1
|
Guo X, Lei Y, Xu Y, Du X, Lin L, Luo Y, Xi Y, Guo Y, Niu X, Wang Z, Chen G. PRL2 negatively regulates FcεRI mediated activation of mast cells. Cell Death Dis 2025; 16:322. [PMID: 40258807 PMCID: PMC12012171 DOI: 10.1038/s41419-025-07649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Mast cells play a central role in allergic reactions, acting as key effector cells that initiate and amplify the inflammatory response. In this study, we demonstrate that phosphatase of regenerating liver 2 (PRL2) functions as a negative regulator of FcεRI-mediated mast cell activation. In PRL2-deficient myeloid cells, PRL2 conditional knockout mice developed more severe passive systemic anaphylaxis (PSA). Although PRL2 deficiency does not impact mast cell development, in the absence of PRL2 FcεRI-mediated mast cell activation is enhanced. In the presence of IgE the expression of mast cell PRL2 is downregulated, leading to modulation of the cellular response. In PRL2-deficient mast cells, the PI3K signaling pathway is upregulated, resulting in increased calcium influx. This, in turn, enhances mast cell degranulation and the production of inflammatory mediators. Moreover, hydroxychloroquine (an inhibitor of PRL2 degradation) reduces the severity of PSA in wild-type mice. Our findings suggest that PRL2 acts as a negative regulator of FcεRI-mediated mast cell activation. Therefore, therapeutic strategies aimed at enhancing PRL2 activity in mast cells may offer a promising approach for the treatment of allergic disorders.
Collapse
Affiliation(s)
- Xin Guo
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Xu
- Department of Allergy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Luo
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinshi Guo
- Department of Allergy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Li Q, Bai Y, Cavender SM, Miao Y, Nguele Meke F, Lasse-Opsahl EL, Zhu P, Doody GM, Tao WA, Zhang ZY. The PRL2 phosphatase up-regulates miR-21 through activation of the JAK2/STAT3 pathway to down-regulate the PTEN tumor suppressor. Biochem J 2025; 482:341-356. [PMID: 39665584 DOI: 10.1042/bcj20240626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
The phosphatases of regenerating liver (PRLs) are members of the protein tyrosine phosphatase (PTP) superfamily that play pro-oncogenic roles in cell proliferation, migration, and survival. We previously demonstrated that PRLs can post-translationally down-regulate PTEN, a tumor suppressor frequently inactivated in human cancers, by dephosphorylating PTEN at Tyr336, which promotes the NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Here, we report that PRLs can also reduce PTEN expression by up-regulating microRNA-21 (miR-21), which is one of the most frequently overexpressed miRNAs in solid tumors. We observe a broad correlation between PRL and miR-21 levels in multiple human cancers. Mechanistically, PRL2, the most abundant and ubiquitously expressed PRL family member, promotes the JAK2/STAT3 pathway-mediated miR-21 expression by directly dephosphorylating JAK2 at Tyr570. Finally, we confirm that the PRL2-mediated miR-21 expression contributes to its oncogenic potential in breast cancer cells. Our study defines a new functional role of PRL2 in PTEN regulation through a miR-21-dependent post-transcriptional mechanism, in addition to our previously reported NEDD4-dependent post-translational PTEN regulation. Together, these studies further establish the PRLs as negative regulators of PTEN.
Collapse
Affiliation(s)
- Qinglin Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Current address: Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Sarah M Cavender
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Frederick Nguele Meke
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Emily L Lasse-Opsahl
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, U.K
| | - W Andy Tao
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| |
Collapse
|
3
|
Funato Y, Mimura M, Nunomura K, Lin B, Fujii S, Haruta J, Miki H. Development of a high-throughput screening system targeting the protein-protein interactions between PRL and CNNM. Sci Rep 2024; 14:25432. [PMID: 39455715 PMCID: PMC11511866 DOI: 10.1038/s41598-024-76269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Phosphatase of regenerating liver (PRL) is an oncogenic protein that promotes tumor progression by directly binding to cyclin M (CNNM) membrane proteins and inhibiting their Mg2+ efflux activity. In this study, we have developed a high-throughput screening system to detect the interactions between PRL and CNNM proteins based on homogenous time-resolved fluorescence resonance energy transfer (HTR-FRET, HTRF). We optimized the tag sequences attached to the recombinant proteins of the CNNM4 CBS domains and PRL3 lacking the carboxyl terminal CAAX motif, and successfully detected the interaction by observing the FRET signal in the mixture of the tagged proteins and fluorophore-conjugated antibodies. Moreover, we performed compound library screening using this system and discovered several compounds that could efficiently inhibit the PRL-CNNM interaction. Characterization of one candidate compound revealed that it was relatively stable compared with thienopyridone, a known inhibitor of the PRL-CNNM interaction. The candidate compound can also inhibit PRL function in cells: suppression of CNNM-dependent Mg2+ efflux, and has sufficient in vitro drug metabolism and pharmacokinetic properties. Overall, these results demonstrate the effectiveness of this screening system for identifying novel inhibitors of the PRL-CNNM interaction, which could contribute to the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Yosuke Funato
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Mai Mimura
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Shintarou Fujii
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Junichi Haruta
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Hiroaki Miki
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
4
|
Chokshi CR, Shaikh MV, Brakel B, Rossotti MA, Tieu D, Maich W, Anand A, Chafe SC, Zhai K, Suk Y, Kieliszek AM, Miletic P, Mikolajewicz N, Chen D, McNicol JD, Chan K, Tong AHY, Kuhlmann L, Liu L, Alizada Z, Mobilio D, Tatari N, Savage N, Aghaei N, Grewal S, Puri A, Subapanditha M, McKenna D, Ignatchenko V, Salamoun JM, Kwiecien JM, Wipf P, Sharlow ER, Provias JP, Lu JQ, Lazo JS, Kislinger T, Lu Y, Brown KR, Venugopal C, Henry KA, Moffat J, Singh SK. Targeting axonal guidance dependencies in glioblastoma with ROBO1 CAR T cells. Nat Med 2024; 30:2936-2946. [PMID: 39095594 DOI: 10.1038/s41591-024-03138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/18/2024] [Indexed: 08/04/2024]
Abstract
Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood-brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50-100% of mice. Our study identifies a promising multi-targetable PTP4A-ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors.
Collapse
Affiliation(s)
- Chirayu R Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Muhammad Vaseem Shaikh
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Benjamin Brakel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - David Tieu
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - William Maich
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Alisha Anand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Agata M Kieliszek
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Petar Miletic
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Nicholas Mikolajewicz
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - David Chen
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Jamie D McNicol
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Katherine Chan
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Amy H Y Tong
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Laura Kuhlmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lina Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Zahra Alizada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Nikoo Aghaei
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Shan Grewal
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Anish Puri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | | | - Dillon McKenna
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Joseph M Salamoun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - John P Provias
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - John S Lazo
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu Lu
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Kevin R Brown
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Bennett GM, Starczewski J, dela Cerna MVC. In silico identification of putative druggable pockets in PRL3, a significant oncology target. Biochem Biophys Rep 2024; 39:101767. [PMID: 39050014 PMCID: PMC11267023 DOI: 10.1016/j.bbrep.2024.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Protein tyrosine phosphatases (PTP) have emerged as targets in diseases characterized by aberrant phosphorylations such as cancers. The activity of the phosphatase of regenerating liver 3, PRL3, has been linked to several oncogenic and metastatic pathways, particularly in breast, ovarian, colorectal, and blood cancers. Development of small molecules that directly target PRL3, however, has been challenging. This is partly due to the lack of structural information on how PRL3 interacts with its inhibitors. Here, computational methods are used to bridge this gap by evaluating the druggability of PRL3. In particular, web-based pocket prediction tools, DoGSite3 and FTMap, were used to identify binding pockets using structures of PRL3 currently available in the Protein Data Bank. Druggability assessment by molecular dynamics simulations with probes was also performed to validate these results and to predict the strength of binding in the identified pockets. While several druggable pockets were identified, those in the closed conformation show more promise given their volume and depth. These two pockets flank the active site loops and roughly correspond to pockets predicted by molecular docking in previous papers. Notably, druggability simulations predict the possibility of low nanomolar affinity inhibitors in these sites implying the potential to identify highly potent small molecule inhibitors for PRL3. Putative pockets identified here can be leveraged for high-throughput virtual screening to further accelerate the drug discovery against PRL3 and development of PRL3-directed therapeutics.
Collapse
Affiliation(s)
- Grace M. Bennett
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Julia Starczewski
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Mark Vincent C. dela Cerna
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| |
Collapse
|
6
|
Xiao S, Chen H, Bai Y, Zhang ZY, Liu Y. Targeting PRL phosphatases in hematological malignancies. Expert Opin Ther Targets 2024; 28:259-271. [PMID: 38653737 PMCID: PMC12050007 DOI: 10.1080/14728222.2024.2344695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Phosphatase of regenerating liver (PRL) family proteins, also known as protein tyrosine phosphatase 4A (PTP4A), have been implicated in many types of cancers. The PRL family of phosphatases consists of three members, PRL1, PRL2, and PRL3. PRLs have been shown to harbor oncogenic potentials and are highly expressed in a variety of cancers. Given their roles in cancer progression and metastasis, PRLs are potential targets for anticancer therapies. However, additional studies are needed to be performed to fully understand the roles of PRLs in blood cancers. AREAS COVERED In this review, we will summarize recent studies of PRLs in normal and malignant hematopoiesis, the role of PRLs in regulating various signaling pathways, and the therapeutic potentials of targeting PRLs in hematological malignancies. We will also discuss how to improve current PRL inhibitors for cancer treatment. EXPERT OPINION Although PRL inhibitors show promising therapeutic effects in preclinical studies of different types of cancers, moving PRL inhibitors from bench to bedside is still challenging. More potent and selective PRL inhibitors are needed to target PRLs in hematological malignancies and improve treatment outcomes.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Hongxia Chen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Yan Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
7
|
Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling. Biomolecules 2024; 14:342. [PMID: 38540761 PMCID: PMC10967961 DOI: 10.3390/biom14030342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024] Open
Abstract
Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
Collapse
Affiliation(s)
- Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
8
|
Chen H, Bai Y, Kobayashi M, Xiao S, Barajas S, Cai W, Chen S, Miao J, Meke FN, Yao C, Yang Y, Strube K, Satchivi O, Sun J, Rönnstrand L, Croop JM, Boswell HS, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Sukhanova M, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 Phosphatase Promotes Oncogenic KIT Signaling in Leukemia Cells through Modulating CBL Phosphorylation. Mol Cancer Res 2024; 22:94-103. [PMID: 37756563 PMCID: PMC10841656 DOI: 10.1158/1541-7786.mcr-23-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Northwestern University, Chicago, USA
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Michihiro Kobayashi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Shiyu Xiao
- Department of Medicine, Northwestern University, Chicago, USA
| | - Sergio Barajas
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Wenjie Cai
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Sisi Chen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Chonghua Yao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yuxia Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Katherine Strube
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Odelia Satchivi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jianmin Sun
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - James M. Croop
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K. Altman
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Elizabeth A. Eklund
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | | | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pathology, Northwestern University, Chicago, USA
| | - Wei Tong
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Yan Liu
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| |
Collapse
|
9
|
Nguele Meke F, Bai Y, Ruiz-Avila D, Carlock C, Ayub J, Miao J, Hu Y, Li Q, Zhang ZY. Inhibition of PRL2 Upregulates PTEN and Attenuates Tumor Growth in Tp53-deficient Sarcoma and Lymphoma Mouse Models. CANCER RESEARCH COMMUNICATIONS 2024; 4:5-17. [PMID: 38047587 PMCID: PMC10764713 DOI: 10.1158/2767-9764.crc-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The phosphatases of regenerating liver (PRL) are oncogenic when overexpressed. We previously found that PRL2 deletion increases PTEN, decreases Akt activity, and suppresses tumor development in a partial Pten-deficient mouse model. The current study aims to further establish the mechanism of PTEN regulation by PRL2 and expand the therapeutic potential for PTEN augmentation mediated by PRL2 inhibition in cancers initiated without PTEN alteration. The TP53 gene is the most mutated tumor suppressor in human cancers, and heterozygous or complete deletion of Tp53 in mice leads to the development of sarcomas and thymic lymphomas, respectively. There remains a lack of adequate therapies for the treatment of cancers driven by Tp53 deficiency or mutations. We show that Prl2 deletion leads to PTEN elevation and attenuation of Akt signaling in sarcomas and lymphomas developed in Tp53 deficiency mouse models. This results in increased survival and reduced tumor incidence because of impaired tumor cell proliferation. In addition, inhibition of PRL2 with a small-molecule inhibitor phenocopies the effect of genetic deletion of Prl2 and reduces Tp53 deficiency-induced tumor growth. Taken together, the results further establish PRL2 as a negative regulator of PTEN and highlight the potential of PRL2 inhibition for PTEN augmentation therapy in cancers with wild-type PTEN expression. SIGNIFICANCE Prl2 deletion attenuates Tp53 deficiency-induced tumor growth by increasing PTEN and reducing Akt activity. Targeting Tp53-null lymphoma with PRL inhibitors lead to reduced tumor burden, providing a therapeutic approach via PTEN augmentation.
Collapse
Affiliation(s)
- Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Diego Ruiz-Avila
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Colin Carlock
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinan Ayub
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yanyang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Department of Chemistry, Purdue University, West Lafayette, Indiana
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| |
Collapse
|
10
|
Carlock C, Bai Y, Paige-Hood A, Li Q, Nguele Meke F, Zhang ZY. PRL2 inhibition elevates PTEN protein and ameliorates progression of acute myeloid leukemia. JCI Insight 2023; 8:e170065. [PMID: 37665633 PMCID: PMC10619439 DOI: 10.1172/jci.insight.170065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Overexpression of phosphatases of regenerating liver 2 (PRL2), detected in numerous diverse cancers, is often associated with increased severity and poor patient prognosis. PRL2-catalyzed tyrosine dephosphorylation of the tumor suppressor PTEN results in increased PTEN degradation and has been identified as a mechanism underlying PRL2 oncogenic activity. Overexpression of PRL2, coincident with reduced PTEN protein, is frequently observed in patients with acute myeloid leukemia (AML). In the current study, a PTEN-knockdown AML animal model was generated to assess the effect of conditional PRL2 inhibition on the level of PTEN protein and the development and progression of AML. Inhibition of PRL2 resulted in a significant increase in median animal survival, from 40 weeks to greater than 60 weeks. The prolonged survival reflected delayed expansion of aberrantly differentiated hematopoietic stem cells into leukemia blasts, resulting in extended time required for clinically relevant leukemia blast accumulation in the BM niche. Leukemia blast suppression following PRL2 inhibition was correlated with an increase in PTEN and downregulation of AKT/mTOR-regulated pathways. These observations directly established, in a disease model, the viability of PRL2 inhibition as a therapeutic strategy for improving clinical outcomes in AML and potentially other PTEN-deficient cancers by slowing cancer progression.
Collapse
Affiliation(s)
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology
- Department of Chemistry
- Institute for Cancer Research, and
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Loh AHP, Thura M, Gupta A, Tan SH, Kuan KKY, Ang KH, Merchant K, Chang KTE, Yon HY, Chen Y, Cheng MHW, Mahadev A, Ng MCH, Seng MSF, Iyer P, Chia PL, Soh SY, Zeng Q. Exploiting frequent and specific expression of PRL3 in pediatric solid tumors for first-in-child use of PRL3-zumab humanized antibody. Mol Ther Oncolytics 2023; 30:153-166. [PMID: 37674627 PMCID: PMC10477756 DOI: 10.1016/j.omto.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
Phosphatase of regenerating liver 3 (PRL3) is a specific tumor antigen overexpressed in a broad range of adult cancer types. However, its physiological expression in pediatric embryonal and mesenchymal tumors and its association with clinical outcomes in children is unknown. We sought to profile the expression of PRL3 in pediatric tumors in relation to survival outcomes, expression of angiogenesis markers, and G-protein-coupled receptor (GPCR)-mitogen-activated protein kinase (MAPK) signaling targets. PRL3-zumab, a first-in-class humanized antibody, was administered in a dose escalation schedule in a first-in-child clinical trial to study toxicity, pharmacokinetics, and clinical outcomes. Among 64 pediatric tumors, PRL3 was most frequently expressed in neuroblastoma (100%), rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcomas (71%), and renal sarcomas (60%) but absent in paired normal tissues. PRL3 was expressed in 75% of relapsed tumors and associated with shorter median event-free survival. Microarray profiling of PRL3-positive tumors showed elevation of angiogenin, TIMP1 and TIMP2, and GPCR-MAPK signaling proteins that commonly interacted with PRL3. The first use of PRL3-zumab in a pediatric patient saw no adverse events. A 28.6% reduction in maximum target lesion diameter was achieved when PRL3-zumab was administered concurrently with hypofractionated radiation. These findings support wider exploration of PRL3 expression in embryonal and mesenchymal tumors and further clinical application of PRL3-zumab in pediatric patients.
Collapse
Affiliation(s)
- Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Min Thura
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Abhishek Gupta
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
| | - Kelvin Kam Yew Kuan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Koon Hwee Ang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Khurshid Merchant
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Kenneth Tou En Chang
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Hui Yi Yon
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Yong Chen
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Mathew Hern Wang Cheng
- Department of Orthopaedic Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Arjandas Mahadev
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Orthopaedic Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Matthew Chau Hsien Ng
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of GI Oncology, National Cancer Centre Singapore, Singapore 229899, Singapore
| | - Michaela Su-Fern Seng
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Prasad Iyer
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Pei Ling Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Shui Yen Soh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
12
|
Chen SF, Hsien HL, Wang TF, Lin MD. Drosophila Phosphatase of Regenerating Liver Is Critical for Photoreceptor Cell Polarity and Survival during Retinal Development. Int J Mol Sci 2023; 24:11501. [PMID: 37511262 PMCID: PMC10380645 DOI: 10.3390/ijms241411501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Establishing apicobasal polarity, involving intricate interactions among polarity regulators, is key for epithelial cell function. Though phosphatase of regenerating liver (PRL) proteins are implicated in diverse biological processes, including cancer, their developmental role remains unclear. In this study, we explore the role of Drosophila PRL (dPRL) in photoreceptor cell development. We reveal that dPRL, requiring a C-terminal prenylation motif, is highly enriched in the apical membrane of developing photoreceptor cells. Moreover, dPRL knockdown during retinal development results in adult Drosophila retinal degeneration, caused by hid-induced apoptosis. dPRL depletion also mislocalizes cell adhesion and polarity proteins like Armadillo, Crumbs, and DaPKC and relocates the basolateral protein, alpha subunit of Na+/K+-ATPase, to the presumed apical membrane. Importantly, this polarity disruption is not secondary to apoptosis, as suppressing hid expression does not rescue the polarity defect in dPRL-depleted photoreceptor cells. These findings underscore dPRL's crucial role in photoreceptor cell polarity and emphasize PRL's importance in establishing epithelial polarity and maintaining cell survival during retinal development, offering new insights into PRL's role in normal epithelium.
Collapse
Affiliation(s)
- Shu-Fen Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Hsin-Lun Hsien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ting-Fang Wang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| |
Collapse
|
13
|
Li H, Zheng S, Wan T, Yang X, Ouyang Y, Xia H, Wang X. Circular RNA circ_0000212 accelerates cervical cancer progression by acting as a miR-625-5p sponge to upregulate PTP4A1. Anticancer Drugs 2023; 34:659-668. [PMID: 36729102 DOI: 10.1097/cad.0000000000001435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cervical cancer is one of the most common malignant tumors in women. Circular RNA (circRNA) has been shown to play a crucial role in cervical cancer. Here, the aim of this study was to explore the functions and a novel miRNA/mRNA network underlying circ_0000212 in cervical cancer regulation. The expression of circ_000212, miR-625-5p and Protein Tyrosine Phosphatase 4A1 (PTP4A1) mRNA was measured by quantitative real-time PCR (qRT-PCR). 5-ethynyl-2'-deoxyuridine assay was conducted to detect the proliferation of cervical cancer cells. Wound healing and transwell assays were employed to assess cell migration and invasion. The angiogenesis abilities of cervical cancer cells were evaluated by tube formation assay. Flow cytometry was performed for analyzing cell apoptosis. The expression of PTP4A1 protein and apoptosis-relative protein were detected via western blot. The dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were employed to clarify the interaction between circ_0000212 or PTP4A1 and miR-625-5p. The impact of circ_0000212 on cervical cancer growth in vivo was detected by xenograft assay. Circ_0000212 and PTP4A1 were highly expressed and miR-625-5p expression level was decreased in cervical cancer. Circ_0000212 silencing suppressed cervical cancer cell proliferation, migration, invasion and angiogenesis while promoting apoptosis. MiR-625-5p was targeted by circ_0000212, and miR-625-5p inhibition reversed the effects of circ_0000212 knockdown. MiR-625-5p directly targeted PTP4A1, and the inhibitory effect of miR-625-5p on the malignant progression of cervical cancer was reversed after PTP4A1 overexpression. In-vivo assays validated that circ_0000212 promoted cervical cancer tumor growth in vivo . circ_0000212 acted as an oncogene in cervical cancer progression, and knockdown of circ_0000212 repressed cervical cancer development by increasing miR-625-5p and decreasing PTP4A1.
Collapse
Affiliation(s)
- Hu Li
- Department of Gynecology, the First Affiliated Hospital of Jinan University
- Department of Gynecology, Panyu Central Hospital
| | - Shaolie Zheng
- Department of Gynecology, the First Affiliated Hospital of Jinan University
| | - Ting Wan
- Department of Gynecology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiang Yang
- Department of Gynecology, Panyu Central Hospital
| | - Yuan Ouyang
- Department of Gynecology, Panyu Central Hospital
| | - Hong Xia
- Department of Gynecology, Panyu Central Hospital
| | - Xiaoyu Wang
- Department of Gynecology, the First Affiliated Hospital of Jinan University
| |
Collapse
|
14
|
Cho MJ, Lee DG, Lee JW, Hwang B, Yoon SJ, Lee SJ, Park YJ, Park SH, Lee HG, Kim YH, Lee CH, Lee J, Lee NK, Han TS, Cho HS, Moon JH, Lee GS, Bae KH, Hwang GS, Lee SH, Chung SJ, Shim S, Cho J, Oh GT, Kwon YG, Park JG, Min JK. Endothelial PTP4A1 mitigates vascular inflammation via USF1/A20 axis-mediated NF-κB inactivation. Cardiovasc Res 2023; 119:1265-1278. [PMID: 36534975 PMCID: PMC10411943 DOI: 10.1093/cvr/cvac193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 09/08/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
AIMS The nuclear factor-κB (NF-κB) signalling pathway plays a critical role in the pathogenesis of multiple vascular diseases. However, in endothelial cells (ECs), the molecular mechanisms responsible for the negative regulation of the NF-κB pathway are poorly understood. In this study, we investigated a novel role for protein tyrosine phosphatase type IVA1 (PTP4A1) in NF-κB signalling in ECs. METHODS AND RESULTS In human tissues, human umbilical artery ECs, and mouse models for loss of function and gain of function of PTP4A1, we conducted histological analysis, immunostaining, laser-captured microdissection assay, lentiviral infection, small interfering RNA transfection, quantitative real-time PCR and reverse transcription-PCR, as well as luciferase reporter gene and chromatin immunoprecipitation assays. Short hairpin RNA-mediated knockdown of PTP4A1 and overexpression of PTP4A1 in ECs indicated that PTP4A1 is critical for inhibiting the expression of cell adhesion molecules (CAMs). PTP4A1 increased the transcriptional activity of upstream stimulatory factor 1 (USF1) by dephosphorylating its S309 residue and subsequently inducing the transcription of tumour necrosis factor-alpha-induced protein 3 (TNFAIP3/A20) and the inhibition of NF-κB activity. Studies on Ptp4a1 knockout or transgenic mice demonstrated that PTP4A1 potently regulates the interleukin 1β-induced expression of CAMs in vivo. In addition, we verified that PTP4A1 deficiency in apolipoprotein E knockout mice exacerbated high-fat high-cholesterol diet-induced atherogenesis with upregulated expression of CAMs. CONCLUSION Our data indicate that PTP4A1 is a novel negative regulator of vascular inflammation by inducing USF1/A20 axis-mediated NF-κB inactivation. Therefore, the expression and/or activation of PTP4A1 in ECs might be useful for the treatment of vascular inflammatory diseases.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Gwang Lee
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Woong Lee
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seon-Jin Lee
- Environmental Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung-Ho Park
- Environmental Disease Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Disease Target Structure Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Centre, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Jaehyung Cho
- Division of Haematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Centre, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Bai Y, Yu G, Zhou HM, Amarasinghe O, Zhou Y, Zhu P, Li Q, Zhang L, Nguele Meke F, Miao Y, Chapman E, Tao WA, Zhang ZY. PTP4A2 promotes lysophagy by dephosphorylation of VCP/p97 at Tyr805. Autophagy 2023; 19:1562-1581. [PMID: 36300783 PMCID: PMC10240998 DOI: 10.1080/15548627.2022.2140558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022] Open
Abstract
Overexpression of PTP4A phosphatases are associated with advanced cancers, but their biological functions are far from fully understood due to limited knowledge about their physiological substrates. VCP is implicated in lysophagy via collaboration with specific cofactors in the ELDR complex. However, how the ELDR complex assembly is regulated has not been determined. Moreover, the functional significance of the penultimate and conserved Tyr805 phosphorylation in VCP has not been established. Here, we use an unbiased substrate trapping and mass spectrometry approach and identify VCP/p97 as a bona fide substrate of PTP4A2. Biochemical studies show that PTP4A2 dephosphorylates VCP at Tyr805, enabling the association of VCP with its C-terminal cofactors UBXN6/UBXD1 and PLAA, which are components of the ELDR complex responsible for lysophagy, the autophagic clearance of damaged lysosomes. Functionally, PTP4A2 is required for cellular homeostasis by promoting lysophagy through facilitating ELDR-mediated K48-linked ubiquitin conjugate removal and autophagosome formation on the damaged lysosomes. Deletion of Ptp4a2 in vivo compromises the recovery of glycerol-injection induced acute kidney injury due to impaired lysophagy and sustained lysosomal damage. Taken together, our data establish PTP4A2 as a critical regulator of VCP and uncover an important role for PTP4A2 in maintaining lysosomal homeostasis through dephosphorylation of VCP at Tyr805. Our study suggests that PTP4A2 targeting could be a potential therapeutic approach to treat cancers and other degenerative diseases by modulating lysosomal homeostasis and macroautophagy/autophagy.Abbreviations: AAA+: ATPases associated with diverse cellular activities; AKI: acute kidney injury; CBB: Coomassie Brilliant Blue; CRISPR: clustered regularly interspaced short palindromic repeats; ELDR: endo-lysosomal damage response; GFP: green fluorescent protein; GST: glutathione S-transferase; IHC: immunohistochemistry; IP: immunoprecipitation; LAMP1: lysosomal-associated membrane protein 1; LC-MS: liquid chromatography-mass spectrometry; LGALS3/Gal3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; PLAA: phospholipase A2, activating protein; PTP4A2: protein tyrosine phosphatase 4a2; PUB: NGLY1/PNGase/UBA- or UBX-containing protein; PUL: PLAP, Ufd3, and Lub1; TFEB: transcription factor EB; UBXN6/UBXD1: UBX domain protein 6; UPS: ubiquitin-proteasome system; VCP/p97: valosin containing protein; VCPIP1: valosin containing protein interacting protein 1; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Guimei Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Yuan Zhou
- Department of Biochemistry, Purdue University, West Lafayette, USA
| | - Peipei Zhu
- Department of Chemistry, Purdue University, West Lafayette, USA
| | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Lujuan Zhang
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, A, USA
| | - W. Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, USA
- Department of Biochemistry, Purdue University, West Lafayette, USA
- Center for Cancer Research
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
- Department of Chemistry, Purdue University, West Lafayette, USA
- Center for Cancer Research
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Chee CE, Ooi M, Lee SC, Sundar R, Heong V, Yong WP, Ng CH, Wong A, Lim JSJ, Tan DSP, Soo R, Tan JTC, Yang S, Thura M, Al-Aidaroos AQ, Chng WJ, Zeng Q, Goh BC. A Phase I, First-in-Human Study of PRL3-zumab in Advanced, Refractory Solid Tumors and Hematological Malignancies. Target Oncol 2023; 18:391-402. [PMID: 37060431 DOI: 10.1007/s11523-023-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Phosphatase of regenerating liver-3 (PRL-3) is involved in cellular processes driving metastasis, cell proliferation, invasion, motility and survival. It has been shown to be upregulated and overexpressed in cancer tissue, in contrast to low or no expression in most normal tissue. PRL3-zumab is a first-in-class humanized antibody that specifically binds to PRL-3 oncotarget with high affinity and has been shown to reduce tumor growth and increase survival. OBJECTIVE In the study, we aimed to determine the safety and efficacy of PRL3-zumab in patients with advanced solid tumors and hematological malignancies. METHODS We conducted a phase I, first-in-human study in advanced solid tumors and hematological malignancies to investigate the safety, tolerability and efficacy of PRL3-zumab. Response rates were evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST) guideline (version 1.1) for solid tumors. For acute myeloid leukemia (AML) patients, bone marrow response criteria based on the European Leukaemia Network (ELN) 2017 guidelines for AML were used. We also explored the pharmacokinetics and pharmacodynamic relationships of PRL3-zumab in patients. This study was registered with ClinicalTrials.gov: NCT03191682. RESULTS In the dose-escalation cohort, 11 patients with advanced solid tumors were enrolled into the study. An additional 12 patients with solid tumors and four patients with AML were enrolled in the dose-expansion cohort. Maximum tolerability was not achieved in this study, as there were no dose-limiting toxicities. Potential treatment-emergent adverse events were grade 1 increased stoma output and fatigue and grade 2 vomiting. Best response observed was stable disease in three solid-tumor patients (11.1%). The pharmacokinetics of PRL3-zumab were dose proportional, consistent with an IgG type monoclonal antibody. CONCLUSIONS PRL3-zumab, a first-in-class humanized antibody, was safe and tolerable in solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Cheng E Chee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Melissa Ooi
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Raghav Sundar
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Valerie Heong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Wei-Peng Yong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Hin Ng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Andrea Wong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Joline S J Lim
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David S P Tan
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ross Soo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Joshua T C Tan
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Song Yang
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
| | - Min Thura
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Abdul Qader Al-Aidaroos
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Boon-Cher Goh
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore, 119228, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Chen H, Bai Y, Kobayashi M, Xiao S, Cai W, Barajas S, Chen S, Miao J, Meke FN, Vemula S, Ropa JP, Croop JM, Boswell HS, Wan J, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 phosphatase enhances oncogenic FLT3 signaling via dephosphorylation of the E3 ubiquitin ligase CBL at tyrosine 371. Blood 2023; 141:244-259. [PMID: 36206490 PMCID: PMC9936309 DOI: 10.1182/blood.2022016580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications-driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology and Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Shiyu Xiao
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sergio Barajas
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sisi Chen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - James P. Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - James M. Croop
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Department of Medical Genetics, Indiana University, Indianapolis, IN
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jessica K. Altman
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Elizabeth A. Eklund
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Wei Tong
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, NB
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Yan Liu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| |
Collapse
|
18
|
Ryu K, Yoshida A, Funato Y, Yamazaki D, Miki H. PRL stimulates mitotic errors by suppressing kinetochore-localized activation of AMPK during mitosis. Cell Struct Funct 2022; 47:75-87. [PMID: 36336348 PMCID: PMC10511051 DOI: 10.1247/csf.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/28/2022] [Indexed: 12/17/2023] Open
Abstract
Phosphatase of regenerating liver (PRL) is frequently overexpressed in various malignant cancers and is known to be a driver of malignancy. Here, we demonstrated that PRL overexpression causes mitotic errors that accompany spindle misorientation and aneuploidy, which are intimately associated with cancer progression. Mechanistic analyses of this phenomenon revealed dysregulation of the energy sensor kinase, AMP-activated protein kinase (AMPK), in PRL-induced mitotic errors. Specifically, immunofluorescence analysis showed that levels of phosphorylated AMPK (P-AMPK), an activated form of AMPK, at the kinetochore were reduced by PRL expression. Moreover, artificial activation of AMPK using chemical activators, such as A769662 and AICAR, in PRL-expressing cells restored P-AMPK signals at the kinetochore and normalized spindle orientation. Collectively, these results indicate the crucial importance of the activation of kinetochore-localized AMPK in the normal progression of mitosis, which is specifically perturbed by PRL overexpression.Key words: cancer, AMPK, PRL, kinetochore, mitotic errors.
Collapse
Affiliation(s)
- Kajung Ryu
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Yoshida
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Yamazaki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Characterizing PTP4A3/PRL-3 as the Potential Prognostic Marker Gene for Liver Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2717056. [PMID: 36213837 PMCID: PMC9546693 DOI: 10.1155/2022/2717056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023]
Abstract
Background A large number of cancer-related deaths in the world can be attributed to liver hepatocellular carcinoma (LIHC). The purpose of this study is to explore protein tyrosine phosphatase type IV A member 3 (PTP4A3/PRL-3) as a new and reliable biomarker to predict the prognosis of LIHC and determine the potential therapeutic targets or drugs that can be used for treating LIHC. Methods We included three LIHC datasets with clinical information and expression profiles from public databases. The expression level of PTP4A3 was analyzed, and based on the results, the samples were divided into high- and low-expression groups. The Kaplan–Meier survival analysis method was used to determine the relationship between PTP4A3 and prognosis. The enrichment differences among the functional pathways associated with the high- and low-expression groups were determined using the gene set enrichment analysis (GSEA) method. Five methods were used to determine the differences among the tumor microenvironment in the low- and high-expression groups. The sensitivity of the low- and high-expression groups toward different drug treatment methods was predicted by analyzing the Tumor Immune Dysfunction and Exclusion (TIDE) scores and determining the biochemical half-maximal inhibitory concentration (IC50). Results The expression levels of the LIHC and adjacent samples were analyzed, and it was observed that the expression level of PTP4A3 in tumor tissue was significantly higher than the expression level of the same gene in the adjacent samples. It was also inferred that it might be a cancer-promoting gene. It was concluded that high-expression results in a significantly poor prognosis. The high-expression group was significantly enriched in the tumor-related pathways, such as the PI3K-AKT signaling pathway. In addition, the results obtained by conducting immune infiltration analysis revealed a significant positive correlation between some immune scores and the gene PTP4A3. The drug KIN001−135 and gene PTP4A3 were also found to correlate positively with each other. CP466722, Pyrimethamine, AKT inhibitor VIII, Embelin, Cisplatin, QS11, Bexarotene, and Midostaurin negatively correlated with PTP4A3 associated with the three datasets. Moreover, the drugs Cisplatin, QS11, Midostaurin, and CP466722 were more sensitive toward the high-expression group than the low PTP4A3 expression group. Significant differences were observed in these cases. Conclusion PTP4A3/PRL-3 is potentially associated with the progression, metastasis, and invasion of LIHC. The prognosis of LIHC patients is negatively impacted by the high-expression levels of the gene. The results indicate that PTP4A3/PRL-3 is an important prognostic factor for LIHC and is a new potential prognostic detection target. The discovery of the 8 drugs that were negatively associated with PTP4A3 provided a new direction that can be developed in the future for the treatment of LIHC.
Collapse
|
20
|
Yun J, Kim YS, Heo MJ, Kim MJ, Moon A, Kim SG. ERα inhibits mesenchymal and amoeboidal movement of liver cancer cell via Gα12. Int J Cancer 2022; 150:1690-1705. [PMID: 35020952 DOI: 10.1002/ijc.33929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second most common cancer worldwide, demonstrating aggressiveness and mortality more frequently in men than in women. Despite reports regarding the inhibitory ability of estrogen receptor alpha (ERα, ESR1) in certain cancer progression, targets and the basis of underlying gender disparity in HCC worsening remain elusive. Here, we report the ability of ERα to transcriptionally inhibit G protein subunit alpha 12 (Gα12) responsible for HCC worsening. First, using human samples and public database, the expression of ERα and Gα12 in HCC was examined. Then, quantitative real-time PCR, chromatin immunoprecipitation-assay, luciferase assay, and immunoblottings of liver cancer cell lines confirmed the inhibitory ability of ERα on Gα12 and HCC progression. Gα12 promoted mesenchymal characteristics and amoeboidal movement, which was antagonized by ERα overexpression. Additionally, we found microRNA-141 and -200a as downstream targets of the Gα12 signaling axis for cancer malignancy regulation under the control of ERα. As for in-depth mechanism, PTP4A1 was found to be directly inhibited by microRNA-141 and -200a. Moreover, we found the inhibitory effect of ERα on amoeboidal movement by analyzing the morphology and blebbing of liver cancer cells and the active form of MLC levels. The identified targets and ESR1 levels are inversely correlated in human specimens, as well as with sex-biased survival rates of HCC patients. Collectively, ERα-dependent repression of Gα12 and consequent changes in the Gα12 signaling may explain the gender disparity in HCC, providing pharmacological clues for the control of metastatic HCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica Yun
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jeong Heo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Min Joo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Kyeonggi-do, Republic of Korea
| |
Collapse
|
21
|
Funato Y, Miki H. The emerging roles and therapeutic potential of cyclin M/CorC family of Mg 2+ transporters. J Pharmacol Sci 2021; 148:14-18. [PMID: 34924118 DOI: 10.1016/j.jphs.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022] Open
Abstract
Cyclin M (CNNM) and its prokaryotic ortholog CorC belong to a family of proteins that function as Mg2+-extruding transporters by stimulating Na+/Mg2+ exchange, and thereby control intracellular Mg2+ levels. The Mg2+-extruding function of CNNM is inhibited by the direct binding of an oncogenic protein, phosphatase of regenerating liver (PRL), and this inhibition is responsible for the PRL-driven malignant progression of cancers. Studies with mouse strains deficient for the CNNM gene family revealed the importance of CNNM4 and CNNM2 in maintaining organismal Mg2+ homeostasis by participating in intestinal Mg2+ absorption and renal reabsorption, respectively. Moreover, CNNM proteins are involved in various diseases, and gene mutations in CNNM2 and CNNM4 cause dominant familial hypomagnesemia and Jalili syndrome, respectively. Genome wide association studies have also revealed the importance of CNNM2 in multiple major diseases, such as hypertension and schizophrenia. Collectively, the molecular and biological characterizations of CNNM/CorC show that they are an intriguing therapeutic target; the current status of drug development targeting these proteins is also discussed.
Collapse
Affiliation(s)
- Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Lohani S, Funato Y, Akieda Y, Mizutani K, Takai Y, Ishitani T, Miki H. A novel role of PRL in regulating epithelial cell density by inducing apoptosis at confluence. J Cell Sci 2021; 135:273809. [PMID: 34931244 DOI: 10.1242/jcs.258550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Maintaining proper epithelial cell density is essential for the survival of multicellular organisms. While regulation of cell density through apoptosis is well known, its mechanistic details remain elusive. Here, we report the involvement of membrane-anchored phosphatase of regenerating liver (PRL), originally known for its role in cancer malignancy, in this process. In epithelial MDCK cells, upon confluence, doxycycline-induced expression of PRL upregulated apoptosis, reducing the cell density. This could be circumvented by artificially reducing the cell density via stretching the cell-seeded silicon chamber. Moreover, siRNA-mediated knockdown of endogenous PRL blocked apoptosis, leading to greater cell density. Mechanistically, PRL promoted apoptosis by upregulating the translation of E-cadherin and activating TGF-β pathway. Morpholino-mediated inhibition of PRL expression in zebrafish embryos caused developmental defect with reduced apoptosis and increased epithelial cell density during convergent extension. This study revealed a novel role of PRL in regulating density-dependent apoptosis in vertebrate epithelium.
Collapse
Affiliation(s)
- Sweksha Lohani
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Akieda
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Druml T, Brem G, Velie B, Lindgren G, Horna M, Ricard A, Grilz-Seger G. Equine vitiligo-like depigmentation in grey horses is related to genes involved in immune response and tumor metastasis. BMC Vet Res 2021; 17:336. [PMID: 34696794 PMCID: PMC8543801 DOI: 10.1186/s12917-021-03046-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background In horses, the autoimmune disease vitiligo is characterized by the loss of melanocytes and results in patchy depigmentation of the skin around the eyes, muzzle and the perianal region. Vitiligo-like depigmentation occurs predominantly in horses displaying the grey coat colour and is observed at a prevalence level of 26.0–67.0% in grey horses compared with only 0.8–3.5% in non-grey horses. While the polygenetic background of this complex disease is well documented in humans, the underlying candidate genes for this skin disorder in horses remain unknown. In this study we aim to perform a genome-wide association study (GWAS) for identifying putative candidate loci for vitiligo-like depigmentation in horses. Methods In the current study, we performed a GWAS analysis using high-density 670 k single nucleotide polymorphism (SNP) data from 152 Lipizzan and 104 Noriker horses, which were phenotyped for vitiligo-like depigmentation by visual inspection. After quality control 376,219 SNPs remained for analyses, the genome-wide Bonferroni corrected significance level was p < 1.33e-7. Results We identified seven candidate genes on four chromosomes (ECA1, ECA13, ECA17, ECA20) putatively involved in vitiligo pathogenesis in grey horses. The highlighted genes PHF11, SETDB2, CARHSP1 and LITAFD, are associated with the innate immune system, while the genes RCBTB1, LITAFD, NUBPL, PTP4A1, play a role in tumor suppression and metastasis. The antagonistic pathogenesis of vitiligo in relation to cancer specific enhanced cell motility and/or metastasis on typical melanoma predilection sites underlines a plausible involvement of RCBTB1, LITAFD, NUBPL, and PTP4A1. Conclusions The proposed candidate genes for equine vitiligo-like depigmentation, indicate an antagonistic relation between vitiligo and tumor metastasis in a horse population with higher incidence of melanoma. Further replication and expression studies should lead to a better understanding of this skin disorder in horses.
Collapse
Affiliation(s)
- Thomas Druml
- Institute of Animal Breeding and Genetics, University of Veterinary sciences Vienna, Veterinärplatz 1, A-1210, Vienna, Austria.
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary sciences Vienna, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Brandon Velie
- Equine Genetics & Genomics Group, School of Life & Environmental Sciences, University of Sydney, Sydney, Australia
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences Uppsala, Uppsala, Sweden.,Livestock Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Michaela Horna
- Department of Animal Husbandry, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Anne Ricard
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Pôle Développement Innovation Recherche, IFCE, 61310, Gouffern en Auge, France
| | - Gertrud Grilz-Seger
- Institute of Animal Breeding and Genetics, University of Veterinary sciences Vienna, Veterinärplatz 1, A-1210, Vienna, Austria
| |
Collapse
|
24
|
Functional interrogation and therapeutic targeting of protein tyrosine phosphatases. Biochem Soc Trans 2021; 49:1723-1734. [PMID: 34431504 DOI: 10.1042/bst20201308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphatases (PTPs) counteract the enzymatic activity of protein tyrosine kinases to modulate levels of both normal and disease-associated protein tyrosine phosphorylation. Aberrant activity of PTPs has been linked to the progression of many disease states, yet no PTP inhibitors are currently clinically available. PTPs are without a doubt a difficult drug target. Despite this, many selective, potent, and bioavailable PTP inhibitors have been described, suggesting PTPs should once again be looked at as viable therapeutic targets. Herein, we summarize recently discovered PTP inhibitors and their use in the functional interrogation of PTPs in disease states. In addition, an overview of the therapeutic targeting of PTPs is described using SHP2 as a representative target.
Collapse
|
25
|
The phosphatase PRL-3 affects intestinal homeostasis by altering the crypt cell composition. J Mol Med (Berl) 2021; 99:1413-1426. [PMID: 34129057 PMCID: PMC8455404 DOI: 10.1007/s00109-021-02097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 11/04/2022]
Abstract
Expression of the phosphatase of regenerating liver-3 (PRL-3) is known to promote tumor growth in gastrointestinal adenocarcinomas, and the incidence of tumor formation upon inflammatory events correlates with PRL-3 levels in mouse models. These carcinomas and their onset are associated with the impairment of intestinal cell homeostasis, which is regulated by a balanced number of Paneth cells and Lgr5 expressing intestinal stem cells (Lgr5+ ISCs). Nevertheless, the consequences of PRL-3 overexpression on cellular homeostasis and ISC fitness in vivo are unexplored. Here, we employ a doxycycline-inducible PRL-3 mouse strain to show that aberrant PRL-3 expression within a non-cancerous background leads to the death of Lgr5+ ISCs and to Paneth cell expansion. A higher dose of PRL-3, resulting from homozygous expression, led to mice dying early. A primary 3D intestinal culture model obtained from these mice confirmed the loss of Lgr5+ ISCs upon PRL-3 expression. The impaired intestinal organoid formation was rescued by a PRL inhibitor, providing a functional link to the observed phenotypes. These results demonstrate that elevated PRL-3 phosphatase activity in healthy intestinal epithelium impairs intestinal cell homeostasis, which correlates this cellular mechanism of tumor onset with PRL-3-mediated higher susceptibility to tumor formation upon inflammatory or mutational events. Key messages • Transgenic mice homozygous for PRL-3 overexpression die early. • PRL-3 heterozygous mice display disrupted intestinal self-renewal capacity. • PRL-3 overexpression alone does not induce tumorigenesis in the mouse intestine. • PRL-3 activity leads to the death of Lgr5+ ISCs and Paneth cell expansion. • Impairment of cell homeostasis correlates PRL-3 action with tumor onset mechanisms.
Collapse
|
26
|
Vandsemb EN, Rye MB, Steiro IJ, Elsaadi S, Rø TB, Slørdahl TS, Sponaas AM, Børset M, Abdollahi P. PRL-3 induces a positive signaling circuit between glycolysis and activation of STAT1/2. FEBS J 2021; 288:6700-6715. [PMID: 34092011 DOI: 10.1111/febs.16058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy resulting from the clonal expansion of plasma cells. MM cells are interacting with components of the bone marrow microenvironment such as cytokines to survive and proliferate. Phosphatase of regenerating liver (PRL)-3, a cytokine-induced oncogenic phosphatase, is highly expressed in myeloma patients and is a mediator of metabolic reprogramming of cancer cells. To find novel pathways and genes regulated by PRL-3, we characterized the global transcriptional response to PRL-3 overexpression in two MM cell lines. We used pathway enrichment analysis to identify pathways regulated by PRL-3. We further confirmed the hits from the enrichment analysis with in vitro experiments and investigated their function. We found that PRL-3 induced expression of genes belonging to the type 1 interferon (IFN-I) signaling pathway due to activation of signal transducer and activator of transcription (STAT) 1 and STAT2. This activation was independent of autocrine IFN-I secretion. The increase in STAT1 and STAT2 did not result in any of the common consequences of increased IFN-I or STAT1 signaling in cancer. Knockdown of STAT1/2 did not affect the viability of the cells, but decreased PRL-3-induced glycolysis. Interestingly, glucose metabolism contributed to the activation of STAT1 and STAT2 and expression of IFN-I-stimulated genes in PRL-3-overexpressing cells. In summary, we describe a novel signaling circuit where the key IFN-I-activated transcription factors STAT1 and STAT2 are important drivers of the increase in glycolysis induced by PRL-3. Subsequently, increased glycolysis regulates the IFN-I-stimulated genes by augmenting the activation of STAT1/2.
Collapse
Affiliation(s)
- Esten Nymoen Vandsemb
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Surgery, St. Olavs University Hospital, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway.,Biocore - Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ida Johnsen Steiro
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Torstein Bade Rø
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Children's Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Tobias Schmidt Slørdahl
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs University Hospital, Norway
| | - Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
27
|
The dual inhibition against the activity and expression of tyrosine phosphatase PRL-3 from a rhodanine derivative. Bioorg Med Chem Lett 2021; 41:127981. [PMID: 33766767 DOI: 10.1016/j.bmcl.2021.127981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 11/22/2022]
Abstract
Increasing evidences demonstrated that PRL-3 was associated with metastatic potential in a variety of cancers including CRC, gastric cancer, ovarian cancer and so on. PRL-3 knock down inhibited the development of metastasis by reducing the size of primary tumors and inhibiting the invasion and growth of cancer cells. Therefore, PRL-3 is a promising diagnostic marker and therapeutic target in tumors. So far, only several PRL-3 inhibitors have been reported. In this study, six rhodanine derivatives were synthesized and characterized. The compounds were evaluated against tyrosine phosphatase PRL-3. Among these compounds, 5-(5-chloro-2-(trifluoromethyl)benzylidene)-2-thioxothiazolidin-4-one (4) could effectively inhibit PRL-3 with IC50 value of 15.22 μM. Fluorescent assays suggested compound 4 tightly bound to tyrosine phosphatase PRL-3 with the molar ratio of 1:1, and the binding constant of 1.74 × 106 M-1. Compound 4 entered into SW-480 cells, selectively inhibited the expression of PRL-3 and increased the phosphorylation of PRL-3 substrates, and decreased the survival rate of SW-480 cells with IC50 of 6.64 μM and induced apoptosis. The results revealed that compound 4 is a dual functional inhibitor against the activity and expression of PRL-3 and a promising anti-cancer candidate targeting PRL-3.
Collapse
|
28
|
A screen of FDA-approved drugs identifies inhibitors of protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3). Sci Rep 2021; 11:10302. [PMID: 33986418 PMCID: PMC8119466 DOI: 10.1038/s41598-021-89668-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/29/2021] [Indexed: 12/02/2022] Open
Abstract
Protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3) is highly expressed in a variety of cancers, where it promotes tumor cell migration and metastasis leading to poor prognosis. Despite its clinical significance, small molecule inhibitors of PRL-3 are lacking. Here, we screened 1443 FDA-approved drugs for their ability to inhibit the activity of the PRL phosphatase family. We identified five specific inhibitors for PRL-3 as well as one selective inhibitor of PRL-2. Additionally, we found nine drugs that broadly and significantly suppressed PRL activity. Two of these broad-spectrum PRL inhibitors, Salirasib and Candesartan, blocked PRL-3-induced migration in human embryonic kidney cells with no impact on cell viability. Both drugs prevented migration of human colorectal cancer cells in a PRL-3 dependent manner and were selective towards PRLs over other phosphatases. In silico modeling revealed that Salirasib binds a putative allosteric site near the WPD loop of PRL-3, while Candesartan binds a potentially novel targetable site adjacent to the CX5R motif. Inhibitor binding at either of these sites is predicted to trap PRL-3 in a closed conformation, preventing substrate binding and inhibiting function.
Collapse
|
29
|
Gao PP, Qi XW, Sun N, Sun YY, Zhang Y, Tan XN, Ding J, Han F, Zhang Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188562. [PMID: 33964330 DOI: 10.1016/j.bbcan.2021.188562] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Reversible phosphorylation of proteins, controlled by kinases and phosphatases, is involved in various cellular processes. Dual-specificity phosphatases (DUSPs) can dephosphorylate phosphorylated serine, threonine and tyrosine residues. This family consists of 61 members, 44 of which have been identified in human, and these 44 members are classified into six subgroups, the phosphatase and tensin homolog (PTEN) protein phosphatases (PTENs), mitogen-activated protein kinase phosphatases (MKPs), atypical DUSPs, cell division cycle 14 (CDC14) phosphatases (CDC14s), slingshot protein phosphatases (SSHs), and phosphatases of the regenerating liver (PRLs). Growing evidence has revealed dysregulation of DUSPs as one of the common phenomenons and highlighted their key roles in human cancers. Furthermore, their differential expression may be a potential biomarker for tumor prognosis. Despite this, there are still many unstudied members of DUSPs need to further explore their precise roles and mechanism in cancers. Most importantly, the systematic review is very limited on the functional/mechanistic characteristics and clinical application of DUSPs at present. In this review, the structures, functions and underlying mechanisms of DUSPs are systematically reviewed, and the molecular and functional characteristics of DUSPs in different tumor types according to the current researches are summarized. In addition, the potential roles of the unstudied members and the possible different mechanisms of DUSPs in cancer are discussed and classified based on homology alignment and structural domain analyses. Moreover, the specific characteristics of their expression and prognosis are further determined in more than 30 types of human cancers by using the online databases. Finally, their potential application in precise diagnosis, prognosis and treatment of different types of cancers, and the main possible problems for the clinical application at present are prospected.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Na Sun
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan-Yuan Sun
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130023, China
| | - Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Ding
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
30
|
Liu C, Zhong W, Xia L, Fang C, Liu H, Liu X. A retrospective cohort study of clinical value of PRL-3 in stage III human colorectal cancer. Medicine (Baltimore) 2021; 100:e25658. [PMID: 33907129 PMCID: PMC8084011 DOI: 10.1097/md.0000000000025658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/20/2021] [Accepted: 04/04/2021] [Indexed: 12/09/2022] Open
Abstract
ABSTRACT The aim of this study was to investigate the expression of phosphatase of regenerating live-3 (PRL-3) in human stage III colorectal cancer (CRC) and to evaluate its correlation with metachronous liver metastasis (MLM) and prognosis.The retrospective cohort study included 116 stage III CRC primary tumors and 60 normal colorectal tissues. PRL-3 expression was measured by immunohistochemistry. We investigated the correlation of PRL-3 with clinicopathologic features by the chi-square test. The association of PRL-3 expression with MLM was assessed by binary logistic regression. Overall survival (OS) and disease-free survival (DFS) between patients with positive PRL-3 expression and those with negative PRL-3 expression were compared by the Kaplan-Meier method and Cox proportional hazards regression model.We found that 32.8% of stage III CRC primary tumors were PRL-3 positive, and 15.0% of normal colorectal epithelia showed high PRL-3 expression (P = .012). Seventeen tumors (47.2%) among 36 cases that developed MLM were PRL-3 positive, and only 21 tumors (26.3%) in the 80 cases that did not develop MLM had positive PRL-3 expression (P = .026). PRL-3 expression was associated with MLM (P = .028). Patients with positive expression of PRL-3 showed a significantly shorter OS (40.32 ± 3.97 vs 53.96 ± 2.77 months, P = .009) and DFS (34.97 ± 4.30 vs 44.48 ± 2.89 months, P = .036). A multivariate analysis indicated that PRL-3 expression was an independent unfavorable prognostic factor for OS (P = .007).Our study suggested that high PRL-3 expression is an independent risk factor for MLM and poor prognosis. PRL-3 is expected to be a promising biomarker for predicting the incidence of MLM and prognosis in patients with stage III CRC.
Collapse
|
31
|
Qiu W, Cai X, Xu K, Song S, Xiao Z, Hou Y, Qi X, Liu F, Chen Y, Yang H, Chu L, Liu J. PRL1 Promotes Glioblastoma Invasion and Tumorigenesis via Activating USP36-Mediated Snail2 Deubiquitination. Front Oncol 2021; 11:795633. [PMID: 35111679 PMCID: PMC8801937 DOI: 10.3389/fonc.2021.795633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Regenerating liver phosphatase 1 (PRL1) is an established oncogene in various cancers, although its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we showed that PRL1 was significantly upregulated in glioma tissues and cell lines, and positively correlated with the tumor grade. Consistently, ectopic expression of PRL1 in glioma cell lines significantly enhanced their tumorigenicity and invasion both in vitro and in vivo by promoting epithelial-mesenchymal transition (EMT). Conversely, knocking down PRL1 blocked EMT in GBM cells, and inhibited their invasion, migration and tumorigenic growth. Additionally, PRL1 also stabilized Snail2 through its deubiquitination by activating USP36, thus revealing Snail2 as a crucial mediator of the oncogenic effects of PRL1 in GBM pathogenesis. Finally, PRL1 protein levels were positively correlated with that of Snail2 and predicted poor outcome of GBMs. Collectively, our data support that PRL1 promotes GBM progression by activating USP36-mediated Snail2 deubiquitination. This novel PRL1/USP36/Snail2 axis may be a promising therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaomin Cai
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zumu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Feng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| | - Jian Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| |
Collapse
|
32
|
The Oncogenic PRL Protein Causes Acid Addiction of Cells by Stimulating Lysosomal Exocytosis. Dev Cell 2020; 55:387-397.e8. [DOI: 10.1016/j.devcel.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
|
33
|
Mahesh G, Rivas GBS, Caster C, Ost EB, Amunugama R, Jones R, Allen DL, Hardin PE. Proteomic analysis of Drosophila CLOCK complexes identifies rhythmic interactions with SAGA and Tip60 complex component NIPPED-A. Sci Rep 2020; 10:17951. [PMID: 33087840 PMCID: PMC7578830 DOI: 10.1038/s41598-020-75009-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks keep time via ~ 24 h transcriptional feedback loops. In Drosophila, CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors are feedback loop components whose transcriptional status varies over a circadian cycle. Although changes in the state of activators and repressors has been characterized, how their status is translated to transcriptional activity is not understood. We used mass spectrometry to identify proteins that interact with GFP-tagged CLK (GFP-CLK) in fly heads at different times of day. Many expected and novel interacting proteins were detected, of which several interacted rhythmically and were potential regulators of protein levels, activity or transcriptional output. Genes encoding these proteins were tested to determine if they altered circadian behavior via RNAi knockdown in clock cells. The NIPPED-A protein, a scaffold for the SAGA and Tip60 histone modifying complexes, interacts with GFP-CLK as transcription is activated, and reducing Nipped-A expression lengthens circadian period. RNAi analysis of other SAGA complex components shows that the SAGA histone deubiquitination (DUB) module lengthened period similarly to Nipped-A RNAi knockdown and weakened rhythmicity, whereas reducing Tip60 HAT expression drastically weakened rhythmicity. These results suggest that CLK-CYC binds NIPPED-A early in the day to promote transcription through SAGA DUB and Tip60 HAT activity.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Gustavo B S Rivas
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Courtney Caster
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Evan B Ost
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
34
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
35
|
Aguilar-Sopeña O, Hernández-Pérez S, Alegre-Gómez S, Castro-Sánchez P, Iglesias-Ceacero A, Lazo JS, Roda-Navarro P. Effect of Pharmacological Inhibition of the Catalytic Activity of Phosphatases of Regenerating Liver in Early T Cell Receptor Signaling Dynamics and IL-2 Production. Int J Mol Sci 2020; 21:E2530. [PMID: 32260565 PMCID: PMC7177812 DOI: 10.3390/ijms21072530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
We have previously shown the delivery of phosphatase of regenerating liver-1 (PRL-1) to the immunological synapse (IS) and proposed a regulatory role of the catalytic activity of PRLs (PRL-1, PRL-2 and PRL-3) in antigen-induced IL-2 production. Nonetheless, the expression in T cells and delivery to the IS of the highly homologous PRL-3, as well as the role of the catalytic activity of PRLs in antigen-induced early signaling, has not been investigated. Here, the expression of PRL-3 protein was detected in primary CD4 T cells and in the CD4 T cell line Jurkat (JK), in which an overexpressed GFP-PRL-3 fluorescent fusion protein trafficked through the endosomal recycling compartment and co-localized with PLCγ1 signaling sites at the IS. Pharmacological inhibition was used to compare the role of the catalytic activity of PRLs in antigen-induced early signaling and late IL-2 production. Although the phosphatase activity of PRLs was not critical for early signaling triggered by antigen, it seemed to regulate signaling dynamics and was necessary for proper IL-2 production. We propose that enzymatic activity of PRLs has a higher significance for cytokine production than for early signaling at the IS. However, further research will be necessary to deeply understand the regulatory role of PRLs during lymphocyte activation and effector function.
Collapse
Affiliation(s)
- Oscar Aguilar-Sopeña
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Sara Hernández-Pérez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Sergio Alegre-Gómez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Patricia Castro-Sánchez
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - Alba Iglesias-Ceacero
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| | - John S. Lazo
- Departments of Pharmacology and Chemistry, University of Virginia, Charlottesville, VA 22908, USA;
| | - Pedro Roda-Navarro
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Spain and 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain; (O.A.-S.); (S.H.-P.); (S.A.-G.); (P.C.-S.); (A.I.-C.)
| |
Collapse
|
36
|
Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy? Front Immunol 2020; 11:275. [PMID: 32153582 PMCID: PMC7046808 DOI: 10.3389/fimmu.2020.00275] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of immunotherapy for cancer treatment bears considerable clinical promise. Nevertheless, many patients remain unresponsive, acquire resistance, or suffer dose-limiting toxicities. Immune-editing of tumors assists their escape from the immune system, and the tumor microenvironment (TME) induces immune suppression through multiple mechanisms. Immunotherapy aims to bolster the activity of immune cells against cancer by targeting these suppressive immunomodulatory processes. Natural Killer (NK) cells are a heterogeneous subset of immune cells, which express a diverse array of activating and inhibitory germline-encoded receptors, and are thus capable of directly targeting and killing cancer cells without the need for MHC specificity. Furthermore, they play a critical role in triggering the adaptive immune response. Enhancing the function of NK cells in the context of cancer is therefore a promising avenue for immunotherapy. Different NK-based therapies have been evaluated in clinical trials, and some have demonstrated clinical benefits, especially in the context of hematological malignancies. Solid tumors remain much more difficult to treat, and the time point and means of intervention of current NK-based treatments still require optimization to achieve long term effects. Here, we review recently described mechanisms of cancer evasion from NK cell immune surveillance, and the therapeutic approaches that aim to potentiate NK function. Specific focus is placed on the use of specialized monoclonal antibodies against moieties on the cancer cell, or on both the tumor and the NK cell. In addition, we highlight newly identified mechanisms that inhibit NK cell activity in the TME, and describe how biochemical modifications of the TME can synergize with current treatments and increase susceptibility to NK cell activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
37
|
PTP4A3, A Novel Target Gene of HIF-1alpha, Participates in Benzene-Induced Cell Proliferation Inhibition and Apoptosis through PI3K/AKT Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030910. [PMID: 32024182 PMCID: PMC7037067 DOI: 10.3390/ijerph17030910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Benzene, a commonly used chemical, has been confirmed to specifically affect the hematopoietic system as well as overall human health. PTP4A3 is overexpressed in leukemia cells and is related to cell proliferation. We previously found that HIF-1alpha was involved in benzene toxicity and PTP4A3 may be the target gene of HIF-1alpha via ChIP-seq. The aim of this study is to confirm the relationship between HIF-1alpha and PTP4A3 in benzene toxicity, as well as the function of PTP4A3 on cell toxicity induced by 1,4-benzoquinone (1,4-BQ). Our results indicate that HIF-1alpha could regulate PTP4A3 with in vivo and in vitro experiments. A cell line with suppressed PTP4A3 was established to investigate the function of PTP4A3 in 1,4-BQ toxicity in vitro. The results revealed that cell proliferation inhibition was more aggravated in PTP4A3 low-expression cells than in the control cells after 1,4-BQ treatment. The relative oxygen species (ROS) significantly increased in cells with inhibited PTP4A3, while the rise was inferior to the control cells at the 20 μM 1,4-BQ group. An increase in DNA damage was seen in PTP4A3 down-regulated cells at the 10 μM 1,4-BQ group, whereas the results reversed at the concentration of 20 μM. Moreover, the apoptosis rate increased higher in down-regulated PTP4A3 cells after 1,4-BQ exposure. In addition, PI3K/AKT pathway was significantly restrained in cells with inhibited PTP4A3 after 1,4-BQ treatment. Our results indicate that HIF-1alpha may regulate PTP4A3 to be involved in benzene toxicity. Inhibition of PTP4A3 could aggravate cell proliferation suppression and apoptosis by regulating PI3K/AKT pathway after 1,4-BQ treatment.
Collapse
|
38
|
Suzuki S, Tsutsumi S, Chen Y, Ozeki C, Okabe A, Kawase T, Aburatani H, Ohki R. Identification and characterization of the binding sequences and target genes of p53 lacking the 1st transactivation domain. Cancer Sci 2020; 111:451-466. [PMID: 31834974 PMCID: PMC7004532 DOI: 10.1111/cas.14279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor gene p53 encodes a transcriptional activator that has two transactivation domains (TAD) located in its amino terminus. These two TAD can transactivate genes independently, and at least one TAD is required for p53 transactivation function. The 1st TAD (a.a. 1‐40) is essential for the induction of numerous classical p53 target genes, while the second TAD (a.a. 41‐61) suffices for tumor suppression, although its precise molecular function remains unclear. In this study, we comprehensively identified the sites to which p53 lacking the 1st TAD (Δ1stTAD‐p53) binds, as well as its potential target genes. We found that the binding sequences for Δ1stTAD‐p53 are divergent and include not only the canonical p53 consensus binding sequences but also sequences similar to those recognized by a number of other known transcription factors. We identified and analyzed the functions of three Δ1stTAD‐p53 target genes, PTP4A1, PLK2 and RPS27L. All three genes were induced by both full‐length p53 and Δ1stTAD‐p53, and were dependent on the transactivation activity of the 2nd TAD. We also found that two of these, PTP4A1 and PLK2, are endoplasmic reticulum (ER) stress‐inducible genes. We found that upon ER stress, PTP4A1 suppresses apoptosis while PLK2 induces apoptosis. These results reveal a novel Δ1stTAD‐p53 downstream pathway that is dependent on the transcription activation activity of the 2nd TAD.
Collapse
Affiliation(s)
- Shiori Suzuki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yu Chen
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Chikako Ozeki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsushi Okabe
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Kawase
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
39
|
Duciel L, Monraz Gomez LC, Kondratova M, Kuperstein I, Saule S. The Phosphatase PRL-3 Is Involved in Key Steps of Cancer Metastasis. J Mol Biol 2019; 431:3056-3067. [DOI: 10.1016/j.jmb.2019.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
|
40
|
Guo P, Xu X, Wang F, Yuan X, Tu Y, Zhang B, Zheng H, Yu D, Ge W, Gong Z, Yang X, Xi Y. A Novel Neuroprotective Role of Phosphatase of Regenerating Liver-1 against CO 2 Stimulation in Drosophila. iScience 2019; 19:291-302. [PMID: 31404830 PMCID: PMC6700421 DOI: 10.1016/j.isci.2019.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Neuroprotection is essential for the maintenance of normal physiological functions in the nervous system. This is especially true under stress conditions. Here, we demonstrate a novel protective function of PRL-1 against CO2 stimulation in Drosophila. In the absence of PRL-1, flies exhibit a permanent held-up wing phenotype upon CO2 exposure. Knockdown of the CO2 olfactory receptor, Gr21a, suppresses the phenotype. Our genetic data indicate that the wing phenotype is due to a neural dysfunction. PRL-1 physically interacts with Uex and controls Uex expression levels. Knockdown of Uex alone leads to a similar wing held-up phenotype to that of PRL-1 mutants. Uex acts downstream of PRL-1. Elevated Uex levels in PRL-1 mutants prevent the CO2-induced phenotype. PRL-1 and Uex are required for a wide range of neurons to maintain neuroprotective functions. Expression of human homologs of PRL-1 could rescue the phenotype in Drosophila, suggesting a similar function in humans. PRL-1 functions to protect the nervous system against olfactory CO2 stimulation PRL-1 physically interacts with Uex and controls Uex expression levels PRLs may retain a similar neuroprotective function in humans
Collapse
Affiliation(s)
- Pengfei Guo
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Xiao Xu
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Fang Wang
- College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Xin Yuan
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Yinqi Tu
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Bei Zhang
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; College of Life Sciences, Zhejiang University, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Huimei Zheng
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Danqing Yu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Wanzhong Ge
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China
| | - Xiaohang Yang
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Yongmei Xi
- Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Yuhangtang Road 866, Xihu District, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
41
|
Tasker NR, Rastelli EJ, Burnett JC, Sharlow ER, Lazo JS, Wipf P. Tapping the therapeutic potential of protein tyrosine phosphatase 4A with small molecule inhibitors. Bioorg Med Chem Lett 2019; 29:2008-2015. [PMID: 31307888 DOI: 10.1016/j.bmcl.2019.06.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are emerging new targets for drug discovery. PTPs and protein tyrosine kinases (PTKs) maintain cellular homeostasis through opposing roles: tyrosine O-dephosphorylation and -phosphorylation, respectively. An imbalance in the phosphorylation equilibrium results in aberrant protein signaling and pathophysiological conditions. PTPs have historically been considered 'undruggable', in part due to a lack of evidence defining their relationship to disease causality and a focus on purely competitive inhibitors. However, a better understanding of protein-protein interfaces and shallow active sites has recently renewed interest in the pursuit of allosteric and orthosteric modulators of targets outside the major druggable protein families. While their biological mechanism of action still remains to be clarified, PTP4A1-3 (also referred to as PRL1-3) are validated oncology targets and play an important role in cell proliferation, metastasis, and tumor angiogenesis. In this Digest, recent syntheses and structure-activity relationships (SAR) of small molecule inhibitors (SMIs) of PTP4A1-3 are summarized, and enzyme docking studies of the most potent chemotype are highlighted. In particular, the thienopyridone scaffold has emerged as a potent lead structure to interrogate the function and druggability of this dual-specificity PTP.
Collapse
Affiliation(s)
- Nikhil R Tasker
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Ettore J Rastelli
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - James C Burnett
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Elizabeth R Sharlow
- University of Virginia, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - John S Lazo
- University of Virginia, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Peter Wipf
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
42
|
Thura M, Al-Aidaroos AQ, Gupta A, Chee CE, Lee SC, Hui KM, Li J, Guan YK, Yong WP, So J, Chng WJ, Ng CH, Zhou J, Wang LZ, Yuen JSP, Ho HSS, Yi SM, Chiong E, Choo SP, Ngeow J, Ng MCH, Chua C, Yeo ESA, Tan IBH, Sng JXE, Tan NYZ, Thiery JP, Goh BC, Zeng Q. PRL3-zumab as an immunotherapy to inhibit tumors expressing PRL3 oncoprotein. Nat Commun 2019; 10:2484. [PMID: 31171773 PMCID: PMC6554295 DOI: 10.1038/s41467-019-10127-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-specific antibody drugs can serve as cancer therapy with minimal side effects. A humanized antibody, PRL3-zumab, specifically binds to an intracellular oncogenic phosphatase PRL3, which is frequently expressed in several cancers. Here we show that PRL3-zumab specifically inhibits PRL3+ cancer cells in vivo, but not in vitro. PRL3 antigens are detected on the cell surface and outer exosomal membranes, implying an 'inside-out' externalization of PRL3. PRL3-zumab binds to surface PRL3 in a manner consistent with that in classical antibody-dependent cell-mediated cytotoxicity or antibody-dependent cellular phagocytosis tumor elimination pathways, as PRL3-zumab requires an intact Fc region and host FcγII/III receptor engagement to recruit B cells, NK cells and macrophages to PRL3+ tumor microenvironments. PRL3 is overexpressed in 80.6% of 151 fresh-frozen tumor samples across 11 common cancers examined, but not in patient-matched normal tissues, thereby implicating PRL3 as a tumor-associated antigen. Targeting externalized PRL3 antigens with PRL3-zumab may represent a feasible approach for anti-tumor immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized
- Antibodies, Monoclonal, Murine-Derived
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- B-Lymphocytes
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cytophagocytosis/drug effects
- Hep G2 Cells
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Immunotherapy
- Killer Cells, Natural
- Liver Neoplasms/metabolism
- Macrophages
- Mice
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- Neoplasms/metabolism
- Oncogene Proteins/metabolism
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/metabolism
- Receptors, IgG
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Min Thura
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Abdul Qader Al-Aidaroos
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Abhishek Gupta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Cheng Ean Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Kam Man Hui
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Jie Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Yeoh Khay Guan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Jimmy So
- Division of Surgical Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Chin Hin Ng
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Jianbiao Zhou
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Ling Zhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - John Shyi Peng Yuen
- Department of Urology, Singapore General Hospital, Singapore, 169608, Singapore
| | - Henry Sun Sien Ho
- Department of Urology, Singapore General Hospital, Singapore, 169608, Singapore
| | - Sim Mei Yi
- Department of Urology, Singapore General Hospital, Singapore, 169608, Singapore
| | - Edmund Chiong
- Division of Surgical Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Joanne Ngeow
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Matthew Chau Hsien Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Clarinda Chua
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Eugene Shen Ann Yeo
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, 169608, Singapore
| | - Iain Bee Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Joel Xuan En Sng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Nicholas Yan Zhi Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, 119082, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
43
|
Phosphatase of regenerating liver sensitizes MET to functional activation by hepatocyte growth factor. Biochem J 2019; 476:1419-1431. [PMID: 31036720 DOI: 10.1042/bcj20190071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023]
Abstract
Phosphatase of regenerating liver (PRL) is overexpressed in metastatic cancers and actively drives their malignant progression. Many studies on cultured cancer cells have implied PRL overexpression as a stimulant for cellular signaling involved in cell proliferation. However, its role in the tightly adhered and polarized epithelial cells remains largely uncharacterized. In this study, we show that inducible expression of PRL in MDCK normal epithelial cells sensitized MET, the receptor for hepatocyte growth factor (HGF), to functional activation by HGF. We found that PRL expression amplified tyrosine phosphorylation levels of various proteins, among which MET was identified to be the most abundant. This phosphorylation occurred selectively at Y1234/1235 in the activation loop of MET, whereas phosphorylation of Y1349 in the effector-binding site, which is directly involved in downstream signaling, was almost undetectable. Consistently, PRL overexpression by itself did not cause observable alterations at the cellular level. However, when cells were stimulated with HGF, phosphorylation of Y1349 was much more strongly induced in PRL-expressing cells than in control cells. This resulted in robust cell scattering and tubulogenesis, even with low levels of HGF. Collectively, these results demonstrate a unique role of PRL in regulating MET function, which is known to be crucial for remodeling of epithelial tissues and malignant progression of cancers.
Collapse
|
44
|
Duciel L, Anezo O, Mandal K, Laurent C, Planque N, Coquelle FM, Gentien D, Manneville JB, Saule S. Protein tyrosine phosphatase 4A3 (PTP4A3/PRL-3) promotes the aggressiveness of human uveal melanoma through dephosphorylation of CRMP2. Sci Rep 2019; 9:2990. [PMID: 30816227 PMCID: PMC6395723 DOI: 10.1038/s41598-019-39643-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Uveal melanoma (UM) is an aggressive tumor in which approximately 50% of patients develop metastasis. Expression of the PTP4A3 gene, encoding a phosphatase, is predictive of poor patient survival. PTP4A3 expression in UM cells increases their migration in vitro and invasiveness in vivo. Here, we show that CRMP2 is mostly dephosphorylated on T514 in PTP4A3 expressing cells. We also demonstrate that inhibition of CRMP2 expression in UM cells expressing PTP4A3 increases their migration in vitro and invasiveness in vivo. This phenotype is accompanied by modifications of the actin microfilament network, with shortened filaments, whereas cells with a inactive mutant of the phosphatase do not show the same behavior. In addition, we showed that the cell cytoplasm becomes stiffer when CRMP2 is downregulated or PTP4A3 is expressed. Our results suggest that PTP4A3 acts upstream of CRMP2 in UM cells to enhance their migration and invasiveness and that a low level of CRMP2 in tumors is predictive of poor patient survival.
Collapse
Affiliation(s)
- Laura Duciel
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS, INSERM, Orsay, France
| | - Océane Anezo
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS, INSERM, Orsay, France
| | - Kalpana Mandal
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, 19104, USA
| | | | - Nathalie Planque
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France.,Université Paris Diderot, Sorbonne Paris Cité, France
| | - Frédéric M Coquelle
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS, INSERM, Orsay, France
| | - David Gentien
- Institut Curie, PSL Research University, Translational Research Departement, Genomics Platform, Paris, France
| | | | - Simon Saule
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS, INSERM, Orsay, France.
| |
Collapse
|
45
|
Cnnm4 deficiency suppresses Ca2+ signaling and promotes cell proliferation in the colon epithelia. Oncogene 2019; 38:3962-3969. [DOI: 10.1038/s41388-019-0682-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/25/2022]
|
46
|
The miR-29c-KIAA1199 axis regulates gastric cancer migration by binding with WBP11 and PTP4A3. Oncogene 2019; 38:3134-3150. [PMID: 30626935 DOI: 10.1038/s41388-018-0642-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) is the second leading cause of death among patients with cancer in China. The primary reason of GC treatment failure is metastasis. Therefore, identifying metastatic biomarkers and clarifying the regulatory mechanisms involved in the GC metastatic process are important. Here, we found that KIAA1199, a cell migration-inducing protein, was significantly overexpressed in GC and correlated with lymph node metastasis and poorer patient survival. Additionally, the introduction of KIAA1199 dramatically promoted GC cell proliferation and migration in vitro and in vivo, and the inhibition of KIAA1199 suppressed GC cell growth and migration and induced GC cell apoptosis. Cell migration is a functional consequence of the epithelial-mesenchymal transition (EMT). In this study, we found that KIAA1199 inhibition or overexpression regulated the expression of E-cadherin and N-cadherin through KIAA1199 binding to WW domain binding protein 11 (WBP11) and protein tyrosine phosphatase type IVA, member 3 (PTP4A3) and through the subsequent activation of the FGFR4/Wnt/β-catenin and EGFR signaling pathways. More importantly, ectopic expression of WBP11 or PTP4A3 blocked the stimulatory effects of KIAA1199 on GC cell proliferation and migration. Meanwhile, we illustrated that KIAA1199 was a target gene of miR-29c-3p and that miR-29c-3p overexpression led to decreased migration of GC cells in vitro and in vivo by suppressing the expression of KIAA1199 and several key proteins in the Wnt/β-catenin and EGFR signaling pathways (e.g., WBP11, FGFR4, and PTP4A3). Taken together, these data demonstrate that KIAA1199 promotes GC metastasis by activating EMT-related signaling pathways and that miR-29c-3p regulates GC cell migration in vitro and in vivo by regulating KIAA1199 expression and activating the FGFR4/Wnt/β-catenin and EGFR signaling pathways. These findings provide a new understanding of GC development and progression and may provide novel therapeutic strategies for GC.
Collapse
|
47
|
Molecular function and biological importance of CNNM family Mg2+ transporters. J Biochem 2018; 165:219-225. [DOI: 10.1093/jb/mvy095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
|
48
|
Abstract
The phosphatase of regenerating liver (PRL) family, also known as protein tyrosine phosphatase 4A (PTP4A), are dual-specificity phosphatases with largely unknown cellular functions. However, accumulating evidence indicates that PRLs are oncogenic across a broad variety of human cancers. PRLs are highly expressed in advanced tumors and metastases compared to early stage cancers or matched healthy tissue, and high expression of PRLs often correlates with poor patient prognosis. Consequentially, PRLs have been considered potential therapeutic targets in cancer. Persistent efforts have been made to define their role and mechanism in cancer progression and to create specific PRL inhibitors for basic research and drug development. However, targeting PRLs with small molecules remains challenging due to the highly conserved active site of protein tyrosine phosphatases and a high degree of sequence similarity between the PRL protein families. Here, we review the current PRL inhibitors, including the strategies used for their identification, their biological efficacy, potency, and selectivity, with a special focus on how PRL structure can inform future efforts to develop specific PRL inhibitors.
Collapse
Affiliation(s)
- Min Wei
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Jessica S Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
49
|
Zhang Y, Li Z, Fan X, Xiong J, Zhang G, Luo X, Li K, Jie Z, Cao Y, Huang Z, Wu F, Xiao L, Duan G, Chen H. PRL-3 promotes gastric cancer peritoneal metastasis via the PI3K/AKT signaling pathway in vitro and in vivo. Oncol Lett 2018; 15:9069-9074. [PMID: 29805638 PMCID: PMC5958648 DOI: 10.3892/ol.2018.8467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
The peritoneal metastasis-associated phosphatase of regenerating liver-3 (PRL-3) is upregulated in gastric cancer. The phosphatidylinositol 3-kinase (PI3K)/RAC serine/threonine-protein kinase (AKT) signaling pathway acts downstream of PRL-3 in gastric cancer. However, the exact PRL-3 signaling mechanisms are poorly understood. The present study investigated whether PRL-3 facilitates the peritoneal metastasis of gastric cancer via the PI3K/AKT pathway in vivo and in vitro. Nude mouse models of peritoneal metastasis were established using SGC7901/PRL-3 cell lines. The results confirmed that the invasion and migration abilities of SGC7901/PRL-3 cells were significantly increased in these models. Furthermore, western blotting demonstrated that the expression of p-AKT, matrix metallopeptidase-2 (MMP-2) and -9 proteins increased in SGC7901/PRL-3 cells. These effects were suppressed in SGC7901 cell lines when PI3K was inhibited by LY294002. Furthermore, tumors derived from the peritoneal injection of SGC7901/PRL-3 cells were significantly smaller when the cells were grown in the presence of LY249002, compared with cells grown in its absence. These results indicated that targeted inhibition of the PI3K/AKT signaling pathway decreased the effects of PRL-3 on metastasis in vivo. Collectively, the results of the present study indicated that PRL-3 acts via the PI3K/AKT pathway to promote peritoneal metastasis and invasion of gastric cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaole Fan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jianbo Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Guoyang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xianshi Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Kun Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zuoxi Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Feng Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Lin Xiao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guangling Duan
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
50
|
Hjort MA, Hov H, Abdollahi P, Vandsemb EN, Fagerli UM, Lund B, Slørdahl TS, Børset M, Rø TB. Phosphatase of regenerating liver-3 (PRL-3) is overexpressed in classical Hodgkin lymphoma and promotes survival and migration. Exp Hematol Oncol 2018; 7:8. [PMID: 29651360 PMCID: PMC5894150 DOI: 10.1186/s40164-018-0100-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 11/25/2022] Open
Abstract
Background Phosphatase of regenerating liver-3 (PRL-3) is implicated in oncogenesis of hematological and solid cancers. PRL-3 expression increases metastatic potential, invasiveness and is associated with poor prognosis. With this study, we aimed to show a possible oncogenic role of PRL-3 in classical Hodgkin lymphoma (cHL). Methods PRL-3 expression was measured in 25 cHL patients by immunohistochemistry and gene expression was analyzed from microdissected malignant cells. We knocked down PRL-3 in the cHL cell lines L1236 and HDLM2 and used small molecular inhibitors against PRL-3 to investigate proliferation, migration and cytokine production. Results PRL-3 protein was expressed in 16% of patient samples. In three different gene expression datasets, PRL-3 was significantly overexpressed compared to normal controls. PRL-3 knockdown reduced proliferation, viability and Mcl-1 expression in L1236, but not in HDLM2 cells. Thienopyridone, a small molecule inhibitor of PRL-3, reduced proliferation of both L1236 and HDLM2. PRL-3 affected IL-13 secretion and enhanced STAT6 signaling. IL-13 stimulation partially rescued proliferation in L1236 cells after knockdown of PRL-3. PRL-3 knockdown reduced migration in both L1236 and HDLM2 cells. Conclusion PRL-3 was overexpressed in a subset of cHL patients. Inhibition of PRL-3 increased IL-13 cytokine production and reduced migration, proliferation and viability. The effects could be mediated through regulation of the anti-apoptotic molecule Mcl-1 and a feedback loop of IL-13 mediated activation of STAT6. This point to a role for PRL-3 in the pathogenesis of Hodgkin lymphoma, and PRL-3 could be a possible new drug target. Electronic supplementary material The online version of this article (10.1186/s40164-018-0100-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magnus Aassved Hjort
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Hov
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,3Department of Pathology, Trondheim University Hospital, Trondheim, Norway
| | - Pegah Abdollahi
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Esten Nymoen Vandsemb
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Unn-Merete Fagerli
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,4Cancer Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Bendik Lund
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Tobias Schmidt Slørdahl
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,5Department of Hematology, Trondheim University Hospital, Trondheim, Norway
| | - Magne Børset
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,6Department of Immunology and Transfusion Medicine St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torstein Baade Rø
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|