2022] Open
Abstract
Homonoia riparia Lour (Euphorbiaceae) is a known source of herbal medicine in China, and riparsaponin (RSP) is an active constituent isolated from H. riparia. The aim of the present study was to investigate the antitumor effect of RSP on human oral carcinoma cells and its potential underlying molecular mechanism. RSP was isolated from roots of H. riparia and identified using nuclear magnetic resonance. An MTT assay was used to evaluate the cytotoxicity of RSP on human oral carcinoma cells. Subsequently, DAPI staining was performed to investigate the apoptotic effect of RSP. To investigate the potential underlying molecular mechanism of action of RSP, western blotting was performed to determine the expression of cleaved caspase 3/9, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), Bcl-2-associated death promoter (Bad), epithelial cadherin (E-CAD), c-MET, matrix metalloproteinase (MMP)-2 and MMP-9. RSP exhibited a significant anti-proliferative effect on oral carcinoma cells at concentrations between 10 and 200 µg/ml via apoptosis. Following treatment with RSP (20, 40 and 80 µg/ml), expression of cleaved caspase-3 (P<0.05, P<0.01 and P<0.01, respectively), cleaved caspase-9 (P<0.01), Bad (P<0.01), Bax (P<0.01), c-MET (P<0.01), MMP-2 (P<0.01) and MMP-9 (P<0.01) in oral carcinoma cells was increased significantly compared with the control group, whereas expression of Bcl-2 (P<0.01) and E-CAD (P<0.01) was decreased. These results suggest that RSP possessed notable antitumor activity against oral squamous cell carcinoma by inducing mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Tiecheng Li
- Department of Stomatology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Lei Wang
- Department of Stomatology, Daqing LongNan Hospital, Daqing, Heilongjiang 163453, P.R. China
| |
Collapse
|
48
|
Masson JJR, Murphy AJ, Lee MKS, Ostrowski M, Crowe SM, Palmer CS. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy. PLoS One 2017; 12:e0183931. [PMID: 28854263 PMCID: PMC5576743 DOI: 10.1371/journal.pone.0183931] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and mitochondrial biogenesis in subpopulations of CD4+ and CD8+ T cells from 18 virologically-suppressed HIV-positive individuals on combination antiretroviral therapy (cART; median CD4+ cell count: 728 cells/μl) and 13 HIV seronegative controls. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production were also analysed in total CD4+ and CD8+ T cells. Among HIV+/cART individuals, expression of glucose transporter (Glut1) and mitochondrial density were highest within central memory and naïve CD4+ T cells, and lowest among effector memory and transitional memory T cells, with similar trends in HIV-negative controls. Compared to HIV-negative controls, there was a trend towards higher percentage of circulating CD4+Glut1+ T cells in HIV+/cART participants. There were no significant differences in mitochondrial dynamics between subject groups. Glut1 expression was positively correlated with mitochondrial density and MMP in total CD4+ T cells, while MMP was also positively correlated with ROS production in both CD4+ and CD8+ T cells. Our study characterizes specific metabolic features of CD4+ and CD8+ T cells in HIV-negative and HIV+/cART individuals and will invite future studies to explore the immunometabolic consequences of HIV infection.
Collapse
Affiliation(s)
- Jesse J. R. Masson
- James Cook University, Cairns, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | | | - Man K. S. Lee
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Matias Ostrowski
- Instituto de Investigaciones Biome´dicas en Retrovirus y SIDA. Facultad de Medicina, Buenos Aires, Argentina
| | - Suzanne M. Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Clovis S. Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
49
|
Stroppa PH, Antinarelli LM, Carmo AM, Gameiro J, Coimbra ES, da Silva AD. Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis. Bioorg Med Chem 2017; 25:3034-3045. [DOI: 10.1016/j.bmc.2017.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
50
|
Bâ A. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis 2017; 22:741-752. [DOI: 10.1007/s10495-017-1372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|