1
|
Zou H, Zheng L, Zeng C. Polyunsaturated Fatty Acids and Reduced Risk of Low Muscle Mass in Adults. Nutrients 2025; 17:858. [PMID: 40077720 PMCID: PMC11902165 DOI: 10.3390/nu17050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background: We aimed to evaluate the effects of both joint and individual types of fatty acids on low muscle mass in adults. Methods: We enrolled 8842 adults selected from the National Health and Nutrition Examination Survey (NHANES). Multivariate adjusted weighted logistic regression models were employed to evaluate the connection between fatty acids and low muscle mass. We used restricted cubic splines (RCSs) to determine whether the relationship is linear or non-linear, while stratified analyses and interaction effects were also assessed. Weighted quantile sum (WQS) analysis assessed the impact of joint and individual types of fatty acids on low muscle mass. Additionally, mediation analysis determined the direct and indirect implications of polyunsaturated fatty acids on low muscle mass. Results: A total of 8842 participants were included in this study, of which 705 were identified as having low muscle mass. The logistic regression analyses identified a significant linear correlation between all three types of fatty acids and low-muscle-mass risk. Additionally, the WQS analysis demonstrated that a fatty acid mixture was inversely associated with low-muscle-mass risk, with polyunsaturated fatty acids being recognized as the principal component. Moreover, inflammation may mediate the relationship between polyunsaturated fatty acids and low muscle mass, accounting for 3.75% of the effect size (p < 0.001) through white blood cell count. We further examined linoleic acid (LA) and alpha-linolenic acid (ALA), and each unit increase in LA and ALA intake was linked to a decrease in low-muscle-mass risk by 0.29 (95% CI: 0.64-0.79, p < 0.001) and 0.27 (95% CI: 0.66-0.81, p < 0.001), respectively. Conclusions: These findings indicate that polyunsaturated fatty acids (especially LA and ALA) may effectively mitigate low-muscle-mass risk.
Collapse
Affiliation(s)
| | - Liangrong Zheng
- School of Medicine, Zhejiang University, Hangzhou 310000, China;
| | - Chunlai Zeng
- School of Medicine, Zhejiang University, Hangzhou 310000, China;
| |
Collapse
|
2
|
Li D, Hou T, Du X, Zhao L, Zhang L, Gao F, Xing T. Integrated analysis of miRNA and mRNA expression profiles associated with wooden breast myopathy in broiler chickens. Int J Biol Macromol 2025; 284:137990. [PMID: 39603286 DOI: 10.1016/j.ijbiomac.2024.137990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Wooden breast (WB) myopathy has raised a worldwide concern among broiler industry during the past decade. Despite progress in understanding its etiology from transcriptional regulation, post-transcriptional mechanisms including the regulation of microRNAs (miRNAs) remain largely unknown. In the current study, we described an integrative analysis between mRNA and miRNA expression profiles of pectoralis major muscle from normal and WB myopathic broilers. A total of 1983 differentially expressed mRNAs (DEmRNAs) and 155 DEmiRNAs were identified in WB. We screened crucial biological processes and core DEmRNAs enriched in functional pathways, and established the protein-protein interaction network. DEmiRNAs and negatively correlated DEmRNAs regulatory networks were constructed, including 44 exist DEmiRNAs and 478 DEmRNAs, forming 772 miRNA-mRNA pairs. Upregulated DEmiRNAs including gga-miR-21-3p, gga-miR-460a-5p and gga-miR-6631-5p, as well as downregulated DEmiRNAs including gga-miR-182-5p, gga-miR-183 and gga-miR-96-5p were identified as hub miRNAs. Meanwhile, functional enrichment analysis indicated that upregulated DEmRNAs in the network were enriched in biological processes of response to stimulus, inflammatory response, extracellular matrix organization, whereas downregulated DEmRNAs were enriched in carbohydrate, amino acid and nucleotide metabolic processes. Collectively, our integrative miRNA and mRNA analysis highlighted candidate miRNAs and mRNAs, as well as potential miRNA-mRNA regulatory mechanisms involved in WB myopathy in broiler chicken.
Collapse
Affiliation(s)
- Duanduan Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Taijiang Hou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Du
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
4
|
Sano A, Inoue J, Kakazu E, Ninomiya M, Tsuruoka M, Sato K, Onuki M, Sawahashi S, Ouchi K, Masamune A. Association of Omega-3 Polyunsaturated Fatty Acids with Sarcopenia in Liver Cirrhosis Patients with Hepatocellular Carcinoma. J Clin Transl Hepatol 2024; 12:613-624. [PMID: 38993515 PMCID: PMC11233978 DOI: 10.14218/jcth.2024.00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 07/13/2024] Open
Abstract
Background and Aims Sarcopenia is associated with the prognosis of patients with liver cirrhosis and hepatocellular carcinoma (HCC). Given their diverse physiological activities, we hypothesized that plasma fatty acids might influence the progression of sarcopenia. This study aimed to clarify the association between fatty acids and sarcopenia in cirrhotic patients with HCC. Methods In this single-center retrospective study, we registered 516 cases and analyzed 414 cases of liver cirrhosis and HCC. The skeletal muscle mass index was measured using a transverse computed tomography scan image at the third lumbar vertebra. The cutoff value for sarcopenia followed the criteria set by the Japan Society of Hepatology. Fatty acid concentrations were measured by gas chromatography. Results Fatty acid levels, particularly omega-3 (n-3) polyunsaturated fatty acid (PUFA), were lower in patients with poor liver function (Child-Pugh grade B/C) and were negatively correlated with the albumin-bilirubin score (p<0.0001). The prognosis of HCC patients with low PUFA levels was significantly worse. Among the different fatty acid fractions, only n-3 PUFAs significantly correlated with skeletal muscle mass index (p=0.0026). In the multivariate analysis, the n-3 PUFA level was an independent variable associated with sarcopenia (p=0.0006). Conclusions A low level of n-3 PUFAs was associated with sarcopenia in patients with liver cirrhosis and HCC.
Collapse
Affiliation(s)
- Akitoshi Sano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Eiji Kakazu
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Liver Disease, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mio Tsuruoka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kosuke Sato
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masazumi Onuki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Satoko Sawahashi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keishi Ouchi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
5
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
6
|
Li C, Cao H, Ren Y, Jia J, Yang G, Jin J, Shi X. Eicosapentaenoic acid-mediated activation of PGAM2 regulates skeletal muscle growth and development via the PI3K/AKT pathway. Int J Biol Macromol 2024; 268:131547. [PMID: 38641281 DOI: 10.1016/j.ijbiomac.2024.131547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingchun Ren
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jinrui Jia
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
7
|
Huang T, Liu C, Cui C, Zhang N, Cheung WH, Wong RMY. Potential of Fatty Acids in Treating Sarcopenia: A Systematic Review. Nutrients 2023; 15:3613. [PMID: 37630803 PMCID: PMC10459935 DOI: 10.3390/nu15163613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
This paper presents a systematic review of studies investigating the effects of fatty acid supplementation in potentially preventing and treating sarcopenia. PubMed, Embase, and Web of Science databases were searched using the keywords 'fatty acid' and 'sarcopenia'. Results: A total of 14 clinical and 11 pre-clinical (including cell and animal studies) studies were included. Of the 14 clinical studies, 12 used omega-3 polyunsaturated fatty acids (PUFAs) as supplements, 1 study used ALA and 1 study used CLA. Seven studies combined the use of fatty acid with resistant exercises. Fatty acids were found to have a positive effect in eight studies and they had no significant outcome in six studies. The seven studies that incorporated exercise found that fatty acids had a better impact on elderlies. Four animal studies used novel fatty acids including eicosapentaenoic acid, trans-fatty acid, and olive leaf extraction as interventions. Three animal and four cell experiment studies revealed the possible mechanisms of how fatty acids affect muscles by improving regenerative capacity, reducing oxidative stress, mitochondrial and peroxisomal dysfunctions, and attenuating cell death. Conclusion: Fatty acids have proven their value in improving sarcopenia in pre-clinical experiments. However, current clinical studies show controversial results for its role on muscle, and thus the mechanisms need to be studied further. In the future, more well-designed randomized controlled trials are required to assess the effectiveness of using fatty acids in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.H.); (C.L.); (C.C.); (N.Z.); (W.H.C.)
| |
Collapse
|
8
|
Taheri M, Chilibeck PD, Cornish SM. A Brief Narrative Review of the Underlying Mechanisms Whereby Omega-3 Fatty Acids May Influence Skeletal Muscle: From Cell Culture to Human Interventions. Nutrients 2023; 15:2926. [PMID: 37447252 DOI: 10.3390/nu15132926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Skeletal muscle is essential for human locomotion as well as maintaining metabolic homeostasis. Age-related reduction in skeletal muscle mass, strength, and function (i.e., sarcopenia) is a result of pathophysiological processes that include inflammation, alteration of molecular signaling for muscle protein synthesis and degradation, changes in insulin sensitivity, as well as altered skeletal muscle satellite cell activity. Finding strategies to mitigate skeletal muscle loss with age is deemed paramount as the percentage of the population continues to shift towards having more older adults with sarcopenia. Recent research indicates omega-3 fatty acid supplementation can influence anabolic or catabolic pathways in skeletal muscle. Our brief review will provide a synopsis of some underlying mechanisms that may be attributed to omega-3 fatty acid supplementation's effects on skeletal muscle. We will approach this review by focusing on cell culture, animal (pre-clinical models), and human studies evaluating omega-3 fatty acid supplementation, with suggestions for future research. In older adults, omega-3 fatty acids may possess some potential to modify pathophysiological pathways associated with sarcopenia; however, it is highly likely that omega-3 fatty acids need to be combined with other anabolic interventions to effectively ameliorate sarcopenia.
Collapse
Affiliation(s)
- Maryam Taheri
- Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran 19839 69411, Iran
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
9
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Targeting the Inflammatory Hallmarks of Obesity-Associated Osteoarthritis: Towards Nutraceutical-Oriented Preventive and Complementary Therapeutic Strategies Based on n-3 Polyunsaturated Fatty Acids. Int J Mol Sci 2023; 24:ijms24119340. [PMID: 37298291 DOI: 10.3390/ijms24119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity (Ob), which has dramatically increased in the last decade, is one of the main risk factors that contribute to the incidence and progression of osteoarthritis (OA). Targeting the characteristics of obesity-associated osteoarthritis (ObOA) may offer new chances for precision medicine strategies in this patient cohort. First, this review outlines how the medical perspective of ObOA has shifted from a focus on biomechanics to the significant contribution of inflammation, mainly mediated by changes in the adipose tissue metabolism through the release of adipokines and the modification of fatty acid (FA) compositions in joint tissues. Preclinical and clinical studies on n-3 polyunsaturated FAs (PUFAs) are critically reviewed to outline the strengths and weaknesses of n-3 PUFAs' role in alleviating inflammatory, catabolic and painful processes. Emphasis is placed on potential preventive and therapeutic nutritional strategies based on n-3 PUFAs, with a focus on ObOA patients who could specifically benefit from reformulating the dietary composition of FAs towards a protective phenotype. Finally, tissue engineering approaches that involve the delivery of n-3 PUFAs directly into the joint are explored to address the perspectives and current limitations, such as safety and stability issues, for implementing preventive and therapeutic strategies based on dietary compounds in ObOA patients.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
10
|
Palmitic Acid Inhibits Myogenic Activity and Expression of Myosin Heavy Chain MHC IIb in Muscle Cells through Phosphorylation-Dependent MyoD Inactivation. Int J Mol Sci 2023; 24:ijms24065847. [PMID: 36982919 PMCID: PMC10054354 DOI: 10.3390/ijms24065847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Sarcopenia associated with aging and obesity is characterized by the atrophy of fast-twitch muscle fibers and an increase in intramuscular fat deposits. However, the mechanism of fast-twitch fiber-specific atrophy remains unclear. In this study, we aimed to assess the effect of palmitic acid (PA), the most common fatty acid component of human fat, on muscle fiber type, focusing on the expression of fiber-type-specific myosin heavy chain (MHC). Myotubes differentiated from C2C12 myoblasts were treated with PA. The PA treatment inhibited myotube formation and hypertrophy while reducing the gene expression of MHC IIb and IIx, specific isoforms of fast-twitch fibers. Consistent with this, a significant suppression of MHC IIb protein expression in PA-treated cells was observed. A reporter assay using plasmids containing the MHC IIb gene promoter revealed that the PA-induced reduction in MHC IIb gene expression was caused by the suppression of MyoD transcriptional activity through its phosphorylation. Treatment with a specific protein kinase C (PKC) inhibitor recovered the reduction in MHC IIb gene expression levels in PA-treated cells, suggesting the involvement of the PA-induced activation of PKC. Thus, PA selectively suppresses the mRNA and protein expression of fast-twitch MHC by modulating MyoD activity. This finding provides a potential pathogenic mechanism for age-related sarcopenia.
Collapse
|
11
|
Hunter DJ, James LS, Hussey B, Ferguson RA, Lindley MR, Mastana SS. Impacts of Eccentric Resistance Exercise on DNA Methylation of Candidate Genes for Inflammatory Cytokines in Skeletal Muscle and Leukocytes of Healthy Males. Genes (Basel) 2023; 14:478. [PMID: 36833405 PMCID: PMC9957508 DOI: 10.3390/genes14020478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Physical inactivity and a poor diet increase systemic inflammation, while chronic inflammation can be reduced through exercise and nutritional interventions. The mechanisms underlying the impacts of lifestyle interventions on inflammation remain to be fully explained; however, epigenetic modifications may be critical. The purpose of our study was to investigate the impacts of eccentric resistance exercise and fatty acid supplementation on DNA methylation and mRNA expression of TNF and IL6 in skeletal muscle and leukocytes. Eight non-resistance exercise-trained males completed three bouts of isokinetic eccentric contractions of the knee extensors. The first bout occurred at baseline, the second occurred following a three-week supplementation of either omega-3 polyunsaturated fatty acid or extra virgin olive oil and the final bout occurred after eight-weeks of eccentric resistance training and supplementation. Acute exercise decreased skeletal muscle TNF DNA methylation by 5% (p = 0.031), whereas IL6 DNA methylation increased by 3% (p = 0.01). Leukocyte DNA methylation was unchanged following exercise (p > 0.05); however, three hours post-exercise the TNF DNA methylation decreased by 2% (p = 0.004). In skeletal muscle, increased TNF and IL6 mRNA expression levels were identified immediately post-exercise (p < 0.027); however, the leukocyte mRNA expression was unchanged. Associations between DNA methylation and markers of exercise performance, inflammation and muscle damage were identified (p < 0.05). Acute eccentric resistance exercise is sufficient to induce tissue-specific DNA methylation modifications to TNF and IL6; however, neither eccentric training nor supplementation was sufficient to further modify the DNA methylation.
Collapse
Affiliation(s)
- David John Hunter
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Lynsey S. James
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Bethan Hussey
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Richard A. Ferguson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- School of Biomedical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarabjit S. Mastana
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| |
Collapse
|
12
|
Jannas-Vela S, Espinosa A, Candia AA, Flores-Opazo M, Peñailillo L, Valenzuela R. The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients 2023; 15:nu15040871. [PMID: 36839229 PMCID: PMC9965797 DOI: 10.3390/nu15040871] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Skeletal muscle is the largest tissue in the human body, comprising approximately 40% of body mass. After damage or injury, a healthy skeletal muscle is often fully regenerated; however, with aging and chronic diseases, the regeneration process is usually incomplete, resulting in the formation of fibrotic tissue, infiltration of intermuscular adipose tissue, and loss of muscle mass and strength, leading to a reduction in functional performance and quality of life. Accumulating evidence has shown that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their lipid mediators (i.e., oxylipins and endocannabinoids) have the potential to enhance muscle regeneration by positively modulating the local and systemic inflammatory response to muscle injury. This review explores the process of muscle regeneration and how it is affected by acute and chronic inflammatory conditions, focusing on the potential role of n-3 PUFAs and their derivatives as positive modulators of skeletal muscle healing and regeneration.
Collapse
Affiliation(s)
- Sebastian Jannas-Vela
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, San Felipe 2170000, Chile
| | - Alejandro A. Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Marcelo Flores-Opazo
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Luis Peñailillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Las Condes, Santiago 7591538, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
13
|
Ahmed A, Afzaal M, Ali SW, Muzammil HS, Masood A, Saleem MA, Saeed F, Hussain M, Rasheed A, Al Jbawi E. Effect of vegan diet (VD) on sports performance: a mechanistic review of metabolic cascades. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ammar Masood
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Awais Saleem
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Amara Rasheed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
14
|
Molecular Mechanisms of Inflammation in Sarcopenia: Diagnosis and Therapeutic Update. Cells 2022; 11:cells11152359. [PMID: 35954203 PMCID: PMC9367570 DOI: 10.3390/cells11152359] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Sarcopenia is generally an age-related condition that directly impacts the quality of life. It is also related to chronic diseases such as metabolic dysfunction associated with diabetes and obesity. This means that everyone will be vulnerable to sarcopenia at some point in their life. Research to find the precise molecular mechanisms implicated in this condition can increase knowledge for the better prevention, diagnosis, and treatment of sarcopenia. Our work gathered the most recent research regarding inflammation in sarcopenia and new therapeutic agents proposed to target its consequences in pyroptosis and cellular senescence. Finally, we compared dual X-ray absorptiometry (DXA), magnetic resonance imaging (MRI), and ultrasound (US) as imaging techniques to diagnose and follow up on sarcopenia, indicating their respective advantages and disadvantages. Our goal is for the scientific evidence presented here to help guide future research to understand the molecular mechanisms involved in sarcopenia, new treatment strategies, and their translation into clinical practice.
Collapse
|
15
|
Ghnaimawi S, Zhang S, Baum JI, Huang Y. The Effects of Maternal Intake of EPA and DHA Enriched Diet During Pregnancy and Lactation on Offspring's Muscle Development and Energy Homeostasis. Front Physiol 2022; 13:881624. [PMID: 35733999 PMCID: PMC9207413 DOI: 10.3389/fphys.2022.881624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
EPA and DHA are n-3 long-chain polyunsaturated fatty acids with a diversity of health benefits on offspring. The objective of this study was to test the in vivo effect of maternal ingestion of EPA and DHA on fetal and offspring muscle development and energy balance. Two groups of female C57BL/6 mice were fed EPA and DHA enriched diet (FA) and diet devoid of EPA and DHA (CON) respectively throughout the entire period of gestation and lactation. Embryos at E13 and offspring at age of D1 and D21 were selected for sample collection and processing. No change in birth number and body weight were observed between groups at D1 and D21. Transient increase in the expression levels of myogenesis regulating genes was detected at D1 (p < 0.05) in FA group. Most of the expression of muscle protein synthesis regulating genes were comparable (p > 0.05) between FA and CON groups at D1 and D21. The significant increase in MHC4, and IGF-1 was not linked to increased muscle mass. A persistent increase in ISR expression (p < 0.05) but not in GLUT-4 (p > 0.05) was detected in offspring. Up-regulation of adipogenesis regulating genes was accompanied by increasing intramuscular fat accumulation in the offspring of FA group. Considerable increase in transcripts of genes regulating lipid catabolism and thermogenesis in liver (p < 0.05) was noticed in FA group at D21; whereas, only the levels of carnitine palmitoyl transferase 1A (Cpt1α) and Enoyl-CoA Hydratase And 3-Hydroxyacyl CoA Dehydrogenase (Ehhadh) increased at D1. Similarly, genes regulating lipolysis were highly expressed at D21 in FA group. EPA and DHA treatment promoted BAT development and activity by increasing the expression of BAT signature genes (p < 0.05). Also, maternal intake of EPA and DHA enriched diet enhanced browning of sWAT. Taken together, maternal ingestion of EPA/DHA may be suggested as a therapeutic option to improve body composition and counteract childhood obesity- related metabolic disorders and confer lifelong positive metabolic impact on offspring.
Collapse
Affiliation(s)
- Saeed Ghnaimawi
- Medical Laboratory Techniques Department, Kut University College, Alkut, Iraq
| | - Shilei Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jamie I. Baum
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
16
|
[Immunosenescence, viral infections and nutrition: A narrative review of scientific available evidence]. Rev Esp Geriatr Gerontol 2021; 57:33-38. [PMID: 34844781 DOI: 10.1016/j.regg.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023]
Abstract
Aging of the immune system, or immunosenescence, alters the viral immune response in the elderly, especially when frailty exists. Research findings have demonstrated an imbalance in pro- and anti-inflammatory mechanisms, reduced production and diversification of T lymphocytes, and an alteration in immunovigilance and antibody synthesis. In this context, nutrition has a role in combating sarcopenia and frailty. Some food components that contribute to immune-competence are protein, vitamin D, n-3 fatty acids, antioxidant vitamins (vitamins C and E), zinc, selenium and iron. In times of a pandemic, nutritional recommendations for immune-competence in the elderly should be based on clinical studies. In this article, immunosenescence and its relationship to nutrition are addressed, including interventions studied in the context of the COVID-19 pandemic.
Collapse
|
17
|
Pohl A, Schünemann F, Bersiner K, Gehlert S. The Impact of Vegan and Vegetarian Diets on Physical Performance and Molecular Signaling in Skeletal Muscle. Nutrients 2021; 13:3884. [PMID: 34836139 PMCID: PMC8623732 DOI: 10.3390/nu13113884] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Muscular adaptations can be triggered by exercise and diet. As vegan and vegetarian diets differ in nutrient composition compared to an omnivorous diet, a change in dietary regimen might alter physiological responses to physical exercise and influence physical performance. Mitochondria abundance, muscle capillary density, hemoglobin concentration, endothelial function, functional heart morphology and availability of carbohydrates affect endurance performance and can be influenced by diet. Based on these factors, a vegan and vegetarian diet possesses potentially advantageous properties for endurance performance. Properties of the contractile elements, muscle protein synthesis, the neuromuscular system and phosphagen availability affect strength performance and can also be influenced by diet. However, a vegan and vegetarian diet possesses potentially disadvantageous properties for strength performance. Current research has failed to demonstrate consistent differences of performance between diets but a trend towards improved performance after vegetarian and vegan diets for both endurance and strength exercise has been shown. Importantly, diet alters molecular signaling via leucine, creatine, DHA and EPA that directly modulates skeletal muscle adaptation. By changing the gut microbiome, diet can modulate signaling through the production of SFCA.
Collapse
Affiliation(s)
- Alexander Pohl
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Frederik Schünemann
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Käthe Bersiner
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Sebastian Gehlert
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
- Department for Molecular and Cellular Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany
| |
Collapse
|
18
|
Isesele PO, Mazurak VC. Regulation of Skeletal Muscle Satellite Cell Differentiation by Omega-3 Polyunsaturated Fatty Acids: A Critical Review. Front Physiol 2021; 12:682091. [PMID: 34149458 PMCID: PMC8209368 DOI: 10.3389/fphys.2021.682091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is composed of multinuclear cells called myofibres, which are formed by the fusion of myoblasts during development. The size of the muscle fiber and mass of skeletal muscle are altered in response to several pathological and physiological conditions. Skeletal muscle regeneration is primarily mediated by muscle stem cells called satellite cells (SCs). In response to injury, these SCs replenish myogenic progenitor cells to form new myofibers to repair damaged muscle. During myogenesis, activated SCs proliferate and differentiate to myoblast and then fuse with one another to form muscle fibers. A reduced number of SCs and an inability to undergo myogenesis may contribute to skeletal muscle disorders such as atrophy, cachexia, and sarcopenia. Myogenic regulatory factors (MRF) are transcription factors that regulate myogenesis and determines whether SCs will be in the quiescent, activated, committed, or differentiated state. Mitochondria oxidative phosphorylation and oxidative stress play a role in the determination of the fate of SCs. The potential activation and function of SCs are also affected by inflammation during skeletal muscle regeneration. Omega-3 polyunsaturated fatty acids (PUFAs) show promise to reduce inflammation, maintain muscle mass during aging, and increase the functional capacity of the muscle. The aim of this critical review is to highlight the role of omega-3 PUFAs on the myogenic differentiation of SCs and pathways affected during the differentiation process, including mitochondrial function and inflammation from the current body of literature.
Collapse
Affiliation(s)
- Peter O Isesele
- Division of Human Nutrition, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vera C Mazurak
- Division of Human Nutrition, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Nakamura S, Yonekura S, Shimosato T, Takaya T. Myogenetic Oligodeoxynucleotide (myoDN) Recovers the Differentiation of Skeletal Muscle Myoblasts Deteriorated by Diabetes Mellitus. Front Physiol 2021; 12:679152. [PMID: 34108889 PMCID: PMC8181739 DOI: 10.3389/fphys.2021.679152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle wasting in patients with diabetes mellitus (DM) is a complication of decreased muscle mass and strength, and is a serious risk factor that may result in mortality. Deteriorated differentiation of muscle precursor cells, called myoblasts, in DM patients is considered to be one of the causes of muscle wasting. We recently developed myogenetic oligodeoxynucleotides (myoDNs), which are 18-base single-strand DNAs that promote myoblast differentiation by targeting nucleolin. Herein, we report the applicability of a myoDN, iSN04, to myoblasts isolated from patients with type 1 and type 2 DM. Myogenesis of DM myoblasts was exacerbated concordantly with a delayed shift of myogenic transcription and induction of interleukins. Analogous phenotypes were reproduced in healthy myoblasts cultured with excessive glucose or palmitic acid, mimicking hyperglycemia or hyperlipidemia. iSN04 treatment recovered the deteriorated differentiation of plural DM myoblasts by downregulating myostatin and interleukin-8 (IL-8). iSN04 also ameliorated the impaired myogenic differentiation induced by glucose or palmitic acid. These results demonstrate that myoDNs can directly facilitate myoblast differentiation in DM patients, making them novel candidates for nucleic acid drugs to treat muscle wasting in patients with DM.
Collapse
Affiliation(s)
- Shunichi Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Shinichi Yonekura
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
20
|
Wang ZG, Zhu ZQ, He ZY, Cheng P, Liang S, Chen AM, Yang Q. Endogenous conversion of n-6 to n-3 polyunsaturated fatty acids facilitates the repair of cardiotoxin-induced skeletal muscle injury in fat-1 mice. Aging (Albany NY) 2021; 13:8454-8466. [PMID: 33714197 PMCID: PMC8034919 DOI: 10.18632/aging.202655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
In this study, we investigated the beneficial effects of high endogenous levels of n-3 polyunsaturated fatty acids (PUFAs) on skeletal muscle repair and regeneration using a mouse cardiotoxin (CTX, 20 μM/200 μL) -induced gastrocnemius muscle injury model. Transgenic fat-1 mice expressing the Caenorhabditis elegans fat-1 gene, encoding n-3 fatty acid desaturase, showed higher n-3 PUFA levels and lower n-6/n-3 PUFA ratios in gastrocnemius muscle tissues. Hematoxylin and eosin and Masson’s trichrome staining of gastrocnemius sections revealed increased muscle fiber size and reduced fibrosis in fat-1 mice on days 7 and 14 after CTX injections. Gastrocnemius muscle tissues from fat-1 mice showed reduced inflammatory responses and increased muscle fiber regeneration reflecting enhanced activation of satellite cells on day 3 after cardiotoxin injections. Gastrocnemius muscle tissues from cardiotoxin-treated fat-1 mice showed reduced levels of pro-apoptotic proteins (Caspase 3 and Bax) and increased levels of anti-apoptotic proteins (Bcl-2 and Survivin). Moreover, eicosapentaenoic acid (EPA) reduced the incidence of apoptosis among cardiotoxin-treated C2C12 mouse myoblasts. These findings demonstrate that higher endogenous n-3 PUFA levels in fat-1 mice enhances skeletal muscle repair and regeneration following cardiotoxin-induced injury.
Collapse
Affiliation(s)
- Zheng-Gang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Zi-Qing Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Zhi-Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - An-Min Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| | - Qing Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, PR China
| |
Collapse
|
21
|
Yamazaki H, Nishimura M, Uehara M, Kuribara-Souta A, Yamamoto M, Yoshikawa N, Morohashi KI, Tanaka H. Eicosapentaenoic acid changes muscle transcriptome and intervenes in aging-related fiber type transition in male mice. Am J Physiol Endocrinol Metab 2021; 320:E346-E358. [PMID: 33225720 PMCID: PMC8260374 DOI: 10.1152/ajpendo.00184.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related sarcopenia is associated with a variety of changes in skeletal muscle. These changes are interrelated with each other and associated with systemic metabolism, the details of which, however, are largely unknown. Eicosapentaenoic acid (EPA) is a promising nutrient against sarcopenia and has multifaceted effects on systemic metabolism. In this study, we hypothesized that the aging process in skeletal muscle can be intervened by the administration of EPA. Seventy-five-week-old male mice were assigned to groups fed an EPA-deprived diet (EPA-) or an EPA-enriched diet with 1 wt% EPA (EPA+) for 12 wk. Twenty-four-week-old male mice fed with normal chow were also analyzed. At baseline, the grip strength of the aging mice was lower than that of the young mice. After 12 wk, EPA+ showed similar muscle mass but increased grip strength compared with EPA-. EPA+ displayed higher insulin sensitivity than EPA-. Immunohistochemistry and gene expression analysis of myosin heavy chains (MyHCs) revealed fast-to-slow fiber type transition in aging muscle, which was partially inhibited by EPA. RNA sequencing (RNA-Seq) analysis suggested that EPA supplementation exerts pathway-specific effects in skeletal muscle including the signatures of slow-to-fast fiber type transition. In conclusion, we revealed that aging skeletal muscle in male mice shows lower grip strength and fiber type changes, both of which can be inhibited by EPA supplementation irrespective of muscle mass alteration.NEW & NOTEWORTHY This study demonstrated that the early phenotype of skeletal muscle in aging male mice is characterized by muscle weakness with fast-to-slow fiber type transition, which could be ameliorated by feeding with EPA-enriched diet. EPA induced metabolic changes such as an increase in systemic insulin sensitivity and altered muscle transcriptome in the aging mice. These changes may be related to the fiber type transition and influence muscle quality.
Collapse
Affiliation(s)
- Hiroki Yamazaki
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Mayu Nishimura
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Masaaki Uehara
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Akiko Kuribara-Souta
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Motohisa Yamamoto
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Noritada Yoshikawa
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Medical Molecular Cell Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
22
|
Nguyen MT, Min KH, Lee W. MiR-96-5p Induced by Palmitic Acid Suppresses the Myogenic Differentiation of C2C12 Myoblasts by Targeting FHL1. Int J Mol Sci 2020; 21:ijms21249445. [PMID: 33322515 PMCID: PMC7764195 DOI: 10.3390/ijms21249445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Skeletal myogenesis is a multi-stage process that includes the cell cycle exit, myogenic transcriptional activation, and morphological changes to form multinucleated myofibers. Recent studies have shown that saturated fatty acids (SFA) and miRNAs play crucial roles in myogenesis and muscle homeostasis. Nevertheless, the target molecules and myogenic regulatory mechanisms of miRNAs are largely unknown, particularly when myogenesis is dysregulated by SFA deposition. This study investigated the critical role played by miR-96-5p on the myogenic differentiation in C2C12 myoblasts. Long-chain SFA palmitic acid (PA) significantly reduced FHL1 expression and inhibited the myogenic differentiation of C2C12 myoblasts but induced miR-96-5p expression. The knockdown of FHL1 by siRNA stimulated cell proliferation and inhibited myogenic differentiation of myoblasts. Interestingly, miR-96-5p suppressed FHL1 expression by directly targeting the 3’UTR of FHL1 mRNA. The transfection of an miR-96-5p mimic upregulated the expressions of cell cycle-related genes, such as PCNA, CCNB1, and CCND1, and increased myoblast proliferation. Moreover, the miR-96-5p mimic inhibited the expressions of myogenic factors, such as myoblast determination protein (MyoD), myogenin (MyoG), myocyte enhancer factor 2C (MEF2C), and myosin heavy chain (MyHC), and dramatically impeded differentiation and fusion of myoblasts. Overall, this study highlights the role of miR-96-5p in myogenesis via FHL1 suppression and suggests a novel regulatory mechanism for myogenesis mediated by miRNA in a background of obesity.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea; (M.T.N.); (K.-H.M.)
| | - Kyung-Ho Min
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea; (M.T.N.); (K.-H.M.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea; (M.T.N.); (K.-H.M.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, 10326 Goyang, Korea
- Correspondence: ; Tel.: +82-54-770-2409; Fax: +82-54-770-2447
| |
Collapse
|
23
|
Katsnelson G, Ceddia RB. Docosahexaenoic and eicosapentaenoic fatty acids differentially regulate glucose and fatty acid metabolism in L6 rat skeletal muscle cells. Am J Physiol Cell Physiol 2020; 319:C1120-C1129. [PMID: 32966124 DOI: 10.1152/ajpcell.00304.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate whether the n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can directly regulate glucose and fat metabolism in skeletal muscle besides exerting anti-inflammatory effects. To accomplish this, L6 skeletal muscle cells were treated with 50 µM of either DHA or EPA for 1, 3, and 5 days. Here, we report that basal and insulin-stimulated rates of glucose uptake, glycogen synthesis, protein kinase B (AKT), and glycogen synthase kinase 3 (GSK3) phosphorylation were not affected by DHA or EPA. However, glucose and palmitate oxidation were consistently elevated by DHA treatment, whereas EPA only increased this variable transiently. Similarly, only DHA caused significant and sustained increases in AMP-activated protein kinase (AMPK) phosphorylation and protein levels of carnitine-palmitoyl transferase-1b (CPT1b) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in skeletal muscle cells. DHA also caused a larger anti-inflammatory effect than EPA in these cells. In conclusion, besides exerting anti-inflammatory effects, DHA and EPA directly regulated glucose and fat metabolism in skeletal muscle cells, although DHA was more effective in doing so than EPA. Thus, by directly enhancing glucose and fat oxidation, DHA may increase glucose disposal and reduce intramyocellular lipid accumulation.
Collapse
Affiliation(s)
- Glen Katsnelson
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Rolando B Ceddia
- Muscle Health Research Center, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Nguyen MT, Min KH, Lee W. MiR-183-5p induced by saturated fatty acids regulates the myogenic differentiation by directly targeting FHL1 in C2C12 myoblasts. BMB Rep 2020. [PMID: 33148375 PMCID: PMC7704217 DOI: 10.5483/bmbrep.2020.53.11.175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Skeletal myogenesis is a complex process that is finely regulated by myogenic transcription factors. Recent studies have shown that saturated fatty acids (SFA) can suppress the activation of myogenic transcription factors and impair the myogenic differentiation of progenitor cells. Despite the increasing evidence of the roles of miRNAs in myogenesis, the targets and myogenic regulatory mechanisms of miRNAs are largely unknown, particularly when myogenesis is dysregulated by SFA deposition. This study examined the implications of SFA-induced miR-183-5p on the myogenic differentiation in C2C12 myoblasts. Long-chain SFA palmitic acid (PA) drastically reduced myogenic transcription factors, such as myoblast determination protein (MyoD), myogenin (MyoG), and myocyte enhancer factor 2C (MEF2C), and inhibited FHL1 expression and myogenic differentiation of C2C12 myoblasts, accompanied by the induction of miR-183-5p. The knockdown of FHL1 by siRNA inhibited myogenic differentiation of myoblasts. Interestingly, miR-183-5p inversely regulated the expression of FHL1, a crucial regulator of skeletal myogenesis, by targeting the 3’UTR of FHL1 mRNA. Furthermore, the transfection of miR-183-5p mimic suppressed the expression of MyoD, MyoG, MEF2C, and MyHC, and impaired the differentiation and myotube formation of myoblasts. Overall, this study highlights the role of miR-183-5p in myogenic differentiation through FHL1 repression and suggests a novel miRNA-mediated mechanism for myogenesis in a background of obesity.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Kyung-Ho Min
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| |
Collapse
|
25
|
Yang W, Lee JW, Kim Y, Lee JH, Kang HT. Increased Omega-3 Fatty Acid Intake is Inversely Associated with Sarcopenic Obesity in Women but not in Men, Based on the 2014-2018 Korean National Health and Nutrition Examination Survey. J Clin Med 2020; 9:jcm9123856. [PMID: 33260970 PMCID: PMC7761316 DOI: 10.3390/jcm9123856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Omega-3 fatty acids (ω3FAs) are known to improve protein anabolism, increase the sensitivity to anabolic stimuli, decrease lipogenesis, and stimulate lipid oxidation. We aim to investigate whether ω3FAs are associated with the prevalence of sarcopenic obesity (SO). (2) Methods: Data were obtained from the 2014–2018 Korean National Health and Nutrition Examination Survey. The ratio of daily ω3FA intake to energy intake (ω3FA ratio) was categorized into four quartile groups. (3) Results: The prevalence of SO from Q1 to Q4 was 8.9%, 11.3%, 11.0%, and 9.8% respectively, in men and 17.4%, 14.0%, 13.9%, and 10.1% respectively, in women. The ω3FA ratio in individuals with and without SO were 1.0% and 0.9% in men (p-value = 0.271) respectively, and 0.8% and 1.0% in women (p-value = 0.017), respectively. Compared with Q1, odds ratios (95% confidence intervals) of Q2, Q3, and Q4 of ω3FA ratios were 1.563 (0.802–3.047), 1.246 (0.611–2.542), and 0.924 (0.458–1.864) respectively, in men and 0.663 (0.379–1.160), 0.640 (0.372–1.102), and 0.246 (0.113–0.534) respectively, in women, after fully adjusting for confounding factors. (4) Conclusions: The ω3FA ratio was significantly higher in older females without SO than in older females with SO. The ω3FA ratio was associated with the prevalence of SO in elderly females.
Collapse
Affiliation(s)
- Woojung Yang
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju 28644, Korea; (W.Y.); (J.-w.L.); (Y.K.)
| | - Jae-woo Lee
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju 28644, Korea; (W.Y.); (J.-w.L.); (Y.K.)
| | - Yonghwan Kim
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju 28644, Korea; (W.Y.); (J.-w.L.); (Y.K.)
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Korea;
| | - Hee-Taik Kang
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju 28644, Korea; (W.Y.); (J.-w.L.); (Y.K.)
- Department of Family Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Korea
- Correspondence: ; Tel.: +82-43-269-6301
| |
Collapse
|
26
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
27
|
Cauble RN, Greene ES, Orlowski S, Walk C, Bedford M, Apple J, Kidd MT, Dridi S. Research Note: Dietary phytase reduces broiler woody breast severity via potential modulation of breast muscle fatty acid profiles. Poult Sci 2020; 99:4009-4015. [PMID: 32731988 PMCID: PMC7597982 DOI: 10.1016/j.psj.2020.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
Woody breast (WB) myopathy is a major concern and economic burden to the poultry industry, and for which, there is no effective solution because of its unknown etiology. In a previous study, we have shown that phytase (Quantum Blue, QB) reduces the WB severity by 5% via modulation of oxygen homeostasis-related pathways. As WB has been suggested to be associated with lipid dysmetabolism, we aimed to determine the effect of QB on WB and breast muscle fatty acid profile. Male broilers were subjected to 6 treatments (96 birds/treatment): a nutrient adequate control group (PC), the PC supplemented with 0.3% myo-inositol (PC + MI), a negative control (NC) deficient in available P and Ca by 0.15 and 0.16%, respectively, the NC fed with QB at 500 (NC+500 FTU), and 1,000 (NC+ 1,000 FTU) or 2,000 FTU/kg of feed (NC+2,000 FTU). Woody breast and white striping scores were recorded, and fatty acid profiles were determined using gas liquid chromatography. Woody breast-affected muscles exhibited a significant higher incidence of white striping as liquid chromatography analysis reveals an imbalance of fatty acid profile in the breast of WB-affected birds with a significant higher percent of saturated fatty acids (SFA, myristic [14:0], pentadecanoic [15:0], and margaric [17:0]) and monounsaturated fatty acids (myristoleic [14:1], palmitoleic [16:1c], 10-trans-heptadecenoic [17:1t], oleic [18:1c9], and vaccenic [18:1c11]), and lower content of polyunsaturated fatty acids (PUFA) and omega-3 (P < 0.05). Quantum Blue at high doses (1,000 and 2,000 FTU) significantly reduces the percent of SFA and increases that of PUFA compared with the control group. In conclusion, WB myopathy seemed to be associated with an imbalance of fatty acid profile, and QB ameliorates the severity of WB potentially via modulation of SFA and PUFA contents.
Collapse
Affiliation(s)
- Reagan N Cauble
- Department of Animal Science, University of Arkansas, Fayetteville 72701.
| | - Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701
| | - Sara Orlowski
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701
| | - Carrie Walk
- AB Vista, Woodstock Ct, Marlborough, Wiltshire SN8 4AN, UK
| | - Mike Bedford
- AB Vista, Woodstock Ct, Marlborough, Wiltshire SN8 4AN, UK
| | - Jason Apple
- Department of Animal Science, University of Arkansas, Fayetteville 72701
| | - Michael T Kidd
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701
| | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701.
| |
Collapse
|
28
|
Tachtsis B, Whitfield J, Hawley JA, Hoffman NJ. Omega-3 Polyunsaturated Fatty Acids Mitigate Palmitate-Induced Impairments in Skeletal Muscle Cell Viability and Differentiation. Front Physiol 2020; 11:563. [PMID: 32581844 PMCID: PMC7283920 DOI: 10.3389/fphys.2020.00563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulation of excess saturated free fatty acids such as palmitate (PAL) in skeletal muscle leads to reductions in mitochondrial integrity, cell viability and differentiation. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) counteract PAL-induced lipid accumulation. EPA and DHA, as well as the n-3 PUFA docosapentaenoic acid (DPA), may therefore mitigate PAL-induced lipotoxicity to promote skeletal muscle cell survival and differentiation. C2C12 myoblasts were treated with 50 μM EPA, DPA, or DHA in the absence or presence of 500 μM PAL for 16 h either prior to myoblast analysis or induction of differentiation. Myoblast viability and markers of apoptosis, endoplasmic reticulum (ER) stress and myotube differentiation capacity were investigated using fluorescence microscopy and immunoblotting. High-resolution respirometry was used to assess mitochondrial function and membrane integrity. PAL induced cell death via apoptosis and increased protein content of ER stress markers BiP and CHOP. EPA, DPA, and DHA co-treatment maintained cell viability, prevented PAL-induced apoptosis and attenuated PAL-induced increases in BiP, whereas only DPA prevented increases in CHOP. PAL subsequently reduced protein content of the differentiation marker myogenin and inhibited myotube formation, and all n-3 PUFAs promoted myotube formation in the presence of PAL. Furthermore, DPA prevented PAL-induced release of cytochrome c and maintained mitochondrial integrity. These findings demonstrate the n-3 PUFAs EPA, DPA and DHA elicit similar protective effects against PAL-induced impairments in muscle cell viability and differentiation. Mechanistically, the protective effects of DPA against PAL lipotoxicity are attributable in part to its ability to maintain mitochondrial respiratory capacity via mitigating PAL-induced loss of mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Bill Tachtsis
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Mankhong S, Kim S, Moon S, Kwak HB, Park DH, Kang JH. Experimental Models of Sarcopenia: Bridging Molecular Mechanism and Therapeutic Strategy. Cells 2020; 9:E1385. [PMID: 32498474 PMCID: PMC7348939 DOI: 10.3390/cells9061385] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia has been defined as a progressive decline of skeletal muscle mass, strength, and functions in elderly people. It is accompanied by physical frailty, functional disability, falls, hospitalization, and mortality, and is becoming a major geriatric disorder owing to the increasing life expectancy and growing older population worldwide. Experimental models are critical to understand the pathophysiology of sarcopenia and develop therapeutic strategies. Although its etiologies remain to be further elucidated, several mechanisms of sarcopenia have been identified, including cellular senescence, proteostasis imbalance, oxidative stress, and "inflammaging." In this article, we address three main aspects. First, we describe the fundamental aging mechanisms. Next, we discuss both in vitro and in vivo experimental models based on molecular mechanisms that have the potential to elucidate the biochemical processes integral to sarcopenia. The use of appropriate models to reflect sarcopenia and/or its underlying pathways will enable researchers to understand sarcopenia and develop novel therapeutic strategies for sarcopenia. Lastly, we discuss the possible molecular targets and the current status of drug candidates for sarcopenia treatment. In conclusion, the development of experimental models for sarcopenia is essential to discover molecular targets that are valuable as biochemical biomarkers and/or therapeutic targets for sarcopenia.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
| | - Sujin Kim
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Sohee Moon
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| |
Collapse
|
30
|
Fan Z, Xiao Q. Impaired autophagic flux contributes to muscle atrophy in obesity by affecting muscle degradation and regeneration. Biochem Biophys Res Commun 2020; 525:462-468. [PMID: 32102751 DOI: 10.1016/j.bbrc.2020.02.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022]
Abstract
Increased proteolytic activity has been widely associated with skeletal muscle atrophy. However, elevated proteolysis is also critical for the maintenance of intracellular homeostasis. In this study, we aimed to investigate the significance of autophagy in obesity-induced muscle atrophy and clarify the mechanism involved. First, high-fat diet (HFD)-fed rats were administered vehicle or chloroquine (CQ), an autophagy inhibitor, and we found that HFD inhibited autophagic flux and reduced myofiber size and function in rats. Additionally, the expression levels of MyoD were decreased whereas those of Atrogin-1 were increased in rats fed a HFD. Sustained autophagy inhibition by CQ exacerbated HFD-induced muscular damage and changes in the expression of Atrogin-1 and MyoD. Similar effects were reproduced in vitro in myotubes, which exhibited increased levels of autophagy-related proteins, but the resultant autophagic flux was reduced following exposure to palmitic acid (PA)-conditioned medium. Moreover, PA significantly decreased MyoD levels and induced Atrogin-1 expression, leading to progressive myotube atrophy; this phenomenon was aggravated by CQ but alleviated by the autophagy activator rapamycin. Taken together, these in vivo and in vitro findings suggest that autophagic flux is blocked in skeletal muscle of individuals with high lipid, and autophagy mediates high lipid-induced muscle atrophy by affecting muscle degradation and regeneration.
Collapse
Affiliation(s)
- Zhen Fan
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China.
| | - Qian Xiao
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China.
| |
Collapse
|
31
|
Lacham-Kaplan O, Camera DM, Hawley JA. Divergent Regulation of Myotube Formation and Gene Expression by E2 and EPA during In-Vitro Differentiation of C2C12 Myoblasts. Int J Mol Sci 2020; 21:E745. [PMID: 31979341 PMCID: PMC7037418 DOI: 10.3390/ijms21030745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen (E2) and polyunsaturated fatty acids (n-3PUFA) supplements independently support general wellbeing and enhance muscle regeneration in-vivo and myotube formation in-vitro. However, the combined effect of E2 and n-3PUFA on myoblast differentiation is not known. The purpose of the study was to identify whether E2 and n-3PUFA possess a synergistic effect on in-vitro myogenesis. Mouse C2C12 myoblasts, a reliable model to reiterate myogenic events in-vitro, were treated with 10nM E2 and 50μM eicosapentaenoic acid (EPA) independently or combined, for 0-24 h or 0-120 h during differentiation. Immunofluorescence, targeted qPCR and next generation sequencing (NGS) were used to characterize morphological changes and differential expression of key genes involved in the regulation of myogenesis and muscle function pathways. E2 increased estrogen receptor α (Erα) and the expression of the mitogen-activated protein kinase 11 (Mapk11) within 1 h of treatment and improved myoblast differentiation and myotube formation. A significant reduction (p < 0.001) in myotube formation and in the expression of myogenic regulatory factors Mrfs (MyoD, Myog and Myh1) and the myoblast fusion related gene, Tmem8c, was observed in the presence of EPA and the combined E2/EPA treatment. Additionally, EPA treatment at 48 h of differentiation inhibited the majority of genes associated with the myogenic and striated muscle contraction pathways. In conclusion, EPA and E2 had no synergistic effect on myotube formation in-vitro. Independently, EPA inhibited myoblast differentiation and overrides the stimulatory effect of E2 when used in combination with E2.
Collapse
Affiliation(s)
- Orly Lacham-Kaplan
- Exercise and Nutrition Research Program, Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia;
| | - Donny M. Camera
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne 3122, Australia;
| | - John A. Hawley
- Exercise and Nutrition Research Program, Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia;
| |
Collapse
|
32
|
Lanchais K, Capel F, Tournadre A. Could Omega 3 Fatty Acids Preserve Muscle Health in Rheumatoid Arthritis? Nutrients 2020; 12:E223. [PMID: 31952247 PMCID: PMC7019846 DOI: 10.3390/nu12010223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a high prevalence of death due to cardiometabolic diseases. As observed during the aging process, several comorbidities, such as cardiovascular disorders (CVD), insulin resistance, metabolic syndrome and sarcopenia, are frequently associated to RA. These abnormalities could be closely linked to alterations in lipid metabolism. Indeed, RA patients exhibit a lipid paradox, defined by reduced levels of total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol whereas the CVD risk is increased. Moreover, the accumulation of toxic lipid mediators (i.e., lipotoxicity) in skeletal muscles can induce mitochondrial dysfunctions and insulin resistance, which are both crucial determinants of CVD and sarcopenia. The prevention or reversion of these biological perturbations in RA patients could contribute to the maintenance of muscle health and thus be protective against the increased risk for cardiometabolic diseases, dysmobility and mortality. Yet, several studies have shown that omega 3 fatty acids (FA) could prevent the development of RA, improve muscle metabolism and limit muscle atrophy in obese and insulin-resistant subjects. Thereby, dietary supplementation with omega 3 FA should be a promising strategy to counteract muscle lipotoxicity and for the prevention of comorbidities in RA patients.
Collapse
Affiliation(s)
- Kassandra Lanchais
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Frederic Capel
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Anne Tournadre
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
- CHU de Clermont-Ferrand, Service de rhumatologie, 63003 Clermont-Ferrand, France
| |
Collapse
|
33
|
Cruz-Jentoft AJ, Dawson Hughes B, Scott D, Sanders KM, Rizzoli R. Nutritional strategies for maintaining muscle mass and strength from middle age to later life: A narrative review. Maturitas 2019; 132:57-64. [PMID: 31883664 DOI: 10.1016/j.maturitas.2019.11.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Progressive age-related reductions in muscle mass and strength (sarcopenia) can cause substantial morbidity. This narrative review summarizes evidence of nutritional interventions for maintaining muscle mass and strength from midlife through old age. PubMed and Cochrane databases were searched to identify studies of dietary intake and nutritional interventions for sustaining muscle mass and strength. The benefits of progressive resistance training with and without dietary interventions are well documented. Protein and amino acid (particularly leucine) intake should be considered, and supplementation may be warranted for those not meeting recommended intakes. Vitamin D receptors are expressed in muscle tissue; meta-analyses have shown that vitamin D benefits muscle strength. Data suggest that milk and other dairy products containing different bioactive compounds (i.e. protein, leucine) can enhance muscle protein synthesis, particularly when combined with resistance exercise. Omega-3 s can improve muscle mass and strength by mediating cell signaling and inflammation-related oxidative damage; no studies were specifically conducted in sarcopenia. Low-dose antioxidants (e.g. vitamins C and E) can protect muscle tissue from oxidative damage, but relevant studies are limited. Magnesium is involved with muscle contraction processes, and data have shown benefits to muscle strength. Acidogenic diets increase muscle protein breakdown, which is exacerbated by aging. Alkalizing compounds (e.g. bicarbonates) can promote muscle strength. Small studies of probiotics and plant extracts have generated interest, but few large studies have been conducted. Based on available data, dietary and supplemental interventions may add to the benefits of exercise on muscle mass and strength; effects independent of exercise have not been consistently shown.
Collapse
Affiliation(s)
- Alfonso J Cruz-Jentoft
- Servicio de Geriatría, Hospital Universitario Ramón y Cajal (IRYCIS), Ctra. Colmenar Viejo, km. 9,11 28034 Madrid, Spain.
| | - Bess Dawson Hughes
- Bone Metabolism Laboratory at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111 USA.
| | - David Scott
- School of Clinical Sciences at Monash Health, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | - Kerrie M Sanders
- Melbourne Medical School, The University of Melbourne, Sunshine Hospital, 176 Furlong Road, St Albans, Victoria 3021, Australia.
| | - Rene Rizzoli
- University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Genève, Switzerland.
| |
Collapse
|
34
|
Morgan-Bathke ME, Jensen MD. Preliminary evidence for reduced adipose tissue inflammation in vegetarians compared with omnivores. Nutr J 2019; 18:45. [PMID: 31405384 PMCID: PMC6689866 DOI: 10.1186/s12937-019-0470-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023] Open
Abstract
Background There are links between obesity and inflammation that may relate activation of pro-inflammatory pathways by dietary factors. Because dietary fat intake of vegetarians is thought to be more beneficial than that of omnivores, we hypothesized that obese vegetarians would have less adipose tissue inflammation and lower intramyocellular ceramide concentrations than equally obese omnivores. Methods Eight obese vegetarian (1 male) and 8 obese omnivore volunteers (1 male) completed a Food Frequency Questionnaire, underwent body composition measures, subcutaneous adipose tissue and muscle biopsies. We used immunohistochemistry to measure adipose macrophage (ATM) and senescent cells. Plasma free fatty acid (FFA), adipose FA and muscle ceramide profiles were measured using liquid chromatography/mass spectrometry. Student t tests were used for the comparison of primary outcomes; univariate regression analysis was used to test for associations between dietary patterns and ATMs (secondary analysis). Results There were no differences in age (38 ± 8 vs. 39 ± 8 years), BMI (32.2 ± 2.6 vs. 33.3 ± 1.9 kg/m2) or percent body fat (44 ± 8 vs. 45 ± 4) between the vegetarians and omnivores. Vegetarians consumed 42% (P = 0.02) less saturated fat and 50% (P = 0.04) less cholesterol than the omnivores. Plasma FFA of vegetarians had lesser proportions of palmitic acid (24 ± 3 vs. 29 ± 4%, P = 0.02) and vegetarians had fewer femoral pro-inflammatory ATMs than omnivores (3.6 ± 2.8 vs. 7.9 ± 4.4 per 100 adipocytes, respectively; P = 0.02). Omnivores had 50% greater (P = 0.01) expression of TNF mRNA in abdominal fat. We found no significant between group differences in muscle ceramide concentrations. Conclusions Although the sample size is small, these results may indicate that dietary patterns play a role in adipose tissue inflammation, as reflected by reduced number of femoral ATMs in obese vegetarians than obese omnivores.
Collapse
Affiliation(s)
- Maria E Morgan-Bathke
- Endocrine Research Unit, Mayo Clinic, 200 1st St SW, Rm 5-194 Joseph, Rochester, MN, 55905, USA.,Nutrition and Dietetics Department, Viterbo University, La Crosse, WI, USA
| | - Michael D Jensen
- Endocrine Research Unit, Mayo Clinic, 200 1st St SW, Rm 5-194 Joseph, Rochester, MN, 55905, USA.
| |
Collapse
|
35
|
Omega-3 Fatty Acids-Enriched Fish Oil Activates AMPK/PGC-1α Signaling and Prevents Obesity-Related Skeletal Muscle Wasting. Mar Drugs 2019; 17:md17060380. [PMID: 31242648 PMCID: PMC6628302 DOI: 10.3390/md17060380] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is known to cause skeletal muscle wasting. This study investigated the effect and the possible mechanism of fish oil on skeletal muscle wasting in an obese rat model. High-fat (HF) diets were applied to induce the defects of lipid metabolism in male Sprague-Dawley rats with or without substitution of omega-3 fatty acids-enriched fish oil (FO, 5%) for eight weeks. Diets supplemented with 5% FO showed a significant decrease in the final body weight compared to HF diet-fed rats. The decreased soleus muscle weights in HF diet-fed rats could be improved by FO substitution. The decreased myosin heavy chain (a muscle thick filament protein) and increased FOXO3A and Atrogin-1 (muscle atrophy-related proteins) protein expressions in soleus muscles of HF diet-fed rats could also be reversed by FO substitution. FO substitution could also significantly activate adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation, peroxisome-proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1α), and PPARγ protein expression and lipoprotein lipase (LPL) mRNA expression in soleus muscles of HF diet-fed rats. These results suggest that substitution of FO exerts a beneficial improvement in the imbalance of lipid and muscle metabolisms in obesity. AMPK/PGC-1α signaling may play an important role in FO-prevented obesity-induced muscle wasting.
Collapse
|
36
|
Wijarnpreecha K, Panjawatanan P, Aby E, Ahmed A, Kim D. Nonalcoholic fatty liver disease in the over-60s: Impact of sarcopenia and obesity. Maturitas 2019; 124:48-54. [PMID: 31097179 DOI: 10.1016/j.maturitas.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children and adults of all ethnicities. NAFLD is commonly seen in individuals with metabolic abnormalities, such as obesity and insulin resistance, which are closely associated with sarcopenia. Sarcopenia, defined as low muscle mass and impaired muscle function, is associated with NAFLD and worse outcomes in patients with NAFLD. As the world's elderly population and the prevalence of obesity continues to grow at an unprecedented rate, NAFLD and sarcopenia are projected to increase. Given that there are no approved pharmacologic treatments for NAFLD, it is imperative to gain a better understanding of the disease pathophysiology, to guide treatment options. Recent studies have given new insight into sarcopenic obesity, but there is no consensus on its definition. In this review, we attempt to address the impact of sarcopenia and obesity on NAFLD, especially in the elderly population.
Collapse
Affiliation(s)
- Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | | | - Elizabeth Aby
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Hunter DJ, James L, Hussey B, Wadley AJ, Lindley MR, Mastana SS. Impact of aerobic exercise and fatty acid supplementation on global and gene-specific DNA methylation. Epigenetics 2019; 14:294-309. [PMID: 30764736 DOI: 10.1080/15592294.2019.1582276] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lifestyle interventions, including exercise and dietary supplementation, can modify DNA methylation and exert health benefits; however, the underlying mechanisms are poorly understood. Here we investigated the impact of acute aerobic exercise and the supplementation of omega-3 polyunsaturated fatty acids (n-3 PUFA) and extra virgin olive oil (EVOO) on global and gene-specific (PPARGC1A, IL6 and TNF) DNA methylation, and DNMT mRNA expression in leukocytes of disease-free individuals. Eight trained male cyclists completed an exercise test before and after a four-week supplementation of n-3 PUFA and EVOO in a double-blind, randomised, repeated measures design. Exercise triggered global hypomethylation (Pre 79.2%; Post 78.7%; p = 0.008), alongside, hypomethylation (Pre 6.9%; Post 6.3%; p < 0.001) and increased mRNA expression of PPARGC1A (p < 0.001). Associations between PPARGC1A methylation and exercise performance were also detected. An interaction between supplement and trial was detected for a single CpG of IL6 indicating increased DNA methylation following n-3 PUFA and decreased methylation following EVOO (p = 0.038). Global and gene-specific DNA methylation associated with markers of inflammation and oxidative stress. The supplementation of EVOO reduced DNMT1 mRNA expression compared to n-3 PUFA supplementation (p = 0.048), whereas, DNMT3a (p = 0.018) and DNMT3b (p = 0.046) mRNA expression were decreased following exercise. In conclusion, we demonstrate that acute exercise and dietary supplementation of n-3 PUFAs and EVOO induce DNA methylation changes in leukocytes, potentially via the modulation of DNMT mRNA expression. Future studies are required to further elucidate the impact of lifestyle interventions on DNA methylation.
Collapse
Affiliation(s)
- David John Hunter
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Lynsey James
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Bethan Hussey
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Alex J Wadley
- b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,c University Hospitals of Leicester NHS Trust, Infirmary Square , Leicester , UK
| | - Martin R Lindley
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Sarabjit S Mastana
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| |
Collapse
|
38
|
Wang CC, Shi HH, Zhang LY, Ding L, Xue CH, Yanagita T, Zhang TT, Wang YM. The rapid effects of eicosapentaenoic acid (EPA) enriched phospholipids on alleviating exercise fatigue in mice. RSC Adv 2019; 9:33863-33871. [PMID: 35528913 PMCID: PMC9073713 DOI: 10.1039/c9ra05181c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/05/2019] [Indexed: 12/29/2022] Open
Abstract
It has been reported that docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) and phospholipids (PLs) play an important role in alleviating exercise fatigue. However, the difference of DHA and EPA in ameliorating exercise fatigue is still unclear. Furthermore, the comparative study about DHA/EPA-PLs and nonpolar DHA/EPA on exercise fatigue has not been reported. In the present study, the effects of DHA and EPA on exercise fatigue was firstly compared by conducting an exhaustion test, and the results showed that triglyceride (TG) with high ratio of EPA had a more significant effect on alleviating exercise fatigue than TG with a low ratio of EPA in mice. Therefore, eicosapentaenoic acid–ethyl ester (EPA–EE) and EPA–PL were then selected to compare the rapid effects of polar and nonpolar DHA/EPA on exercise fatigue in mice by a weight-loaded swimming exhaustion test. A single intake of EPA–PL but not EPA–EE significantly alleviated exercise fatigue in mice by increasing the lactic acid recycling rate as well as inhibiting glycogen consumption and muscle injury, suggesting that EPA–PL exhibited a rapid effect on alleviating exercise fatigue. The study might represent a potential novel candidate or targeted dietary pattern for alleviating exercise fatigue. EPA-PL has rapid effects on alleviating exercise fatigue by inhibiting lactic acid accumulation, glycogen consumption and muscle injury.![]()
Collapse
Affiliation(s)
- Cheng-Cheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Hao-Hao Shi
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Ling-Yu Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Lin Ding
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Chang-Hu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry
- Department of Applied Biochemistry and Food Science
- Saga University
- Saga 840-8502
- Japan
| | - Tian-Tian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
39
|
Obese subcutaneous adipose tissue impairs human myogenesis, particularly in old skeletal muscle, via resistin-mediated activation of NFκB. Sci Rep 2018; 8:15360. [PMID: 30337633 PMCID: PMC6193975 DOI: 10.1038/s41598-018-33840-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/05/2018] [Indexed: 02/02/2023] Open
Abstract
Adiposity and adipokines are implicated in the loss of skeletal muscle mass with age and in several chronic disease states. The aim of this study was to determine the effects of human obese and lean subcutaneous adipose tissue secretome on myogenesis and metabolism in skeletal muscle cells derived from both young (18-30 yr) and elderly (>65 yr) individuals. Obese subcutaneous adipose tissue secretome impaired the myogenesis of old myoblasts but not young myoblasts. Resistin was prolifically secreted by obese subcutaneous adipose tissue and impaired myotube thickness and nuclear fusion by activation of the classical NFκB pathway. Depletion of resistin from obese adipose tissue secretome restored myogenesis. Inhibition of the classical NFκB pathway protected myoblasts from the detrimental effect of resistin on myogenesis. Resistin also promoted intramyocellular lipid accumulation in myotubes and altered myotube metabolism by enhancing fatty acid oxidation and increasing myotube respiration and ATP production. In conclusion, resistin derived from human obese subcutaneous adipose tissue impairs myogenesis of human skeletal muscle, particularly older muscle, and alters muscle metabolism in developing myotubes. These findings may have important implications for the maintenance of muscle mass in older people with chronic inflammatory conditions, or older people who are obese or overweight.
Collapse
|
40
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration. Nutrients 2018; 10:nu10030309. [PMID: 29510597 PMCID: PMC5872727 DOI: 10.3390/nu10030309] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), which are commonly found in fish oil supplements, are known to possess anti-inflammatory properties and more recently alter skeletal muscle function. In this review, we discuss novel findings related to how n-3 PUFAs modulate molecular signaling responsible for growth and hypertrophy as well as the activity of muscle stem cells. Muscle stem cells commonly known as satellite cells, are primarily responsible for driving the skeletal muscle repair process to potentially damaging stimuli, such as mechanical stress elicited by exercise contraction. To date, there is a paucity of human investigations related to the effects of n-3 PUFAs on satellite cell content and activity. Based on current in vitro investigations, this review focuses on novel mechanisms linking n-3 PUFA’s to satellite cell activity and how they may improve muscle repair. Understanding the role of n-3 PUFAs during muscle growth and regeneration in association with exercise could lead to the development of novel supplementation strategies that increase muscle mass and strength, therefore possibly reducing the burden of muscle wasting with age.
Collapse
|
42
|
Saini A, Rullman E, Lilja M, Mandić M, Melin M, Olsson K, Gustafsson T. Asymmetric cellular responses in primary human myoblasts using sera of different origin and specification. PLoS One 2018; 13:e0192384. [PMID: 29401478 PMCID: PMC5798781 DOI: 10.1371/journal.pone.0192384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/20/2018] [Indexed: 11/19/2022] Open
Abstract
For successful growth and maintenance of primary myogenic cells in vitro, culture medium and addition of sera are the most important factors. At present it is not established as to what extent sera of different origin and composition, supplemented in media or serum-free media conditions influence myoblast function and responses to different stimuli. By assessing markers of proliferation, differentiation/fusion, quiescence, apoptosis and protein synthesis the aim of the current study was to elucidate how primary human myoblasts and myotubes are modulated by different commonly used serum using FCS (foetal calf serum), (CS-FCS charcoal-stripped FCS, a manufacturing process to remove hormones and growth factors from sera), HS (horse serum) as well as in serum free conditions (DMEM). To characterise the biological impact of the different serum, myoblasts were stimulated with Insulin (100 nM) and Vitamin D (100 nM; 1α,25(OH)2D3, 1α,25-Dihydroxycholecalciferol, Calcitriol), two factors with characterised effects on promoting fusion and protein synthesis or quiescence, respectively in human myoblasts/myotubes. We demonstrate that sera of different origin/formulation differentially affect myoblast proliferation and myotube protein synthesis. Importantly, we showed that quantifying the extent to which Insulin effects myoblasts in vitro is highly dependent upon serum addition and which type is present in the media. Upregulation of mRNA markers for myogenic fusion, Myogenin, with Insulin stimulation, relative to DMEM, appeared dampened at varying degrees with serum addition and effects on p70S6K phosphorylation as a marker of protein synthesis could not be identified unless serum was removed from media. We propose that these asymmetric molecular and biochemical responses in human myoblasts reflect the variable composition of mitogenic and anabolic factors in each of the sera. The results have implications for both the reproducibility and interpretation of results from experimental models in myoblast cells/myotubes.
Collapse
Affiliation(s)
- Amarjit Saini
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mats Lilja
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mirko Mandić
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael Melin
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karl Olsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
43
|
Why do we age? Insights into biology and evolution of ageing. Biogerontology 2017; 18:855-857. [PMID: 29086101 DOI: 10.1007/s10522-017-9734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022]
|