1
|
Lo CC, Astudillo JC, Bradford TE, Wong C, Leung KMY. Enhancing alpha and beta diversity on vertical seawalls by retrofitting eco-engineered panels. MARINE POLLUTION BULLETIN 2025; 215:117865. [PMID: 40132482 DOI: 10.1016/j.marpolbul.2025.117865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
The effect of surface heterogeneity of manmade substrate on alpha diversity of intertidal epibiota is well-studied, but its influence on beta diversity remains largely unexplored. Herein, two designs of eco-engineered panels were retrofitted onto existing vertical seawalls in three regions of Hong Kong Special Administrative Region, China, and were compared with scraped seawall plots for two years. Panels and controls were surveyed quarterly for epibiotic alpha diversity, followed by a survey for beta diversity after two years of deployment. Over 30 % of taxa were unique to either or both panel designs, compared to only about 5 % of unique taxa on the control plots. Within-site beta diversity was approximately 10-40 % higher than that of two nearby unmodified seawalls across all three regions. Also, filter feeding and habitat forming taxa were more abundant on the panels. Evidently, eco-engineered panels can enhance alpha and beta diversity, and enrich the biological community therein.
Collapse
Affiliation(s)
- Chi C Lo
- School of Science and Technology, Department of Applied Science, Hong Kong Metropolitan University, Hong Kong 999077, China; The Swire Institute of Marine Science and School of Biological Sciences, the University of Hong Kong, Hong Kong 999077, China
| | - Juan C Astudillo
- School of Science and Technology, Department of Applied Science, Hong Kong Metropolitan University, Hong Kong 999077, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Thea E Bradford
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Carmen Wong
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
2
|
Tanasovici RM, Gibran FZ, Dias GM. The proximity to marine infrastructure affects fish diversity, the occurrence of non-indigenous species, and the dynamic of the sessile communities. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107086. [PMID: 40120425 DOI: 10.1016/j.marenvres.2025.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Marine urbanization is changing coastal ecosystems. In this study, we examined how the proximity to recreational marinas influences the structure and recruitment of the sessile community, the diversity of fish, and predation pressure. Sessile communities on marinas supported 68 % more non-indigenous species than those farther from marine infrastructure. Conversely, native species occupied more space in natural habitats, where the diversity of fish was greater. Predation did not influence the diversity or structure of the sessile community, regardless of the habitat type. Nevertheless, predation pressure may be underestimated in artificial habitats due to the lack of connection between platforms and the seafloor. Sessile recruitment tended to be more abundant in artificial habitats. Our findings indicate that even when substrate composition, orientation, and connectivity to the seabed are standardized, proximity to marine infrastructure increases the prevalence of non-indigenous sessile species and diminishes the diversity of potential predatory fish, thereby altering the dynamics of sessile communities.
Collapse
Affiliation(s)
- Rodrigo M Tanasovici
- Grupo de Ecologia Experimental Marinha, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n - Bairro Anchieta, São Bernardo do Campo, CEP: 09606-045, SP, Brazil
| | - Fernando Z Gibran
- Grupo de Ecologia Experimental Marinha, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n - Bairro Anchieta, São Bernardo do Campo, CEP: 09606-045, SP, Brazil
| | - Gustavo M Dias
- Grupo de Ecologia Experimental Marinha, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n - Bairro Anchieta, São Bernardo do Campo, CEP: 09606-045, SP, Brazil.
| |
Collapse
|
3
|
Pinochet J, Thiel M, Urbina M. How plastic litter sunk by biofouling recovers buoyancy - The role of benthic predation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175910. [PMID: 39226971 DOI: 10.1016/j.scitotenv.2024.175910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Estimates suggest that the amount of plastic litter discarded in the ocean is several times greater than what remains floating at the sea surface, raising questions about the fate of this marine debris. Fouling-induced sinking of plastic litter is one of the proposed mechanisms responsible for this mass difference. While some of this 'missing' plastic mass may be explained by the effects of fouling, it has also been hypothesized that sinking litter may return to the surface after benthic organisms consume the biofouling. However, this hypothesis has never been tested. The present study evaluated the structure and biomass of the fouling community in response to benthic predation in both summer and winter seasons. Floating PVC plates were installed during winter and summer in central Chile (36°S) until the growing biofouling community caused them to sink. Plates were then moved to the seabed, where they were exposed to benthic predation, while control plates were maintained in a mesh cage impeding predator access. In summer, all plates recovered their buoyancy, while in the winter only 60 % recovered buoyancy. All caged control samples remained on the bottom in both seasons. The community structure differed both in the treatments and across the seasons, with plates that recovered buoyancy initially being dominated by Ulva sp. and Ciona robusta. Conversely, plates that did not refloat were mainly covered by species resistant to predation such as Pyura chilensis, Austromegabalanus psittacus, and Balanus laevis. Thus, fouling community structure influences how predation facilitates buoyancy recovery, because not all epibionts can be consumed by predators. While previous studies had shown how fouling organisms cause sinking of floating litter, this is the first study to provide experimental evidence that predation can reverse this process and allow litter to resurface and become again available as dispersal vectors for native and invasive species.
Collapse
Affiliation(s)
- Javier Pinochet
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Martin Thiel
- MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, USA; Dpto. de Biologia Marina, Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Center of Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile.
| | - Mauricio Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, PO Box 1313, Concepción, Chile.
| |
Collapse
|
4
|
Jofré-Madariaga D, Aguilera Moya MA, Alves-de-Souza C, Arias RM, Gutow L, Jeldres Polanco RA, Macaya EC, Kappes MM, Ortiz Arancibia LN, Pino O, Rech S, Rothäusler E, Harrod C, Thiel M. Non-indigenous species and their realized niche in tidepools along the South-East Pacific coast. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106541. [PMID: 38852493 DOI: 10.1016/j.marenvres.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
Non-indigenous species (NIS) have the potential to colonize and become established in a wide range of coastal habitats. Species with broad environmental tolerances can quickly adapt to local conditions and expand their niches along environmental gradients, and even colonize habitats with extreme abiotic conditions. Here we report and document the distribution of eight marine NIS (four seaweed and four invertebrate species) found in tidepools along a 3000 km latitudinal gradient along the Pacific coast of Chile (18.4°S to 41.9°S). The seaweed NIS Codium fragile, Capreolia implexa, Schottera nicaeensis and Mastocarpus latissimus were mostly distributed towards high latitudes (i.e., more southerly locations), where temperatures in tidepools were low. The invertebrate NIS Anemonia alicemartinae, Ciona robusta, Bugula neritina and Bugulina flabellata were more common towards low latitudes, where high temperatures were registered in the tidepools. Across the intertidal gradient, seaweed NIS were mostly found in pools in the mid and low intertidal zone, while invertebrate NIS occurred mostly in pools from the mid and upper intertidal zones. The realized niche spaces of NIS (based on the Outlying Mean Index, OMI) in the study area were mainly influenced by environmental conditions of temperature and salinity (along the latitudinal and intertidal gradients), while other tidepool characteristics (depth, surface area, exposition, and complexity) only had minor effects. Five of the eight NIS exhibited a realized niche space coinciding with the average tidepool environmental conditions, while marginal niches were occupied by species with affinities for specific temperatures and salinities along the latitudinal and intertidal gradients. Our results indicate that physiological tolerances to environmental factors play a fundamental role in the distribution of seaweed and invertebrate NIS in tidepools along the Chilean coast. This study confirms that tidepools offer suitable conditions for some seaweed and invertebrate NIS, potentially facilitating their invasion into new natural habitats.
Collapse
Affiliation(s)
- David Jofré-Madariaga
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile; Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Facultad de Ciencias del Mar y Recursos Biológicos, Univ. de Antofagasta, Antofagasta, Chile
| | - Moisés A Aguilera Moya
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile, Diagonal Las Torres, 2640, Peñalolén, Santiago, Chile
| | - Catharina Alves-de-Souza
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile; Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Rene Matías Arias
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Lars Gutow
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ricardo Antonio Jeldres Polanco
- Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Erasmo C Macaya
- Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Martín Munizaga Kappes
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Leslie Nicole Ortiz Arancibia
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Oscar Pino
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Sabine Rech
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile
| | - Eva Rothäusler
- Centro de Investigaciones Costeras (CIC - UDA), Universidad de Atacama, Copiapó, Chile
| | - Chris Harrod
- Universidad de Antofagasta Stable Isotope Facility, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile; Instituto de Ciencias Naturales Alexander Von Humboldt. Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile; Núcleo Milenio INVASAL, Concepción, Chile
| | - Martin Thiel
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile; MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, Maryland, USA.
| |
Collapse
|
5
|
Schaefer N, Bishop MJ, Bugnot AB, Foster-Thorpe C, Herbert B, Hoey AS, Mayer-Pinto M, Nakagawa S, Sherman CDH, Vozzo ML, Dafforn KA. Influence of habitat features on the colonisation of native and non-indigenous species. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106498. [PMID: 38631225 DOI: 10.1016/j.marenvres.2024.106498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Marine artificial structures provide substrates on which organisms can settle and grow. These structures facilitate establishment and spread of non-indigenous species, in part due to their distinct physical features (substrate material, movement, orientation) compared to natural habitat analogues such as rocky shores, and because following construction, they have abundant resources (space) for species to colonise. Despite the perceived importance of these habitat features, few studies have directly compared distributions of native and non-indigenous species or considered how functional identity and associated environmental preferences drive associations. We undertook a meta-analysis to investigate whether colonisation of native and non-indigenous species varies between artificial structures with features most closely resembling natural habitats (natural substrates, fixed structures, surfaces oriented upwards) and those least resembling natural habitats (artificial materials, floating structures, downfacing or vertical surfaces), or whether functional identity is the primary driver of differences. Analyses were done at global and more local (SE Australia) scales to investigate if patterns held regardless of scale. Our results suggest that functional group (i.e., algae, ascidians. barnacles, bryozoans, polychaetes) rather than species classification (i.e., native or non-indigenous) are the main drivers of differences in communities between different types of artificial structures. Specifically, there were differences in the abundance of ascidians, barnacles, and polychaetes between (1) upfacing and downfacing/vertical surfaces, and (2) floating and fixed substrates. When differences were detected, taxa were most abundant on features least resembling natural habitats. Results varied between global and SE Australian analyses, potentially due to reduced variability across studies in the SE Australian dataset. Thus, the functional group and associated preferences of the highest threat NIS in the area should be considered in design strategies (e.g., ecological engineering) to limit their establishment on newly built infrastructure.
Collapse
Affiliation(s)
- Nina Schaefer
- School of Natural Sciences, Macquarie University, North Ryde NSW 2109, Australia.
| | - Melanie J Bishop
- School of Natural Sciences, Macquarie University, North Ryde NSW 2109, Australia
| | - Ana B Bugnot
- CSIRO Environment, St Lucia, QLD 4067, Australia
| | | | - Brett Herbert
- Department of Agriculture, Fisheries and Forestry, Australia
| | - Andrew S Hoey
- College of Science and Engineering, James Cook University, Townsville QLD 4810, Australia
| | - Mariana Mayer-Pinto
- School of Biological, Earth & Environmental Sciences, UNSW Sydney, Kensington NSW 2033, Australia
| | - Shinichi Nakagawa
- School of Biological, Earth & Environmental Sciences, UNSW Sydney, Kensington NSW 2033, Australia
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds VIC 3216, Australia
| | | | - Katherine A Dafforn
- School of Natural Sciences, Macquarie University, North Ryde NSW 2109, Australia
| |
Collapse
|
6
|
Janiak DS, Branson DR. A reciprocal transplant approach to predation in fouling communities found in natural and artificial habitats. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106411. [PMID: 38422818 DOI: 10.1016/j.marenvres.2024.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Human influence along the coastline is a significant threat to biodiversity and includes the alteration or replacement of natural habitat with artificial structures. Infrastructure such as docks and marinas are common throughout the world and typically have negative impacts on coastal flora and fauna. Impacts include the reduction of native biodiversity, the increase of introduced species, and the alteration of biotic interactions (e.g., predation). Many studies examine human disturbance on biotic interactions within a single habitat (i.e., docks or marinas) but what lacks are paired comparisons using standardized methods of biotic interactions between artificial and nearby natural habitats. In the current study, benthic fouling communities were allowed to develop, with and without predator access, in artificial and seagrass habitats. Cages were used to reduce predation and removed to expose communities to fish predators. Prior to exposure, communities were either left at their original site or transplanted to the opposite habitat and changes in the percent cover of species found were compared. Initially, community composition differed between habitats and when predation was reduced (caged vs. open). When developed communities within cages were exposed to predators, predation was strong but only in artificial habitats and regardless of where communities originated. In contrast, little predation occurred at seagrass sites on previously caged communities developed within seagrass beds or that were transplanted from artificial habitat. Taken together, results indicate that the strength of biotic interactions can differ depending on habitat, leading to changes in community composition. With the continuous expansion of artificial structures world-wide, it is becoming increasingly important to understand not only their effects on biotic interactions and biodiversity but also how these effects extend and compare to adjacent natural habitats.
Collapse
Affiliation(s)
- Dean S Janiak
- Smithsonian Marine Station, Ft. Pierce, Florida, 34949, USA.
| | | |
Collapse
|
7
|
Chebaane S, Pais MP, Engelen AH, Ramalhosa P, Silva R, Gizzi F, Canning-Clode J, Bernal-Ibáñez A, Monteiro JG. Exploring foraging preference of local fish species towards non-indigenous fouling communities near marinas: Insights from Remote Video Foraging System (RVFS) trials. MARINE POLLUTION BULLETIN 2024; 198:115871. [PMID: 38086107 DOI: 10.1016/j.marpolbul.2023.115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Non-indigenous species (NIS) spread from marinas to natural environments is influenced by niche availability, habitat suitability, and local biotic resistance. This study explores the effect of indigenous fish feeding behaviour on NIS proliferation using fouling communities, pre-grown on settlement plates, as two distinct, representative models: one from NIS-rich marinas and the other from areas outside marinas with fewer NIS. These plates were mounted on a Remote Video Foraging System (RVFS) near three marinas on Madeira Island. After 24-h, NIS abundance was reduced by 3.5 %. Canthigaster capistrata's preference for marinas plates suggests potential biotic resistance. However, Sparisoma cretense showed equal biting frequencies for both plate types. The cryptogenic ascidian Trididemnum cereum was the preferred target for the fish. Our study introduces a global framework using RVFS for in-situ experiments, replicable across divers contexts (e.g., feeding behaviour, biotic resistance), which can be complemented by metabarcoding and isotopic analysis to confirm consumption patterns.
Collapse
Affiliation(s)
- Sahar Chebaane
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal.
| | - Miguel Pessanha Pais
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | | | - Patrício Ramalhosa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Rodrigo Silva
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Francesca Gizzi
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - João Canning-Clode
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| | - Alejandro Bernal-Ibáñez
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - João Gama Monteiro
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Faculty of Life Sciences, University of Madeira, 9000 Funchal, Portugal
| |
Collapse
|
8
|
Gauff RPM, Joubert E, Curd A, Carlier A, Chavanon F, Ravel C, Bouchoucha M. The elephant in the room: Introduced species also profit from refuge creation by artificial fish habitats. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105859. [PMID: 36680811 DOI: 10.1016/j.marenvres.2022.105859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Increasingly, ecological rehabilitation is envisioned to mitigate and revert impacts of ocean sprawl on coastal marine biodiversity. While in the past studies have demonstrated the positive effects of artificial fish habitats in port areas on fish abundance and diversity, benthic colonization of these structures has not yet been taken into consideration. This could be problematic as they may provide suitable habitat for Non-Indigenous Species (NIS) and hence facilitate their spreading. The present study aimed to examine communities developing on artificial fish habitats and to observe if the number of NIS was higher than in surrounding equivalent habitats. The structures were colonized by communities that were significantly different compared to those surrounding the control habitat, and they were home to a greater number of NIS. As NIS can cause severe ecological and economical damages, our results imply that in conjunction with the ecosystem services provided by artificial fish habitats, an ecosystem disservice in the form of facilitated NIS colonization may be present. These effects have not been shown before and need to be considered to effectively decide in which situations artificial structures may be used for fish rehabilitation.
Collapse
Affiliation(s)
- Robin P M Gauff
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France; Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France.
| | - Etienne Joubert
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France
| | - Amelia Curd
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| | - Antoine Carlier
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| | - Fabienne Chavanon
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France
| | - Christophe Ravel
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France
| | - Marc Bouchoucha
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France
| |
Collapse
|
9
|
Schaefer N, Sedano F, Bishop MJ, Dunn K, Haeusler MH, Yu KD, Zavoleas Y, Dafforn KA. Facilitation of non-indigenous ascidian by marine eco-engineering interventions at an urban site. BIOFOULING 2023; 39:80-93. [PMID: 36912169 DOI: 10.1080/08927014.2023.2186785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Marine artificial structures often support lower native species diversity and more non-indigenous species (NIS), but adding complex habitat and using bioreceptive materials have the potential to mitigate these impacts. Here, the interacting effects of structural complexity (flat, complex with pits) and concrete mixture (standard, or with oyster shell or vermiculite aggregate) on recruitment were assessed at two intertidal levels at an urban site. Complex tiles had less green algal cover, oyster shell mixtures had less brown (Ralfsia sp.) algal cover. At a low tidal elevation, the non-indigenous ascidian Styela plicata dominated complex tiles. Additionally, mixtures with oyster shell supported higher total cover of sessile species, and a higher cover of S. plicata. There were no effects of complexity or mixture on biofilm communities and native and NIS richness. Overall, these results suggest that habitat complexity and some bioreceptive materials may facilitate colonisation by a dominant invertebrate invader on artificial structures.
Collapse
Affiliation(s)
- Nina Schaefer
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Francisco Sedano
- Laboratorio de Biología Marina, Departamento de Zoología, Universidad de Sevilla, Facultad de Biología, Sevilla, España
| | - Melanie J Bishop
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Kate Dunn
- Computational Design, School of Built Environment, UNSW, Sydney, New South Wales, Australia
| | - M Hank Haeusler
- Computational Design, School of Built Environment, UNSW, Sydney, New South Wales, Australia
| | - K Daniel Yu
- Computational Design, School of Built Environment, UNSW, Sydney, New South Wales, Australia
| | - Yannis Zavoleas
- Computational Design, School of Built Environment, UNSW, Sydney, New South Wales, Australia
- Department of Architecture, University of Ioannina, Ioannina, Greece
| | - Katherine A Dafforn
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
10
|
Biotic resistance or invasional meltdown? Diversity reduces invasibility but not exotic dominance in southern California epibenthic communities. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractHigh community diversity may either prevent or promote the establishment of exotic species. The biotic resistance hypothesis holds that species-rich communities are more resistant to invasion than species-poor communities due to mechanisms including greater interspecific competition. Conversely, the invasional meltdown hypothesis proposes that greater exotic diversity increases invasibility via facilitative interactions between exotic species. To evaluate the degree to which biotic resistance or invasional meltdown influences marine community structure during the assembly period, we studied the development of marine epibenthic “fouling” communities at two southern California harbors. With a focus on sessile epibenthic species, we found that fewer exotic species established as total and exotic richness increased during community assembly and that this effect remained after accounting for space availability. We also found that changes in exotic abundance decreased over time. Throughout the assembly period, gains in exotic abundance were greatest when space was abundant and richness was low. Altogether, we found greater support for biotic resistance than invasional meltdown, suggesting that both native and exotic species contribute to biotic resistance during early development of these communities. However, our results indicate that biotic resistance may not always reduce the eventual dominance of exotic species.
Collapse
|
11
|
Wilson ER, Murphy KJ, Wyeth RC. Ecological Review of the Ciona Species Complex. THE BIOLOGICAL BULLETIN 2022; 242:153-171. [PMID: 35580029 DOI: 10.1086/719476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractThe set of four closely related solitary ascidians Ciona spp. were once considered a single cosmopolitan species, Ciona intestinalis, but are now recognized as genetically and morphologically distinct species. The possibility of ecological differences between the species was not widely considered in studies preceding the schism of Ciona spp. Consequently, there may be an over-generalization of the ecology of Ciona spp., with potential implications for the broad range of studies targeting these species, encompassing the evolution, development, genomics, and invasion biology of Ciona spp. We completed a comprehensive review of the ecology of Ciona spp. to establish the similarities and differences between the widely distributed Ciona robusta and C. intestinalis (and what little is known of the two other species, Ciona sp. C and Ciona sp. D). When necessary, we used study locations and the species' geographic ranges to infer the species in each study in the review. As expected, ecological similarities are the norm between the two species, spanning both abiotic and biotic interactions. However, there are also important differences that have potential implications for other aspects of the biology of Ciona spp. For example, differences in temperature and salinity tolerances likely correspond with the disparities in the geographic distribution of the species. Asymmetries in topics studied in each species diminish our ability to fully compare several aspects of the ecology of Ciona spp. and are priority areas for future research. We anticipate that our clarification of common and unique aspects of each species' ecology will help to provide context for future research in many aspects of the biology of Ciona spp.
Collapse
|
12
|
Holman LE, Parker-Nance S, de Bruyn M, Creer S, Carvalho G, Rius M. Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210025. [PMID: 35067092 PMCID: PMC8784926 DOI: 10.1098/rstb.2021.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The use of molecular tools to manage natural resources is increasingly common. However, DNA-based methods are seldom used to understand the spatial and temporal dynamics of species' range shifts. This is important when managing range shifting species such as non-native species (NNS), which can have negative impacts on biotic communities. Here, we investigated the ascidian NNS Ciona robusta, Clavelina lepadiformis, Microcosmus squamiger and Styela plicata using a combined methodological approach. We first conducted non-molecular biodiversity surveys for these NNS along the South African coastline, and compared the results with historical surveys. We detected no consistent change in range size across species, with some displaying range stability and others showing range shifts. We then sequenced a section of cytochrome c oxidase subunit I (COI) from tissue samples and found genetic differences along the coastline but no change over recent times. Finally, we found that environmental DNA metabarcoding data showed broad congruence with both the biodiversity survey and the COI datasets, but failed to capture the complete incidence of all NNS. Overall, we demonstrated how a combined methodological approach can effectively detect spatial and temporal variation in genetic composition and range size, which is key for managing both thriving NNS and threatened species. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’.
Collapse
Affiliation(s)
- Luke E Holman
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Shirley Parker-Nance
- Zoology Department, Institute for Coastal and Marine Research Nelson Mandela University Ocean Sciences Campus, Gqeberha (Port Elizabeth), South Africa.,South African Environmental Observation Network (SAEON) Elwandle Coastal Node, Nelson Mandela University Ocean Sciences Campus, Gqeberha (Port Elizabeth), South Africa
| | - Mark de Bruyn
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia.,Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Simon Creer
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Gary Carvalho
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.,Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain.,Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
13
|
Gauff RPM, Lejeusne C, Arsenieff L, Bohner O, Coudret J, Desbordes F, Jandard A, Loisel S, Schires G, Wafo E, Davoult D. Alien vs. predator: influence of environmental variability and predation on the survival of ascidian recruits of a native and alien species. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02720-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Figueroa NN, Brante A, Viard F, Leclerc JC. Greater functional similarity in mobile compared to sessile assemblages colonizing artificial coastal habitats. MARINE POLLUTION BULLETIN 2021; 172:112844. [PMID: 34399279 DOI: 10.1016/j.marpolbul.2021.112844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Among anthropogenic habitats built in the marine environment, floating and non-floating structures can be colonized by distinct assemblages. However, there is little knowledge whether these differences are also reflected in the functional structure. This study compared the functional diversity of sessile and mobile invertebrate assemblages that settle over three months on floating vs. non-floating artificial habitats, in two Chilean ports. Using morphological, trophic, behavioral, and life history traits, we found differences between mobile and sessile assemblages regarding the effect of the type of habitat on the functional diversity. Compared to sessile assemblages, a greater functional similarity was observed for mobile assemblages, which suggests that their dispersal capacity enables them to balance the reduced connectivity between settlement structures. No traits, prevailing or selected in one or the other habitat type, was however clearly identified; a result warranting for further studies focusing on more advanced stages of community development.
Collapse
Affiliation(s)
- Naily Nashira Figueroa
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Concepción, Chile
| | - Antonio Brante
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jean-Charles Leclerc
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.
| |
Collapse
|
15
|
Christianson KA, Eggleston DB. Testing ecological theories in the Anthropocene: alteration of succession by an invasive marine species. Ecosphere 2021. [DOI: 10.1002/ecs2.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Kayla A. Christianson
- Department of Marine, Earth, and Atmospheric Sciences, Center for Marine Sciences and Technology North Carolina State University Morehead City North Carolina28557USA
| | - David B. Eggleston
- Department of Marine, Earth, and Atmospheric Sciences, Center for Marine Sciences and Technology North Carolina State University Morehead City North Carolina28557USA
| |
Collapse
|
16
|
Janiak DS, Branson D. Impacts of habitat and predation on epifaunal communities from seagrass beds and artificial structures. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105225. [PMID: 33302152 DOI: 10.1016/j.marenvres.2020.105225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Within the coastal marine environment, the increased presence of artificial habitat can have negative impacts on the functioning of marine communities. Artificial structures provide a novel, hard surface for the colonization and growth of a variety of marine species and disproportionally favor introduced species. With the global rise in hardened shorelines, it is imperative to examine the ecological processes that occur within these habitats to those occurring in natural habitats. Here, we compared habitat differences in fouling community composition of different successional ages as well as the impact of predation on those communities. Specifically, we investigated how communities differed with respect to natural (seagrass beds) and artificial (docks) habitats and then exposed previously caged communities to predators to examine prey-specific effects within each habitat and on different aged communities. We found that habitat was a good predictor of community structure including both total species richness and introduced species richness higher in artificial habitats. We expected predators to increase available space allowing increased species co-existence, however, this was not the case. Predators in both habitats reduced richness despite having a strong impact on the percent cover of dominant groups. Predators also reduced introduced species richness, particularly in artificial habitats. Artificial structures are an important pathway of success for introduced species and results here show the importance of biotic resistance within these habitats, potentially limiting the spread of introduced species into natural habitat. Overall, species found within the different habitats could be predicted based on life history traits and predators did not increase the similarity of communities between habitats though still acted in a comparable way, reducing the dominant groups.
Collapse
Affiliation(s)
- Dean S Janiak
- Smithsonian Marine Station, Ft. Pierce, Florida, 34949, USA.
| | - David Branson
- Smithsonian Marine Station, Ft. Pierce, Florida, 34949, USA
| |
Collapse
|
17
|
Leclerc JC, Brante A, Viard F. Rapid recovery of native habitat-builders following physical disturbance on pier pilings offsets colonization of cryptogenic and non-indigenous species in a Chilean port. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105231. [PMID: 33302154 DOI: 10.1016/j.marenvres.2020.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Examining the effects of disturbances within marine urban communities can shed light on their assembly rules and invasion processes. The effects of physical disturbance, through the removal of dominant native habitat-builders, were investigated in the recolonization of disturbed patches and colonization of plates on pier pilings, in a Chilean port. On pilings, disturbance substantially affected community structure after 3 months, although it slowly converged across treatments after 10 months. On plates, cryptogenic and non-indigenous species richness increased with removal severity, which was not observed in natives. Opportunistic taxa took advantage of colonizing at an early successional stage, illustrating a competition-colonization trade-off, although indirect effects might be at play (e.g. trophic competition or selective predation). Recovery of the habitat-builders then occurred at the expense of cryptogenic and non-indigenous taxa. Whether natives could continue winning against increasing propagule and colonization pressures in marine urban habitats deserves further attention. The interactions between disturbance and biological invasions herein experimentally shown in situ contribute to our understanding of multiple changes imposed by marine urbanization in a growing propagule transport network.
Collapse
Affiliation(s)
- Jean-Charles Leclerc
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Casilla 297, Concepción, Chile; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| | - Antonio Brante
- Universidad Católica de la Santísima Concepción, Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Casilla 297, Concepción, Chile
| | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France; ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
18
|
Pasqualotto N, Boscolo D, Versiani NF, Paolino RM, Rodrigues TF, Krepschi VG, Chiarello AG. Niche opportunity created by land cover change is driving the European hare invasion in the Neotropics. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02353-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Hudson J, Johannesson K, McQuaid CD, Rius M. Secondary contacts and genetic admixture shape colonization by an amphiatlantic epibenthic invertebrate. Evol Appl 2020; 13:600-612. [PMID: 32431738 PMCID: PMC7045719 DOI: 10.1111/eva.12893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Research on the genetics of invasive species often focuses on patterns of genetic diversity and population structure within the introduced range. However, a growing body of literature is demonstrating the need to study how native genotypes affect both ecological and evolutionary mechanisms within the introduced range. Here, we used genotyping-by-sequencing to study both native and introduced ranges of the amphiatlantic marine invertebrate Ciona intestinalis. A previous study using microsatellites analysed samples collected along the Swedish west coast and showed the presence of genetically distinct lineages in deep and shallow waters. Using 1,653 single nucleotide polymorphisms (SNPs) from newly collected samples (285 individuals), we first confirmed the presence of this depth-defined genomic divergence along the Swedish coast. We then used approximate Bayesian computation to infer the historical relationship among sites from the North Sea, the English Channel and the northwest Atlantic and found evidence of ancestral divergence between individuals from deep waters off Sweden and individuals from the English Channel. This divergence was followed by a secondary contact that led to a genetic admixture between the ancestral populations (i.e., deep Sweden and English Channel), which originated the genotypes found in shallow Sweden. We then revealed that the colonization of C. intestinalis in the northwest Atlantic was as a result of an admixture between shallow Sweden and the English Channel genotypes across the introduced range. Our results showed the presence of both past and recent genetic admixture events that together may have promoted the successful colonizations of C. intestinalis. Our study suggests that secondary contacts potentially reshape the evolutionary trajectories of invasive species through the promotion of intraspecific hybridization and by altering both colonization patterns and their ecological effects in the introduced range.
Collapse
Affiliation(s)
- Jamie Hudson
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | - Kerstin Johannesson
- Department of Marine SciencesTjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Christopher D. McQuaid
- Department of Zoology and EntomologyCoastal Research GroupRhodes UniversityGrahamstownSouth Africa
| | - Marc Rius
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of ZoologyCentre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
20
|
Wells CD, Harris LG. Out of the Blue: The Failure of the Introduced Sea Anemone Sagartia elegans (Dalyell, 1848) in Salem Harbor, Massachusetts. THE BIOLOGICAL BULLETIN 2019; 237:283-291. [PMID: 31922904 DOI: 10.1086/705515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Failed invasions can be a key component for understanding and controlling introduced populations because understanding mechanisms behind failures can improve effective controls. In 2000, the non-native sea anemone Sagartia elegans was first found in Salem, Massachusetts, and it recolonized each summer. No individuals of S. elegans have been found after 2010, despite intensive search efforts. A mismatch between the species' thermal tolerance and winter water temperature is the most likely mechanism for this failed invasion. In both laboratory- and field-based temperature growth studies, S. elegans began regressing at 11 °C, stopped asexually reproducing at 9 °C, and died by 4 °C. These temperatures are above the average winter sea surface temperature in the Gulf of Maine, therefore suggesting that S. elegans requires a warm-water refuge. Another potential contributor to the disappearance of S. elegans is low genetic diversity as a result of establishment of only females (likely clones) and no males.
Collapse
|
21
|
|
22
|
Leclerc J, Viard F, González Sepúlveda E, Díaz C, Neira Hinojosa J, Pérez Araneda K, Silva F, Brante A. Habitat type drives the distribution of non‐indigenous species in fouling communities regardless of associated maritime traffic. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Jean‐Charles Leclerc
- Departamento de Ecología Facultad de Ciencias Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| | - Frédérique Viard
- CNRS UMR 7144 AD2M Station Biologique de Roscoff Sorbonne Université Roscoff France
| | - Elizabeth González Sepúlveda
- Departmento de Química Ambiental Facultad de Ciencias Universidad Católica de la Santísima Concepción Concepción Chile
| | - Christian Díaz
- Departamento de Medio Ambiente y Energía Facultad de Ingeniería Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| | - José Neira Hinojosa
- Departamento de Análisis Instrumental Facultad de Farmacia Universidad de Concepción Concepción Chile
| | - Karla Pérez Araneda
- Departamento de Ecología Facultad de Ciencias Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| | - Francisco Silva
- Departamento de Ecología Facultad de Ciencias Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| | - Antonio Brante
- Departamento de Ecología Facultad de Ciencias Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) Universidad Católica de la Santísima Concepción Concepción Chile
| |
Collapse
|
23
|
|
24
|
Leclerc JC, Viard F, Brante A. Experimental and survey-based evidences for effective biotic resistance by predators in ports. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02092-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Riquelme-Pérez N, Musrri CA, Stotz WB, Cerda O, Pino-Olivares O, Thiel M. Coastal fish assemblages and predation pressure in northern-central Chilean Lessonia trabeculata kelp forests and barren grounds. PeerJ 2019; 7:e6964. [PMID: 31223523 PMCID: PMC6571002 DOI: 10.7717/peerj.6964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/15/2019] [Indexed: 01/03/2023] Open
Abstract
Kelp forests are declining in many parts of the globe, which can lead to the spreading of barren grounds. Increased abundances of grazers, mainly due to reduction of their predators, are among the causes of this development. Here, we compared the species richness (SR), frequency of occurrence (FO), and maximum abundance (MaxN) of predatory fish and their predation pressure between kelp forest and barren ground habitats of northern-central Chile. Sampling was done using baited underwater cameras with vertical and horizontal orientation. Two prey organisms were used as tethered baits, the black sea urchin Tetrapygus niger and the porcelanid crab Petrolisthes laevigatus. SR did not show major differences between habitats, while FO and MaxN were higher on barren grounds in vertical videos, with no major differences between habitats in horizontal videos. Predation pressure did not differ between habitats, but after 24 h consumption of porcelanid crabs was significantly higher than that of sea urchins. Scartichthys viridis/gigas was the main predator, accounting for 82% of the observed predation events on Petrolisthes laevigatus. Most of these attacks occurred on barren grounds. Scartichthys viridis/gigas was the only fish observed attacking (but not consuming) tethered sea urchins. High abundances of opportunistic predators (Scartichthys viridis/gigas) are probably related to low abundances of large predatory fishes. These results suggest that intense fishing activity on large predators, and their resulting low abundances, could result in low predation pressure on sea urchins, thereby contributing to the increase of T. niger abundances in subtidal rocky habitats.
Collapse
Affiliation(s)
| | - Catalina A Musrri
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Wolfgang B Stotz
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Osvaldo Cerda
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Oscar Pino-Olivares
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Martin Thiel
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| |
Collapse
|
26
|
Holman LE, Rius M, Blackburn TM. Observations of a novel predatory gull behavior on an invasive ascidian: A new consequence of coastal urban sprawl? Ecosphere 2019; 10:e02636. [PMID: 35860719 PMCID: PMC9285467 DOI: 10.1002/ecs2.2636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/18/2022] Open
Abstract
Coastal urbanization has a dramatic effect on both terrestrial and marine ecosystems, altering resources such as food or space. Many species have shifted their ranges in response to anthropogenic pressures, resulting in novel species interactions. Here, we report an observation of a novel foraging behavior of the European Herring Gull (Larus argentatus): the capture and consumption of the widespread sea squirt Ciona intestinalis from under floating pontoons in a recreational marina in Ireland. Multiple gulls were observed performing a complex, multi‐step manipulation of several C. intestinalis individuals to remove their cellulose‐based tunic, which remained unconsumed. Further avenues of investigation are discussed, and hypotheses concerning possible ecosystem effects of novel ecological interactions occurring in proliferating artificial environments are presented.
Collapse
Affiliation(s)
- Luke E. Holman
- School of Ocean and Earth Science National Oceanography Centre Southampton University of Southampton Southampton UK
| | - Marc Rius
- School of Ocean and Earth Science National Oceanography Centre Southampton University of Southampton Southampton UK
- Centre for Ecological Genomics and Wildlife Conservation University of Johannesburg Johannesburg South Africa
| | - Tim M. Blackburn
- Centre for Biodiversity and Environment Research Department of Genetics, Evolution and Environment University College London London UK
- Institute of Zoology Zoological Society of London London UK
| |
Collapse
|
27
|
Juliano SA, Westby KM, Ower GD. Know Your Enemy: Effects of a Predator on Native and Invasive Container Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:320-328. [PMID: 30668785 PMCID: PMC6389325 DOI: 10.1093/jme/tjy196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 06/09/2023]
Abstract
We tested the effect of the native container-dwelling predator Toxorhynchites rutilus on the codominant container-dwelling mosquitoes: native Aedes triseriatus and invasive Aedes japonicus. We established two predator treatments (predator, no predator) by removing T. rutilus from all containers, and stocking T. rutilus larvae (1/3.5 liters) in the predator treatment. Removal and stocking was repeated every 3 d and established significantly different predator abundances in both large and small containers. Repeated-measures analysis of variance (ANOVA) on standard samples showed larvae+pupae/liter of A. japonicus was greater without versus with predation, and this difference increased across samples. In contrast, repeated-measures ANOVA showed larvae+pupae/liter of A. triseriatus was statistically indistinguishable for predation treatments and was greater in small versus large containers. Thus, predation reduced invasive A. japonicus while having no detectable effect on A. triseriatus larvae and pupae. A final destructive census of pupae showed that predation reduced pupae/liter of both species, but this effect was greater and more consistent across container sizes for A. japonicus. Predator effects on abundances were not products of the nonlethal effect of predator avoidance by ovipositing females, as T. rutilus presence did not lead to reduced egg inputs by either Aedes, nor by Aedes spp. as a group. Effects of predation thus are best explained by differential success of developing larvae due to the greater lethal effect of T. rutilus on A. japonicus than on A. triseriatus. Thus, this system is consistent with the hypothesis that native predators can limit success and potential impacts of invasive mosquitoes.
Collapse
Affiliation(s)
- Steven A Juliano
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Katie M Westby
- School of Biological Sciences, Illinois State University, Normal, IL
| | - Geoffrey D Ower
- School of Biological Sciences, Illinois State University, Normal, IL
| |
Collapse
|
28
|
Kinney KA, Pintor LM, Byers JE. Does predator-driven, biotic resistance limit the northward spread of the non-native green porcelain crab, Petrolisthes armatus? Biol Invasions 2018. [DOI: 10.1007/s10530-018-1821-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Leclerc JC, Viard F, González Sepúlveda E, Díaz C, Neira Hinojosa J, Pérez Araneda K, Silva F, Brante A. Non-indigenous species contribute equally to biofouling communities in international vs local ports in the Biobío region, Chile. BIOFOULING 2018; 34:784-799. [PMID: 30354802 DOI: 10.1080/08927014.2018.1502276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Growing coastal urbanization together with the intensification of maritime traffic are major processes explaining the increasing rate of biological introductions in marine environments. To investigate the link between international maritime traffic and the establishment of non-indigenous species (NIS) in coastal areas, biofouling communities in three international and three nearby local ports along 100 km of coastline in south-central Chile were compared using settlement panels and rapid assessment surveys. A larger number of NIS was observed in international ports, as expected in these 'invasion hubs'. However, despite a few environmental differences between international and local ports, the two port categories did not display significant differences regarding NIS establishment and contribution to community structure over the studied period (1.5 years). In international ports, the free space could be a limiting factor for NIS establishment. The results also suggest that local ports should be considered in NIS surveillance programs in Chile.
Collapse
Affiliation(s)
- Jean-Charles Leclerc
- a Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) , Universidad Católica de la Santísima Concepción , Concepción , Chile
| | - Frédérique Viard
- b CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier , Sorbonne Université , Roscoff , France
| | - Elizabeth González Sepúlveda
- c Departmento de Química Ambiental, Facultad de Ciencias , Universidad Católica de la Santísima Concepción , Concepción , Chile
| | - Christian Díaz
- d Departamento de Medio Ambiente y Energía, Facultad de Ingeniería, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) , Universidad Católica de la Santísima Concepción , Concepción , Chile
| | - José Neira Hinojosa
- e Departamento de Análisis Instrumental, Facultad de Farmacia , Universidad de Concepción , Concepción , Chile
| | - Karla Pérez Araneda
- a Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) , Universidad Católica de la Santísima Concepción , Concepción , Chile
| | - Francisco Silva
- a Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) , Universidad Católica de la Santísima Concepción , Concepción , Chile
| | - Antonio Brante
- a Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS) , Universidad Católica de la Santísima Concepción , Concepción , Chile
| |
Collapse
|
30
|
Aguilera MA, Dobringer J, Petit IJ. Heterogeneity of ecological patterns, processes, and funding of marine manipulative field experiments conducted in Southeastern Pacific coastal ecosystems. Ecol Evol 2018; 8:8627-8638. [PMID: 30250729 PMCID: PMC6145005 DOI: 10.1002/ece3.4371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/03/2018] [Accepted: 06/20/2018] [Indexed: 11/07/2022] Open
Abstract
Ecological manipulative experiments conducted in marine coastal ecosystems have substantially improved ecological theory during the last decades and have provided useful knowledge for the management and conservation of coastal ecosystems. Although different studies report global trends in ecological patterns worldwide, Southeastern Pacific coastal ecosystems have been poorly considered. Given that the SE Pacific coast encompasses diverse coastal ecosystems, consideration of studies conducted along this range can shed light on the heterogeneity of processes regulating coastal communities. We reviewed the biotic interactions and habitat type considered, as well as the complexity in terms of spatial and temporal extent of manipulative field experimental studies conducted along the SE Pacific coast from 0°S to 56°S (Ecuador to Chile). We test the effect of funding reported by different studies as a main factor limiting experimental complexity. From field ecological studies published from 1970 to 2016, we found that 81 studies were truly manipulative, in which one or multiple factors were "manipulated." Around 77% of these studies were located between 21°S and 40°S, and conducted in intertidal rocky habitats. An increase in experimental studies was observed between 2010 and 2015, especially focused on herbivore-alga interactions, although we found that both the temporal extent and spatial extent of these studies have shown a decrease in recent decades. Funding grant amount reported had a positive effect on elapsed time of field experiments, but no effect was observed on spatial extent or in the biotic interactions considered. Elapsed time of experiments was different among the main biotic interactions considered, that is, herbivory, predation, and competition. We suggest that to further progress in applied ecological knowledge, it will be necessary to consider pollution and urbanization processes explicitly using a field experimental framework. This information could improve our understanding of how ecosystems present along the SE Pacific coast respond to climate change and increased levels of human interventions.
Collapse
Affiliation(s)
- Moisés A. Aguilera
- Departamento de Biología MarinaFacultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Johanne Dobringer
- Departamento de Biología MarinaFacultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
- Programa Doctorado en Biología y Ecología Aplicada (BEA)Centro de Estudios Avanzados en Zonas Áridas (CEAZA)Universidad Católica del NorteUniversidad de La SerenaCoquimboChile
| | - Ignacio J. Petit
- Departamento de Biología MarinaFacultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
- Programa Doctorado en Biología y Ecología Aplicada (BEA)Centro de Estudios Avanzados en Zonas Áridas (CEAZA)Universidad Católica del NorteUniversidad de La SerenaCoquimboChile
- Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI)CoquimboChile
| |
Collapse
|
31
|
Garcia-Vazquez E, Cani A, Diem A, Ferreira C, Geldhof R, Marquez L, Molloy E, Perché S. Leave no traces - Beached marine litter shelters both invasive and native species. MARINE POLLUTION BULLETIN 2018; 131:314-322. [PMID: 29886952 DOI: 10.1016/j.marpolbul.2018.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Marine litter has been considered a potential transport vector of non-indigenous species. In this study developed in Tjärnö (Sweden), at the entry of the Baltic Sea, the communities inhabiting coastal litter and natural substrates (N = 5448 macroorganisms) were monitored from eight sites of different ecological conditions. The results showed that litter can support high densities of marine organisms and represent a new habitat in the studied coast. The taxonomic profile of the communities supported by marine litter and hard natural substrate were significantly different. Moreover, opposite to the expectations of reduced diversity in artificial structures, more diverse communities were found on litter. Non-indigenous species were attached mainly to non-plastic artificial materials. From these results it can be concluded that marine litter can significantly alter the biotic composition of coastal ecosystem, representing a shelter for invasive species and diverse natives.
Collapse
Affiliation(s)
- Eva Garcia-Vazquez
- University of Oviedo, Department of Functional Biology, Natural Resources Research Group, C/ Julian Claveria s/n, 33006 Oviedo, Spain.
| | - Alessandra Cani
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Ireland
| | - Anna Diem
- Ghent University, Faculty of Sciences, Marine Biology Research Group, Campus Sterre S8, Krijgslaan 281, 9000 Ghent, Belgium
| | - Catarina Ferreira
- Ghent University, Faculty of Sciences, Marine Biology Research Group, Campus Sterre S8, Krijgslaan 281, 9000 Ghent, Belgium
| | - Ruben Geldhof
- Ghent University, Faculty of Sciences, Marine Biology Research Group, Campus Sterre S8, Krijgslaan 281, 9000 Ghent, Belgium
| | - Lidia Marquez
- University of Oviedo, Department of Functional Biology, Natural Resources Research Group, C/ Julian Claveria s/n, 33006 Oviedo, Spain
| | - Eoin Molloy
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Sarah Perché
- ILVO, Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| |
Collapse
|
32
|
Astudillo JC, Bonebrake TC, Leung KMY. Deterred but not preferred: Predation by native whelk Reishia clavigera on invasive bivalves. PLoS One 2018; 13:e0196578. [PMID: 29768424 PMCID: PMC5955525 DOI: 10.1371/journal.pone.0196578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
This study tested the potential bio-control role of the common native predatory whelk Reishia clavigera on the invasive bivalves Xenostrobus securis and Mytilopsis sallei and the native Brachidontes variabilis in Hong Kong. Predation experiments were conducted in the laboratory under salinity levels of 22‰ and 32‰, as well as under field conditions. The results indicate that the invasive bivalves are more vulnerable to predation than the native bivalve in environments with high salinity, whereas environments with moderately low salinity (22‰) may reduce predation. Because R. clavigera did not show clear prey preference, the low survival of the invasive species might be due to a lack of effective anti-predatory defenses under experimental conditions. These findings could explain the high abundance of the invasive bivalves in disturbed environments in Hong Kong where predation appears to be lower.
Collapse
Affiliation(s)
- Juan C. Astudillo
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Shek O, Hong Kong, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- * E-mail: (JCA); (KMYL)
| | | | - Kenneth M. Y. Leung
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Shek O, Hong Kong, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- * E-mail: (JCA); (KMYL)
| |
Collapse
|
33
|
Pinochet J, Leclerc JC, Brante A, Daguin-Thiébaut C, Díaz C, Tellier F, Viard F. Presence of the tunicate Asterocarpa humilis on ship hulls and aquaculture facilities in the coast of the Biobío Region, south central Chile. PeerJ 2017; 5:e3672. [PMID: 28828267 PMCID: PMC5560234 DOI: 10.7717/peerj.3672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/21/2017] [Indexed: 01/20/2023] Open
Abstract
Non-native ascidians are important members of the fouling community associated with artificial substrata and man-made structures. Being efficient fouling species, they are easily spread by human-mediated transports (e.g., with aquaculture trade and maritime transports). This is exemplified by the ascidian Asterocarpa humilis which displays a wide distribution in the Southern Hemisphere and has been recently reported in the Northern Hemisphere (NW Europe). In continental Chile, its first report dates back from 2000 for the locality of Antofagasta (23°S). Although there was no evidence about the vectors of introduction and spread, nor the source, some authors suggested maritime transport by ship hulls and aquaculture devices as putative introduction pathways and vectors. In the present study, we report for the first time the presence of A. humilis on the hull of an international ship in a commercial port in Concepción bay (36°S), south central Chile. We also found one individual associated to a seashell farm, 70 km far from Concepción bay. Further individuals were subsequently identified within Concepción bay: one juvenile settled upon international harbor pilings and a dozen individuals along aquaculture seashell longlines. For the first specimens sampled, species identification was ascertained using both morphological criteria and molecular barcoding, using the mitochondrial gene cytochrome c oxidase subunit I (COI) and a nuclear gene (ribosomal RNA 18S). The nuclear 18S gene and the mitochondrial gene COI clearly assigned the specimens to A. humilis, confirming our morphological identification. Two haplotypes were obtained with COI corresponding to haplotypes previously obtained with European and Northern Chilean specimens. The present study thus reports for the first time the presence of A. humilis in the Araucanian ecoregion, documenting the apparent expansion of this non-native tunicate in Chile over 2,000 km, spanning over three ecoregions. In addition we reveal the potential implication of the international maritime transport as a vector of spread of this species along the Eastern Pacific coast, and the putative role of aquaculture facilities in promoting local establishments of non-native tunicates.
Collapse
Affiliation(s)
- Javier Pinochet
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile.,Magíster en Ecología Marina, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Jean-Charles Leclerc
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Antonio Brante
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Claire Daguin-Thiébaut
- UMR 7144, Laboratoire "Adaptation et Diversité en Milieu Marin", Team Div&Co, Station Biologique de Roscoff, Sorbonne Universités, Université Pierre et Marie Curie (Paris VI), CNRS, Roscoff, France
| | - Christian Díaz
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile.,Departamento de Medio Ambiente y Energía, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Florence Tellier
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Frédérique Viard
- UMR 7144, Laboratoire "Adaptation et Diversité en Milieu Marin", Team Div&Co, Station Biologique de Roscoff, Sorbonne Universités, Université Pierre et Marie Curie (Paris VI), CNRS, Roscoff, France
| |
Collapse
|
34
|
|
35
|
Astudillo JC, Leung KMY, Bonebrake TC. Seasonal heterogeneity provides a niche opportunity for ascidian invasion in subtropical marine communities. MARINE ENVIRONMENTAL RESEARCH 2016; 122:1-10. [PMID: 27642109 DOI: 10.1016/j.marenvres.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Implications of changes in environmental conditions caused by seasonality and human alterations on the recruitment of non-native species and their biotic resistance to predation are poorly understood. Here, through the use of experimental recruitment panels and predation exclusion cages, we examined 1) whether a subtropical seasonality (i.e., tropical and temperate conditions) affects the recruitment and abundance of the non-native ascidian Ciona intestinalis, the cryptogenic Styela plicata and Ascidia sydneiensis, and native Hermandia momus in fouling communities in Hong Kong, 2) whether human environmental alterations (i.e., typhoon shelters and sheltered bays with different habitat alteration and seawater quality) affect the abundance of the ascidians, and 3) whether predation reduces the abundance of ascidians under different environmental conditions caused by seasonality and human alteration. Our experimental results indicate that seasonality provides a temporal niche for the recruitment of the ascidians; C. intestinalis and S. plicata recruited mostly in winter, whereas A. sydneiensis and H. momus recruited in summer. Ciona intestinalis was the only ascidian that prospered in anthropogenically altered environments where it monopolized communities. The marked seasonal recruitment of the ascidians obscured the effect of predation between seasons, whereas human alteration did not affect predation. The recruitment of the ascidians in subtropical communities appeared to correspond to their original temperate or tropical distributions, hence Ciona intestinalis, with a temperate native distribution, benefits from a temporal niche opportunity during winter conditions. We argue that seasonality, as an important ecological factor for recruitment and community ecology dynamics, must also be considered in the context of biological invasion.
Collapse
Affiliation(s)
- Juan C Astudillo
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
36
|
Kremer LP, da Rocha RM. The biotic resistance role of fish predation in fouling communities. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1210-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Rashidul Alam AKM, Noda T. An experimental evaluation of the direct and indirect effects of endemic seaweeds, barnacles, and invertebrate predators on the abundance of the introduced rocky intertidal barnacle Balanus glandula. POPUL ECOL 2016. [DOI: 10.1007/s10144-016-0554-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Haramura T, Takeuchi H, Crossland MR, Shine R. Biotic Resistance to an Alien Amphibian: Larval Competition between Japanese Frogs and Invasive Cane Toads. PLoS One 2016; 11:e0156396. [PMID: 27253973 PMCID: PMC4890810 DOI: 10.1371/journal.pone.0156396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/15/2016] [Indexed: 11/18/2022] Open
Abstract
Understanding negative effects of native species on introduced taxa may suggest novel ways to control the invasive species by enhancing such effects. Previous studies have reported that the larvae of invasive cane toads (Rhinella marina) are suppressed by competition with the larvae of native anurans in Australia, but not in North America. We conducted laboratory trials to measure the effect of exposure to the larvae of Japanese frogs (Microhyla ornata, Fejervarya sakishimensis, Rhacophorus owstoni) on rates of survival, growth and development of cane toad tadpoles in Ishigaki Island, in southern Japan. Survival rates were not affected by native species, but competition with Dicroglossids and Rhacophorids (but not Microhylids) strongly reduced rates of growth and development in the tadpoles of cane toads. Dicroglossid tadpoles also reduced the body condition to toad tadpoles in addition to effects on SVL and mass. Encouraging populations of native frogs in toad-invaded areas of Japan thus may help to reduce the numbers of invasive cane toads.
Collapse
Affiliation(s)
- Takashi Haramura
- The Hakubi Center for Advanced Research, Kyoto University, Sakyo, Kyoto, 606–8501, Japan
- Field Science Education and Research Center, Kyoto University, Shirahama, Wakayama, 649–2211, Japan
- * E-mail:
| | - Hirohiko Takeuchi
- Field Science Education and Research Center, Kyoto University, Shirahama, Wakayama, 649–2211, Japan
| | - Michael R. Crossland
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Richard Shine
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
39
|
Chase AL, Dijkstra JA, Harris LG. The influence of substrate material on ascidian larval settlement. MARINE POLLUTION BULLETIN 2016; 106:35-42. [PMID: 27039957 DOI: 10.1016/j.marpolbul.2016.03.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Submerged man-made structures present novel habitat for marine organisms and often host communities that differ from those on natural substrates. Although many factors are known to contribute to these differences, few studies have directly examined the influence of substrate material on organism settlement. We quantified larval substrate preferences of two species of ascidians, Ciona intestinalis (cryptogenic, formerly C. intestinalis type B) and Botrylloides violaceus (non-native), on commonly occurring natural (granite) and man-made (concrete, high-density polyethylene, PVC) marine materials in laboratory trials. Larvae exhibited species-specific settlement preferences, but generally settled more often than expected by chance on concrete and HDPE. Variation in settlement between materials may reflect preferences for rougher substrates, or may result from the influence of leached chemicals on ascidian settlement. These findings indicate that an experimental plate material can influence larval behavior and may help us understand how substrate features may contribute to differences in settlement in the field.
Collapse
Affiliation(s)
- Anna L Chase
- Department of Biological Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, United States.
| | - Jennifer A Dijkstra
- Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Road, Durham, NH 03824, United States
| | - Larry G Harris
- Department of Biological Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, United States
| |
Collapse
|
40
|
Atalah J, Newcombe EM, Zaiko A. Biocontrol of fouling pests: Effect of diversity, identity and density of control agents. MARINE ENVIRONMENTAL RESEARCH 2016; 115:20-27. [PMID: 26845376 DOI: 10.1016/j.marenvres.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/11/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
Augmentative biocontrol, using native natural enemies, has been suggested as a promising tool to control marine biofouling pests on artificial structures. However, there are still important knowledge gaps to be addressed before biocontrol can be considered as a management tool. In a field experiment on floating marine structures we examined intra- and interspecific consumer interactions among biocontrol agents on different surface orientations. We tested the effect of identity, density and diversity of three invertebrates (the 11-arm seastar Coscinasterias muricata, the sea urchin Evechinus chloroticus and the gastropod Cook's turban Cookia sulcata) to reduce established biofouling and to prevent fouling growth on defouled surfaces. High densities of biocontrol agents were not more effective at fouling control (cover and biomass) than low densities. Nor did multi-species treatments function more effectively than mono-specific ones. However, biocontrol agent identity was important, with the 11-arm seastar and Cook's turban being the most effective at fouling reduction and prevention, respectively. Surface orientation had a strong effect on the effectiveness of control agents, with the best results obtained on vertical compared to diagonal and underside surfaces. This study confirmed the potential of biocontrol as a management tool for marine pest, indicating that identity is more important than richness and density of control agents. It also highlighted the limitations of this approach on diagonal and underside surfaces, where control agents have limited retention ability.
Collapse
Affiliation(s)
- Javier Atalah
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand.
| | | | - Anastasija Zaiko
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand; Marine Science and Technology Centre, Klaipeda University, H. Manto 84, LT92294 Klaipeda, Lithuania
| |
Collapse
|
41
|
Freeman AS, Frischeisen A, Blakeslee AMH. Estuarine fouling communities are dominated by nonindigenous species in the presence of an invasive crab. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1108-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Hopper JV, Mills NJ. Pathogenicity, prevalence and intensity of a microsporidian infection by Nosema fumiferanae postvittana in the light brown apple moth, Epiphyas postvittana , in California. J Invertebr Pathol 2016; 134:27-34. [DOI: 10.1016/j.jip.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/24/2015] [Accepted: 01/10/2016] [Indexed: 12/01/2022]
|
43
|
Airoldi L, Turon X, Perkol-Finkel S, Rius M. Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. DIVERS DISTRIB 2015. [DOI: 10.1111/ddi.12301] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Laura Airoldi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali; University of Bologna; Via S. Alberto 163 I-48123 Ravenna Italy
- Hopkins Marine Station; Stanford University; Pacific Grove CA 93950 USA
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB-CSIC); Accés a la Cala S. Francesc 14 17300 Blanes (Girona) Spain
| | - Shimrit Perkol-Finkel
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali; University of Bologna; Via S. Alberto 163 I-48123 Ravenna Italy
- SeArc - Ecological Marine Consulting; 13 Namirover St. Tel Aviv 69713 Israel
| | - Marc Rius
- Ocean and Earth Science, National Oceanography Centre Southampton; University of Southampton; European Way SO14 3ZH UK
| |
Collapse
|
44
|
Bauer RT, Okuno J, Thiel M. Inferences on mating and sexual systems of two Pacific Cinetorhynchus shrimps (Decapoda, Rhynchocinetidae) based on sexual dimorphism in body size and cheliped weaponry. Zookeys 2014; 457:187-209. [PMID: 25561837 PMCID: PMC4283371 DOI: 10.3897/zookeys.457.6512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/21/2014] [Indexed: 11/22/2022] Open
Abstract
Sexual dimorphism in body size and weaponry was examined in two Cinetorhynchus shrimp species in order to formulate hypotheses on their sexual and mating systems. Collections of Cinetorhynchus sp. A and Cinetorhynchus sp. B were made in March, 2011 on Coconut Island, Hawaii, by hand dipnetting and minnow traps in coral rubble bottom in shallow water. Although there is overlap in male and female size, some males are much larger than females. The major (pereopod 1) chelipeds of males are significantly larger and longer than those of females. In these two Cinetorhynchus species, males and females have third maxillipeds of similar relative size, i.e., those of males are not hypertrophied and probably not used as spear-like weapons as in some other rhynchocinetid (Rhynchocinetes) species. Major chelae of males vary with size, changing from typical female-like chelae tipped with black corneous stout setae to subchelate or prehensile appendages in larger males. Puncture wounds or regenerating major chelipeds were observed in 26.1 % of males examined (N = 38 including both species). We interpret this evidence on sexual dimorphism as an indication of a temporary male mate guarding or "neighborhoods of dominance" mating system, in which larger dominant robustus males defend females and have greater mating success than smaller males. Fecundity of females increased with female size, as in most caridean species (500-800 in Cinetorhynchus sp. A; 300-3800 in Cinetorhynchus sp. B). Based on the sample examined, we conclude that these two species have a gonochoric sexual system (separate sexes) like most but not all other rhynchocinetid species in which the sexual system has been investigated.
Collapse
Affiliation(s)
- Raymond T. Bauer
- Department of Biology, University of Louisiana, Lafayette, Louisiana 70504-2451, USA
| | - Junji Okuno
- Coastal Branch of Natural History Museum and Institute, Chiba, 123 Yoshio, Katsuura, Chiba 299-5242, Japan
| | - Martin Thiel
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| |
Collapse
|
45
|
Bürgi LP, Roltsch WJ, Mills NJ. Allee effects and population regulation: a test for biotic resistance against an invasive leafroller by resident parasitoids. POPUL ECOL 2014. [DOI: 10.1007/s10144-014-0451-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Atalah J, Newcombe EM, Hopkins GA, Forrest BM. Potential biocontrol agents for biofouling on artificial structures. BIOFOULING 2014; 30:999-1010. [PMID: 25287610 DOI: 10.1080/08927014.2014.956734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The accumulation of biofouling on coastal structures can lead to operational impacts and may harbour problematic organisms, including non-indigenous species. Benthic predators and grazers that can supress biofouling, and which are able to be artificially enhanced, have potential value as augmentative biocontrol agents. The ability of New Zealand native invertebrates to control biofouling on marina pontoons and wharf piles was tested. Caging experiments evaluated the ability of biocontrol to mitigate established biofouling, and to prevent fouling accumulation on defouled surfaces. On pontoons, the gastropods Haliotis iris and Cookia sulcata reduced established biofouling cover by >55% and largely prevented the accumulation of new biofouling over three months. On wharf piles C. sulcata removed 65% of biofouling biomass and reduced its cover by 73%. C. sulcata also had better retention and survival rates than other agents. Augmentative biocontrol has the potential to be an effective method to mitigate biofouling on marine structures.
Collapse
Affiliation(s)
- Javier Atalah
- a Coastal & Freshwater Group , Cawthron Institute , Private Bag 2, Nelson 7010 , New Zealand
| | | | | | | |
Collapse
|
47
|
Environmental tolerance of the two invasive species Ciona intestinalis and Codium fragile: their invasion potential along a temperate coast. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0680-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Forrest BM, Fletcher LM, Atalah J, Piola RF, Hopkins GA. Predation limits spread of Didemnum vexillum into natural habitats from refuges on anthropogenic structures. PLoS One 2013; 8:e82229. [PMID: 24349228 PMCID: PMC3861443 DOI: 10.1371/journal.pone.0082229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/22/2013] [Indexed: 11/29/2022] Open
Abstract
Non-indigenous species can dominate fouling assemblages on artificial structures in marine environments; however, the extent to which infected structures act as reservoirs for subsequent spread to natural habitats is poorly understood. Didemnum vexillum is one of few colonial ascidian species that is widely reported to be highly invasive in natural ecosystems, but which in New Zealand proliferates only on suspended structures. Experimental work revealed that D. vexillum established equally well on suspended artificial and natural substrata, and was able to overgrow suspended settlement plates that were completely covered in other cosmopolitan fouling species. Fragmentation led to a level of D. vexillum cover that was significantly greater than was achieved as a result of ambient larval recruitment. The species failed to establish following fragment transplants onto seabed cobbles and into beds of macroalgae. The establishment success of D. vexillum was greatest in summer compared with autumn, and on the underside of experimental settlement plates that were suspended off the seabed to avoid benthic predators. Where benthic predation pressure was reduced by caging, D. vexillum establishment success was broadly comparable to suspended treatments; by contrast, the species did not establish on the face-up aspect of uncaged plates. This study provides compelling evidence that benthic predation was a key mechanism that prevented D. vexillum’s establishment in the cobble habitats of the study region. The widespread occurrence of D. vexillum on suspended anthropogenic structures is consistent with evidence for other sessile invertebrates that such habitats provide a refuge from benthic predation. For invasive species generally, anthropogenic structures are likely to be most important as propagule reservoirs for spread to natural habitats in situations where predation and other mechanisms do not limit their subsequent proliferation.
Collapse
Affiliation(s)
- Barrie M. Forrest
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- * E-mail:
| | | | - Javier Atalah
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Richard F. Piola
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Maritime Division, Defence Science and Technology Organisation, Melbourne, Victoria, Australia
| | - Grant A. Hopkins
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
49
|
Predicting free-space occupancy on novel artificial structures by an invasive intertidal barnacle using a removal experiment. PLoS One 2013; 8:e74457. [PMID: 24023944 PMCID: PMC3762797 DOI: 10.1371/journal.pone.0074457] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022] Open
Abstract
Artificial structures can create novel habitat in the marine environment that has been associated with the spread of invasive species. They are often located in areas of high disturbance and can vary significantly in the area of free space provided for settlement of marine organisms. Whilst correlation between the amount of free space available and recruitment success has been shown in populations of several marine benthic organisms, there has been relatively little focus on invasive species, a group with the potential to reproduce in vast numbers and colonise habitats rapidly. Invasion success following different scales of disturbance was examined in the invasive acorn barnacle, Austrominiusmodestus, on a unique art installation located in Liverpool Bay. Population growth and recruitment success were examined by comparing recruitment rates within disturbance clearings of 4 different sizes and by contrasting population development with early recruitment rates over a 10 week period. Disturbed areas were rapidly recolonised and monocultures of A. modestus formed within 6 weeks. The size of patch created during disturbance had no effect on the rate of recruitment, while a linear relationship between recruit density and patch size was observed. Density-dependent processes mediated initial high recruitment resulting in population stability after 8-10 weeks, but densities continued to greatly exceed those reported in natural habitats. Given that artificial structures are likely to continue to proliferate in light of climate change projections, free-space is likely to become more available more frequently in the future supporting the expansion of fast-colonising species.
Collapse
|
50
|
Freestone AL, Ruiz GM, Torchin ME. Stronger biotic resistance in tropics relative to temperate zone: effects of predation on marine invasion dynamics. Ecology 2013; 94:1370-7. [DOI: 10.1890/12-1382.1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|