1
|
Hsu CY, Rab SO, Zwamel AH, Oghenemaro EF, Chandra M, Rajotiya S, Hjazi A, Prasad K, Atteri S, Chauhan AS. From diagnosis to therapy: The role of LncRNA GAS5 in combatting some cancers affecting women. Gene 2025; 941:149217. [PMID: 39756550 DOI: 10.1016/j.gene.2025.149217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Long non-coding RNAs (lncRNAs) are a collection of non-coding RNA molecules that consist of more than 200 nucleotides. In human malignancies, these lncRNAs exhibit abnormal expression patterns and play a significant role in either suppressing or promoting tumor growth. They achieve this by modulating various functions and mechanisms within cancer cells, including proliferation, invasion, metastasis, apoptosis, and resistance to different therapeutic approaches. The downregulation of long non-coding RNA growth arrest‑specific transcript 5 (GAS5) has been observed in multiple tumor types, indicating its role as a tumor suppressor in cancer. GAS5 exhibits interactions with various proteins, DNA, and microRNAs (miRNAs), leading to the upregulation of several mRNAs encoding suppressor proteins like PTEN. Consequently, this upregulation inhibits tumor growth. In this review, we have examined the existing literature concerning the expression of GAS5 and its diagnostic significance in female tissue-specific cancers, including breast, cervical, ovarian, and endometrial cancers. Additionally, we have explored its interactions with different miRNAs and its impact on cancer progression and resistance to therapy in these malignancies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics,Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Kdv Prasad
- Symbiosis Institute of Business Management, Hyderabad; Symbiosis International (Deemed University), Pune, India
| | - Shikha Atteri
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Hussen BM, Othman DI, Abdullah SR, Khudhur ZO, Samsami M, Taheri M. New insights of LncRNAs fingerprints in breast cancer progression: Tumorigenesis, drug resistance, and therapeutic opportunities. Int J Biol Macromol 2025; 287:138589. [PMID: 39662549 DOI: 10.1016/j.ijbiomac.2024.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is one of the common female cancers and it is characterized by considerable problems regarding its development and therapy. Long non-coding RNAs (lncRNAs) have been identified as significant modulators in BC development, especially, in tumorigenicity and chemoresistance. We therefore endeavor to present an up-to-date understanding of lncRNAs and their impact on BC progression and treatment, concerning molecular processes, treatment options, and use as a therapeutic opportunity. LncRNAs are novel regulators of genes that cause therapeutic resistance and directly impact the functioning of both coding and non-coding genes in BC patients, but little is known about their mechanisms of actions. Thus, additional study is required to have a deeper understanding of their modes of action and possible roles in BC disease. This study aims to investigate the functions of lncRNAs in the development of BC, with particular attention to their role in tumorigenesis, drug resistance mechanisms, and therapeutic targets. This will help to identify novel therapeutic targets and improve the effectiveness of BC treatment.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Diyar Idris Othman
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chen W, Pan Z, Feng Z, Wang X, Zhu S. Deciphering the code: the pivotal role of lncRNAs in advancing TNBC therapy. Front Oncol 2024; 14:1450980. [PMID: 39286016 PMCID: PMC11402698 DOI: 10.3389/fonc.2024.1450980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most formidable subtype of breast cancer, characterized by a notable dearth in targeted therapeutic options. Deciphering the underlying molecular mechanisms of TNBC is pivotal for improving patient outcomes. Recent scientific advancements have spotlighted long non-coding RNAs (lncRNAs) as key players in the genesis, progression, and metastasis of cancers. This review delineates the significant influence of lncRNAs on the advancement, detection, and neoadjuvant chemotherapy efficacy in TNBC, detailing the diverse expression patterns of aberrant lncRNAs. The paper explores the specific mechanisms by which lncRNAs regulate gene expression in both the nucleus and cytoplasm, with a special focus on their involvement in TNBC's post-transcriptional landscape. Thorough investigations into TNBC-associated lncRNAs not only forge new avenues for early diagnosis and potent treatment strategies but also highlight these molecules as promising therapeutic targets, heralding an era of personalized and precision medicine in TNBC management.
Collapse
Affiliation(s)
- Weiping Chen
- Department of Respiratory, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zhiyong Pan
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Zhengfu Feng
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Xin Wang
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Song Zhu
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
4
|
Thangavelu L, Moglad E, Gupta G, Menon SV, Gaur A, Sharma S, Kaur M, Chahar M, Sivaprasad GV, Deorari M. GAS5 lncRNA: A biomarker and therapeutic target in breast cancer. Pathol Res Pract 2024; 260:155424. [PMID: 38909406 DOI: 10.1016/j.prp.2024.155424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is one of the most common causes of cancer-related mortality globally, and its aggressive phenotype results in poor treatment outcomes. Growth Arrest-Specific 5 long non-coding RNA has attracted considerable attention due to its pivotal function in apoptosis regulation and tumor aggressiveness in breast cancer. Gas5 enhances apoptosis by regulating apoptotic proteins, such as caspases and BCL2 family proteins, and the sensitivity of BCCs to chemotherapeutic agents. At the same time, low levels of GAS5 increased invasion, metastasis, and overall tumor aggressiveness. GAS5 also regulates EMT markers, critical for cancer metastasis, and influences tumor cell proliferation by regulating various signaling components. As a result, GAS5 can be restored to suppress tumor development as a possible therapeutic strategy, which might present promising prospects for a patient's treatment. Its activity levels might also be a crucial indicator and diagnostic parameter for prediction. This review highlights the significant role of GAS5 in modulating apoptosis and tumor aggressiveness in breast cancer, emphasizing its potential as a therapeutic target for breast cancer treatment and management.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
5
|
Alharthi NS, Al-Zahrani MH, Hazazi A, Alhuthali HM, Gharib AF, Alzahrani S, Altalhi W, Almalki WH, Khan FR. Exploring the lncRNA-VEGF axis: Implications for cancer detection and therapy. Pathol Res Pract 2024; 253:154998. [PMID: 38056133 DOI: 10.1016/j.prp.2023.154998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Cancer is a complicated illness that spreads indefinitely owing to epigenetic, genetic, and genomic alterations. Cancer cell multidrug susceptibility represents a severe barrier in cancer therapy. As a result, creating effective therapies requires a better knowledge of the mechanisms driving cancer development, progress, and resistance to medications. The human genome is predominantly made up of long non coding RNAs (lncRNAs), which are currently identified as critical moderators in a variety of biological functions. Recent research has found that changes in lncRNAs are closely related to cancer biology. The vascular endothelial growth factor (VEGF) signalling system is necessary for angiogenesis and vascular growth and has been related to an array of health illnesses, such as cancer. LncRNAs have been identified to alter a variety of cancer-related processes, notably the division of cells, movement, angiogenesis, and treatment sensitivity. Furthermore, lncRNAs may modulate immune suppression and are being investigated as possible indicators for early identification of cancer. Various lncRNAs have been associated with cancer development and advancement, serving as cancer-causing or suppressing genes. Several lncRNAs have been demonstrated through research to impact the VEGF cascade, resulting in changes in angiogenesis and tumor severity. For example, the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to foster the formation of oral squamous cell carcinoma and the epithelial-mesenchymal transition by stimulating the VEGF-A and Notch systems. Plasmacytoma variant translocation 1 (PVT1) promotes angiogenesis in non-small-cell lung cancer by affecting miR-29c and boosting the VEGF cascade. Furthermore, lncRNAs regulate VEGF production and angiogenesis by interacting with multiple downstream signalling networks, including Wnt, p53, and AKT systems. Identifying how lncRNAs engage with the VEGF cascade in cancer gives beneficial insights into tumor biology and possible treatment strategies. Exploring the complicated interaction between lncRNAs and the VEGF pathway certainly paves avenues for novel ways to detect better accurately, prognosis, and cure cancers. Future studies in this area could open avenues toward the creation of innovative cancer therapy regimens that enhance the lives of patients.
Collapse
Affiliation(s)
- Nahed S Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | | | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hayaa Moeed Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shatha Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Altalhi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences AlQuwayiyah, Shaqra University, Saudi Arabia.
| |
Collapse
|
6
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
7
|
Grossi I, Marchina E, De Petro G, Salvi A. The Biological Role and Translational Implications of the Long Non-Coding RNA GAS5 in Breast Cancer. Cancers (Basel) 2023; 15:3318. [PMID: 37444428 DOI: 10.3390/cancers15133318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The lncRNA GAS5 plays a significant role in tumorigenicity and progression of breast cancer (BC). In this review, we first summarize the role of GAS5 in cell biology, focusing on its expression data in human normal tissues. We present data on GAS5 expression in human BC tissues, highlighting its downregulation in all major BC classes. The main findings regarding the molecular mechanisms underlying GAS5 dysregulation are discussed, including DNA hypermethylation of the CpG island located in the promoter region of the gene. We focused on the action of GAS5 as a miRNA sponge, which is able to sequester microRNAs and modulate the expression levels of their mRNA targets, particularly those involved in cell invasion, apoptosis, and drug response. In the second part, we highlight the translational implications of GAS5 in BC. We discuss the current knowledge on the role of GAS5 as candidate prognostic factor, a responsive molecular therapeutic target, and a circulating biomarker in liquid biopsies with clinical importance in BC. The findings position GAS5 as a promising druggable biomolecule and stimulate the development of strategies to restore its expression levels for novel therapeutic approaches that could benefit BC patients in the future.
Collapse
Affiliation(s)
- Ilaria Grossi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eleonora Marchina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
8
|
Deploey N, Van Moortel L, Rogatsky I, Peelman F, De Bosscher K. The Biologist's Guide to the Glucocorticoid Receptor's Structure. Cells 2023; 12:1636. [PMID: 37371105 PMCID: PMC10297449 DOI: 10.3390/cells12121636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The glucocorticoid receptor α (GRα) is a member of the nuclear receptor superfamily and functions as a glucocorticoid (GC)-responsive transcription factor. GR can halt inflammation and kill off cancer cells, thus explaining the widespread use of glucocorticoids in the clinic. However, side effects and therapy resistance limit GR's therapeutic potential, emphasizing the importance of resolving all of GR's context-specific action mechanisms. Fortunately, the understanding of GR structure, conformation, and stoichiometry in the different GR-controlled biological pathways is now gradually increasing. This information will be crucial to close knowledge gaps on GR function. In this review, we focus on the various domains and mechanisms of action of GR, all from a structural perspective.
Collapse
Affiliation(s)
- Nick Deploey
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Z. Rosensweig Genomics Center, New York, NY 10021, USA;
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Frank Peelman
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| |
Collapse
|
9
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
10
|
Hodeib H, El Amrousy D, Elaskary E, Hablas N, Youssef A, Abdelhai D. lncRNA GAS5 and RUNX1 Genes in Children With Primary Immune Thrombocytopenia. J Pediatr Hematol Oncol 2023; 45:e395-e400. [PMID: 36731007 DOI: 10.1097/mph.0000000000002580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/25/2022] [Indexed: 02/04/2023]
Abstract
We aimed to evaluate the expression levels and the prognostic value of growth arrest specific 5 (GAS5) and runt-related transcription factor 1 (RUNX1) genes in children with ITP. This prospective cohort study included 100 patients with newly diagnosed ITP (patient group) and 100 healthy children of matched age and sex (control group). We evaluated the expression levels of both GAS5 and RUNX1 genes at the time of diagnosis before the introduction of treatment. GAS5 was under-expressed, while RUNX1 was over-expressed among the newly diagnosed ITP children compared with the control group. Patients with GAS5 levels >0.50 had a significantly faster recovery compared with patients with levels≤0.50 while patients with levels of RUNX1≤2.6 had a significantly faster recovery compared with patients with levels >2.6. The best cut-off values of GAS5 and RUNX1 to predict complete recovery of ITP were ˃0.40 and ˂3.18, respectively, yielding a sensitivity of 76.47% and 79.41%, respectively. The best cut-off values of GAS5 and RUNX1 expression that predict chronic ITP were ˂0.17 and ˃4.1, respectively, yielding sensitivity of 88.89% and 77.78%, respectively. GAS5 and RUNX1 could be useful markers in children with primary ITP to predict disease course.
Collapse
Affiliation(s)
| | - Doaa El Amrousy
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Elaskary
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nahed Hablas
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | |
Collapse
|
11
|
Patel RS, Lui A, Hudson C, Moss L, Sparks RP, Hill SE, Shi Y, Cai J, Blair LJ, Bickford PC, Patel NA. Small molecule targeting long noncoding RNA GAS5 administered intranasally improves neuronal insulin signaling and decreases neuroinflammation in an aged mouse model. Sci Rep 2023; 13:317. [PMID: 36609440 PMCID: PMC9822944 DOI: 10.1038/s41598-022-27126-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Shifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic. Robust techniques such as molecular dynamics simulation of NPC86 binding to GAS5, in vitro functional assays demonstrating that GAS5 regulates insulin signaling, neuronal survival, phosphorylation of tau, and neuroinflammation via toll-like receptors support the role of GAS5 in maintaining healthy neurons. The study demonstrates the safety and efficacy of intranasal NPC86 treatment in aged mice to improve cellular functions with transcriptomic analysis in response to NPC86. In summary, the study demonstrates that GAS5 contributes to pathways associated with neurodegeneration and NPC86 has tremendous therapeutic potential to prevent the advent of neurodegenerative diseases and dementias.
Collapse
Affiliation(s)
- Rekha S. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Ashley Lui
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Charles Hudson
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Lauren Moss
- grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Robert P. Sparks
- Present Address: UMass Chan Medical School, Worcester, MA 01655 USA
| | - Shannon E. Hill
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Yan Shi
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Jianfeng Cai
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Laura J. Blair
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Paula C. Bickford
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Niketa A. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
12
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| |
Collapse
|
13
|
Modulation of non-coding RNAs by natural compounds as a potential therapeutical approach in oral cancer: A comprehensive review. Pathol Res Pract 2022; 239:154166. [DOI: 10.1016/j.prp.2022.154166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022]
|
14
|
Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer. Mol Cell Biochem 2022; 477:1817-1828. [PMID: 35332394 DOI: 10.1007/s11010-022-04412-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022]
Abstract
CRC is the third most common cancer occurring worldwide and the second leading cause of cancer deaths. In the year 2020, 1,931,590 new cases of CRC and 935,173 deaths were reported. The last two decades have witnessed an intensive study of noncoding RNAs and their implications in various pathological conditions including cancer. Noncoding RNAs such as miRNAs, tsRNAs, piRNAs, lncRNAs, pseudogenes, and circRNAs have emerged as promising prognostic and diagnostic biomarkers in preclinical studies of cancer. Some of these noncoding RNAs have also been shown as promising therapeutic targets for cancer treatment. In this review, we have discussed the emerging roles of various types of noncoding RNAs in CRC and their future implications in colorectal cancer management and research.
Collapse
|
15
|
Heydarnezhad Asl M, Pasban Khelejani F, Bahojb Mahdavi SZ, Emrahi L, Jebelli A, Mokhtarzadeh A. The various regulatory functions of long noncoding RNAs in apoptosis, cell cycle, and cellular senescence. J Cell Biochem 2022; 123:995-1024. [PMID: 35106829 DOI: 10.1002/jcb.30221] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding cellular RNAs involved in significant biological phenomena such as differentiation, cell development, genomic imprinting, adjusting the enzymatic activity, regulating chromosome conformation, apoptosis, cell cycle, and cellular senescence. The misregulation of lncRNAs interrupting normal biological processes has been implicated in tumor formation and metastasis, resulting in cancer. Apoptosis and cell cycle, two main biological phenomena, are highly conserved and intimately coupled mechanisms. Hence, some cell cycle regulators can influence both programmed cell death and cell division. Apoptosis eliminates defective and unwanted cells, and the cell cycle enables cells to replicate themselves. The improper regulation of apoptosis and cell cycle contributes to numerous disorders such as neurodegenerative and autoimmune diseases, viral infection, anemia, and mainly cancer. Cellular senescence is a tumor-suppressing response initiated by environmental and internal stress factors. This phenomenon has recently attained more attention due to its therapeutic implications in the field of senotherapy. In this review, the regulatory roles of lncRNAs on apoptosis, cell cycle, and senescence will be discussed. First, the role of lncRNAs in mitochondrial dynamics and apoptosis is addressed. Next, the interaction between lncRNAs and caspases, pro/antiapoptotic proteins, and also EGFR/PI3K/PTEN/AKT/mTORC1 signaling pathway will be investigated. Furthermore, the effect of lncRNAs in the cell cycle is surveyed through interaction with cyclins, cdks, p21, and wnt/β-catenin/c-myc pathway. Finally, the function of essential lncRNAs in cellular senescence is mentioned.
Collapse
Affiliation(s)
| | - Faezeh Pasban Khelejani
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Leila Emrahi
- Department of Medical Genetics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Dong Q, Long X, Cheng J, Wang W, Tian Q, Di W. LncRNA GAS5 suppresses ovarian cancer progression by targeting the miR-96-5p/PTEN axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1770. [PMID: 35071464 PMCID: PMC8756204 DOI: 10.21037/atm-21-6134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022]
Abstract
Background Long non-coding RNAs (lncRNAs) play critical roles in the occurrence and progression of various tumors, including ovarian cancer (OC). The lncRNA growth arrest-specific transcript 5 (GAS5) has been shown to be an important modulator in the growth and metastasis of OC cells. Our previous studies confirmed that GAS5 was down-regulated in OC; however, the potential underlying molecular mechanism underlying has not yet been elucidated. Methods We screened the Gene Expression Profiling Interactive Analysis (GEPIA) database for the expression of the lncRNA GAS5 in OC. Cell Counting Kit-8 (CCK-8), transwell assay, colony formation assay, flow cytometry analysis, and western blotting were applied to determine the various functions of GAS5 in OC progression. The competing endogenous RNA (ceRNA) mechanism was verified through bioinformatics analysis, dual-spectral luciferase reporter gene assay, and RNA immunoprecipitation assay (RIPA). Finally, the expression interactions between microRNA-96-5p, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and GAS5 were measured. Results Our results demonstrated decreased expression levels of GAS5 and PTEN in OC samples and cell lines, while miR-96-5p was up-regulated when compared with the controls. GAS5 overexpression could significantly reduce OC cell proliferation and invasion ability via suppression of miR-96-5p expression. Moreover, GAS5 could influence the PTEN/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Conclusions Our study identified GAS5 as a ceRNA that can regulate the PTEN/AKT/mTOR axis by sponging miR-96-5p in OC.
Collapse
Affiliation(s)
- Qian Dong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoran Long
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Tian
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Homayoonfal M, Asemi Z, Yousefi B. Targeting long non coding RNA by natural products: Implications for cancer therapy. Crit Rev Food Sci Nutr 2021:1-29. [PMID: 34783279 DOI: 10.1080/10408398.2021.2001785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In spite of achieving substantial progress in its therapeutic strategies, cancer-associated prevalence and mortality are persistently rising globally. However, most malignant cancers either cannot be adequately diagnosed at the primary phase or resist against multiple treatments such as chemotherapy, surgery, radiotherapy as well as targeting therapy. In recent decades, overwhelming evidences have provided more convincing words on the undeniable roles of long non-coding RNAs (lncRNAs) in incidence and development of various cancer types. Recently, phytochemical and nutraceutical compounds have received a great deal of attention due to their inhibitory and stimulatory effects on oncogenic and tumor suppressor lncRNAs respectively that finally may lead to attenuate various processes of cancer cells such as growth, proliferation, metastasis and invasion. Therefore, application of phytochemicals with anticancer characteristics can be considered as an innovative approach for treating cancer and increasing the sensitivity of cancer cells to standard prevailing therapies. The purpose of this review was to investigate the effect of various phytochemicals on regulation of lncRNAs in different human cancer and evaluate their capabilities for cancer treatment and prevention.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Muluhngwi P, Klinge CM. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers (Basel) 2021; 13:3530. [PMID: 34298743 PMCID: PMC8307416 DOI: 10.3390/cancers13143530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor α (ERα) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
19
|
Ahadi A. Functional roles of lncRNAs in the pathogenesis and progression of cancer. Genes Dis 2021; 8:424-437. [PMID: 34179307 PMCID: PMC8209321 DOI: 10.1016/j.gendis.2020.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as regulators of gene expression and pivotal transcriptional regulators in cancer cells via diverse mechanisms. lncRNAs involves a variety of pathological and biological activities, such as apoptosis, cell proliferation, metastasis, and invasion. By using microarray and RNA sequencing, it was identified that dysregulation of lncRNAs affects the tumorigenesis process. Taken together, these lncRNAs are putative biomarker and therapeutic target in human malignancies. In this review, I discuss the latest finding regarding the dysregulation of some important lncRNAs and their diverse mechanisms of these lncRNAs in the pathogenesis and progression of certain cancers; also, I summarize the possible roles of lncRNAs in clinical application for diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198396-3113, Iran
| |
Collapse
|
20
|
Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Pronina IV, Lukina SS, Dmitriev AA, Braga EA. Long Noncoding RNA GAS5 in Breast Cancer: Epigenetic Mechanisms and Biological Functions. Int J Mol Sci 2021; 22:ijms22136810. [PMID: 34202777 PMCID: PMC8267719 DOI: 10.3390/ijms22136810] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified as contributors to the development and progression of cancer through various functions and mechanisms. LncRNA GAS5 is downregulated in multiple cancers and acts as a tumor suppressor in breast cancer. GAS5 interacts with various proteins (e.g., E2F1, EZH2, and YAP), DNA (e.g., the insulin receptor promoter), and various microRNAs (miRNAs). In breast cancer, GAS5 binds with miR-21, miR-222, miR-221-3p, miR-196a-5p, and miR-378a-5p that indicates the presence of several elements for miRNA binding (MREs) in GAS5. Mediated by the listed miRNAs, GAS5 is involved in the upregulation of a number of mRNAs of suppressor proteins such as PTEN, PDCD4, DKK2, FOXO1, and SUFU. Furthermore, the aberrant promoter methylation is involved in the regulation of GAS5 gene expression in triple-negative breast cancer and some other carcinomas. GAS5 can stimulate apoptosis in breast cancer via diverse pathways, including cell death receptors and mitochondrial signaling pathways. GAS5 is also a key player in the regulation of some crucial signal pathways in breast cancer, such as PI3K/AKT/mTOR, Wnt/β-catenin, and NF-κB signaling. Through epigenetic and other mechanisms, GAS5 can increase sensitivity to multiple drugs and improve prognosis. GAS5 is thus a promising target in the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Svetlana S. Lukina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
- Correspondence:
| |
Collapse
|
21
|
Gowhari Shabgah A, Hejri Zarifi S, Mazloumi Kiapey SS, Ezzatifar F, Pahlavani N, Soleimani D, Mohammadian Haftcheshmeh S, Mohammadi H, Gholizadeh Navashenaq J. Curcumin and cancer; are long non-coding RNAs missing link? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:63-71. [PMID: 33894206 DOI: 10.1016/j.pbiomolbio.2021.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Despite significant signs of progress in cancer treatment over the past decade, either cancer prevalence or mortality continuously grow worldwide. Current anti-cancer agents show insignificant effectiveness, followed by serious side effects. It is important to find new, highly efficient pharmacological agents to increase cancer patients' clinical outcomes. Curcumin, a polyphenolic compound, has gained growing attention because of its anti-cancer properties. Curcumin can hinder the development, migration, and metastasis of cancer cells. The anti-cancer effects of curcumin are principally attributed to the regulation of several cellular signaling pathways, including MAPK/PI3K/Akt, Wnt/β-catenin, JAK/STAT, and NF-ĸB signaling pathways. Furthermore, curcumin can affect the expression and function of tumor-suppressive and oncogenic long non-coding RNAs (lncRNAs). In this study, we briefly reviewed the modulatory effect of curcumin on dysregulated tumor-supportive and tumor-suppressive lncRNAs in several cancers. It is hoped that a better understanding of curcumin's anti-cancer properties would pave the way for the development of a therapeutic approach in cancer.
Collapse
Affiliation(s)
| | - Sudiyeh Hejri Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Naseh Pahlavani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran; Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran; Students Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | |
Collapse
|
22
|
Marcu A, Nitusca D, Vaduva A, Baderca F, Cireap N, Coricovac D, Dehelean CA, Seclaman E, Ilina R, Marian C. Long Non-Coding RNA Expression in Laser Micro-Dissected Luminal A and Triple Negative Breast Cancer Tissue Samples-A Pilot Study. ACTA ACUST UNITED AC 2021; 57:medicina57040371. [PMID: 33921283 PMCID: PMC8069050 DOI: 10.3390/medicina57040371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023]
Abstract
Background and Objectives: Breast cancer (BC) remains one of the major causes of cancer death in women worldwide. The difficulties in assessing the deep molecular mechanisms involved in this pathology arise from its high complexity and diverse tissue subtypes. Long non-coding RNAs (lncRNAs) were shown to have great tissue specificity, being differentially expressed within the BC tissue subtypes. Materials and Methods: Herein, we performed lncRNA profiling by PCR array in triple negative breast cancer (TNBC) and luminal A tissue samples from 18 BC patients (nine TNBC and nine luminal A), followed by individual validation in BC tissue and cell lines. Tissue samples were previously archived in formalin-fixed paraffin-embedded (FFPE) samples, and the areas of interest were dissected using laser capture microdissection (LCM) technology. Results: Two lncRNAs (OTX2-AS1 and SOX2OT) were differentially expressed in the profiling analysis (fold change of 205.22 and 0.02, respectively, p < 0.05 in both cases); however, they did not reach statistical significance in the individual validation measurement (p > 0.05) when analyzed with specific individual assays. In addition, GAS5 and NEAT1 lncRNAs were individually assessed as they were previously described in the literature as being associated with BC. GAS5 was significantly downregulated in both TNBC tissues and cell lines compared to luminal A samples, while NEAT1 was significantly downregulated only in TNBC cells vs. luminal A. Conclusions: Therefore, we identified GAS5 lncRNA as having a differential expression in TNBC tissues and cells compared to luminal A, with possible implications in the molecular mechanisms of the TNBC subtype. This proof of principle study also suggests that LCM could be a useful technique for limiting the sample heterogeneity for lncRNA gene expression analysis in BC FFPE tissues. Future studies of larger cohort sizes are needed in order to assess the biomarker potential of lncRNA GAS5 in BC.
Collapse
Affiliation(s)
- Anca Marcu
- Department of Biochemistry and Pharmacology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr.2, 300041 Timişoara, Romania; (A.M.); (D.N.); (E.S.); (C.M.)
| | - Diana Nitusca
- Department of Biochemistry and Pharmacology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr.2, 300041 Timişoara, Romania; (A.M.); (D.N.); (E.S.); (C.M.)
| | - Adrian Vaduva
- Department of Microscopic Morphology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr.2, 300041 Timişoara, Romania; (A.V.); (F.B.)
| | - Flavia Baderca
- Department of Microscopic Morphology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr.2, 300041 Timişoara, Romania; (A.V.); (F.B.)
- Department of Pathology, Emergency City Hospital, 300041 Timişoara, Romania
| | - Natalia Cireap
- Department of Surgical Oncology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr.2, 300041 Timişoara, Romania;
- Department of Surgical Oncology, Municipal Hospital, Str. Gheorghe Dima Nr.5, 300254 Timişoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.C.); (C.A.D.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.C.); (C.A.D.)
| | - Edward Seclaman
- Department of Biochemistry and Pharmacology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr.2, 300041 Timişoara, Romania; (A.M.); (D.N.); (E.S.); (C.M.)
| | - Razvan Ilina
- Department of Surgical Oncology, Municipal Hospital, Str. Gheorghe Dima Nr.5, 300254 Timişoara, Romania
- Correspondence:
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr.2, 300041 Timişoara, Romania; (A.M.); (D.N.); (E.S.); (C.M.)
| |
Collapse
|
23
|
Zhu L, Zhou D, Guo T, Chen W, Ding Y, Li W, Huang Y, Huang J, Pan X. LncRNA GAS5 inhibits Invasion and Migration of Lung Cancer through influencing EMT process. J Cancer 2021; 12:3291-3298. [PMID: 33976738 PMCID: PMC8100807 DOI: 10.7150/jca.56218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/04/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Lung cancer is a malignant tumor in mammary gland epithelium with high morbidity and mortality among women worldwide. Long noncoding RNA GAS5 (GAS5) has been proved to be closely related with tumor progression. However, the influence of GAS5 on lung cancer and the specific mechanism remain unclear. Methods: Cell invasion, cell migration, cell apoptosis and cell cycle were investigated after transfection with pcDNA-GAS5 and sh-GAS5. Sizes of tumors were measured by establishing transplanted tumor model in vivo. E-cadherin and N-cadherin expressions were investigated. Results: Cell invasion and migration were inhibited markedly in GAS5 overexpressed cell line. Cell cycle results indicated that the percentage of S-phase cells was increased, and G2-phase was reduced in the GAS5 overexpression cell line. Tumor size was suppressed obviously after GAS5 overexpression treatment. GAS5 markedly inhibited the expression of E-cadherin and induced the expression of N-cadherin. GAS5 overexpression significantly inhibited lung cancer cell proliferation by increasing the E-cadherin and decreasing N-cadherin. Conclusions: These findings provide novel evidence that GAS5 can be viewed as an anti-lung cancer agent through affecting EMT pathway.
Collapse
Affiliation(s)
- Lihuan Zhu
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Dongsheng Zhou
- Department of Radiology, Fujian Provincial Hospital, Fuzhou, China
| | - Tianxing Guo
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Wenshu Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Yun Ding
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Wujing Li
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Yangyun Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Jianyuan Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaojie Pan
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
24
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
25
|
Liu G, Yuan C, Ma J, Pan Y, Xu H. Influence of Immune Microenvironment on Diagnosis and Prognosis of Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:604784. [PMID: 33816236 PMCID: PMC8010259 DOI: 10.3389/fonc.2021.604784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an immunosuppressive malignancy accompanied by noted alterations in various immune cells and cytokines. Recognition of the immune system's role in contributing to cancer development is an important advancement in our original understanding of carcinoma. We obtained HNSCC gene expression and clinical data from The Cancer Genome Atlas (TCGA) database. We assessed the relative proportion of 22 Infiltrating immune cell types in both HNSCC and adjacent non-cancer tissues using Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) method, identifying the influence of the immune cells content in tumor staging and survival prediction. We further predicted the tumor purity, and the presence of infiltrating stromal/immune cells in HNSCC tissues using Estimation of STromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, identifying its potential correlation with patient survival. Stromal and immune score-associated differentially expressed genes (DEGs) were subsequently verified and their roles in immune response were displayed by functional enrichment analysis and protein-protein interaction (PPI) network. Our research demonstrated the underlying association between the immune microenvironment and HNSCC, and the results were intended to serve as valuable terms for HNSCC diagnosis, prognosis, and targeted immune therapy.
Collapse
Affiliation(s)
- Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chunjue Yuan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jiaojiao Ma
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Zhang W, Guan X, Tang J. The long non-coding RNA landscape in triple-negative breast cancer. Cell Prolif 2021; 54:e12966. [PMID: 33314471 PMCID: PMC7848969 DOI: 10.1111/cpr.12966] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer that has a higher risk of distant recurrence and metastasis, leading to a relatively aggressive biological behaviour and poor outcome. So far, the clinical management of TNBC is challenging because of its heterogeneity and paucity of specific targeted therapy. Recently, various studies have identified a lot of differently expressed long non-coding RNAs (lncRNAs) in TNBC. Those lncRNAs have been reported to play important roles in the multistep process of TNBC tumorigenesis. Here, we review the biological characteristics of lncRNAs, and present the current state of knowledge concerning the expression, function and regulation of lncRNAs in TNBC. Accumulating studies explored the potential lncRNAs-based therapeutics in TNBC, including the techniques of genetic modification using antisense oligonucleotides, locked nucleic acid and RNA nanotechnology. In current review, we also discuss the future prospects of studies about lncRNAs in TNBC and development of lncRNA-based strategies for clinical TNBC patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiaoxiang Guan
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinhai Tang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
27
|
Yang C, Zhu H, Tan Y, Zhu R, Wu X, Li Y, Wang C. MALAT1 Promotes Tumorigenesis and Increases Cellular Sensitivity to Herceptin in HER2-positive Breast Cancer. Curr Cancer Drug Targets 2021; 21:860-869. [PMID: 34148540 DOI: 10.2174/1568009621666210618164300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The function of MALAT1, a long non-coding RNAs (lncRNA), in HER2- positive breast cancer remains largely unexplored. OBJECTIVES This study aimed to investigate the effect of MALAT1 on tumor development in HER2-positive breast cancer. METHODS We detected MALAT1 expression in HER2-positive breast cancer cells and tissues, and analyzed the effects of MALAT1 on cell proliferation in HER2-positive breast cancer cells lines (BT-474 and SKBR3). A mouse xenograft model was established for detecting the function of MALAT1 in HER2-positive breast cancer. RESULTS AND DISCUSSION As a result, MALAT1 was remarkably up-regulated in HER2-positive breast cancer both in cells and tissues. In addition, the silencing of MALAT1 inhibited the proliferation of HER2-positive breast cancer cells both in vitro and in vivo. Furthermore, knockdown of MALAT1 by shRNA down-regulated DNMT1, DNMT3a, and DNMT3b, while up-regulated BRCA1 and PTEN in HER2-positive breast cancer both in cell lines and mouse xenograft models. CONCLUSION In short, MALAT1 might be a potential biomarker and therapeutic target for HER2- positive breast cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Hongbo Zhu
- The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Yeru Tan
- The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Renjie Zhu
- East Hospital Affiliated to Tongji University, Shanghai 20012, China
| | - Xiaoping Wu
- The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Yuehua Li
- The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Cunchuan Wang
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
28
|
Elias-Rizk T, El Hajj J, Segal-Bendirdjian E, Hilal G. The long non coding RNA H19 as a biomarker for breast cancer diagnosis in Lebanese women. Sci Rep 2020; 10:22228. [PMID: 33335214 PMCID: PMC7747713 DOI: 10.1038/s41598-020-79285-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Minimally invasive percutaneous image-guided biopsies are the current cornerstone in the diagnosis of breast lesions detected on mammography/ultrasonography/MRI or palpable clinically. However, apparently benign breast disease seen on benign biopsies is a limiting factor for diagnosis and a risk factor of breast cancer especially in the high-risk category patients. Hypothesizing that molecular changes often occur before morphological variations, the levels of the LncRNA H19 were measured in anonymous tissues obtained from 79 women's image guided breast biopsies, and correlated with cancer progression and aggressiveness. Using a double-blinded approach, H19 might be attributed an interesting role of a more sensitive biomarker in core breast biopsies, independently of the radiological/clinical classification and distant from the clinical management. We established different thresholds for H19 levels in normal versus proliferative, versus malignant tissues. Additionnally, H19 could act as an intra-group risk marker categorizing the biopsies in normal versus benign, versus precancerous breast tissue, and as a prognostic factor in cancerous lesions discriminating aggressive versus nonaggressive lesions. Our study suggests that the lncRNA H19 could be a potential marker for breast cancer diagnosis, prognosis and risk management.
Collapse
Affiliation(s)
- Tamina Elias-Rizk
- School of Medicine, Lebanese American University, Beirut, Lebanon
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Mar Mikhaël, Beirut, Lebanon
| | - Joelle El Hajj
- Natural Sciences Department, Lebanese American University, Beirut, Lebanon
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Mar Mikhaël, Beirut, Lebanon
| | - Evelyne Segal-Bendirdjian
- Team: Cellular Homeostasis, Cancer, and Therapies, INSERM UMR-S 1124, Université de Paris, Paris, France
- Université de Paris, Paris Sorbonne Cité, Paris, France
- BioMedTech Facilities, CNRS UMS2009/INSERM US36, Université de Paris, Paris, France
| | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Mar Mikhaël, Beirut, Lebanon.
| |
Collapse
|
29
|
Zhang Y, Lu X, Yang M, Shangguan J, Yin Y. GAS5 knockdown suppresses inflammation and oxidative stress induced by oxidized low-density lipoprotein in macrophages by sponging miR-135a. Mol Cell Biochem 2020; 476:949-957. [PMID: 33128668 DOI: 10.1007/s11010-020-03962-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023]
Abstract
A large number of long non-coding RNAs have been confirmed to play vital roles in regulating various biological processes. Abnormal expression of growth arrest-specific transcript 5 (GAS5) is reported to be involved in the development of atherosclerosis (AS). This work is to explore the detailed mechanism underling how GAS5 regulates AS progression. We found that the abundance of GAS5 was markedly increased, and miR-135a was decreased in AS patient serums and ox-LDL-induced human THP-1 cells dose and time dependently. Interference of GAS5 suppressed inflammation and oxidative stress induced by ox-LDL in THP-1 cells. Mechanistically, GAS5 acted as a molecular sponge of microRNA-135a (miR-135a). Rescue assays indicated that knockdown of miR-135a partially rescued small interference RNA for GAS5-inhibited inflammatory cytokines release and oxidative stress in ox-LDL-triggered THP-1 cells. In conclusion, the absence of GAS5-inhibited inflammatory response and oxidative stress induced by ox-LDL in THP-1 cells via sponging miR-135a, providing a deep insight into the molecular target for AS treatment.
Collapse
Affiliation(s)
- Yunyan Zhang
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, No.150, Old Town Street, Linhai, Zhejiang, China
| | - Xianben Lu
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, No.150, Old Town Street, Linhai, Zhejiang, China
| | - Minjun Yang
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, No.150, Old Town Street, Linhai, Zhejiang, China
| | - Jiaolin Shangguan
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, No.150, Old Town Street, Linhai, Zhejiang, China
| | - Yanping Yin
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, No.150, Old Town Street, Linhai, Zhejiang, China.
| |
Collapse
|
30
|
Lambrou GI, Hatziagapiou K, Zaravinos A. The Non-Coding RNA GAS5 and Its Role in Tumor Therapy-Induced Resistance. Int J Mol Sci 2020; 21:ijms21207633. [PMID: 33076450 PMCID: PMC7588928 DOI: 10.3390/ijms21207633] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The growth arrest-specific transcript 5 (GAS5) is a >200-nt lncRNA molecule that regulates several cellular functions, including proliferation, apoptosis, invasion and metastasis, across different types of human cancers. Here, we reviewed the current literature on the expression of GAS5 in leukemia, cervical, breast, ovarian, prostate, urinary bladder, lung, gastric, colorectal, liver, osteosarcoma and brain cancers, as well as its interaction with various miRNAs and its effect on therapy-related resistance in these malignancies. The general consensus is that GAS5 acts as a tumor suppressor across different tumor types and that its up-regulation results in tumor sensitization to chemotherapy or radiotherapy. GAS5 seems to play a previously unappreciated, but significant role in tumor therapy-induced resistance.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Goudi, Athens, Greece;
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-7467427 (G.I.L.); +974-4403-7819 (A.Z.)
| | - Kyriaki Hatziagapiou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Goudi, Athens, Greece;
| | - Apostolos Zaravinos
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, 2713 Doha, Qatar
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-7467427 (G.I.L.); +974-4403-7819 (A.Z.)
| |
Collapse
|
31
|
Tu J, Huang W, Zhang W, Mei J, Zhu C. The emerging role of lncRNAs in chondrocytes from osteoarthritis patients. Biomed Pharmacother 2020; 131:110642. [PMID: 32927251 DOI: 10.1016/j.biopha.2020.110642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in many physiological and pathological processes, including osteoarthritis (OA). Recent studies have demonstrated that lncRNAs are involved in the pathogenesis of OA by affecting various essential cellular features of chondrocytes, such as proliferation, apoptosis, inflammation, and degradation of the extracellular matrix (ECM). However, there are only a limited number of studies in this area, indicating that the role of lncRNAs in OA may have been overlooked. The aim of this literature review is to summarize the versatile roles and molecular mechanisms of lncRNAs in chondrocytes involved in OA. At the end of this article, the function of the lncRNA HOX transcript antisense RNA (HOTAIR) in chondrocytes in OA is highlighted. Because lncRNAs affect proliferation, apoptosis, inflammatory responses, and ECM degradation by chondrocytes in OA, they may serve as potential biomarkers or therapeutic targets for the diagnosis or treatment of OA. The specific role and related mechanisms of lncRNAs in OA warrants further investigation.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weiwei Zhang
- Departments of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
32
|
Back to the Future: Rethinking the Great Potential of lncRNA S for Optimizing Chemotherapeutic Response in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12092406. [PMID: 32854207 PMCID: PMC7564391 DOI: 10.3390/cancers12092406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is one of the most fatal cancers in women worldwide. Currently, platinum- and taxane-based chemotherapy is the mainstay for the treatment of OC. Yet, the emergence of chemoresistance results in therapeutic failure and significant relapse despite a consistent rate of primary response. Emerging evidence substantiates the potential role of lncRNAs in determining the response to standard chemotherapy in OC. The objective of this narrative review is to provide an integrated, synthesized overview of the current state of knowledge regarding the role of lncRNAs in the emergence of resistance to platinum- and taxane-based chemotherapy in OC. In addition, we sought to develop conceptual frameworks for harnessing the therapeutic potential of lncRNAs in strategies aimed at enhancing the chemotherapy response of OC. Furthermore, we offered significant new perspectives and insights on the interplay between lncRNAs and the molecular circuitries implicated in chemoresistance to determine their impacts on therapeutic response. Although this review summarizes robust data concerning the involvement of lncRNAs in the emergence of acquired resistance to platinum- and taxane-based chemotherapy in OC, effective approaches for translating these lncRNAs into clinical practice warrant further investigation.
Collapse
|
33
|
Toraih EA, El-Wazir A, Ageeli EA, Hussein MH, Eltoukhy MM, Killackey MT, Kandil E, Fawzy MS. Unleash multifunctional role of long noncoding RNAs biomarker panel in breast cancer: a predictor classification model. Epigenomics 2020; 12:1215-1237. [PMID: 32812439 DOI: 10.2217/epi-2019-0291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: We aimed to explore the circulating expression profile of nine lncRNAs (MALAT1, HOTAIR, PVT1, H19, ROR, GAS5, ANRIL, BANCR, MIAT) in breast cancer (BC) patients relative to normal and risky individuals. Methods: Serum relative expressions of the specified long non-coding RNAs were quantified in 155 consecutive women, using quantitative reverse-transcription PCR. Random Forest (RF) and decision tree were also applied. Results: Significant MALAT1 upregulation and GAS5 downregulation could discriminate risky women from healthy controls. Overexpression of the other genes showed good diagnostic performances. Lower GAS5 levels were associated with metastasis and recurrence. RF model revealed a better performance when combining gene expression patterns with risk factors. Conclusion: The studied panel could be utilized as diagnostic/prognostic biomarkers in BC, providing promising epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Aya El-Wazir
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Mohammad H Hussein
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed M Eltoukhy
- College of Computing and Information Technology, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia.,Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt
| | - Mary T Killackey
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Emad Kandil
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| |
Collapse
|
34
|
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang T, Zhang H. Long Non-Coding Small Nucleolar RNA Host Genes (SNHGs) in Endocrine-Related Cancers. Onco Targets Ther 2020; 13:7699-7717. [PMID: 32848414 PMCID: PMC7417930 DOI: 10.2147/ott.s267140] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging regulators of a diverse range of biological processes through various mechanisms. Genome-wide association studies of tumor samples have identified several lncRNAs, which act as either oncogenes or tumor suppressors in various types of cancers. Small nucleolar RNAs (snoRNAs) are predominantly found in the nucleolus and function as guide RNAs for the processing of transcription. As the host genes of snoRNAs, lncRNA small nucleolar RNA host genes (SNHGs) have been shown to be abnormally expressed in multiple cancers and can participate in cell proliferation, tumor progression, metastasis, and chemoresistance. Here, we review the biological functions and emerging mechanisms of SNHGs involved in the development and progression of endocrine-related cancers including thyroid cancer, breast cancer, pancreatic cancer, ovarian cancer and prostate cancer.
Collapse
Affiliation(s)
- Yuan Qin
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Zhihong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Liang He
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| |
Collapse
|
35
|
Xu H, Sun X, Huang Y, Si Q, Li M. Long non‑coding RNA NEAT1 modifies cell proliferation, colony formation, apoptosis, migration and invasion via the miR‑4500/BZW1 axis in ovarian cancer. Mol Med Rep 2020; 22:3347-3357. [PMID: 32945505 PMCID: PMC7453653 DOI: 10.3892/mmr.2020.11408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) is a frequently occurring malignant tumor in women. Increasing evidence has indicated that long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) participates in OC pathogenesis. Thus, the aim of the present study was to explore the function of NEAT1 during OC progression. The expression levels of NEAT1, microRNA (miR)-4500 and basic leucine zipper and W2 domain-containing protein 1 (BZW1) were assessed via reverse transcription-quantitative PCR and western blotting. Furthermore, cell proliferation, colony formation, apoptosis, migration and invasion were assessed using Cell-Counting Kit 8, colony formation, flow cytometry and Transwell assays, respectively. Cell glycolysis was analyzed using an XF96 metabolic flux analyzer, and the relationship between miR-4500 and NEAT1 or BZW1 was verified via dual-luciferase reporter and RNA binding protein immunoprecipitation assays. miR-4500 expression levels were low, whereas NEAT1 expression levels were high in OC tissues and cell lines compared with control tissues and cell lines. Moreover, the results indicated that NEAT1 was a sponge of miR-4500, which directly targeted BZW1. NEAT1 knockdown induced OC cell apoptosis, and inhibited OC cell proliferation, colony formation, migration, invasion and glycolysis. miR-4500 inhibitor reversed NEAT1 knockdown-mediated effects. Similarly, miR-4500 mimic-mediated effects on cell functions were reversed by BZW1 overexpression. In addition, the results indicated that BZW1 expression was regulated by NEAT1 and miR-4500. Collectively, the present study suggested that NEAT1 modulated cell proliferation, colony formation, apoptosis, migration, invasion and glycolysis via the miR-4500/BZW1 axis in OC; therefore, NEAT1 may serve as a therapeutic target for OC.
Collapse
Affiliation(s)
- Hongying Xu
- Department of Gynecology, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaowei Sun
- Department of Internal Medicine, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Ying Huang
- Department of Gynecology, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qin Si
- Department of Nursing, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Maokun Li
- Department of Surgery, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
36
|
Saleh AA, Kasem HE, Zahran ES, El-Hefnawy SM. Cell-free long non-coding RNAs (LY86-AS1 & HCG27_201and GAS5) as biomarkers for pre-diabetes and type 2 DM in Egypt. Biochem Biophys Rep 2020; 23:100770. [PMID: 32514472 PMCID: PMC7267222 DOI: 10.1016/j.bbrep.2020.100770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/14/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Background Increasing interest has been focused on lncRNAs as potential markers in the pathogenesis and progression of numerous diseases. Aim We aimed to investigate the expression pattern and role of cell-free lncRNAs (GAS5, HCG27_201 and LY86-AS1) in pre-diabetic, diabetic and T2DM groups. Subjects & methods Quantification of the expression level of cell-free lncRNAs (GAS5, HCG27_201 and LY86-AS1) was performed by real-time PCR in 210 individuals classified in diabetic (T2DM), pre-diabetic and control groups. Results Significant differences were observed in the relative expression level of lncRNAs (GAS5, LY86-AS1 and HCG27_201) among the three studied groups. The LncRNA expression levels decreased gradually from the control to the pre-diabetic group and reached the lowest values in the T2DM group. The A receiver operating characteristic curve (ROC) was applied to identify a cut-off value for each of the three genes among our groups. The three lncRNAs showed promising results in discriminating between the diabetic patients and controls, with HCG27_201 gene expression having the best performance. Furthermore, lncRNA expression was able to predict the future development of DM in the pre-diabetics because ROC analysis among diabetics and pre-diabetics revealed considerable results. GAS5 gene expression showed the best performance. Additionally, HCG27_201 expression was the most valuable biomarker for differentiating between pre-diabetics and controls and presented a sensitivity of 91% and specificity of 64%. Conclusions We concluded that cell free lncRNAs (GAS5, LY86-AS1 and HCG27_201) could be considered promising diagnostic and predictive biomarkers for DM and that HCG27_201 could act as a potential diagnostic biomarker for pre-diabetes. lncRNAs are involved in T2DM pathological process. lncRNA showed ability to predict development of DM. GAS5, LY86-AS1 and HCG27_201 could be considered as diagnostic biomarkers for DM. The three studied lncRNA could also be considered as predictive biomarkers for DM. HCG27_201 could act as a potential diagnostic biomarker for pre-diabetes.
Collapse
Affiliation(s)
- Amany A Saleh
- Medical Biochemistry & Molecular Biology, Menoufia University, Egypt
| | - Heba E Kasem
- Internal Medicine Departments, Faculty of Medicine, Menoufia University, Egypt
| | - Enas S Zahran
- Internal Medicine Departments, Faculty of Medicine, Menoufia University, Egypt
| | | |
Collapse
|
37
|
Gu M, Zheng W, Zhang M, Dong X, Zhao Y, Wang S, Jiang H, Zheng X. LncRNA NONHSAT141924 promotes paclitaxel chemotherapy resistance through p-CREB/Bcl-2 apoptosis signaling pathway in breast cancer. J Cancer 2020; 11:3645-3654. [PMID: 32284761 PMCID: PMC7150466 DOI: 10.7150/jca.39463] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/29/2020] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is the most prevalent malignant neoplasm among women worldwide. Despite continuous improvement of breast cancer individualized comprehensive therapy, local recurrence and distant metastasis still remain the challenges due to the development of acquired drug-resistance. Long non-coding RNAs (LncRNAs) is known to participated in the development of breast cancer. However, the mechanisms of LncRNAs involving in drug-resistance of breast cancer during chemotherapy remain to be further elucidated. Aiming to screen for candidate LncRNAs responsible for breast cancer mechanism, we first investigated the expression patterns of LncRNAs and mRNAs in paired breast cancer tissues and normal tissues using Agilent Human lncRNA array. The microarray results clearly demonstrated multiple differentially expressed mRNAs and LncRNAs including LncRNA NONHSAT141924. The remarkable up-regulation of LncRNA NONHSAT141924 in breast cancer MCF-7 was further confirmed by quantitative real-time PCR. GO and KEGG pathway analysis demonstrated that LncRNA NONHSAT141924 was most closely associated with paclitaxel (PTX)-resistant phenotype. To further explore the mechanism by which LncRNA NONHSAT141924 contributes to PTX-resistant characteristics, LncRNA NONHSAT141924 was transfected into MCF-7 breast cancer cell line. Overexpression of LncRNA NONHSAT141924 significantly reduced MCF-7 cell survivability through modulation of p-CREB/Bcl-2 apoptosis signaling pathway, one of the major pathways participated in LncRNAs-mediated chemotherapy resistance. Taken together, our study provides a new LncRNA-mediated regulatory mechanism for PTX-resistance of breast cancer and suggests that therapeutic inhibition of LncRNA NONHSAT141924 might be an efficient strategy for PTX-resistant breast cancer treatment.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Wenhui Zheng
- Department of anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China
| | - Xiaoshen Dong
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Yan Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Shuo Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Haiyang Jiang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xinyu Zheng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China.,Lab 1, Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
38
|
He RZ, Jiang J, Luo DX. The functions of N6-methyladenosine modification in lncRNAs. Genes Dis 2020; 7:598-605. [PMID: 33335959 PMCID: PMC7729116 DOI: 10.1016/j.gendis.2020.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence indicates that mRNAs are often subject to posttranscriptional modifications. Among them, N6-methyladenosine (m6A), which has been shown to play key roles in RNA splicing, stability, nuclear export, and translation, is the most abundant modification of RNA. Extensive studies of m6A modification of mRNAs have been carried out, while little is known about m6A modification of long non-coding RNAs (lncRNAs). Recently, several studies reported m6A modification of lncRNAs. In this review, we focus on these m6A-modified lncRNAs and discuss possible functions of m6A modification.
Collapse
Affiliation(s)
- Rong-Zhang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, China
| | - Jing Jiang
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, China.,Center for Clinical Pathology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, People's Republic of China
| | - Di-Xian Luo
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, China.,Center for Clinical Pathology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, People's Republic of China
| |
Collapse
|
39
|
Liu P, Tang H, Wu J, Qiu X, Kong Y, Zhang L, Xie X, Xiao X. Linc01638 Promotes Tumorigenesis in HER2+ Breast Cancer. Curr Cancer Drug Targets 2020; 19:74-80. [PMID: 29992881 PMCID: PMC6327113 DOI: 10.2174/1568009618666180709163718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 11/22/2022]
Abstract
Background Long non‐coding RNAs play crucial roles in various biological activities and diseases. The role of long intergenic non‐coding RNA01638 (linc01638) in breast cancer, espe-cially in HER2-positive breast cancer, remains largely unknown. Objective To investigate the effect of linc01638 on tumorigenesis in HER2-positive breast cancer. Methods We first used qRT-PCR to detect linc01638 expression in HER2-positive breast cancer cells and tissues. Then we analyzed the effects of linc01638 expression in HER2-positive breast cancer cells through cell apoptosis assay, cell proliferation assay, colony formation assay, and cell invasion assay. We conducted mouse xenograft model to further confirm the role of linc01638 in HER2-positive breast cancer. Moreover, we used Western blot and IHC analysis to access the effect of linc01638 on DNMTs, BRCA1 and PTEN expressions in transplanted tumors. Results Linc01638 was found to be remarkably overexpressed in HER2-positive breast cancer cells and tissues. Suppression of linc01638 enhanced cell apoptosis, as well as inhibited the growth and in-vasiveness of HER2-positive breast cancer cells in vitro and tumor progression and metastasis in vivo. Furthermore, inhibition of linc01638 by shRNA attenuated expression of DNMT1, DNMT3a, and DNMT3b, and promoted expression of BRCA1 and PTEN in HER2-positive breast cancer cells and mouse xenograft models. Conclusion Linc01638 might be a promising biomarker and therapeutic target for treatment of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jiali Wu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanan Kong
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Lijuan Zhang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiangsheng Xiao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Wang Y, Sun B, Wen X, Hao D, Du D, He G, Jiang X. The Roles of lncRNA in Cutaneous Squamous Cell Carcinoma. Front Oncol 2020; 10:158. [PMID: 32185124 PMCID: PMC7059100 DOI: 10.3389/fonc.2020.00158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/29/2020] [Indexed: 02/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma derives from keratinocytes and is the second most common cause of non-melanoma skin cancer. Cutaneous squamous cell carcinoma (cSCC) develops rapidly and is also the leading cause of death in non-melanoma cancers. Lymph node metastasis occurs in 5% of cSCC patients, and some patients may even metastasize to the viscera. Patients with regional lymphatic metastasis or distant metastases have a <20% 10-year survival rate, indicating the substantial challenge in treating advanced and metastatic cSCC. Some lncRNAs have been found to be abnormally overexpressed in many tumor tissues, so that they can be considered as potential new biomarkers or targets that can be used in the diagnosis and treatment of cSCC in the future. In this review, we summarize the role of lncRNA in cutaneous squamous cell carcinoma to make a better understanding of mutations in cSCC and lay the foundation for effective target therapy of cSCC.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Bensen Sun
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Tripathi R, Aier I, Chakraborty P, Varadwaj PK. Unravelling the role of long non-coding RNA - LINC01087 in breast cancer. Noncoding RNA Res 2019; 5:1-10. [PMID: 31989062 PMCID: PMC6965516 DOI: 10.1016/j.ncrna.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 02/09/2023] Open
Abstract
Apoptosis is a 'programmed fate' of all cells participating in diverse physiological and pathological conditions. The role of critical regulators and their involvement in this complex multi-stage process of apoptosis weaved around non-coding RNAs (ncRNAs) is poorly deciphered in breast carcinoma (BC). Aberrant expression patterns of the ncRNAs and their interacting partners, either ncRNAs or coding RNAs or proteins at any point along these pathways, may lead to the malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Longest non-coding type of ncRNAs (lncRNAs) have been considered as critical factors for the development and progression of breast cancer. The aim of our study was to identify set of novel lncRNAs interacting with microRNAs (miRNAs) or proteins that were significantly dysregulated in breast cancer using RNA-Sequencing (RNA-Seq) technique in different samples acting as oncogenic drivers contributing to cancerous phenotype involved in post-transcriptional processing of RNAs. Four lncRNAs; LINC01087, lnc-CLSTN2-1:1, lnc-c7orf65-3:3 and LINC01559:2 were selected for further analysis. Gene expression analysis of over-expressed LINC01087 in vitro reduced both cell viability and apoptosis. We integrated miRNA and mRNA (hsa-miR-548 and AKT1) expression profiles with curated regulations with lncRNA (LINC01087) which has not been previously associated with any breast cancer type, using different computational tools. The network (lncRNA→ miRNA→ mRNA) is promising for the identification of carcinoma associated genes and apoptosis signaling path highlighting the potential roles of LINC01087, hsa-miR548n, AKT1 gene which may play crucial role in proliferation.
Collapse
Affiliation(s)
- Rashmi Tripathi
- Department of Bioinformatics and Applied Sciences, Indian Institute of Information Technology-Allahabad, Allahabad, India
| | - Imlimaong Aier
- Department of Bioinformatics and Applied Sciences, Indian Institute of Information Technology-Allahabad, Allahabad, India
| | - Pavan Chakraborty
- Department of Information Technology, Indian Institute of Information Technology-Allahabad, Allahabad, India
| | - Pritish Kumar Varadwaj
- Department of Bioinformatics and Applied Sciences, Indian Institute of Information Technology-Allahabad, Allahabad, India
| |
Collapse
|
42
|
Parsonnet NV, Lammer NC, Holmes ZE, Batey RT, Wuttke DS. The glucocorticoid receptor DNA-binding domain recognizes RNA hairpin structures with high affinity. Nucleic Acids Res 2019; 47:8180-8192. [PMID: 31147715 DOI: 10.1093/nar/gkz486] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023] Open
Abstract
The glucocorticoid receptor (GR) binds the noncoding RNA Gas5 via its DNA-binding domain (DBD) with functional implications in pro-apoptosis signaling. Here, we report a comprehensive in vitro binding study where we have determined that GR-DBD is a robust structure-specific RNA-binding domain. GR-DBD binds to a diverse range of RNA hairpin motifs, both synthetic and biologically derived, with apparent mid-nanomolar affinity while discriminating against uniform dsRNA. As opposed to dimeric recognition of dsDNA, GR-DBD binds to RNA as a monomer and confers high affinity primarily through electrostatic contacts. GR-DBD adopts a discrete RNA-bound state, as assessed by NMR, distinct from both free and DNA-bound. NMR and alanine mutagenesis suggest a heightened involvement of the C-terminal α-helix of the GR-DBD in RNA-binding. RNA competes for binding with dsDNA and occurs in a similar affinity range as dimer binding to the canonical DNA element. Given the prevalence of RNA hairpins within the transcriptome, our findings strongly suggest that many RNAs have potential to impact GR biology.
Collapse
Affiliation(s)
- Nicholas V Parsonnet
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| | - Nickolaus C Lammer
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| | - Zachariah E Holmes
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| |
Collapse
|
43
|
Wang TH, Leu YL, Chen CC, Shieh TM, Lian JH, Chen CY. Psorachromene Suppresses Oral Squamous Cell Carcinoma Progression by Inhibiting Long Non-coding RNA GAS5 Mediated Epithelial-Mesenchymal Transition. Front Oncol 2019; 9:1168. [PMID: 31750253 PMCID: PMC6848597 DOI: 10.3389/fonc.2019.01168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
The extract of the seeds of Psoralea corylifolia Linn. (P. corylifolia) have been shown to display anti-tumor activity. However, the prospects of the active compounds from this plant in the treatment of oral squamous cell carcinoma (OSCC) remains unclear. In the present study, the antitumor effects of psorachromene, a flavonoid extracted from the seeds of P. corylifolia, were investigated using cells and animal models of OSCC; the downstream regulatory mechanisms were also elucidated. The results showed that psorachromene significantly repressed cell proliferation, migration, and invasiveness and increased the toxic effects of chemotherapeutic agents against OSCC cells. The repressive effects of psorachromene were attributable to the inhibition of EGFR-Slug signaling, and the induction of G2/M arrest and apoptosis in the OSCC cells. Additionally, we found that psorachromene induced the expression of tumor suppressor long non-coding ribonucleic acid (RNA) growth arrest-specific transcript 5 (GAS5) and the activation of its downstream anticancer mechanisms. Animal experiments also showed noticeable inhibition of tumor growth, without significant physiological toxicity. The findings indicate that psorachromene displays anti-tumor activity in OSCC, and warrants further investigation as a potential agent for clinical application.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan, Taiwan
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan
| | - Jang-Hau Lian
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
44
|
Dai X, Zhang X, Lu P. Toward a holistic view of multiscale breast cancer molecular biomarkers. Biomark Med 2019; 13:1509-1533. [PMID: 31668082 DOI: 10.2217/bmm-2019-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Powered by rapid technology developments, biomarkers become increasingly diverse, including those detected at genomic, transcriptomic, proteomic, metabolomic and cellular levels. While diverse sets of biomarkers have been utilized in breast cancer predisposition, diagnosis, prognosis, treatment and management, recent additions derived from lincRNA, circular RNA, circulating DNA together with its methylated and hydroxymethylated forms and immune signatures are likely to further transform clinical practice. Here, we take breast cancer as an example of heterogeneous diseases that require many informed decisions from treatment to care to review the huge variety of biomarkers. By assessing the advantages and limitations of modern biomarkers in diverse use scenarios, this article outlines the prospects and challenges of releasing complimentary advantages by augmentation of multiscale molecular biomarkers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Peihua Lu
- Wuxi People's Hospital, Nan Chang Qu, Wuxi, Jiangsu, PR China
| |
Collapse
|
45
|
Yu Y, Hann SS. Novel Tumor Suppressor lncRNA Growth Arrest-Specific 5 (GAS5) In Human Cancer. Onco Targets Ther 2019; 12:8421-8436. [PMID: 31632088 PMCID: PMC6794681 DOI: 10.2147/ott.s221305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial regulatory roles in fundamental biological processes, and deregulations of lncRNAs have been linked to numerous human diseases, especially cancers. Of particular interest in this regard is lncRNA GAS5, which is mainly identified as a tumor suppressor in several cancers. GAS5 was significantly low expressed in multiple cancers and was associated with clinic-pathological characteristics and patient survival, indicating a novel potential diagnostic and prognostic biomarker, and a therapeutic target for cancer. Functionally, GAS5 is involved in cell proliferation, metastasis, invasion, apoptosis, epithelial-mesenchymal transition (EMT), and drug resistance, among others, via multiple molecular mechanisms, such as binding to DNA sequences, forming RNA-DNA triplex complex, triggering or suppressing the expression of genes, binding proteins to form chromatin-modifying complex, which activates or represses gene expression, and acting as miRNA sponge to suppress miRNA expression, leading to regulation of miRNA target genes. This review provides an overview of the current state of knowledge and role of GAS5 in clinical relevance, biological functions and molecular mechanisms underlying the dysregulation of expression and function of GAS5 in cancer. Finally, the potential prospective role as diagnostic and prognostic biomarker and therapeutic target in cancer is discussed.
Collapse
Affiliation(s)
- Yaya Yu
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
46
|
Lyu K, Xu Y, Yue H, Li Y, Zhao J, Chen L, Wu J, Zhu X, Chai L, Li C, Wen W, Lei W. Long Noncoding RNA GAS5 Acts As A Tumor Suppressor In Laryngeal Squamous Cell Carcinoma Via miR-21. Cancer Manag Res 2019; 11:8487-8498. [PMID: 31572003 PMCID: PMC6756574 DOI: 10.2147/cmar.s213690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose Long noncoding RNAs (lncRNAs) have been identified as an important class of noncoding RNAs that are deeply involved in multiple biological processes in tumorigenesis. This study is to investigate the critical roles and biological function of lncRNA growth arrest-specific 5 (GAS5) in tumorigenesis of laryngeal squamous cell carcinoma (LSCC). Patients and methods A total of 59 samples of LSCC and paired adjacent tissue, as well as corresponding clinicopathological information were collected. GAS5 expression in both LSCC tissues and human SUN1076 and SNU899 cell lines were analyzed by Real-time quantitative RT-PCR method. Ectopic expression of GAS5 by vector transfection in LSCC cell lines and followed by in vitro experiments was to investigate the critical roles and function of GAS5 in LSCC. Cell Counting Kit 8 (CCK8) assay and PE/7AAD Annexin V Apoptosis analysis was to evaluate cell proliferation ability and cell apoptosis. Co-transfection of GAS5 and miR-21 was to explore the interaction between GAS5 and miR-21 in LSCC. BAX and CDK6 protein level were analyzed by western blot method. Results This study demonstrated that GAS5 was significantly downregulated in LSCC tissue and human LSCC cell lines. GAS5 levels were correlated with the clinicopathological features of LSCC patients. In addition, the ectopic expression of GAS5 significantly inhibited cell proliferation and promoted apoptosis. Co-expression analyses indicated that GAS5 is negatively correlated with miR-21 in LSCC tissues. Overexpression of miR-21 eliminated GAS5-mediated cell apoptosis and proliferation suppression. Furthermore, GAS5, which upregulated BAX mRNA expression and downregulated CDK6 mRNA expression, was reversed by ectopic expression of miR-21. Conclusion GAS5 suppresses LSCC progression through the negative regulation of miR-21 and its targets involved in cell proliferation and apoptosis, indicating that GAS5 may serve as a biomarker and potential target for LSCC therapy.
Collapse
Affiliation(s)
- Kexing Lyu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yang Xu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huijun Yue
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yun Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jing Zhao
- Department of Otolaryngology, The Third Hospital of Heibei Medical University, Shijiazhuang, People's Republic of China
| | - Lin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jianhui Wu
- Department of Otolaryngology, Meizhou People's Hospital, Meizhou, People's Republic of China
| | - Xiaolin Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Liping Chai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weiping Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenbin Lei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
47
|
Huang T, Wang M, Huang B, Chang A, Liu F, Zhang Y, Jiang B. Long noncoding RNAs in the mTOR signaling network: biomarkers and therapeutic targets. Apoptosis 2019; 23:255-264. [PMID: 29556906 DOI: 10.1007/s10495-018-1453-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As an evolutionarily conserved serine/threonine kinase of the phosphoinositide 3-kinase (PI3K) related kinase family, the mechanistic/mammalian target of rapamycin (mTOR) plays vital roles in the PI3K/AKT/mTOR pathway, participating in different cellular processes including cell survival, metabolism and proliferation. Aberrant activity of this signaling pathway may lead to oncogenesis. Over the last two decades, great progress has been made in the understanding of mTOR activation and how its response is counteracted for maintaining tissue homeostasis. Besides regulatory proteins and microRNAs, long noncoding RNA (lncRNA) is another emerging critical layer of the intricate modulatory architecture for the control of the mTOR signaling circuit. Also, the production of numerous lncRNAs is induced by mTOR treatment. These findings offer new perspectives for designing novel diagnostic and therapeutic strategies. In this review, we summarize the interactions between the mTOR signaling pathway and lncRNAs in the development and progression of various types of tumors, focusing on the mechanisms of these interactions, and also discuss the potential use of lncRNAs as biomarkers and therapeutic targets for malignancies.
Collapse
Affiliation(s)
- Tinglei Huang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Meiling Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Bo Huang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Augustus Chang
- Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China.
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China.
| |
Collapse
|
48
|
Goustin AS, Thepsuwan P, Kosir MA, Lipovich L. The Growth-Arrest-Specific ( GAS)-5 Long Non-Coding RNA: A Fascinating lncRNA Widely Expressed in Cancers. Noncoding RNA 2019; 5:ncrna5030046. [PMID: 31533355 PMCID: PMC6789762 DOI: 10.3390/ncrna5030046] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) genes encode non-messenger RNAs that lack open reading frames (ORFs) longer than 300 nucleotides, lack evolutionary conservation in their shorter ORFs, and do not belong to any classical non-coding RNA category. LncRNA genes equal, or exceed in number, protein-coding genes in mammalian genomes. Most mammalian genomes harbor ~20,000 protein-coding genes that give rise to conventional messenger RNA (mRNA) transcripts. These coding genes exhibit sweeping evolutionary conservation in their ORFs. LncRNAs function via different mechanisms, including but not limited to: (1) serving as “enhancer” RNAs regulating nearby coding genes in cis; (2) functioning as scaffolds to create ribonucleoprotein (RNP) complexes; (3) serving as sponges for microRNAs; (4) acting as ribo-mimics of consensus transcription factor binding sites in genomic DNA; (5) hybridizing to other nucleic acids (mRNAs and genomic DNA); and, rarely, (6) as templates encoding small open reading frames (smORFs) that may encode short proteins. Any given lncRNA may have more than one of these functions. This review focuses on one fascinating case—the growth-arrest-specific (GAS)-5 gene, encoding a complicated repertoire of alternatively-spliced lncRNA isoforms. GAS5 is also a host gene of numerous small nucleolar (sno) RNAs, which are processed from its introns. Publications about this lncRNA date back over three decades, covering its role in cell proliferation, cell differentiation, and cancer. The GAS5 story has drawn in contributions from prominent molecular geneticists who attempted to define its tumor suppressor function in mechanistic terms. The evidence suggests that rodent Gas5 and human GAS5 functions may be different, despite the conserved multi-exonic architecture featuring intronic snoRNAs, and positional conservation on syntenic chromosomal regions indicating that the rodent Gas5 gene is the true ortholog of the GAS5 gene in man and other apes. There is no single answer to the molecular mechanism of GAS5 action. Our goal here is to summarize competing, not mutually exclusive, mechanistic explanations of GAS5 function that have compelling experimental support.
Collapse
Affiliation(s)
- Anton Scott Goustin
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Pattaraporn Thepsuwan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
49
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:1015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 575] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
50
|
Wang X, Zhou X, Liu J, Liu Z, Zhang L, Gong Y, Huang J, Yu L, Wang Q, Yang C, Liao X, Yu T, Han C, Zhu G, Ye X, Peng T. Genome‑wide investigation of the clinical implications and molecular mechanism of long noncoding RNA LINC00668 and protein‑coding genes in hepatocellular carcinoma. Int J Oncol 2019; 55:860-878. [PMID: 31432149 PMCID: PMC6741837 DOI: 10.3892/ijo.2019.4858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of tumor‑related mortalities worldwide. Long noncoding RNAs have been reported to be associated with tumor initiation, progression and prognosis. The present study aimed to explore the association between long noncoding RNA LINC00668 and its co‑expression correlated protein‑coding genes (PCGs) in HCC. Data of 370 HCC patients from The Cancer Genome Atlas database were used for analysis. LINC00668 and its top 10 PCGs were selected to determine their diagnostic and prognostic value. Molecular mechanisms were explored to identify metabolic processes that LINC00668 and its PCGs are involved in. Prognosis‑related clinical factors and PCGs were used to construct a nomogram for predicting prognosis in HCC. A Connectivity Map was constructed to identify candidate target drugs for HCC. The top 10 PCGs identified were: Pyrimidineregic receptor P2Y4 (P2RY4), signal peptidase complex subunit 2 (SPCS2), family with sequence similarity 86 member C1 (FAM86C1), tudor domain containing 5 (TDRD5), ferritin light chain (FTL), stratifin (SFN), nucleolar complex associated 2 homolog (NOC2L), peroxiredoxin 1 (PRDX1), cancer/testis antigen 2 CTAG2 and leucine zipper and CTNNBIP1 domain containing (LZIC). FAM86C1, CTAG2 and SFN had significant diagnostic value for HCC (total area under the curve ≥0.7, P≤0.05); LINC00668, FAM86C1, TDRD5, FTL and SFN were of significant prognostic value for HCC (all P≤0.05). Investigation into the molecular mechanism indicated that LINC00668 affects cell division, cell cycle, mitotic nuclear division, and drug metabolism cytochrome P450 (all P≤0.05). The Connectivity Map identified seven candidate target drugs for the treatment of HCC, which were: Indolylheptylamine, mimosine, disopyramide, lidocaine, NU‑1025, bumetanide, and DQNLAOWBTJPFKL‑PKZXCIMASA‑N (all P≤0.05). Our findings indicated that LINC00668 may function as an oncogene and its overexpression indicates poor prognosis of HCC. FAM86C1, CTAG2 and SFN are of diagnostic significance, while FAM86C1, TDRD5, FTL and SFN are of prognostic significance for HCC.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Linbo Zhang
- Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jianlu Huang
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530031, P.R. China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiaoqi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|