1
|
Smith T, Chau M, Sims J, Arruzza E. 23Na-MRI for Breast Cancer Diagnosis and Treatment Monitoring: A Scoping Review. Bioengineering (Basel) 2025; 12:158. [PMID: 40001678 PMCID: PMC11851933 DOI: 10.3390/bioengineering12020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
(1) Background: Variations in intracellular and extracellular sodium levels have been hypothesized to serve as biomarkers for tumour characterization and therapeutic response. While previous research has explored the feasibility of 23Na-MRI, a comprehensive review of its clinical utility in breast cancer is lacking. This scoping review aims to synthesize existing literature on the potential role of 23Na-MRI in breast cancer diagnosis and treatment monitoring. (2) Methods: This review included English-language studies reporting on quantitative applications of 23Na-MRI in breast cancer. Systematic searches were conducted across PubMed, Emcare, Embase, Scopus, Google Scholar, Cochrane Library, and Medline. (3) Results: Seven primary studies met the inclusion criteria, highlighting the ability of 23Na-MRI to differentiate between malignant and benign breast lesions based on elevated total sodium concentration (TSC) in tumour tissues. 23Na-MRI also showed potential in early prediction of treatment response, with significant reductions in TSC observed in responders. However, the studies varied widely in their protocols, use of phantoms, field strengths, and contrast agent application, limiting inter-study comparability. (4) Conclusion: 23Na-MRI holds promise as a complementary imaging modality for breast cancer diagnosis and treatment monitoring. However, standardization of imaging protocols and technical optimization are essential before it can be translated into clinical practice.
Collapse
Affiliation(s)
- Taylor Smith
- Allied Health & Human Performance, University of South Australia, Adelaide, SA 5000, Australia;
| | - Minh Chau
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2670, Australia;
| | - Jordan Sims
- Jones Radiology, Adelaide, SA 5000, Australia;
| | - Elio Arruzza
- Allied Health & Human Performance, University of South Australia, Adelaide, SA 5000, Australia;
| |
Collapse
|
2
|
Zamay TN, Zamay SS, Zamay GS, Kolovskaya OS, Kichkailo AS, Berezovski MV. Systemic Mechanisms of Ionic Regulation in Carcinogenesis. Cancers (Basel) 2025; 17:286. [PMID: 39858068 PMCID: PMC11764231 DOI: 10.3390/cancers17020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer is a complex disease characterized by uncontrolled cell proliferation at various levels, leading to tumor growth and spread. This review focuses on the role of ion homeostasis in cancer progression. It describes a model of ion-mediated regulation in both normal and cancerous cell proliferation. The main function of this system is to maintain the optimal number of cells in the body by regulating intra- and extracellular ion content. The review discusses the key points of ion regulation and their impact on tumor growth and spread during cancer development. It explains that normal levels of sodium, potassium, calcium, chloride, and hydrogen ions are regulated at different levels. Damage to ion transport mechanisms during carcinogenesis can lead to an increase in sodium cations and water content in cells, disrupting the balance of calcium and hydrogen ions. This, in turn, can lead to chromatin compaction reduction, gene overexpression, and instability at the epigenetic and genomic levels, resulting in increased cell proliferation and mutagenesis. Restoring normal ion balance can reduce the proliferative potential of both normal and tumor cell populations. The proposed model of systemic ionic regulation of proliferation aims to reconcile diverse data related to cell mitotic activity in various physiological conditions and explain tumor growth. Understanding the mechanisms behind pathological cell proliferation is important for developing new approaches to control ion homeostasis in the body, potentially leading to more effective cancer treatment and prevention.
Collapse
Affiliation(s)
- Tatiana N. Zamay
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Laboratory for Digital Controlled Drugs and Theranostics, Molecular Electronics Department, 660036 Krasnoyarsk, Russia; (S.S.Z.); (G.S.Z.); (O.S.K.); (A.S.K.)
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University Laboratory for Biomolecular and Medical Technologies, 660022 Krasnoyarsk, Russia
| | - Sergey S. Zamay
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Laboratory for Digital Controlled Drugs and Theranostics, Molecular Electronics Department, 660036 Krasnoyarsk, Russia; (S.S.Z.); (G.S.Z.); (O.S.K.); (A.S.K.)
| | - Galina S. Zamay
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Laboratory for Digital Controlled Drugs and Theranostics, Molecular Electronics Department, 660036 Krasnoyarsk, Russia; (S.S.Z.); (G.S.Z.); (O.S.K.); (A.S.K.)
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University Laboratory for Biomolecular and Medical Technologies, 660022 Krasnoyarsk, Russia
| | - Olga S. Kolovskaya
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Laboratory for Digital Controlled Drugs and Theranostics, Molecular Electronics Department, 660036 Krasnoyarsk, Russia; (S.S.Z.); (G.S.Z.); (O.S.K.); (A.S.K.)
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University Laboratory for Biomolecular and Medical Technologies, 660022 Krasnoyarsk, Russia
| | - Anna S. Kichkailo
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Laboratory for Digital Controlled Drugs and Theranostics, Molecular Electronics Department, 660036 Krasnoyarsk, Russia; (S.S.Z.); (G.S.Z.); (O.S.K.); (A.S.K.)
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University Laboratory for Biomolecular and Medical Technologies, 660022 Krasnoyarsk, Russia
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
3
|
Piredda R, Martínez LGR, Stamatakis K, Martinez-Ortega J, Ferráz AL, Almendral JM, Revilla Y. Assessment of molecular modulation by multifrequency electromagnetic pulses to preferably eradicate tumorigenic cells. Sci Rep 2024; 14:30150. [PMID: 39627265 PMCID: PMC11615363 DOI: 10.1038/s41598-024-81171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Physics methods of cancer therapy are extensively used in clinical practice, but they are invasive and often confront undesired side effects. A fully new equipment that allows sustained emission of intense and time-controlled non-ionizing multifrequency electromagnetic pulse (MEMP), has been applied to eukaryotic cells in culture. The equipment discriminates the overall electronegative charge of the cell cultures, and its subsequent proportional emission may thereby become higher and lethal to cancer cells of generally high metabolic activity. In contrast, low tumorigenic cells would be much less affected. We tested the specificity and efficacy of the equipment against a collection of (i) highly tumorigenic cells of human (glioblastoma, cervical carcinoma, and skin) and mouse (colon adenocarcinoma) origin; (ii) cell lines of much lower tumorigenicity (non-human primate kidney and mouse fibroblasts), and (iii) primary porcine macrophages lacking tumorigenicity. Time and intensity control of the MEMP allowed progressive decay of viability fairly correlating to cell tumorigenicity, which was provoked by a proportional alteration of the cytoplasmic membrane permeability, cell cycle arrest at G2, and general collapse of the actin cytoskeleton to the perinuclear region. Correspondingly, these effects drastically inhibited the proliferative capacity of the most tumorigenic cells in clonogenic assays. Moreover, MEMP suppressed in a dose-dependent manner the tumorigenicity of retrovirally transduced luciferase expressing colon adenocarcinoma cells in xenografted immune-competent mice, as determined by tumor growth in a bioluminescence imaging system. Our results support MEMP as an anti-cancer non-invasive physical treatment of substantial specificity for tumorigenic cells with promising therapeutic potential in oncology.
Collapse
Affiliation(s)
- Roberta Piredda
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | | | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
- IRYCIS, Madrid, Spain
| | - Jorge Martinez-Ortega
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | | | - José M Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain.
| | - Yolanda Revilla
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
4
|
den Hollander LS, Zweemer AJM, Béquignon OJM, Hammerl DM, Bleijs BTM, Veenhuizen M, Lantsheer WJF, Chau B, van Westen GJP, IJzerman AP, Heitman LH. CC chemokine receptor 2 is allosterically modulated by sodium ions and amiloride derivatives through a distinct sodium ion binding site. Biochem Pharmacol 2024; 229:116464. [PMID: 39111604 DOI: 10.1016/j.bcp.2024.116464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
CC chemokine receptor 2 and CCL2 are highly involved in cancer growth and metastasis, and immune escape. Raised sodium ion concentrations in solid tumours have also been correlated to metastasis and immune modulation. Sodium ions can modulate class A G protein-coupled receptors through the sodium ion binding site characterized by a highly conserved aspartic acid residue (D2.50), also present in CCR2. Hence, we further explored this binding site in CCR2 by radioligand binding studies and mutagenesis. Modulation of three distinctly binding radioligands by sodium ions and amiloride derivates was investigated. Sodium ions were observed to be relatively weak modulators of antagonist binding, but substantially increased 125I-CCL2 dissociation from CCR2. 6-Substituted Hexamethylene Amiloride (HMA) modulated all tested radioligands. Induced-fit docking of HMA in the presumed sodium ion binding site of CCR2 confirmed its binding site. Finally, investigation of (cancer-associated) mutations in the sodium ion binding site showed a markedly decreased expression compared to wild type. Only two mutants, G123A3.35 and G127K3.39, were able to be bound by [3H]INCB3344 and [3H]CCR2-RA-[R]. Thus, mutagenesis showed that the sodium ion binding site residues, which are distinct from other class A GPCRs and related to chemokine receptor evolution, are crucial for receptor integrity. Moreover, the tested mutations appeared to have no effect on modulation observed by HMA or a minor effect on sodium chloride modulation on the tested radioligands. All in all, these results invite further exploration of the CCR2 sodium ion binding site in (cancer) biology, and potentially as a third druggable binding site.
Collapse
Affiliation(s)
- Lisa S den Hollander
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Olivier J M Béquignon
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Dora M Hammerl
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Bente T M Bleijs
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Margo Veenhuizen
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Wernard J F Lantsheer
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Bobby Chau
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Gerard J P van Westen
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Laura H Heitman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands; Oncode Institute, the Netherlands.
| |
Collapse
|
5
|
Sharma M, Dey U, Das AS, Olymon K, Kumar A, Mukhopadhyay R. Anti-tumor potential of high salt in breast Cancer cell lines. Mol Biol Rep 2024; 51:1002. [PMID: 39305332 DOI: 10.1007/s11033-024-09925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/09/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Recent 23Na-MRI reports show higher salt deposition in malignant breast tissue than in surrounding normal tissue. The effect of high salt on cancer progression remains controversial. Here, we investigated the direct effect of high salt on breast cancer progression in vitro. METHODS Here, the impact of high salt on apoptosis, proliferation, cell cycle, adhesion, and migration of MDA-MB-231 and MCF-7 cells was studied using MTT, scratch, and clonogenic assays, as well as RT-PCR and flow cytometry. Gene expression was analyzed using Real-Time PCR and western blotting. The effect of high salt on global transcriptomics changes in MDA MB-231 cells was studied using RNA-sequencing analysis. RESULTS Flow cytometry with Annexin V and CFSE revealed that high salt-induced dose-dependent apoptosis and inhibited proliferation. High salt-induced cell cycle arrest at the G1/S phase of the cell cycle. p-MDM2 is known to suppress p53, which plays a crucial role in regulating apoptosis and cell cycle arrest under cellular stress conditions. High salt treatment led to decreased p-MDM2 and increased p53 expression, suggesting that high salt induces apoptosis through p53 stabilization. decreased p-MDM2 and increased p53 expression. High salt also reduced migration and adhesion of cells in a dose-dependent manner suggesting its inhibitory effect on metastatic properties as evident from wound healing assay. RNA sequencing analysis revealed overexpression of tumor suppressor genes and genes associated with anti-tumor activity (PCDHGA11, EIF3CL, RAVER1, TNFSF15, RANBP3L) and under-expression of genes involved in cancer-promoting activity (MT1X, CLDN14, CSF-2). CONCLUSION Our results unequivocally demonstrate the anti-tumor efficacy of high salt against breast cancer cells, suggesting its potential as a therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Manoj Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, USA
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India.
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India.
| |
Collapse
|
6
|
Kim JS, Kehrl JH. Inhibition of WNK Kinases in NK Cells Disrupts Cellular Osmoregulation and Control of Tumor Metastasis. J Innate Immun 2024; 16:451-469. [PMID: 39265537 PMCID: PMC11521464 DOI: 10.1159/000540744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The serine/threonine with-no-lysine (WNK) kinase family function in blood pressure control, electrolyte homeostasis, and cellular osmoregulation. These kinases and their downstream effectors are considered promising therapeutic targets in hypertension and stroke. However, the role of WNK kinases in immune cells remains poorly understood. METHODS Using the small-molecule WNK kinase inhibitors WNK463 and WNK-IN-11, we investigated how WNK kinase inhibition affects natural killer (NK) cell physiology. RESULTS WNK kinase inhibition with WNK463 or WNK-IN-11 significantly decreased IL-2-activated NK cell volume, motility, and cytolytic activity. Treatment of NK cells with these inhibitors induced autophagy by activating AMPK and inhibiting mTOR signaling. Moreover, WNK kinase inhibition increased phosphorylation of Akt and c-Myc by misaligning activity of activating kinases and inhibitory phosphatases. Treatment of tumor-bearing mice with WNK463 impaired tumor metastasis control by adoptively transferred NK cells. CONCLUSION The catalytic activity of WNK kinases has a critical role of multiple aspects of NK cell physiology and their pharmacologic inhibition negatively impacts NK cell function.
Collapse
Affiliation(s)
- Ji Sung Kim
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Leslie TK, Tripp A, James AD, Fraser SP, Nelson M, Sajjaboontawee N, Capatina AL, Toss M, Fadhil W, Salvage SC, Garcia MA, Beykou M, Rakha E, Speirs V, Bakal C, Poulogiannis G, Djamgoz MBA, Jackson AP, Matthews HR, Huang CLH, Holding AN, Chawla S, Brackenbury WJ. A novel Na v1.5-dependent feedback mechanism driving glycolytic acidification in breast cancer metastasis. Oncogene 2024; 43:2578-2594. [PMID: 39048659 PMCID: PMC11329375 DOI: 10.1038/s41388-024-03098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Solid tumours have abnormally high intracellular [Na+]. The activity of various Na+ channels may underlie this Na+ accumulation. Voltage-gated Na+ channels (VGSCs) have been shown to be functionally active in cancer cell lines, where they promote invasion. However, the mechanisms involved, and clinical relevance, are incompletely understood. Here, we show that protein expression of the Nav1.5 VGSC subtype strongly correlates with increased metastasis and shortened cancer-specific survival in breast cancer patients. In addition, VGSCs are functionally active in patient-derived breast tumour cells, cell lines, and cancer-associated fibroblasts. Knockdown of Nav1.5 in a mouse model of breast cancer suppresses expression of invasion-regulating genes. Nav1.5 activity increases ATP demand and glycolysis in breast cancer cells, likely by upregulating activity of the Na+/K+ ATPase, thus promoting H+ production and extracellular acidification. The pH of murine xenograft tumours is lower at the periphery than in the core, in regions of higher proliferation and lower apoptosis. In turn, acidic extracellular pH elevates persistent Na+ influx through Nav1.5 into breast cancer cells. Together, these findings show positive feedback between extracellular acidification and the movement of Na+ into cancer cells which can facilitate invasion. These results highlight the clinical significance of Nav1.5 activity as a potentiator of breast cancer metastasis and provide further evidence supporting the use of VGSC inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Theresa K Leslie
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Aurelien Tripp
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Andrew D James
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, London, UK
| | - Michaela Nelson
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Nattanan Sajjaboontawee
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Alina L Capatina
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Michael Toss
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Wakkas Fadhil
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Mar Arias Garcia
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Melina Beykou
- Division of Cancer Biology, Institute of Cancer Research, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Emad Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | | | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Haspolat, TRNC, Mersin, Turkey
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hugh R Matthews
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew N Holding
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
8
|
Birchall JR, Horvat-Menih I, Kaggie JD, Riemer F, Benjamin AJV, Graves MJ, Wilkinson I, Gallagher FA, McLean MA. Quantitative 23Na magnetic resonance imaging in the abdomen at 3 T. MAGMA (NEW YORK, N.Y.) 2024; 37:737-748. [PMID: 38822992 PMCID: PMC11417083 DOI: 10.1007/s10334-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES To assess the feasibility of sodium-23 MRI for performing quantitative and non-invasive measurements of total sodium concentration (TSC) and relaxation in a variety of abdominal organs. MATERIALS AND METHODS Proton and sodium imaging of the abdomen was performed in 19 healthy volunteers using a 3D cones sequence and a sodium-tuned 4-rung transmit/receive body coil on a clinical 3 T system. The effects of B1 non-uniformity on TSC measurements were corrected using the double-angle method. The long-component of 23Na T2* relaxation time was measured using a series of variable echo-times. RESULTS The mean and standard deviation of TSC and long-component 23Na T2* values were calculated across the healthy volunteer group in the kidneys, cerebrospinal fluid (CSF), liver, gallbladder, spleen, aorta, and inferior vena cava. DISCUSSION Mean TSC values in the kidneys, liver, and spleen were similar to those reported using 23Na-MRI previously in the literature. Measurements in the CSF and gallbladder were lower, potentially due to the reduced spatial resolution achievable in a clinically acceptable scan time. Mean long-component 23Na T2* values were consistent with previous reports from the kidneys and CSF. Intra-population standard error was larger in smaller, fluid-filled structures due to fluid motion and partial volume effects.
Collapse
Affiliation(s)
| | | | | | - Frank Riemer
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital Helse Bergen, Bergen, Norway
| | | | | | - Ian Wilkinson
- Cambridge Cardiovascular, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
9
|
Arponen O, McLean MA, Nanaa M, Manavaki R, Baxter GC, Gill AB, Riemer F, Kennerley AJ, Woitek R, Kaggie JD, Brackenbury WJ, Gilbert FJ. 23Na MRI: inter-reader reproducibility of normal fibroglandular sodium concentration measurements at 3 T. Eur Radiol Exp 2024; 8:75. [PMID: 38853182 PMCID: PMC11162986 DOI: 10.1186/s41747-024-00465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND To study the reproducibility of 23Na magnetic resonance imaging (MRI) measurements from breast tissue in healthy volunteers. METHODS Using a dual-tuned bilateral 23Na/1H breast coil at 3-T MRI, high-resolution 23Na MRI three-dimensional cones sequences were used to quantify total sodium concentration (TSC) and fluid-attenuated sodium concentration (FASC). B1-corrected TSC and FASC maps were created. Two readers manually measured mean, minimum and maximum TSC and mean FASC values using two sampling methods: large regions of interest (LROIs) and small regions of interest (SROIs) encompassing fibroglandular tissue (FGT) and the highest signal area at the level of the nipple, respectively. The reproducibility of the measurements and correlations between density, age and FGT apparent diffusion coefficient (ADC) values were evaluatedss. RESULTS Nine healthy volunteers were included. The inter-reader reproducibility of TSC and FASC using SROIs and LROIs was excellent (intraclass coefficient range 0.945-0.979, p < 0.001), except for the minimum TSC LROI measurements (p = 0.369). The mean/minimum LROI TSC and mean LROI FASC values were lower than the respective SROI values (p < 0.001); the maximum LROI TSC values were higher than the SROI TSC values (p = 0.009). TSC correlated inversely with age but not with FGT ADCs. The mean and maximum FGT TSC and FASC values were higher in dense breasts in comparison to non-dense breasts (p < 0.020). CONCLUSIONS The chosen sampling method and the selected descriptive value affect the measured TSC and FASC values, although the inter-reader reproducibility of the measurements is in general excellent. RELEVANCE STATEMENT 23Na MRI at 3 T allows the quantification of TSC and FASC sodium concentrations. The sodium measurements should be obtained consistently in a uniform manner. KEY POINTS • 23Na MRI allows the quantification of total and fluid-attenuated sodium concentrations (TSC/FASC). • Sampling method (large/small region of interest) affects the TSC and FASC values. • Dense breasts have higher TSC and FASC values than non-dense breasts. • The inter-reader reproducibility of TSC and FASC measurements was, in general, excellent. • The results suggest the importance of stratifying the sodium measurements protocol.
Collapse
Affiliation(s)
- Otso Arponen
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
| | - Mary A McLean
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Muzna Nanaa
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Gabrielle C Baxter
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Andrew B Gill
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Frank Riemer
- Department of Radiology, Mohn Medical Imaging and Visualization Centre (MMIV), Haukeland University Hospital, Bergen, Norway
| | - Aneurin J Kennerley
- York Biomedical Research Institute, University of York, York, UK
- Department of Sports and Exercise Science, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Ramona Woitek
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Research Center for Medical Image Analysis and AI (MIAAI), Danube Private University, Krems, Austria
| | - Joshua D Kaggie
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - William J Brackenbury
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Fiona J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| |
Collapse
|
10
|
Tucker L, Ali U, Zent R, Lannigan DA, Rathmell JC, Tiriveedhi V. Chronic High-Salt Diet Activates Tumor-Initiating Stem Cells Leading to Breast Cancer Proliferation. Cells 2024; 13:912. [PMID: 38891044 PMCID: PMC11172022 DOI: 10.3390/cells13110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Several chronic inflammatory diseases have been linked to high-salt (HS) diets. Chronic inflammation is an established causative hallmark of cancer. However, a direct role of HS diets in tumorigenesis is yet to be defined. Previous orthotopic murine breast tumor studies have shown that short-term HS diets caused inhibition of tumor growth through the activation of cytotoxic adaptive immune responses. However, there have been experimental challenges in developing a viable chronic HS-diet-based murine tumor model. To address this, we have developed a novel chronic HS diet tumor model through the sequential passaging of tumor cells in mice under HS dietary conditions. Two orthotopic murine triple-negative breast cancer models, 4T1 tumor cells injected into BALB/c mice and Py230 tumor cells injected into C57Bl/6 mice, were utilized in our study. For the HS diet cohort, prior to orthotopic injection with tumor cells, the mice were kept on a 4% NaCl diet for 2 weeks. For the regular salt (RS) diet cohort, the mice were kept on a 1% NaCl diet. Following syngeneic cancer cell injection, tumors were allowed to grow for 28 days, following which they were collected to isolate immune cell-depleted cancer cells (passage 1, P1). The tumor cells from P1 were reinjected into the next set of non-tumor-bearing mice. This procedure was repeated for three cycles (P2-P4). In P1, compared to the RS diet cohort, we observed reduced tumor kinetics in both murine tumor models on the HS diet. In contrast, by P4, there was significantly higher tumor progression in the HS diet cohort over the RS diet cohort. Flow cytometry analysis demonstrated an 8-fold increase in tumor-initiating stem cells (TISCs) from P1 to P4 of the HS diet cohort, while there were no significant change in TISC frequency with sequential passaging in the RS diet cohort. Molecular studies showed enhanced expression of TGFβR2 and CD80 on TISCs isolated from the P4 HS diet cohort. In vitro studies demonstrated that TGFβ stimulation of these TISCs increased the cellular expression of CD80 molecules. Further, the chronic HS diet selectively induced the glycolytic metabolic phenotype over the mitochondrial oxidative phosphorylation phenotype in TISCs, which is needed for the production of metabolites during tumor cell differentiation and proliferation. The infiltrating CD8 and CD4 T-lymphocytes in P4 tumors demonstrated increased expression of the immune checkpoint inhibitor (ICI) CTLA4, a known binding partner of CD80, to cause immune exhaustion and pro-tumorigenic effects. Interestingly, anti-TGFβ monoclonal antibodies (mAbs) played a synergistic role in further enhancing the anti-tumor effect of anti-CTLA4 mAb. In summary, our findings demonstrated that chronic HS diet increased the frequency of TISCs in tumors leading to blunting of cytotoxic adaptive immune responses causing tumor proliferation. Furthermore, a combination of anti-TGFβ with current ICI-based immunotherapies could exert more favorable anti-cancer clinical outcomes.
Collapse
Affiliation(s)
- Lisa Tucker
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Umer Ali
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deborah A. Lannigan
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
- Division of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Djamgoz MBA. Ranolazine: a potential anti-metastatic drug targeting voltage-gated sodium channels. Br J Cancer 2024; 130:1415-1419. [PMID: 38424164 PMCID: PMC11058819 DOI: 10.1038/s41416-024-02622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Multi-faceted evidence from a range of cancers suggests strongly that de novo expression of voltage-gated sodium channels (VGSCs) plays a significant role in driving cancer cell invasiveness. Under hypoxic conditions, common to growing tumours, VGSCs develop a persistent current (INaP) which can be blocked selectively by ranolazine. METHODS Several different carcinomas were examined. We used data from a range of experimental approaches relating to cellular invasiveness and metastasis. These were supplemented by survival data mined from cancer patients. RESULTS In vitro, ranolazine inhibited invasiveness of cancer cells especially under hypoxia. In vivo, ranolazine suppressed the metastatic abilities of breast and prostate cancers and melanoma. These data were supported by a major retrospective epidemiological study on breast, colon and prostate cancer patients. This showed that risk of dying from cancer was reduced by ca.60% among those taking ranolazine, even if this started 4 years after the diagnosis. Ranolazine was also shown to reduce the adverse effects of chemotherapy on heart and brain. Furthermore, its anti-cancer effectiveness could be boosted by co-administration with other drugs. CONCLUSIONS Ranolazine, alone or in combination with appropriate therapies, could be reformulated as a safe anti-metastatic drug offering many potential advantages over current systemic treatment modalities.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin, 10, Türkiye.
| |
Collapse
|
12
|
Zaleski R, Kotowicz O, Górska A, Zaleski K, Zgardzińska B. Investigation of the Ability to Detect Electrolyte Disorder Using PET with Positron Annihilation Lifetime Spectroscopy. J Phys Chem B 2023; 127:9887-9890. [PMID: 37946359 PMCID: PMC10683008 DOI: 10.1021/acs.jpcb.3c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Various concentrations (8-300 mmol/L) of NaCl, KCl, and NaCl + KCl aqueous solutions were investigated using positron annihilation lifetime spectroscopy (PALS). A strong dependence of the o-Ps intensity as a function of the solution concentration was demonstrated. On this basis, the mean positron lifetime and the sum of counts in a selected time interval were proposed as reliable parameters for detecting disturbances in the ion balance of living organisms. The use of these parameters for differentiating healthy and cancerous tissues allows for the development of auxiliary diagnostic methods in a new generation of PET scanners equipped with a PALS detection module.
Collapse
Affiliation(s)
- Radosław Zaleski
- Maria
Curie-Sklodowska University, Institute of Physics, Department of Material Physics, Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| | - Olga Kotowicz
- Maria
Curie-Sklodowska University, Institute of Physics, Department of Material Physics, Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| | - Agnieszka Górska
- Medical
University of Lublin, Faculty of Medicine,
Clinic of Toxicology, Al. Kraśnicka 100, 20-718 Lublin, Poland
| | - Kamil Zaleski
- Medical
University of Lublin, Faculty of Medicine,
Clinic of Toxicology, Al. Kraśnicka 100, 20-718 Lublin, Poland
| | - Bożena Zgardzińska
- Maria
Curie-Sklodowska University, Institute of Physics, Department of Material Physics, Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| |
Collapse
|
13
|
Keleş D, Sipahi M, İnanç-Sürer Ş, Djamgoz MB, Oktay G. Tetracaine downregulates matrix metalloproteinase activity and inhibits invasiveness of strongly metastatic MDA-MB-231 human breast cancer cells. Chem Biol Interact 2023; 385:110730. [PMID: 37806380 DOI: 10.1016/j.cbi.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Tetracaine, a long-acting amino ester-type local anesthetic, prevents the initiation and propagation of action potentials by reversibly blocking voltage-gated sodium channels (VGSCs). These channels, which are highly expressed in several carcinomas (e.g. breast, prostate, colon and lung cancers) have been implicated in promoting metastatic behaviours. Recent evidence suggests that local anesthetics can suppress cancer progression. In this paper, we aimed to explore whether tetracaine would reduce the invasive characteristics of breast cancer cells. In a comparative approach, we used two cell lines of contracting metastatic potential: MDA-MB-231 (strongly metastatic) and MCF-7 (weakly metastatic). Tetracaine (50 μM and 75 μM) did not affect the proliferation of both MDA-MB-231 and MCF-7 cells. Importantly, tetracaine suppressed the migratory, invasive, and adhesive capacities of MDA-MB-231 cells; there was no effect on the motility of MCF-7 cells. Tetracaine treatment also significantly decreased the expression and activity levels of MMP-2 and MMP-9, whilst increasing TIMP-2 expression in MDA-MB-231 cells. On the other hand, VGSC α/Nav1.5 and VGSC-β1 mRNA and protein expression levels were not affected. We conclude that tetracaine has anti-invasive effects on breast cancer cells and may be exploited clinically, for example, in surgery and/or in combination therapies.
Collapse
Affiliation(s)
- Didem Keleş
- Izmir University of Economics, Vocational School of Health Services, Medical Laboratory Techniques, 35330, Balcova, Izmir, Turkey; Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Murat Sipahi
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Şeniz İnanç-Sürer
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Mustafa Ba Djamgoz
- Imperial College London, Department of Life Sciences, South Kensington Campus, SW7 2AZ, London, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Gülgün Oktay
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey.
| |
Collapse
|
14
|
Folz J, Wasserman JH, Jo J, Wang X, Kopelman R. Photoacoustic Chemical Imaging Sodium Nano-Sensor Utilizing a Solvatochromic Dye Transducer for In Vivo Application. BIOSENSORS 2023; 13:923. [PMID: 37887116 PMCID: PMC10605089 DOI: 10.3390/bios13100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Sodium has many vital and diverse roles in the human body, including maintaining the cellular pH, generating action potential, and regulating osmotic pressure. In cancer, sodium dysregulation has been correlated with tumor growth, metastasis, and immune cell inhibition. However, most in vivo sodium measurements are performed via Na23 NMR, which is handicapped by slow acquisition times, a low spatial resolution (in mm), and low signal-to-noise ratios. We present here a plasticizer-free, ionophore-based sodium-sensing nanoparticle that utilizes a solvatochromic dye transducer to circumvent the pH cross-sensitivity of most previously reported sodium nano-sensors. We demonstrate that this nano-sensor is non-toxic, boasts a 200 μM detection limit, and is over 1000 times more selective for sodium than potassium. Further, the in vitro photoacoustic calibration curve presented demonstrates the potential of this nano-sensor for performing the in vivo chemical imaging of sodium over the entire physiologically relevant concentration range.
Collapse
Affiliation(s)
- Jeff Folz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Janggun Jo
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
15
|
Malcolm JR, Sajjaboontawee N, Yerlikaya S, Plunkett-Jones C, Boxall PJ, Brackenbury WJ. Voltage-gated sodium channels, sodium transport and progression of solid tumours. CURRENT TOPICS IN MEMBRANES 2023; 92:71-98. [PMID: 38007270 DOI: 10.1016/bs.ctm.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Sodium (Na+) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na+ transporters. In particular, the α subunits of voltage gated Na+ channels (VGSCs) raise intracellular Na+ concentration ([Na+]i) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Nattanan Sajjaboontawee
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom
| | - Serife Yerlikaya
- Department of Biology, University of York, Heslington, York, United Kingdom; Istanbul Medipol University, Research Institute for Health Sciences and Technologies, Istanbul, Turkey
| | | | - Peter J Boxall
- Department of Biology, University of York, Heslington, York, United Kingdom; York and Scarborough Teaching Hospitals NHS Foundation Trust, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom.
| |
Collapse
|
16
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Leslie TK, Brackenbury WJ. Sodium channels and the ionic microenvironment of breast tumours. J Physiol 2023; 601:1543-1553. [PMID: 36183245 PMCID: PMC10953337 DOI: 10.1113/jp282306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
Cancers of epithelial origin such as breast, prostate, cervical, gastric, colon and lung cancer account for a large proportion of deaths worldwide. Better treatment of metastasis, the main cause of cancer deaths, is therefore urgently required. Several of these tumours have been shown to have an abnormally high concentration of Na+ ([Na+ ]) and emerging evidence points to this accumulation being due to elevated intracellular [Na+ ]. This poses intriguing questions about the cellular mechanisms underlying Na+ dysregulation in cancer, and its pathophysiological significance. Elevated intracellular [Na+ ] may be due to alterations in activity of the Na+ /K+ -ATPase, and/or increased influx via Na+ channels and Na+ -linked transporters. Maintenance of the electrochemical Na+ gradient across the plasma membrane is vital to power many cellular processes that are highly active in cancer cells, including glucose and glutamine import. Na+ channels are also upregulated in cancer cells, which in turn promotes tumour growth and metastasis. For example, ENaC and ASICs are overexpressed in cancers, increasing invasion and proliferation. In addition, voltage-gated Na+ channels are also upregulated in a range of tumour types, where they promote metastatic cell behaviours via various mechanisms, including membrane potential depolarisation and altered pH regulation. Together, recent findings relating to elevated Na+ in the tumour microenvironment and how this may be regulated by several classes of Na+ channels provide a link between altered Na+ handling and poor clinical outcome. There are new opportunities to leverage this altered Na+ microenvironment for therapeutic benefit, as exemplified by several ongoing clinical trials.
Collapse
Affiliation(s)
- Theresa K. Leslie
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
18
|
Yin Y, Song Y, Jia Y, Xia J, Bai R, Kong X. Sodium Dynamics in the Cellular Environment. J Am Chem Soc 2023; 145:10522-10532. [PMID: 37104830 DOI: 10.1021/jacs.2c13271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Sodium ions are essential for the functions of biological cells, and they are maintained at the balance between intra- and extracellular environments. The quantitative assessment of intra- and extracellular sodium as well as its dynamics can provide crucial physiological information on a living system. 23Na nuclear magnetic resonance (NMR) is a powerful and noninvasive technique to probe the local environment and dynamics of sodium ions. However, due to the complex relaxation behavior of the quadrupolar nucleus in the intermediate-motion regime and because of the heterogeneous compartments and diverse molecular interactions in the cellular environment, the understanding of the 23Na NMR signal in biological systems is still at the early stage. In this work, we characterize the relaxation and diffusion of sodium ions in the solutions of proteins and polysaccharides, as well as in the in vitro samples of living cells. The multi-exponential behavior of 23Na transverse relaxation has been analyzed according to the relaxation theory to derive the crucial information related to the ionic dynamics and molecular binding in the solutions. The bi-compartment model of transverse relaxation and diffusion measurements can corroborate each other to quantify the fractions of intra- and extracellular sodium. We show that 23Na relaxation and diffusion can be used to monitor the viability of human cells, which offers versatile NMR metrics for in vivo studies.
Collapse
Affiliation(s)
- Yu Yin
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Yifan Song
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Yinhang Jia
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027 Hangzhou, Zhejiang, P. R. China
| | - Juntao Xia
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Ruiliang Bai
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027 Hangzhou, Zhejiang, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 310029 Hangzhou, China
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| |
Collapse
|
19
|
James AD, Unthank KP, Jones I, Sajjaboontawee N, Sizer RE, Chawla S, Evans GJO, Brackenbury WJ. Sodium regulates PLC and IP 3 R-mediated calcium signaling in invasive breast cancer cells. Physiol Rep 2023; 11:e15663. [PMID: 37017052 PMCID: PMC10074044 DOI: 10.14814/phy2.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Intracellular Ca2+ signaling and Na+ homeostasis are inextricably linked via ion channels and co-transporters, with alterations in the concentration of one ion having profound effects on the other. Evidence indicates that intracellular Na+ concentration ([Na+ ]i ) is elevated in breast tumors, and that aberrant Ca2+ signaling regulates numerous key cancer hallmark processes. The present study therefore aimed to determine the effects of Na+ depletion on intracellular Ca2+ handling in metastatic breast cancer cell lines. The relationship between Na+ and Ca2+ was probed using fura-2 and SBFI fluorescence imaging and replacement of extracellular Na+ with equimolar N-methyl-D-glucamine (0Na+ /NMDG) or choline chloride (0Na+ /ChoCl). In triple-negative MDA-MB-231 and MDA-MB-468 cells and Her2+ SKBR3 cells, but not ER+ MCF-7 cells, 0Na+ /NMDG and 0Na+ /ChoCl resulted in a slow, sustained depletion in [Na+ ]i that was accompanied by a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+ ]i ). Application of La3+ in nominal Ca2+ -free conditions had no effect on this response, ruling out reverse-mode NCX activity and Ca2+ entry channels. Moreover, the Na+ -linked [Ca2+ ]i increase was independent of membrane potential hyperpolarization (NS-1619), but was inhibited by pharmacological blockade of IP3 receptors (2-APB), phospholipase C (PLC, U73122) or following depletion of endoplasmic reticulum Ca2+ stores (cyclopiazonic acid). Thus, Na+ is linked to PLC/IP3 -mediated activation of endoplasmic reticulum Ca2+ release in metastatic breast cancer cells and this may have an important role in breast tumors where [Na+ ]i is perturbed.
Collapse
Affiliation(s)
- Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | | | - Nattanan Sajjaboontawee
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | - Sangeeta Chawla
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Gareth J. O. Evans
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
20
|
Al-Hajj S, Lemoine R, Chadet S, Goumard A, Legay L, Roxburgh E, Heraud A, Deluce N, Lamendour L, Burlaud-Gaillard J, Gatault P, Büchler M, Roger S, Halimi JM, Baron C. High extracellular sodium chloride concentrations induce resistance to LPS signal in human dendritic cells. Cell Immunol 2023; 384:104658. [PMID: 36566700 DOI: 10.1016/j.cellimm.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Recent evidence showed that in response to elevated sodium dietary intakes, many body tissues retain Na+ ions for long periods of time and can reach concentrations up to 200 mM. This could modulate the immune system and be responsible for several diseases. However, studies brought contrasted results and the effects of external sodium on human dendritic cell (DC) responses to danger signals remain largely unknown. Considering their central role in triggering T cell response, we tested how NaCl-enriched medium influences human DCs properties. We found that DCs submitted to high extracellular Na+ concentrations up to 200 mM remain viable and maintain the expression of specific DC markers, however, their maturation, chemotaxis toward CCL19, production of pro-inflammatory cytokines and ROS in response to LPS were also partially inhibited. In line with these results, the T-cell allostimulatory capacity of DCs was also inhibited. Finally, our data indicate that high NaCl concentrations triggered the phosphorylation of SGK1 and ERK1/2 kinases. These results raised the possibility that the previously reported pro-inflammatory effects of high NaCl concentrations on T cells might be counterbalanced by a downregulation of DC activation.
Collapse
Affiliation(s)
- Sally Al-Hajj
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Annabelle Goumard
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Laura Legay
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Ellena Roxburgh
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Audrey Heraud
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Nora Deluce
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Lucille Lamendour
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Julien Burlaud-Gaillard
- U1259 Morphogenesis and Antigenicity of HIV and Hepatitis virus (MAVIVH), University of Tours, Tours, France; IBISA Facility of Electronic Microscopy, University Hospital of Tours, Tours, France
| | - Philippe Gatault
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Mathias Büchler
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France.
| | - Jean-Michel Halimi
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| |
Collapse
|
21
|
Mitochondria directly sense osmotic stress to trigger rapid metabolic remodeling via regulation of pyruvate dehydrogenase phosphorylation. J Biol Chem 2022; 299:102837. [PMID: 36581206 PMCID: PMC9879793 DOI: 10.1016/j.jbc.2022.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
A high-salt diet significantly impacts various diseases, ilncluding cancer and immune diseases. Recent studies suggest that the high-salt/hyperosmotic environment in the body may alter the chronic properties of cancer and immune cells in the disease context. However, little is known about the acute metabolic changes in hyperosmotic stress. Here, we found that hyperosmotic stress for a few minutes induces Warburg-like metabolic remodeling in HeLa and Raw264.7 cells and suppresses fatty acid oxidation. Regarding Warburg-like remodeling, we determined that the pyruvate dehydrogenase phosphorylation status was altered bidirectionally (high in hyperosmolarity and low in hypoosmolarity) to osmotic stress in isolated mitochondria, suggesting that mitochondria themselves have an acute osmosensing mechanism. Additionally, we demonstrate that Warburg-like remodeling is required for HeLa cells to maintain ATP levels and survive under hyperosmotic conditions. Collectively, our findings suggest that cells exhibit acute metabolic remodeling under osmotic stress via the regulation of pyruvate dehydrogenase phosphorylation by direct osmosensing within mitochondria.
Collapse
|
22
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
23
|
James AD, Leslie TK, Kaggie JD, Wiggins L, Patten L, Murphy O'Duinn J, Langer S, Labarthe MC, Riemer F, Baxter G, McLean MA, Gilbert FJ, Kennerley AJ, Brackenbury WJ. Sodium accumulation in breast cancer predicts malignancy and treatment response. Br J Cancer 2022; 127:337-349. [PMID: 35462561 PMCID: PMC9296657 DOI: 10.1038/s41416-022-01802-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer remains a leading cause of death in women and novel imaging biomarkers are urgently required. Here, we demonstrate the diagnostic and treatment-monitoring potential of non-invasive sodium (23Na) MRI in preclinical models of breast cancer. METHODS Female Rag2-/- Il2rg-/- and Balb/c mice bearing orthotopic breast tumours (MDA-MB-231, EMT6 and 4T1) underwent MRI as part of a randomised, controlled, interventional study. Tumour biology was probed using ex vivo fluorescence microscopy and electrophysiology. RESULTS 23Na MRI revealed elevated sodium concentration ([Na+]) in tumours vs non-tumour regions. Complementary proton-based diffusion-weighted imaging (DWI) linked elevated tumour [Na+] to increased cellularity. Combining 23Na MRI and DWI measurements enabled superior classification accuracy of tumour vs non-tumour regions compared with either parameter alone. Ex vivo assessment of isolated tumour slices confirmed elevated intracellular [Na+] ([Na+]i); extracellular [Na+] ([Na+]e) remained unchanged. Treatment with specific inward Na+ conductance inhibitors (cariporide, eslicarbazepine acetate) did not affect tumour [Na+]. Nonetheless, effective treatment with docetaxel reduced tumour [Na+], whereas DWI measures were unchanged. CONCLUSIONS Orthotopic breast cancer models exhibit elevated tumour [Na+] that is driven by aberrantly elevated [Na+]i. Moreover, 23Na MRI enhances the diagnostic capability of DWI and represents a novel, non-invasive biomarker of treatment response with superior sensitivity compared to DWI alone.
Collapse
Affiliation(s)
- Andrew D James
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | | | - Joshua D Kaggie
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - Lewis Patten
- Department of Mathematics, University of York, York, UK
| | | | - Swen Langer
- Bioscience Technology Facility, Department of Biology, University of York, York, UK
| | | | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital Bergen, Bergen, Norway
| | - Gabrielle Baxter
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Fiona J Gilbert
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Aneurin J Kennerley
- York Biomedical Research Institute, University of York, York, UK
- Department of Chemistry, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
24
|
Pyun SH, Min W, Goo B, Seit S, Azzi A, Yu-Shun Wong D, Munavalli GS, Huh CH, Won CH, Ko M. Real-time, in vivo skin cancer triage by laser-induced plasma spectroscopy combined with a deep learning-based diagnostic algorithm. J Am Acad Dermatol 2022:S0190-9622(22)02214-9. [PMID: 35752277 DOI: 10.1016/j.jaad.2022.06.1166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Although various skin cancer detection devices have been proposed, most of them are not used owing to their insufficient diagnostic accuracies. Laser-induced plasma spectroscopy (LIPS) can noninvasively extract biochemical information of skin lesions using an ultrashort pulsed laser. OBJECTIVE To investigate the diagnostic accuracy and safety of real-time noninvasive in vivo skin cancer diagnostics utilizing nondiscrete molecular LIPS combined with a deep neural network (DNN)-based diagnostic algorithm. METHODS In vivo LIPS spectra were acquired from 296 skin cancers (186 basal cell carcinomas, 96 squamous cell carcinomas, and 14 melanomas) and 316 benign lesions in a multisite clinical study. The diagnostic performance was validated using 10-fold cross-validations. RESULTS The sensitivity and specificity for differentiating skin cancers from benign lesions using LIPS and the DNN-based algorithm were 94.6% (95% CI: 92.0%-97.2%) and 88.9% (95% CI: 85.5%-92.4%), respectively. No adverse events, including macroscopic or microscopic visible marks or pigmentation due to laser irradiation, were observed. LIMITATIONS The diagnostic performance was evaluated using a limited data set. More extensive clinical studies are needed to validate these results. CONCLUSIONS This LIPS system with a DNN-based diagnostic algorithm is a promising tool to distinguish skin cancers from benign lesions with high diagnostic accuracy in real clinical settings.
Collapse
Affiliation(s)
| | - Wanki Min
- R&D Center, Speclipse, Inc, Sunnyvale, California
| | - Boncheol Goo
- R&D Center, Speclipse, Inc, Sunnyvale, California
| | - Samuel Seit
- The Skin Cancer & Cosmetic Clinic, Neutral Bay, New South Wales, Australia
| | - Anthony Azzi
- Newcastle Skin Check, Charlestown, New South Wales, Australia
| | | | - Girish S Munavalli
- Dermatology, Laser & Vein Specialists of the Carolinas, Charlotte, North Carolina
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| | - Chong-Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minsam Ko
- Department of Human-Computer Interaction, Hanyang University, Seoul, South Korea
| |
Collapse
|
25
|
Anti-invasive effects of minoxidil on human breast cancer cells: combination with ranolazine. Clin Exp Metastasis 2022; 39:679-689. [PMID: 35643818 PMCID: PMC9338910 DOI: 10.1007/s10585-022-10166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
A plethora of ion channels have been shown to be involved systemically in the pathophysiology of cancer and ion channel blockers can produce anti-metastatic effects. However, although ion channels are known to frequently function in concerted action, little is known about possible combined effects of ion channel modulators on metastatic cell behaviour. Here, we investigated functional consequences of pharmacologically modulating ATP-gated potassium (KATP) channel and voltage-gated sodium channel (VGSC) activities individually and in combination. Two triple-negative human breast cancer cell lines were used: MDA-MB-231 and MDA-MB-468, the latter mainly for comparison. Most experiments were carried out on hypoxic cells. Electrophysiological effects were studied by whole-cell patch clamp recording. Minoxidil (a KATP channel opener) and ranolazine (a blocker of the VGSC persistent current) had no effect on cell viability and proliferation, alone or in combination. In contrast, invasion was significantly reduced in a dose-dependent manner by clinical concentrations of minoxidil and ranolazine. Combining the two drugs produced significant additive effects at concentrations as low as 0.625 μM ranolazine and 2.5 μM minoxidil. Electrophysiologically, acute application of minoxidil shifted VGSC steady-state inactivation to more hyperpolarised potentials and slowed recovery from inactivation, consistent with inhibition of VGSC activation. We concluded (i) that clinically relevant doses of minoxidil and ranolazine individually could inhibit cellular invasiveness dose dependently and (ii) that their combination was additionally effective. Accordingly, ranolazine, minoxidil and their combination may be repurposed as novel anti-metastatic agents.
Collapse
|
26
|
Khandekar D, Dahunsi DO, Manzanera Esteve IV, Reid S, Rathmell JC, Titze J, Tiriveedhi V. Low-Salt Diet Reduces Anti-CTLA4 Mediated Systemic Immune-Related Adverse Events while Retaining Therapeutic Efficacy against Breast Cancer. BIOLOGY 2022; 11:810. [PMID: 35741331 PMCID: PMC9219826 DOI: 10.3390/biology11060810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the breast cancer treatment landscape. However, ICI-induced systemic inflammatory immune-related adverse events (irAE) remain a major clinical challenge. Previous studies in our laboratory and others have demonstrated that a high-salt (HS) diet induces inflammatory activation of CD4+T cells leading to anti-tumor responses. In our current communication, we analyzed the impact of dietary salt modification on therapeutic and systemic outcomes in breast-tumor-bearing mice following anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) monoclonal antibody (mAb) based ICI therapy. As HS diet and anti-CTLA4 mAb both exert pro-inflammatory activation of CD4+T cells, we hypothesized that a combination of these would lead to enhanced irAE response, while low-salt (LS) diet through blunting peripheral inflammatory action of CD4+T cells would reduce irAE response. We utilized an orthotopic murine breast tumor model by injecting Py230 murine breast cancer cells into syngeneic C57Bl/6 mice. In an LS diet cohort, anti-CTLA4 mAb treatment significantly reduced tumor progression (day 35, 339 ± 121 mm3), as compared to isotype mAb (639 ± 163 mm3, p < 0.05). In an HS diet cohort, treatment with anti-CTLA4 reduced the survival rate (day 80, 2/15) compared to respective normal/regular salt (NS) diet cohort (8/15, p < 0.05). Further, HS plus anti-CTLA4 mAb caused an increased expression of inflammatory cytokines (IFNγ and IL-1β) in lung infiltrating and peripheral circulating CD4+T cells. This inflammatory activation of CD4+T cells in the HS plus anti-CTLA4 cohort was associated with the upregulation of inflammasome complex activity. However, an LS diet did not induce any significant irAE response in breast-tumor-bearing mice upon treatment with anti-CTLA4 mAb, thus suggesting the role of high-salt diet in irAE response. Importantly, CD4-specific knock out of osmosensitive transcription factor NFAT5 using CD4cre/creNFAT5flox/flox transgenic mice caused a downregulation of high-salt-mediated inflammatory activation of CD4+T cells and irAE response. Taken together, our data suggest that LS diet inhibits the anti-CTLA4 mAb-induced irAE response while retaining its anti-tumor efficacy.
Collapse
Affiliation(s)
- Durga Khandekar
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Debolanle O. Dahunsi
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.O.D.); (J.C.R.)
| | | | - Sonya Reid
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Jeffrey C. Rathmell
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.O.D.); (J.C.R.)
| | - Jens Titze
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore;
- Division of Nephrology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Division of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
27
|
Shandell MA, Capatina AL, Lawrence SM, Brackenbury WJ, Lagos D. Inhibition of the Na +/K +-ATPase by cardiac glycosides suppresses expression of the IDO1 immune checkpoint in cancer cells by reducing STAT1 activation. J Biol Chem 2022; 298:101707. [PMID: 35150740 PMCID: PMC8902613 DOI: 10.1016/j.jbc.2022.101707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
Despite extensive basic and clinical research on immune checkpoint regulatory pathways, little is known about the effects of the ionic tumor microenvironment on immune checkpoint expression and function. Here we describe a mechanistic link between Na+/K+-ATPase (NKA) inhibition and activity of the immune checkpoint protein indoleamine-pyrrole 2',3'-dioxygenase 1 (IDO1). We found that IDO1 was necessary and sufficient for production of kynurenine, a downstream tryptophan metabolite, in cancer cells. We developed a spectrophotometric assay to screen a library of 31 model ion transport-targeting compounds for potential effects on IDO1 function in A549 lung and MDA-MB-231 breast cancer cells. This revealed that the cardiac glycosides ouabain and digoxin inhibited kynurenine production at concentrations that did not affect cell survival. NKA inhibition by ouabain and digoxin resulted in increased intracellular Na+ levels and downregulation of IDO1 mRNA and protein levels, which was consistent with the reduction in kynurenine levels. Knockdown of ATP1A1, the ɑ1 subunit of the NKA and target of cardiac glycosides, increased Na+ levels to a lesser extent than cardiac glycoside treatment and did not affect IDO1 expression. However, ATP1A1 knockdown significantly enhanced the effect of cardiac glycosides on IDO1 expression and kynurenine production. Mechanistically, we show that cardiac glycoside treatment resulted in curtailing the length of phosphorylation-mediated stabilization of STAT1, a transcriptional regulator of IDO1 expression, an effect enhanced by ATP1A1 knockdown. Our findings reveal cross talk between ionic modulation via cardiac glycosides and immune checkpoint protein expression in cancer cells with broad mechanistic and clinical implications.
Collapse
Affiliation(s)
- Mia A Shandell
- Department of Biology, University of York, York, United Kingdom; Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alina L Capatina
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Dimitris Lagos
- Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom.
| |
Collapse
|
28
|
Tomiyasu M, Harada M. In vivo Human MR Spectroscopy Using a Clinical Scanner: Development, Applications, and Future Prospects. Magn Reson Med Sci 2022; 21:235-252. [PMID: 35173095 PMCID: PMC9199975 DOI: 10.2463/mrms.rev.2021-0085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MR spectroscopy (MRS) is a unique and useful method for noninvasively evaluating biochemical metabolism in human organs and tissues, but its clinical dissemination has been slow and often limited to specialized institutions or hospitals with experts in MRS technology. The number of 3-T clinical MR scanners is now increasing, representing a major opportunity to promote the use of clinical MRS. In this review, we summarize the theoretical background and basic knowledge required to understand the results obtained with MRS and introduce the general consensus on the clinical utility of proton MRS in routine clinical practice. In addition, we present updates to the consensus guidelines on proton MRS published by the members of a working committee of the Japan Society of Magnetic Resonance in Medicine in 2013. Recent research into multinuclear MRS equipped in clinical MR scanners is explained with an eye toward future development. This article seeks to provide an overview of the current status of clinical MRS and to promote the understanding of when it can be useful. In the coming years, MRS-mediated biochemical evaluation is expected to become available for even routine clinical practice.
Collapse
Affiliation(s)
- Moyoko Tomiyasu
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology.,Department of Radiology, Kanagawa Children's Medical Center
| | - Masafumi Harada
- Department of Radiology and Radiation Oncology, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
29
|
Chen Q, Shah NJ, Worthoff WA. Compressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and Future Prospects. J Magn Reson Imaging 2021; 55:1340-1356. [PMID: 34918429 DOI: 10.1002/jmri.28029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022] Open
Abstract
Sodium (23 Na) yields the second strongest nuclear magnetic resonance (NMR) signal in biological tissues and plays a vital role in cell physiology. Sodium magnetic resonance imaging (MRI) can provide insights into cell integrity and tissue viability relative to pathologies without significant anatomical alternations, and thus it is considered to be a potential surrogate biomarker that provides complementary information for standard hydrogen (1 H) MRI in a noninvasive and quantitative manner. However, sodium MRI suffers from a relatively low signal-to-noise ratio and long acquisition times due to its relatively low NMR sensitivity. Compressed sensing-based (CS-based) methods have been shown to accelerate sodium imaging and/or improve sodium image quality significantly. In this manuscript, the basic concepts of CS and how CS might be applied to improve sodium MRI are described, and the historical milestones of CS-based sodium MRI are briefly presented. Representative advanced techniques and evaluation methods are discussed in detail, followed by an expose of clinical applications in multiple anatomical regions and diseases as well as thoughts and suggestions on potential future research prospects of CS in sodium MRI. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Qingping Chen
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
30
|
Fuchs E, Messerer DAC, Karpel-Massler G, Fauler M, Zimmer T, Jungwirth B, Föhr KJ. Block of Voltage-Gated Sodium Channels as a Potential Novel Anti-cancer Mechanism of TIC10. Front Pharmacol 2021; 12:737637. [PMID: 34744721 PMCID: PMC8567104 DOI: 10.3389/fphar.2021.737637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Tumor therapeutics are aimed to affect tumor cells selectively while sparing healthy ones. For this purpose, a huge variety of different drugs are in use. Recently, also blockers of voltage-gated sodium channels (VGSCs) have been recognized to possess potentially beneficial effects in tumor therapy. As these channels are a frequent target of numerous drugs, we hypothesized that currently used tumor therapeutics might have the potential to block VGSCs in addition to their classical anti-cancer activity. In the present work, we have analyzed the imipridone TIC10, which belongs to a novel class of anti-cancer compounds, for its potency to interact with VGSCs. Methods: Electrophysiological experiments were performed by means of the patch-clamp technique using heterologously expressed human heart muscle sodium channels (hNav1.5), which are among the most common subtypes of VGSCs occurring in tumor cells. Results: TIC10 angular inhibited the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state was weak with an extrapolated Kr of about 600 μM. TIC10 most probably did not interact with fast inactivation. In protocols for slow inactivation, a half-maximal inhibition occurred around 2 µM. This observation was confirmed by kinetic studies indicating that the interaction occurred with a slow time constant. Furthermore, TIC10 also interacted with the open channel with an affinity of approximately 4 µM. The binding site for local anesthetics or a closely related site is suggested as a possible target as the affinity for the well-characterized F1760K mutant was reduced more than 20-fold compared to wild type. Among the analyzed derivatives, ONC212 was similarly effective as TIC10 angular, while TIC10 linear more selectively interacted with the different states. Conclusion: The inhibition of VGSCs at low micromolar concentrations might add to the anti-tumor properties of TIC10.
Collapse
Affiliation(s)
- Eva Fuchs
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | | | | | - Michael Fauler
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Thomas Zimmer
- Institute of Physiology, University Hospital of Jena, Jena, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | - Karl Josef Föhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
31
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
32
|
Wu Y, Li Z, Shi M, Yuan K, Meng HM, Qu L, Li Z. Programmable DNAzyme Computing for Specific In Vivo Imaging: Intracellular Stimulus-Unlocked Target Sensing and Signal Amplification. Anal Chem 2021; 93:12456-12463. [PMID: 34449199 DOI: 10.1021/acs.analchem.1c02699] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular probe that enables in vivo imaging is the cornerstone of accurate disease diagnosis, prognostic estimation, and therapies. Although several nucleic acid-based probes have been reported for tumor detection, it is still a challenge to develop programmable methodology for accurately identifying tumors in vivo. Herein, a reconfigurable DNA hybridization-based reaction was constructed to assemble DNAzyme computing that contains an intracellular miRNA-unlocked entropy-driven catalysis module and an endogenous metal ion-responsive DNAzyme module for specific in vivo imaging. By reasonable design, the programmable DNAzyme computing can not only successfully distinguish tumor cells from normal cells but also enable tumor imaging in living mice. Due to its excellent operation with high specificity and sensitivity, this design may be broadly applied in the biological study and personalized medicine.
Collapse
Affiliation(s)
- Yanan Wu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Zhijun Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Mingqing Shi
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yuan
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Meng
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
33
|
Martin K, Tan SJ, Toussaint ND. Magnetic resonance imaging determination of tissue sodium in patients with chronic kidney disease. Nephrology (Carlton) 2021; 27:117-125. [PMID: 34510658 DOI: 10.1111/nep.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Excess sodium is a major modifiable contributor to hypertension and cardiovascular risk. Knowledge of sodium storage and metabolism has derived mainly from indirect measurements of dietary sodium intake and urinary sodium excretion, however both attempt to measure body sodium and fluid in a two-compartment model of intracellular and extracellular spaces. Our understanding of total body sodium has recently included a storage pool in tissues. In the last two decades, sodium-23 magnetic resonance imaging (23 Na MRI) has allowed dynamic quantification of tissue sodium in vivo. Tissue sodium is independently associated with cardiovascular dysfunction and inflammation. This review explores (i) The revolution of our understanding of sodium physiology, (ii) The development and potential clinical adoption of 23 Na MRI to provide improved measurement of total body sodium in CKD and (iii) How we can better understand mechanistic and clinical implications of tissue sodium in hypertension, cardiovascular disease and immune dysregulation, especially in the CKD population.
Collapse
Affiliation(s)
- Kylie Martin
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Giovannetti G, Flori A, Martini N, Francischello R, Aquaro GD, Pingitore A, Frijia F. Sodium Radiofrequency Coils for Magnetic Resonance: From Design to Applications. ELECTRONICS 2021; 10:1788. [DOI: 10.3390/electronics10151788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Sodium (23Na) is the most abundant cation present in the human body and is involved in a large number of vital body functions. In the last few years, the interest in Sodium Magnetic Resonance Imaging (23Na MRI) has considerably increased for its relevance in physiological and physiopathological aspects. Indeed, sodium MRI offers the possibility to extend the anatomical imaging information by providing additional and complementary information on physiology and cellular metabolism with the heteronuclear Magnetic Resonance Spectroscopy (MRS). Constraints are the rapidly decaying of sodium signal, the sensitivity lack due to the low sodium concentration versus 1H-MRI induce scan times not clinically acceptable and it also constitutes a challenge for sodium MRI. With the available magnetic fields for clinical MRI scanners (1.5 T, 3 T, 7 T), and the hardware capabilities such as strong gradient strengths with high slew rates and new dedicated radiofrequency (RF) sodium coils, it is possible to reach reasonable measurement times (~10–15 min) with a resolution of a few millimeters, where it has already been applied in vivo in many human organs such as the brain, cartilage, kidneys, heart, as well as in muscle and the breast. In this work, we review the different geometries and setup of sodium coils described in the available literature for different in vivo applications in human organs with clinical MR scanners, by providing details of the design, modeling and construction of the coils.
Collapse
|
35
|
Allu AS, Tiriveedhi V. Cancer Salt Nostalgia. Cells 2021; 10:cells10061285. [PMID: 34064273 PMCID: PMC8224381 DOI: 10.3390/cells10061285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
High-salt (sodium chloride) diets have been strongly associated with disease states and poor health outcomes. Traditionally, the impact of salt intake is primarily studied in cardiovascular diseases, hypertension and renal diseases; however, recently there has been increasing evidence demonstrating the role of salt in autoimmune diseases. Salt has been shown to modulate the inflammatory activation of immune cells leading to chronic inflammation-related ailments. To date, there is minimal evidence showing a direct correlation of salt with cancer incidence and/or cancer-related adverse clinical outcomes. In this review article, we will discuss the recent understanding of the molecular role of salt, and elucidate the apparent double-edged sword nature of the relationship between salt and cancer progression.
Collapse
Affiliation(s)
- Aashish S. Allu
- Department of Sciences, Lafayette High School, Wildwood, MO 63011, USA;
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA
- Division of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-963-5779; Fax: +1-615-963-5747
| |
Collapse
|
36
|
Jobin K, Müller DN, Jantsch J, Kurts C. Sodium and its manifold impact on our immune system. Trends Immunol 2021; 42:469-479. [PMID: 33962888 DOI: 10.1016/j.it.2021.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
The Western diet is rich in salt, and a high salt diet (HSD) is suspected to be a risk factor for cardiovascular diseases. It is now widely accepted that an experimental HSD can stimulate components of the immune system, potentially exacerbating certain autoimmune diseases, or alternatively, improving defenses against certain infections, such as cutaneous leishmaniasis. However, recent findings show that an experimental HSD may also aggravate other infections (e.g., pyelonephritis or systemic listeriosis). Here, we discuss the modulatory effects of a HSD on the microbiota, metabolic signaling, hormonal responses, local sodium concentrations, and their effects on various immune cell types in different tissues. We describe how these factors are integrated, resulting either in immune stimulation or suppression in various tissues and disease settings.
Collapse
Affiliation(s)
- Katarzyna Jobin
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, Würzburg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, and Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany.
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
37
|
Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience 2021; 24:102270. [PMID: 33817575 PMCID: PMC8010468 DOI: 10.1016/j.isci.2021.102270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - William J. Brackenbury
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Tim G. Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, UK
| | - Pierre Besson
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Juan Carlos Gomora
- Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
38
|
Ianniello C, Moy L, Fogarty J, Schnabel F, Adams S, Axelrod D, Axel L, Brown R, Madelin G. Multinuclear MRI to disentangle intracellular sodium concentration and extracellular volume fraction in breast cancer. Sci Rep 2021; 11:5156. [PMID: 33664340 PMCID: PMC7933187 DOI: 10.1038/s41598-021-84616-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
The purpose of this work was to develop a novel method to disentangle the intra- and extracellular components of the total sodium concentration (TSC) in breast cancer from a combination of proton ([Formula: see text]H) and sodium ([Formula: see text]) magnetic resonance imaging (MRI) measurements. To do so, TSC is expressed as function of the intracellular sodium concentration ([Formula: see text]), extracellular volume fraction (ECV) and the water fraction (WF) based on a three-compartment model of the tissue. TSC is measured from [Formula: see text] MRI, ECV is calculated from baseline and post-contrast [Formula: see text]H [Formula: see text] maps, while WF is measured with a [Formula: see text]H chemical shift technique. [Formula: see text] is then extrapolated from the model. Proof-of-concept was demonstrated in three healthy subjects and two patients with triple negative breast cancer. In both patients, TSC was two to threefold higher in the tumor than in normal tissue. This alteration mainly resulted from increased [Formula: see text] ([Formula: see text] 30 mM), which was [Formula: see text] 130% greater than in healthy conditions (10-15 mM) while the ECV was within the expected range of physiological values (0.2-0.25). Multinuclear MRI shows promise for disentangling [Formula: see text] and ECV by taking advantage of complementary [Formula: see text]H and [Formula: see text] measurements.
Collapse
Affiliation(s)
- Carlotta Ianniello
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Linda Moy
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Justin Fogarty
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Freya Schnabel
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Sylvia Adams
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Deborah Axelrod
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Leon Axel
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Guillaume Madelin
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
39
|
Zaric O, Farr A, Minarikova L, Lachner S, Asseryanis E, Nagel AM, Weber M, Singer CF, Trattnig S. Tissue Sodium Concentration Quantification at 7.0-T MRI as an Early Marker for Chemotherapy Response in Breast Cancer: A Feasibility Study. Radiology 2021; 299:63-72. [PMID: 33591888 DOI: 10.1148/radiol.2021201600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Tissue sodium concentration (TSC) is elevated in breast cancer and can determine chemotherapy response. Purpose To test the feasibility of using a sodium 23 (23Na) MRI protocol at 7.0 T for TSC quantification to predict early treatment outcomes of neoadjuvant chemotherapy in breast cancer and to determine whether those quantitative values provide additional information about efficacy. Materials and Methods Women with primary breast cancer were included in this prospective study. From July 2017 to June 2018, participants underwent 7.0-T 23Na MRI. Multichannel data sets were acquired with a density-adapted, three-dimensional radial projection reconstruction pulse sequence. Two-dimensional tumor size and TSC were evaluated before and after the first and second chemotherapy cycle, and statistical tests were performed based on the presence or absence of a pathologic complete response (pCR). Results Fifteen women with breast cancer and six healthy women were enrolled. The mean baseline tumor size in women with a pCR was 7.0 cm2 ± 5.0 (standard deviation), and the mean baseline tumor size in women without a pCR was 19.0 cm2 ± 12.0. After the first chemotherapy cycle, women with a pCR showed a reduced tumor size of 32.9% (2.3 cm2/7.0 cm2), compared with 15.3% (2.9 cm2/19.0 cm2) in those without a pCR. The areas under the receiver operating characteristic curve for tumor size reduction after the first and second chemotherapy cycle were 0.73 (95% CI: 0.09, 0.50; P = .12) and 0.93 (95% CI: 0.04, 0.60; P < .001), respectively. Women with a pCR had a mean baseline TSC of 69.4 mmol/L ± 6.1, with a reduction of 12.0% (8.3 mmol/L), whereas those without a pCR had a mean baseline TSC of 71.7 mmol/L ± 5.7, with a reduction of 4.7% (3.4 mmol/L) after the first cycle. The areas under the receiver operating characteristic curve for TSC after the first and second cycles were 0.96 (95% CI: 0.86, 1.00; P < .001) and 1.000 (95% CI: 1.00, P < .001), respectively. Conclusion Using 7.0-T MRI for tissue sodium concentration quantification to predict early treatment outcomes of neoadjuvant chemotherapy in breast cancer is feasible, with reduced tissue sodium concentration indicative of cancer response. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Olgica Zaric
- From the Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria (O.Z., S.T.); Breast Health Center, Department of Obstetrics and Gynecology (A.F., E.A., C.F.S.), and High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy (L.M., M.W., S.T.), Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (S.L., A.M.N.); and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Alex Farr
- From the Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria (O.Z., S.T.); Breast Health Center, Department of Obstetrics and Gynecology (A.F., E.A., C.F.S.), and High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy (L.M., M.W., S.T.), Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (S.L., A.M.N.); and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Lenka Minarikova
- From the Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria (O.Z., S.T.); Breast Health Center, Department of Obstetrics and Gynecology (A.F., E.A., C.F.S.), and High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy (L.M., M.W., S.T.), Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (S.L., A.M.N.); and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Sebastian Lachner
- From the Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria (O.Z., S.T.); Breast Health Center, Department of Obstetrics and Gynecology (A.F., E.A., C.F.S.), and High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy (L.M., M.W., S.T.), Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (S.L., A.M.N.); and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Ella Asseryanis
- From the Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria (O.Z., S.T.); Breast Health Center, Department of Obstetrics and Gynecology (A.F., E.A., C.F.S.), and High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy (L.M., M.W., S.T.), Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (S.L., A.M.N.); and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Armin M Nagel
- From the Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria (O.Z., S.T.); Breast Health Center, Department of Obstetrics and Gynecology (A.F., E.A., C.F.S.), and High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy (L.M., M.W., S.T.), Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (S.L., A.M.N.); and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Michael Weber
- From the Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria (O.Z., S.T.); Breast Health Center, Department of Obstetrics and Gynecology (A.F., E.A., C.F.S.), and High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy (L.M., M.W., S.T.), Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (S.L., A.M.N.); and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Christian F Singer
- From the Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria (O.Z., S.T.); Breast Health Center, Department of Obstetrics and Gynecology (A.F., E.A., C.F.S.), and High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy (L.M., M.W., S.T.), Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (S.L., A.M.N.); and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Siegfried Trattnig
- From the Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria (O.Z., S.T.); Breast Health Center, Department of Obstetrics and Gynecology (A.F., E.A., C.F.S.), and High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy (L.M., M.W., S.T.), Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (S.L., A.M.N.); and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| |
Collapse
|
40
|
Lachner S, Utzschneider M, Zaric O, Minarikova L, Ruck L, Zbýň Š, Hensel B, Trattnig S, Uder M, Nagel AM. Compressed sensing and the use of phased array coils in 23Na MRI: a comparison of a SENSE-based and an individually combined multi-channel reconstruction. Z Med Phys 2021; 31:48-57. [PMID: 33183893 DOI: 10.1016/j.zemedi.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To implement and to evaluate a compressed sensing (CS) reconstruction algorithm based on the sensitivity encoding (SENSE) combination scheme (CS-SENSE), used to reconstruct sodium magnetic resonance imaging (23Na MRI) multi-channel breast data sets. METHODS In a simulation study, the CS-SENSE algorithm was tested and optimized by evaluating the structural similarity (SSIM) and the normalized root-mean-square error (NRMSE) for different regularizations and different undersampling factors (USF=1.8/3.6/7.2/14.4). Subsequently, the algorithm was applied to data from in vivo measurements of the healthy female breast (n=3) acquired at 7T. Moreover, the proposed CS-SENSE algorithm was compared to a previously published CS algorithm (CS-IND). RESULTS The CS-SENSE reconstruction leads to an increased image quality for all undersampling factors and employed regularizations. Especially if a simple 2nd order total variation is chosen as sparsity transformation, the CS-SENSE reconstruction increases the image quality of highly undersampled data sets (CS-SENSE: SSIMUSF=7.2=0.234, NRMSEUSF=7.2=0.491 vs. CS-IND: SSIMUSF=7.2=0.201, NRMSEUSF=7.2=0.506). CONCLUSION The CS-SENSE reconstruction supersedes the need of CS weighting factors for each channel as well as a method to combine single channel data. The CS-SENSE algorithm can be used to reconstruct undersampled data sets with increased image quality. This can be exploited to reduce total acquisition times in 23Na MRI.
Collapse
Affiliation(s)
- Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olgica Zaric
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lenka Minarikova
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Štefan Zbýň
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
41
|
Reduced Graphene Oxides Modulate the Expression of Cell Receptors and Voltage-Dependent Ion Channel Genes of Glioblastoma Multiforme. Int J Mol Sci 2021; 22:ijms22020515. [PMID: 33419226 PMCID: PMC7825604 DOI: 10.3390/ijms22020515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (clcn3, clcn6, cacna1b, cacna1d, nalcn, kcne4, kcnj10, and kcnb1) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in clcn3, nalcn, and kcne4 after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.
Collapse
|
42
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
43
|
Chhetri A, Li X, Rispoli JV. Current and Emerging Magnetic Resonance-Based Techniques for Breast Cancer. Front Med (Lausanne) 2020; 7:175. [PMID: 32478083 PMCID: PMC7235971 DOI: 10.3389/fmed.2020.00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide, and early detection remains a principal factor for improved patient outcomes and reduced mortality. Clinically, magnetic resonance imaging (MRI) techniques are routinely used in determining benign and malignant tumor phenotypes and for monitoring treatment outcomes. Static MRI techniques enable superior structural contrast between adipose and fibroglandular tissues, while dynamic MRI techniques can elucidate functional characteristics of malignant tumors. The preferred clinical procedure-dynamic contrast-enhanced MRI-illuminates the hypervascularity of breast tumors through a gadolinium-based contrast agent; however, accumulation of the potentially toxic contrast agent remains a major limitation of the technique, propelling MRI research toward finding an alternative, noninvasive method. Three such techniques are magnetic resonance spectroscopy, chemical exchange saturation transfer, and non-contrast diffusion weighted imaging. These methods shed light on underlying chemical composition, provide snapshots of tissue metabolism, and more pronouncedly characterize microstructural heterogeneity. This review article outlines the present state of clinical MRI for breast cancer and examines several research techniques that demonstrate capacity for clinical translation. Ultimately, multi-parametric MRI-incorporating one or more of these emerging methods-presently holds the best potential to afford improved specificity and deliver excellent accuracy to clinics for the prediction, detection, and monitoring of breast cancer.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Magnetic Resonance Biomedical Engineering Laboratory, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Xin Li
- Magnetic Resonance Biomedical Engineering Laboratory, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph V. Rispoli
- Magnetic Resonance Biomedical Engineering Laboratory, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Center for Cancer Research, Purdue University, West Lafayette, IN, United States
- School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
44
|
Poku LO, Phil M, Cheng Y, Wang K, Sun X. 23 Na-MRI as a Noninvasive Biomarker for Cancer Diagnosis and Prognosis. J Magn Reson Imaging 2020; 53:995-1014. [PMID: 32219933 PMCID: PMC7984266 DOI: 10.1002/jmri.27147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
The influx of sodium (Na+) ions into a resting cell is regulated by Na+ channels and by Na+/H+ and Na+/Ca2+ exchangers, whereas Na+ ion efflux is mediated by the activity of Na+/K+‐ATPase to maintain a high transmembrane Na+ ion gradient. Dysfunction of this system leads to changes in the intracellular sodium concentration that promotes cancer metastasis by mediating invasion and migration. In addition, the accumulation of extracellular Na+ ions in cancer due to inflammation contributes to tumor immunogenicity. Thus, alterations in the Na+ ion concentration may potentially be used as a biomarker for malignant tumor diagnosis and prognosis. However, current limitations in detection technology and a complex tumor microenvironment present significant challenges for the in vivo assessment of Na+ concentration in tumor. 23Na‐magnetic resonance imaging (23Na‐MRI) offers a unique opportunity to study the effects of Na+ ion concentration changes in cancer. Although challenged by a low signal‐to‐noise ratio, the development of ultrahigh magnetic field scanners and specialized sodium acquisition sequences has significantly advanced 23Na‐MRI. 23Na‐MRI provides biochemical information that reflects cell viability, structural integrity, and energy metabolism, and has been shown to reveal rapid treatment response at the molecular level before morphological changes occur. Here we review the basis of 23Na‐MRI technology and discuss its potential as a direct noninvasive in vivo diagnostic and prognostic biomarker for cancer therapy, particularly in cancer immunotherapy. We propose that 23Na‐MRI is a promising method with a wide range of applications in the tumor immuno‐microenvironment research field and in cancer immunotherapy monitoring. Level of Evidence 2 Technical Efficacy Stage 2
Collapse
Affiliation(s)
| | - M Phil
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yongna Cheng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
45
|
Djamgoz MBA. Hyponatremia and Cancer Progression: Possible Association with Sodium-Transporting Proteins. Bioelectricity 2020; 2:14-20. [PMID: 34471833 DOI: 10.1089/bioe.2019.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyponatremia, the phenomenon of serum sodium level falling below 135 mmol/L, is seen frequently in cancer patients and has been correlated with poor prognosis. Hyponatremia has classically been attributed to the "syndrome of inappropriate antidiuretic hormone secretion," leading to prolonged fluid retention. However, this is unlikely to be the only mechanism. In this study, we advance the hypothesis that upregulation of various sodium-transporting proteins during the cancer process makes a significant contribution to the pathophysiology of cancer-associated hyponatremia. Such sodium-transporting proteins include voltage-gated sodium channels, especially its hypoxia-promoted persistent current, epithelial sodium channels, and transient receptor potential channels. Thus, hyponatremia follows cancer, whereby drop in blood serum level occurs as a result of uptake of sodium from extracellular fluid by cancer cells. Indeed, the sodium content of cancer cells/tissues is higher than normal. In turn, the rise in the intracellular sodium concentration brings about a range of cellular effects, including extracellular acidification that promotes invasiveness and thus leads to poor prognosis. This perspective offers novel therapies for cancer and the associated hyponatremia.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom.,Biotechnology Research Centre, Cyprus International University, Lefkosa, North Cyprus
| |
Collapse
|
46
|
Amouzandeh G, Mentink-Vigier F, Helsper S, Bagdasarian FA, Rosenberg JT, Grant SC. Magnetic resonance electrical property mapping at 21.1 T: a study of conductivity and permittivity in phantoms, ex vivo tissue and in vivo ischemia. Phys Med Biol 2020; 65:055007. [PMID: 31307020 PMCID: PMC7223161 DOI: 10.1088/1361-6560/ab3259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrical properties (EP), namely conductivity and permittivity, can provide endogenous contrast for tissue characterization. Using electrical property tomography (EPT), maps of EP can be generated from conventional MRI data. This report investigates the feasibility and accuracy of EPT at 21.1 T for multiple RF coils and modes of operation using phantoms. Additionally, it demonstrates the EP of the in vivo rat brain with and without ischemia. Helmholtz-based EPT was implemented in its Full-form, which demands the complex [Formula: see text] field, and a simplified form requiring either just the [Formula: see text] field phase for conductivity or the [Formula: see text] field magnitude for permittivity. Experiments were conducted at 21.1 T using birdcage and saddle coils operated in linear or quadrature transceive mode, respectively. EPT approaches were evaluated using a phantom, ex and in vivo Sprague-Dawley rats under naïve conditions and ischemic stroke via transient middle cerebral artery occlusion. Different conductivity reconstruction approaches applied to the phantom displayed average errors of 12%-73% to the target acquired from dielectric probe measurements. Permittivity reconstructions showed higher agreement and an average 3%-8% error to the target depending on reconstruction approach. Conductivity and permittivity of ex and in vivo rodent brain were measured. Elevated EP in the ischemia region correlated with the increased sodium content and the influx of water intracellularly following ischemia in the lesion were detected. The Full-form technique generated from the linear birdcage provided the best accuracy for EP of the phantom. Phase-based conductivity and magnitude-based permittivity mapping provided reasonable estimates but also demonstrated the limitations of Helmholtz-based EPT at 21.1 T. Permittivity reconstruction was improved significantly over lower fields, suggesting a novel metric for in vivo brain studies. EPT applied to ischemic rat brain proved sensitivity to physiological changes, motivating the future application of more advanced reconstruction approaches.
Collapse
Affiliation(s)
- Ghoncheh Amouzandeh
- Department of Physics, Florida State University, Tallahassee, FL, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Shannon Helsper
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - F. Andrew Bagdasarian
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Jens T. Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Samuel C. Grant
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| |
Collapse
|
47
|
Elingaard-Larsen LO, Rolver MG, Sørensen EE, Pedersen SF. How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression. Rev Physiol Biochem Pharmacol 2020; 182:1-38. [PMID: 32737753 DOI: 10.1007/112_2020_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors comprise two major components: the cancer cells and the tumor stroma. The stroma is a mixture of cellular and acellular components including fibroblasts, mesenchymal and cancer stem cells, endothelial cells, immune cells, extracellular matrix, and tumor interstitial fluid. The insufficient tumor perfusion and the highly proliferative state and dysregulated metabolism of the cancer cells collectively create a physicochemical microenvironment characterized by altered nutrient concentrations and varying degrees of hypoxia and acidosis. Furthermore, both cancer and stromal cells secrete numerous growth factors, cytokines, and extracellular matrix proteins which further shape the tumor microenvironment (TME), favoring cancer progression.Transport proteins expressed by cancer and stromal cells localize at the interface between the cells and the TME and are in a reciprocal relationship with it, as both sensors and modulators of TME properties. It has been amply demonstrated how acid-base and nutrient transporters of cancer cells enable their growth, presumably by contributing both to the extracellular acidosis and the exchange of metabolic substrates and waste products between cells and TME. However, the TME also impacts other transport proteins important for cancer progression, such as multidrug resistance proteins. In this review, we summarize current knowledge of the cellular and acellular components of solid tumors and their interrelationship with key ion transport proteins. We focus in particular on acid-base transport proteins with known or proposed roles in cancer development, and we discuss their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
- Line O Elingaard-Larsen
- Translational Type 2 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ester E Sørensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Gradek F, Lopez-Charcas O, Chadet S, Poisson L, Ouldamer L, Goupille C, Jourdan ML, Chevalier S, Moussata D, Besson P, Roger S. Sodium Channel Na v1.5 Controls Epithelial-to-Mesenchymal Transition and Invasiveness in Breast Cancer Cells Through its Regulation by the Salt-Inducible Kinase-1. Sci Rep 2019; 9:18652. [PMID: 31819138 PMCID: PMC6901527 DOI: 10.1038/s41598-019-55197-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Loss of epithelial polarity and gain in invasiveness by carcinoma cells are critical events in the aggressive progression of cancers and depend on phenotypic transition programs such as the epithelial-to-mesenchymal transition (EMT). Many studies have reported the aberrant expression of voltage-gated sodium channels (NaV) in carcinomas and specifically the NaV1.5 isoform, encoded by the SCN5A gene, in breast cancer. NaV1.5 activity, through an entry of sodium ions, in breast cancer cells is associated with increased invasiveness, but its participation to the EMT has to be clarified. In this study, we show that reducing the expression of NaV1.5 in highly aggressive human MDA-MB-231 breast cancer cells reverted the mesenchymal phenotype, reduced cancer cell invasiveness and the expression of the EMT-promoting transcription factor SNAI1. The heterologous expression of NaV1.5 in weakly invasive MCF-7 breast cancer cells induced their expression of both SNAI1 and ZEB1 and increased their invasive capacities. In MCF-7 cells the stimulation with the EMT-activator signal TGF-β1 increased the expression of SCN5A. Moreover, the reduction of the salt-inducible kinase 1 (SIK1) expression promoted NaV1.5-dependent invasiveness and expression of EMT-associated transcription factor SNAI1. Altogether, these results indicated a prominent role of SIK1 in regulating NaV1.5-dependent EMT and invasiveness.
Collapse
Affiliation(s)
- Frédéric Gradek
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France
| | - Osbaldo Lopez-Charcas
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France
| | - Lucile Poisson
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France.,Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France
| | - Lobna Ouldamer
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Caroline Goupille
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Marie-Lise Jourdan
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Stéphan Chevalier
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France
| | - Driffa Moussata
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Pierre Besson
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
49
|
Feasibility study of a double resonant (1H/23Na) abdominal RF setup at 3 T. Z Med Phys 2019; 29:359-367. [DOI: 10.1016/j.zemedi.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/14/2018] [Accepted: 12/08/2018] [Indexed: 01/27/2023]
|
50
|
Leslie TK, James AD, Zaccagna F, Grist JT, Deen S, Kennerley A, Riemer F, Kaggie JD, Gallagher FA, Gilbert FJ, Brackenbury WJ. Sodium homeostasis in the tumour microenvironment. Biochim Biophys Acta Rev Cancer 2019; 1872:188304. [PMID: 31348974 PMCID: PMC7115894 DOI: 10.1016/j.bbcan.2019.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The concentration of sodium ions (Na+) is raised in solid tumours and can be measured at the cellular, tissue and patient levels. At the cellular level, the Na+ gradient across the membrane powers the transport of H+ ions and essential nutrients for normal activity. The maintenance of the Na+ gradient requires a large proportion of the cell's ATP. Na+ is a major contributor to the osmolarity of the tumour microenvironment, which affects cell volume and metabolism as well as immune function. Here, we review evidence indicating that Na+ handling is altered in tumours, explore our current understanding of the mechanisms that may underlie these alterations and consider the potential consequences for cancer progression. Dysregulated Na+ balance in tumours may open opportunities for new imaging biomarkers and re-purposing of drugs for treatment.
Collapse
Affiliation(s)
- Theresa K Leslie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Andrew D James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Surrin Deen
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Aneurin Kennerley
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|