1
|
Peña R, Baulida J. Snail1 as a key prognostic biomarker of cancer-associated fibroblasts in breast tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189316. [PMID: 40222423 DOI: 10.1016/j.bbcan.2025.189316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Accurate cancer diagnosis is crucial for selecting optimal treatments, yet current classification systems often include non-responders who receive ineffective therapies. Cancer-associated fibroblasts (CAFs) play a central role in tumor progression, and CAF biomarkers are increasingly recognized for their prognostic value. Recent studies have revealed significant heterogeneity within CAF populations, with distinct subtypes linked to different tumors and stages of disease. In this review, we summarize recent findings from patient samples and mouse models of breast cancer, focusing on gene signatures identified by single-cell RNA sequencing that define CAF subtypes and predict cancer prognosis. Additionally, we explore the genes and pathways regulated by Snail1, a transcription factor whose expression in breast and colon CAFs is associated with malignancy. Altogether these data emphasize the fibrotic and immunosuppressive roles of Snail1-expressing fibroblasts and unveil an undescribed streamlined Snail1-related gene signature in CAFs with prognostic potential in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Raúl Peña
- Cancer Research Program, associated unit IIBB-CSIC, Hospital del Mar Research Institute, Barcelona, Spain
| | - Josep Baulida
- Cancer Research Program, associated unit IIBB-CSIC, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
2
|
Escudero A, Hicke FJ, Lucena-Sánchez E, Pradana-López S, Esteve-Moreno JJ, Sanz-Álvarez V, Garrido-Cano I, Torres-Ruiz S, Cejalvo JM, García-Fernández A, Díez P, Martínez-Máñez R. Glucose-Fueled Gated Nanomotors: Enhancing In Vivo Anticancer Efficacy via Deep Drug Penetration into Tumors. ACS NANO 2025; 19:20932-20955. [PMID: 40444744 DOI: 10.1021/acsnano.5c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Bioinspired nano/micromotors with drug delivery capabilities are emerging tools with the promising potential to treat numerous diseases. However, some major challenges must be overcome before reaching real biomedical applications. Above all, it is necessary to design engines that employ biocompatible and bioavailable fuels to induce efficient propulsion in biological environments. In addition, ideal nanomotors should also be capable of delivering the cargo on-command using selected stimuli. To tackle these challenges, we herein present the design and evaluation (both in vitro and in vivo) of a glucose-driven gated Janus nanomotor that performs on-demand anticancer drug delivery to treat solid tumors. The motor's nanoarchitectonics is based on the anisotropic conjunction of catalytic platinum nanodendrites (PtNds) and a mesoporous silica nanoparticle (acting as a nanocontainer for anticancer drug doxorubicin) capped with enzyme glucose oxidase (GOx). Autonomous nanomotor movement is achieved thanks to two catalytic components, GOx and PtNds, in a hybrid cascade reaction: GOx transforms glucose to give H2O2 that is subsequently catalyzed by PtNds into H2O and O2. Besides, gatekeeper moieties (GOx) respond to the presence of intracellular proteases, which induces doxorubicin delivery. Biological experiments with the nanomotor are carried out in cancer cell cultures, three-dimensional (3D) tumor models (spheroids), in vivo and in patient-derived organoids (PDOs). A strong anticancer effect is found and attributed to the synergistic combination glucose-induced propulsion, controlled drug delivery, elimination of glucose (by GOx), ROS production (H2O2 generation by GOx) and hypoxia reduction (O2 generated by PtNds). Taken together, this study advances the engineering of endogenously fueled nanomotors for in vivo operation and provides insights into the application of active particles in cancer therapy toward clinical application.
Collapse
Affiliation(s)
- Andrea Escudero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación, Príncipe Felipe. Eduardo Primo Yúfera 3, 46012 València, Spain
| | - Francisco J Hicke
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Lucena-Sánchez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación, Príncipe Felipe. Eduardo Primo Yúfera 3, 46012 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sandra Pradana-López
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
| | - Juan José Esteve-Moreno
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación, Príncipe Felipe. Eduardo Primo Yúfera 3, 46012 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Víctor Sanz-Álvarez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
| | - Iris Garrido-Cano
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Institute INCLIVA, Carrer de Menéndez y Pelayo,4, 46010 Valencia, Spain
| | - Sandra Torres-Ruiz
- Biomedical Research Institute INCLIVA, Carrer de Menéndez y Pelayo,4, 46010 Valencia, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, Carrer de Menéndez y Pelayo,4, 46010 Valencia, Spain
- Biomedical Research Networking Center in Oncology (CIBERONC), 28029 Madrid, Spain
- Department of Clinical Oncology, University Clinical Hospital of Valencia, Av. de Blasco Ibáñez 17, 46010 Valencia, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación, Príncipe Felipe. Eduardo Primo Yúfera 3, 46012 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Díez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 València, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación, Príncipe Felipe. Eduardo Primo Yúfera 3, 46012 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 València, Spain
| |
Collapse
|
3
|
Duan L, Cao S, Zhao F, Du X, Gao Z, Wang X, Bian F. Effects of FAP+ fibroblasts on cell proliferation migration and immunoregulation of esophageal squamous carcinoma cells through the CXCL12/CXCR4 axis. Mol Cell Biochem 2025; 480:3841-3855. [PMID: 39934460 DOI: 10.1007/s11010-025-05226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Cancer-associated fibroblasts (CAFs) secrete and synthesize fibroblast activation protein (FAP), which could promote proliferation and immunosuppression of multiple cancers including esophageal squamous cell carcinoma (ESCC). CXCL12/CXCR4 signaling could be revitalized by CAFs in cancer cells. Nevertheless, the significance of this interaction in ESCC has yet to be elucidated. Herein, we investigated whether FAP+ CAF cells could promote ESCC cells proliferation, migration and regulate immunity through the CXCL12/CXCR4 pathway in vitro and in vivo. The protein expression level of FSP1, FAP, CD8+ and Ki-67 in different sample was estimated by IHC and western blot. qPCR was used to quantify the mRNA level of FSP1, FAP, CD8+ and Ki-67 in different sample. The cell viability, proliferation, migration and invasion of different sample were evaluated by CCK-8, EdU staining, wound healing assay and Transwell assay, respectively. The ELISA was carried out to measure the protein level of IFN-γ, TNF-α, GZMB and IL-2. ESCC xenograft mice model was established to assess the impact of FAP+ CAF. FSP1, FAP, CD8+ and Ki-67 are greatly up-regulated in hESCC tissues. Through CXCL12/CXCR4 axis, FAP-positive CAF was capable of promoting the cell proliferation, migration and invasion of ESCC tumor cells and preventing the CD8+ T cells from secreting cytokine. Blocking this signaling with selective CXCR4 antagonist could counteract the effects caused by high-expression of FAP. FAP+ CAFs could inhibit the occurrence and development of tumors. These results indicated that FAP-positive CAF have an impact on cell proliferation migration and immunoregulation of ESCC through the CXCL12/CXCR4 axis.
Collapse
Affiliation(s)
- Lijuan Duan
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China.
- Henan Provincial Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455000, Henan Province, People's Republic of China.
| | - Shasha Cao
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China
- Henan Provincial Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455000, Henan Province, People's Republic of China
| | - Fang Zhao
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China
- Henan Provincial Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455000, Henan Province, People's Republic of China
| | - Xianjuan Du
- Department of Pathology, Anyang Cancer Hospital, Anyang, 455000, Henan Province, People's Republic of China
| | - Zhaowei Gao
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China
- Henan Provincial Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455000, Henan Province, People's Republic of China
| | - Xiaoxiao Wang
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China
| | - Fang Bian
- Department of Pathology, Anyang Cancer Hospital, Anyang, 455000, Henan Province, People's Republic of China
| |
Collapse
|
4
|
Liu Y, Sinjab A, Min J, Han G, Paradiso F, Zhang Y, Wang R, Pei G, Dai Y, Liu Y, Cho KS, Dai E, Basi A, Burks JK, Rajapakshe KI, Chu Y, Jiang J, Zhang D, Yan X, Guerrero PA, Serrano A, Li M, Hwang TH, Futreal A, Ajani JA, Solis Soto LM, Jazaeri AA, Kadara H, Maitra A, Wang L. Conserved spatial subtypes and cellular neighborhoods of cancer-associated fibroblasts revealed by single-cell spatial multi-omics. Cancer Cell 2025; 43:905-924.e6. [PMID: 40154487 PMCID: PMC12074878 DOI: 10.1016/j.ccell.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are a multifaceted cell population essential for shaping the tumor microenvironment (TME) and influencing therapy responses. Characterizing the spatial organization and interactions of CAFs within complex tissue environments provides critical insights into tumor biology and immunobiology. In this study, through integrative analyses of over 14 million cells from 10 cancer types across 7 spatial transcriptomics and proteomics platforms, we discover, validate, and characterize four distinct spatial CAF subtypes. These subtypes are conserved across cancer types and independent of spatial omics platforms. Notably, they exhibit distinct spatial organizational patterns, neighboring cell compositions, interaction networks, and transcriptomic profiles. Their abundance and composition vary across tissues, shaping TME characteristics, such as levels, distribution, and state composition of tumor-infiltrating immune cells, tumor immune phenotypes, and patient survival. This study enriches our understanding of CAF spatial heterogeneity in cancer and paves the way for novel approaches to target and modulate CAFs.
Collapse
Affiliation(s)
- Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jimin Min
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Paradiso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanyuan Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yibo Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yang Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung Serk Cho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Akshay Basi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kimal I Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiahui Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alejandra Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tae Hyun Hwang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA; The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Tiwari H, Singh S, Sharma S, Gupta P, Verma A, Chattopadhaya A, Kumar B, Agarwal S, Kumar R, Gupta SK, Gautam V. Deciphering the landscape of triple negative breast cancer from microenvironment dynamics and molecular insights to biomarker analysis and therapeutic modalities. Med Res Rev 2025; 45:817-841. [PMID: 39445844 DOI: 10.1002/med.22090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Triple negative breast cancer (TNBC) displays a notable challenge in clinical oncology due to its invasive nature which is attributed to the absence of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor (HER-2). The heterogenous tumor microenvironment (TME) of TNBC is composed of diverse constituents that intricately interact to evade immune response and facilitate cancer progression and metastasis. Based on molecular gene expression, TNBC is classified into four molecular subtypes: basal-like (BL1 and BL2), luminal androgen receptor (LAR), immunomodulatory (IM), and mesenchymal. TNBC is an aggressive histological variant with adverse prognosis and poor therapeutic response. The lack of response in most of the TNBC patients could be attributed to the heterogeneity of the disease, highlighting the need for more effective treatments and reliable prognostic biomarkers. Targeting certain signaling pathways and their components has emerged as a promising therapeutic strategy for improving patient outcomes. In this review, we have summarized the interactions among various components of the dynamic TME in TNBC and discussed the classification of its molecular subtypes. Moreover, the purpose of this review is to compile and provide an overview of the most recent data about recently discovered novel TNBC biomarkers and targeted therapeutics that have proven successful in treating metastatic TNBC. The emergence of novel therapeutic strategies such as chemoimmunotherapy, chimeric antigen receptor (CAR)-T cells-based immunotherapy, phytometabolites-mediated natural therapy, photodynamic and photothermal approaches have made a significant positive impact and have paved the way for more effective interventions.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sonal Sharma
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Amrit Chattopadhaya
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Brijesh Kumar
- Department of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sakshi Agarwal
- Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanjeev Kumar Gupta
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Pascual R, Cheng J, De Smet AH, Capaldo BD, Tsai M, Kordafshari S, Vaillant F, Song X, Giner G, Milevskiy MJG, Jackling FC, Pal B, Dite T, Yousef J, Dagley LF, Smyth GK, Fu N, Lindeman GJ, Chen Y, Visvader JE. Fibroblast hierarchy dynamics during mammary gland morphogenesis and tumorigenesis. EMBO J 2025:10.1038/s44318-025-00422-3. [PMID: 40216939 DOI: 10.1038/s44318-025-00422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 05/03/2025] Open
Abstract
Fibroblasts form a major component of the stroma in normal mammary tissue and breast tumors. Here, we have applied longitudinal single-cell transcriptome profiling of >45,000 fibroblasts in the mouse mammary gland across five different developmental stages and during oncogenesis. In the normal gland, diverse stromal populations were resolved, including lobular-like fibroblasts, committed preadipocytes and adipogenesis-regulatory, as well as cycling fibroblasts in puberty and pregnancy. These specialized cell types appear to emerge from CD34high mesenchymal progenitor cells, accompanied by elevated Hedgehog signaling. During late tumorigenesis, heterogeneous cancer-associated fibroblasts (CAFs) were identified in mouse models of breast cancer, including a population of CD34- myofibroblastic CAFs (myCAFs) that were transcriptionally and phenotypically similar to senescent CAFs. Moreover, Wnt9a was demonstrated to be a regulator of senescence in CD34- myCAFs. These findings reflect a diverse and hierarchically organized stromal compartment in the normal mammary gland that provides a framework to better understand fibroblasts in normal and cancerous states.
Collapse
Affiliation(s)
- Rosa Pascual
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jinming Cheng
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Amelia H De Smet
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bianca D Capaldo
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Minhsuang Tsai
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Somayeh Kordafshari
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - François Vaillant
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xiaoyu Song
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Göknur Giner
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Felicity C Jackling
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Bhupinder Pal
- Translational Breast Cancer Program, Olivia Newton-John Cancer Research Institute and School for Cancer Medicine La Trobe University, Heidelberg, VIC, 3084, Australia
| | - Toby Dite
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Jumana Yousef
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Laura F Dagley
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Naiyang Fu
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Geoffrey J Lindeman
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia
- Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, 3050, Australia
| | - Yunshun Chen
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Jane E Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
Ghazimoradi MH, Babashah S. The transcriptional regulators GATA6 and TET1 regulate the TGF-β pathway in cancer-associated fibroblasts to promote breast cancer progression. Cell Death Discov 2025; 11:164. [PMID: 40216762 PMCID: PMC11992015 DOI: 10.1038/s41420-025-02438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are pivotal drivers of tumor progression, yet the molecular mechanisms underlying their activation remain incompletely understood. Here, we identified the TET1/SMAD4/GATA6 regulatory axis as a central mechanism governing CAF transformation and function in breast cancer. Through integrative in vitro and in vivo models, we demonstrated that TET1, an epigenetic modulator, demethylates the SMAD4 promoter, enhancing SMAD4 expression. SMAD4 transcriptionally upregulates GATA6, which amplifies TGF-β signaling by directly activating the TGF-β promoter, establishing a self-reinforcing feedforward loop critical for CAF identity and stromal-tumor crosstalk. GATA6 and TET1 were significantly upregulated in breast CAFs compared to normal fibroblasts (NFs) and TGF-β-induced CAFs. Loss- or gain-of-function experiments revealed that these regulators control CAF survival, marker expression, and secretion of pro-tumorigenic factors. Knockdown of GATA6 or TET1 reduced CAF-mediated migration and invasion of breast cancer cells in vitro, while their overexpression enhanced cancer cell aggressiveness. Mechanistically, TET1-mediated epigenetic remodeling and GATA6-driven transcriptional activation converge on the TGF-β/SMAD pathway, sustaining CAF activation. In vivo, tumors derived from GATA6- or TET1-depleted CAFs exhibited reduced growth, proliferation, and CAF engraftment, underscoring their role in tumor progression. These findings position GATA6 and TET1 as promising targets to disrupt CAF-driven tumorigenesis, offering novel strategies for breast cancer treatment. By unraveling the epigenetic-transcriptional interplay within the tumor microenvironment, this study advances our understanding of stromal reprogramming and its implications for precision oncology.
Collapse
Affiliation(s)
- Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Jia Y, Peng Z, Tian X, Guan Y, Han Y, Ji D, Lan B, Xu B, Fan Y. Single-cell sequencing exposes mast cell-derived CD52's anti-tumor action in breast cancer through the IL-6/JAK/STAT3 axis. Int J Biol Macromol 2025; 310:142879. [PMID: 40194575 DOI: 10.1016/j.ijbiomac.2025.142879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The aggressive nature and rapid progression of triple-negative breast cancer (TNBC), coupled with a high likelihood of recurrence and mortality, underscore the critical need for effective treatments. While immunotherapy presents promising advantages for those with triple-negative breast cancer (TNBC), its efficacy is not universal. This disparity highlights the importance of investigating survival outcomes and prognostic factors for those TNBC patients who don't respond well to immunotherapy. Our study leverages both bulk and single-cell RNA sequencing data to conduct an in-depth analysis, revealing that genes associated with mast cells (PCMT1, VDAC1, YWHAB, BRD4, BTG1, and CD52) are pivotal in prognostication for TNBC patients. Laboratory experiments have further substantiated our findings, demonstrating that the overexpression of CD52 in mast cells impedes the proliferation, invasion, and metastasis of breast cancer cells. Further anti-CD52 treatment inhibiting breast tumor growth in vivo. Additionally, we have discovered that CD52 elicits its antitumor effects by meditating the IL-6/JAK/STAT3 signaling pathway. These insights not only enhance the prognostic significance of mast cells in TNBC but also pave the way for the development of novel targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Yueran Jia
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zexi Peng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinzhu Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuhang Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dangyang Ji
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
9
|
Gao Y, Huang Y, Zhao Y, Hu P. Cancer-associated fibroblast-secreted exosomal miR-454-3p inhibits lipid metabolism and ferroptosis in breast cancer by targeting ACSL4. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3925-3937. [PMID: 39373750 DOI: 10.1007/s00210-024-03488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Cancer-associated fibroblasts (CAFs) participate in the development of the tumor microenvironment through the secretion of exosomes. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is an essential component of ferroptosis. However, the regulatory mechanism of ACSL4 in breast cancer remains unexplored. The study aimed to determine the influence of exosomal miR-454-3p from CAFs on lipid metabolism and ferroptosis. CAF-derived exosomes (CAF-exo) were isolated from breast cancer tissue of breast cancer patients and characterized using transmission electron microscopy (TEM) and Western blot. Luciferase reporter assay and RNA immunoprecipitation (RIP) were used to demonstrate the relationship between miR-454-3p and ACSL4. Cell viability and ferroptosis-related markers were detected by CCK-8 and Western blot. Malondialdehyde (MDA), glutathione (GSH), and iron levels were detected. Reverse transcription-quantitative PCR (RT-qPCR) and fluorescence in situ hybridization (FISH) were used to assess miR-454-3p expression. miR-454-3p and ACSL4 levels were abnormally expressed in breast cancer tissues. CAF-exo significantly enhanced cell viability and GSH levels and suppressed MDA, and iron levels. CAF-exo upregulated ferroptosis suppressor protein 1 (FSP1) and glutathione peroxidase 4 (GPX4) expression, and reduced ACSL4 levels. miR-454-3p was strongly expressed in CAF-exo, and exosomal miR-454-3p suppressed lipid metabolism and ferroptosis in breast cancer cells. The effects of miR-454-3p inhibitor on lipid metabolism and ferroptosis were eliminated by ACSL4 knockdown. CAF-secreted exosomal miR-454-3p inhibited lipid metabolism and ferroptosis by targeting ACSL4 in breast cancer. This study revealed a novel molecular mechanism that offers a potential therapeutic intervention in breast cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Department of Internal Oncology, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, China
| | - Ying Huang
- Department of Internal Oncology, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, China
| | - Yanjiao Zhao
- Department of Internal Oncology, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, China
| | - Ping Hu
- Department of Internal Oncology, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, China.
| |
Collapse
|
10
|
Quintavalle C, Ingenito F, Roscigno G, Pattanayak B, Esposito CL, Affinito A, Fiore D, Petrillo G, Nuzzo S, Della Ventura B, D'Aria F, Giancola C, Mitola S, Grillo E, Pirozzi M, Donati G, Di Leva FS, Marinelli L, Minic Z, De Micco F, Thomas G, Berezovski MV, Condorelli G. Ex.50.T aptamer impairs tumor-stroma cross-talk in breast cancer by targeting gremlin-1. Cell Death Discov 2025; 11:94. [PMID: 40069570 PMCID: PMC11897156 DOI: 10.1038/s41420-025-02363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
The tumor microenvironment profoundly influences tumor complexity, particularly in breast cancer, where cancer-associated fibroblasts play pivotal roles in tumor progression and therapy resistance. Extracellular vesicles are involved in mediating communication within the TME, specifically highlighting their role in promoting the transformation of normal fibroblasts into cancer-associated fibroblasts. Recently, we identified an RNA aptamer, namely ex.50.T, that binds with remarkable affinity to extracellular vesicles shed from triple-negative breast cancer cells. Here, through in vitro assays and computational analyses, we demonstrate that the binding of ex.50.T to extracellular vesicles and parental breast cancer cells is mediated by recognition of gremlin-1 (GREM1), a bone morphogenic protein antagonist implicated in breast cancer aggressiveness and metastasis. Functionally, we uncover the role of ex.50.T as an innovative therapeutic agent in the process of tumor microenvironment re-modeling, impeding GREM1 signaling, blocking triple-negative breast cancer extracellular vesicles internalization in recipient cells, and counteracting the transformation of normal fibroblasts into cancer-associated fibroblasts. Altogether, our findings highlight ex.50.T as a novel therapeutical avenue for breast cancer and potentially other GREM1-dependent malignancies, offering insights into disrupting TME dynamics and enhancing cancer treatment strategies.
Collapse
Affiliation(s)
- Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Birlipta Pattanayak
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carla Lucia Esposito
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- AKA Biotech S.r.l, Naples, Italy
| | - Danilo Fiore
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Pirozzi
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | - Gerolama Condorelli
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
11
|
Doodmani SM, Safari MH, Akbari M, Farahani N, Alimohammadi M, Aref AR, Tajik F, Maghsoodlou A, Daneshi S, Tabari T, Taheriazam A, Entezari M, Nabavi N, Hashemi M. Metastasis and chemoresistance in breast cancer: Crucial function of ZEB1/2 proteins. Pathol Res Pract 2025; 267:155838. [PMID: 39954369 DOI: 10.1016/j.prp.2025.155838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Breast cancer remains one of the leading causes of mortality worldwide. While advancements in chemotherapy, immunotherapy, radiotherapy, and targeted therapies have significantly improved breast cancer treatment, many patients are diagnosed at advanced stages, where tumor cells exhibit aggressive behavior and therapy resistance. Understanding the mechanisms driving breast cancer progression is therefore critical. Metastasis is a major factor that drastically reduces patient prognosis and survival, accounting for most breast cancer-related deaths. ZEB proteins have emerged as key regulators of cancer metastasis. Beyond their role in metastasis, ZEB proteins also influence drug resistance. This review focuses on the role of ZEB1 and ZEB2 in regulating breast cancer metastasis. These proteins interact with components of the tumor microenvironment (TME) to drive cancer progression and metastasis. Additionally, ZEB proteins regulate angiogenesis through interactions with VEGF. Targeting ZEB proteins offers potential therapeutic benefits, particularly for aggressive breast cancer subtypes such as triple-negative breast cancer (TNBC), which often show poor therapeutic response. ZEB proteins also influence the sensitivity of breast cancer cells to chemotherapy, making them promising targets for enhancing treatment efficacy. Given their upregulation in breast cancer, ZEB proteins can serve as valuable diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Seyed Mohammad Doodmani
- Department of Pathobiology, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences,Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Fatemeh Tajik
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Amin Maghsoodlou
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Wang Q, Li D, Ma H, Li Z, Wu J, Qiao J, Liu J, Zhao J, Ma R, Tian L, Zhang L, Yang J, Wang J, Qin S, Su Z. Tumor cell-derived EMP1 is essential for cancer-associated fibroblast infiltration in tumor microenvironment of triple-negative breast cancer. Cell Death Dis 2025; 16:143. [PMID: 40016223 PMCID: PMC11868485 DOI: 10.1038/s41419-025-07464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
The role of epithelial membrane protein 1 (EMP1) in tumor microenvironment (TME) remodeling has not yet been elucidated. In addition, the biological function of EMP1 in triple-negative breast cancer (TNBC) is largely unclear. In this study, we examined the infiltration landscape of cell types in the TME of breast cancer, and found that EMP1 expression was positively correlated with stromal and microenvironmental scores. Infiltration analysis and immunohistochemical (IHC) staining of serial sections confirmed the critical role of EMP1 in cancer-associated fibroblast (CAF) infiltration. Cell co-culture assays, xenograft tumor experiments, loss-of-function, gain-of-function, RNA sequencing studies, and rescue assays were performed to confirm the role of EMP1 in CAF infiltration in vitro and in vivo. These findings revealed that EMP1 depletion in TNBC cells resulted in considerable inhibition of CAF infiltration in vivo and in vitro. Mechanistically, EMP1 knockdown induced a substantial decrease in IL6 secretion from TNBC through the NF-κB signaling pathway, hindering CAF proliferation and subsequently inhibiting TNBC progression and metastasis. These cumulative results indicate that EMP1 functions as an oncogene in TNBC by mediating the cell communication of TNBC and CAFs. Targeted inhibition of EMP1 by suppressing CAF infiltration is a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dandan Li
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Shiyan Key Laboratory of Comprehensive Prevention and Treatment of Oral Cancer, Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haixiu Ma
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Zengyan Li
- Experimental Animal Center & Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wu
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Jinwan Qiao
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Jun Liu
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Jing Zhao
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Ronghua Ma
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China
| | - Lin Tian
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Zhang
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jianye Yang
- Experimental Animal Center & Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jianing Wang
- Experimental Animal Center & Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Shanshan Qin
- Department of Pathology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Shiyan Key Laboratory of Comprehensive Prevention and Treatment of Oral Cancer, Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Zhanhai Su
- Research Center for High-Altitude Medicine, Key Laboratory of High-Altitude Medicine, Ministry of Education, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High-Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
13
|
Cassali GD, Nakagaki KYR, Salvi M, dos Reys MP, Rocha MAN, de Campos CB, Ferreira E, Rodrigues ACB, dos Reis DC, Damasceno KA, Estrela-Lima A. Canine, Feline, and Murine Mammary Tumors as a Model for Translational Research in Breast Cancer. Vet Sci 2025; 12:189. [PMID: 40005948 PMCID: PMC11860833 DOI: 10.3390/vetsci12020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In veterinary medicine, mammary tumors are the most common neoplasms in female dogs and the third most frequent in cats, representing a significant challenge. Efforts have been directed toward adopting standardized diagnostic criteria to better understand tumor behavior and progression in these species. Meanwhile, the use of animal models has substantially advanced the understanding of comparative mammary carcinogenesis. These models provide critical insights into factors responsible for the disease in humans, with the expectation that such factors can be identified and controlled. In this context, this review presents a work based mainly on articles published by a research group specializing in mammary pathology (Laboratory of Comparative Pathology-Department of General Pathology-ICB/UFMG) and its collaborators, complementing their results with literature findings. The publications were categorized into animal research, experimental research, and human research. These studies addressed topics such as diagnosis, prognostic and predictive factors, tumor microenvironment, inflammation associated with tumors, treatment approaches, and factors influencing tumor growth. The conceptual network analysis underscores the importance of in vivo breast cancer models, both experimental and spontaneous, for understanding tumor progression mechanisms and therapeutic responses, offering valuable contributions to veterinary and human oncology.
Collapse
Affiliation(s)
- Geovanni Dantas Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Karen Yumi Ribeiro Nakagaki
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marisa Salvi
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marina Possa dos Reys
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marcos André Nino Rocha
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| | | | - Enio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - Diego Carlos dos Reis
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Alessandra Estrela-Lima
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| |
Collapse
|
14
|
Okazaki H, Mezawa Y, Shi Y, Sakimoto M, Wang Z, Ishizuka A, Yamashita K, Satoh A, Koyama Y, Fukumura Y, Kajino K, Takano A, Yokose T, Yamashita T, Miyagi Y, Daigo Y, Katakura A, Yasukawa T, Orimo A. Expression of Lymphoid Enhancer-Binding Factor 1 in Cancer-Associated Fibroblasts Mediates Tumor Growth and Transdifferentiation Toward Squamous Cell Carcinoma in Human Breast Cancer. Cancer Med 2025; 14:e70627. [PMID: 39887653 PMCID: PMC11783236 DOI: 10.1002/cam4.70627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/06/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play a significant role in human breast cancer as a major stromal component. While their role in promoting cancer proliferation and malignancy through interaction with cancer cells in the tumor microenvironment is known, the exact mechanisms behind this interaction are not fully understood. RESULTS Our study reveals that lymphoid enhancer-binding factor 1 (LEF1), a central transcription factor for Wnt/β-catenin signaling, is expressed in experimentally generated tumor-promoting CAFs (exp-CAFs) as well as in CAFs from breast cancer patients, particularly those with a poor prognosis. Notably, LEF1-expressing CAFs are prevalent in the stroma of squamous cell carcinoma (SCC), an aggressive metaplastic breast cancer subtype with a limited understanding of its development. To investigate the functional importance of LEF1 expression in CAFs, we depleted LEF1 in the exp-CAFs and subcutaneously implanted them along with breast ductal carcinoma MCF10DCIS.com cells into immunodeficient mice. Depleting LEF1 resulted in reduced xenograft tumor growth, accompanied by decreased cancer-cell proliferation and angiogenesis in the tumors. Additionally, we observed a significant reduction in the expression of SCC markers p40 (ΔNp63) and cytokeratin 5/6 in the xenograft tumors when LEF1 was depleted in the exp-CAFs. Furthermore, we identified 13 genes, none of which are established downstream genes of the Wnt/β-catenin pathway, that exhibit expression patterns similar to LFE1 in our cultured fibroblasts. CONCLUSION In summary, our findings suggest that LEF1 expression contributes to the tumor-promoting abilities of breast CAFs and that LEF1-expressing CAFs may drive transdifferentiation toward SCC, possibly through a pathway independent of the canonical Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hiroya Okazaki
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Yoshihiro Mezawa
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Yang Shi
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Mizuki Sakimoto
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Zixu Wang
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Akane Ishizuka
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Kazunari Yamashita
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Asahi Satoh
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Yu Koyama
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Yuki Fukumura
- Department of Human PathologyJuntendo University Faculty of MedicineTokyoJapan
| | - Kazunori Kajino
- Department of Human PathologyJuntendo University Faculty of MedicineTokyoJapan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer CenterShiga University of Medical ScienceShiga Japan
- Center for Advanced Medicine Against CancerShiga University of Medical ScienceShigaJapan
- Center for Antibody and Vaccine TherapyResearch Hospital, Institute of Medical Science Hospital, the University of TokyoTokyoJapan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer CenterKanagawaJapan
| | - Toshinari Yamashita
- Department of Breast Surgery and Oncology, Kanagawa Cancer CenterKanagawaJapan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer CenterResearch InstituteKanagawaJapan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer CenterShiga University of Medical ScienceShiga Japan
- Center for Advanced Medicine Against CancerShiga University of Medical ScienceShigaJapan
- Center for Antibody and Vaccine TherapyResearch Hospital, Institute of Medical Science Hospital, the University of TokyoTokyoJapan
| | - Akira Katakura
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
| | - Takehiro Yasukawa
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Akira Orimo
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
15
|
Orefice NS, Petrillo G, Pignataro C, Mascolo M, De Luca G, Verde S, Pentimalli F, Condorelli G, Quintavalle C. Extracellular vesicles and microRNAs in cancer progression. Adv Clin Chem 2025; 125:23-54. [PMID: 39988407 DOI: 10.1016/bs.acc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Martina Mascolo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Giada De Luca
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| | - Sara Verde
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Aka biotech S.r.l., Napoli, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", Bari, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy; Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy.
| | - Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| |
Collapse
|
16
|
Shen C, Suo Y, Guo J, Su W, Zhang Z, Yang S, Wu Z, Fan Z, Zhou X, Hu H. Development and validation of a glycolysis-associated gene signature for predicting the prognosis, immune landscape, and drug sensitivity in bladder cancer. Front Immunol 2025; 15:1430583. [PMID: 39867879 PMCID: PMC11757262 DOI: 10.3389/fimmu.2024.1430583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Background Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined. Methods The fused merge dateset from TCGA, GSE13507 and GSE31684 were used for the analysis of glycolysis-related genes expression or subtyping; and corresponding clinical data of these BCa patients were also collected. In the merge cohort, we constructed a 18 multigene signature using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The four external cohorts (i.e., IMvigor210, GSE32894, GSE48276 and GSE48075) of BCa patients were used to validate the accuracy. We evaluated immune infiltration using seven published algorithms: CIBERSORT, QUANTISEQ, XCELL, TIMER, CIBERSORT-ABS, EPIC, and MCPCOUNTER. Subsequently, in order to analyze the correlation between risk groups(scores) and overall survival, recognised immunoregolatory cells or common chemotherapeutic agents, clinicopathological data and immune checkpoint-related genes of BCa patients, Wilcox rank test, chi-square test, cox regression and spearman's correlation were performed. Results Conspicuously, we could see that CD8+ T, cancer associated fibroblast, macrophage M2, NK, endothelial cells and so on were significantly dysregulated between the two risk groups. In addition, compared with the low-risk group, high-risk group predicted poor prognosis and relatively weak sensitivity of chemotherapy. Additionally, we also found that the expression level of partial genes in the model was significantly correlated with objective responses to anti-PD-1 or anti-PD-L1 treatment in the IMvigor210, GSE111636, GSE176307, GSE78220 or GSE67501 cohort; and its expression level was also varied in different objective response cases receiving tislelizumab combined with low-dose nab-paclitaxel therapy based on our mRNA sequencing (TRUCE-01). According to "GSEA" algorithm of R package "clusterProfiler", the most significantly enriched HALLMARK, KEGG pathway and GO term was separately the 'Epithelial Mesenchymal Transition', 'Ecm Receptor Interaction' and 'MF_Extracellular_matrix_structural_constitunet' in the high- vs. low-risk group. Subsequently, we verified the protein and mRNA expression of interested model-related genes from the Human Protein Atlas (HPA) and 10 paired BCa tissues collected by us. Furthermore, in vitro functional experiments demonstrated that FASN was a functional oncogene in BCa cells through promoting cell proliferation, migration, and invasion abilities. Conclusion In summary, the glycolysis-associated gene signature established by us exhibited a high predictive performance for the prognosis, immunotherapeutic responsiveness, and chemotherapeutic sensitivity of BCa. And, The model also might function as a chemotherapy and immune checkpoint inhibitor (ICI) treatment guidance.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Suo
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jian Guo
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wei Su
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhenqian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoliang Zhou
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Yong Y, Demmler R, Zohud BA, Fang Q, Zhang T, Zhou Y, Petter K, Flierl C, Gass T, Geppert CI, Merkel S, Schellerer VS, Naschberger E, Stürzl M. AMIGO2 characterizes cancer-associated fibroblasts in metastatic colon cancer and induces the release of paracrine active tumorigenic secretomes. J Pathol 2025; 265:14-25. [PMID: 39523830 PMCID: PMC11638658 DOI: 10.1002/path.6363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Secretomes of cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC) contribute to malignancy. Detailed knowledge is available on the components and functions of CAF secretomes. Little is known about the regulation of CAF secretomes. Here, we searched for receptor-like membrane-bound molecules in CAFs, which may regulate the production and release of tumor-activating secretomes. The adhesion molecule with Ig-like domain 2 (AMIGO2) was significantly upregulated in cultivated CAFs compared to normal tissue-associated fibroblasts (NAFs), and this was confirmed in patient-derived tissues. AMIGO2 expression was low or absent in healthy colon, significantly increased in fibroblasts of primary CRC, and highest in the stromal tissues of CRC-derived liver metastases. AMIGO2 expression in CAFs correlated with a higher T-category, increased lymph node metastasis, progressed tumor stages and was associated with reduced survival in different cohorts of CRC patients. Interestingly, AMIGO2 expression was induced by transforming growth factor-β and higher in female patients, who exhibit a more aggressive disease course. In functional studies, conditioned media of NAFs with experimentally induced AMIGO2 overexpression enhanced proliferation and migration of different CRC tumor cells, while siRNA-mediated inhibition of AMIGO2 in CAFs attenuated these effects. Accordingly, therapeutic inhibition of the receptor-like AMIGO2 protein in CRC CAFs could prevent tumorigenic secretomes in CRC. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yongsong Yong
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- Xinghua People's Hospital Affiliated to Yangzhou UniversityTaizhouPR China
| | - Richard Demmler
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Bisan Abdalfatah Zohud
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Qi Fang
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Tong Zhang
- Xinghua People's Hospital Affiliated to Yangzhou UniversityTaizhouPR China
| | - Yonghua Zhou
- Xinghua People's Hospital Affiliated to Yangzhou UniversityTaizhouPR China
| | - Katja Petter
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Christian Flierl
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Tobias Gass
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Carol I Geppert
- Institute of Pathology, Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Susanne Merkel
- Department of Surgery, Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Vera S Schellerer
- Department of Surgery, Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- Department of Pediatric SurgeryUniversity Medicine GreifswaldGreifswaldGermany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- CCC Erlangen‐EMN: Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- CCC WERA: Comprehensive Cancer Center Alliance WERA (CCC WERA)ErlangenGermany
- BZKF: Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of SurgeryUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- CCC Erlangen‐EMN: Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
- CCC WERA: Comprehensive Cancer Center Alliance WERA (CCC WERA)ErlangenGermany
- BZKF: Bavarian Cancer Research Center (BZKF)ErlangenGermany
| |
Collapse
|
18
|
Vitacolonna M, Bruch R, Schneider R, Jabs J, Hafner M, Reischl M, Rudolf R. A spheroid whole mount drug testing pipeline with machine-learning based image analysis identifies cell-type specific differences in drug efficacy on a single-cell level. BMC Cancer 2024; 24:1542. [PMID: 39696122 DOI: 10.1186/s12885-024-13329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures. METHODS Here, we developed a high-content pipeline ranging from the setup of novel tumor-fibroblast spheroid co-cultures over optical tissue clearing, whole mount staining, and 3D confocal microscopy to optimized 3D-image segmentation and a 3D-deep-learning model to automate the analysis of a range of cell-type-specific processes, such as cell proliferation, apoptosis, necrosis, drug susceptibility, nuclear morphology, and cell density. RESULTS This demonstrated that co-cultures of KP-4 tumor cells with CCD-1137Sk fibroblasts exhibited a growth advantage compared to tumor cell mono-cultures, resulting in higher cell counts following cytostatic treatments with paclitaxel and doxorubicin. However, cell-type-specific single-cell analysis revealed that this apparent benefit of co-cultures was due to a higher resilience of fibroblasts against the drugs and did not indicate a higher drug resistance of the KP-4 cancer cells during co-culture. Conversely, cancer cells were partially even more susceptible in the presence of fibroblasts than in mono-cultures. CONCLUSION In summary, this underlines that a novel cell-type-specific single-cell analysis method can reveal critical insights regarding the mechanism of action of drug substances in three-dimensional cell culture models.
Collapse
Affiliation(s)
- Mario Vitacolonna
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
| | - Roman Bruch
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | | | - Julia Jabs
- Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University, Mannheim University of Applied Sciences, 68167, Mannheim, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
| |
Collapse
|
19
|
Zhao H, Xu J, Zhong Y, He S, Hao Z, Zhang B, Liu Z, Zhou X. Mammary hydroxylated oestrogen activates the NLRP3 inflammasome in tumor-associated macrophages to promote breast cancer progression and metastasis. Int Immunopharmacol 2024; 142:113034. [PMID: 39226826 DOI: 10.1016/j.intimp.2024.113034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer remains one of the primary causes of cancer-related death. An imbalance of oestrogen homeostasis and an inflammatory tumor microenvironment (TME) are vital risk factors for the progression and metastasis of breast cancer. Here, we showed that oestrogen homeostasis was disrupted both in breast cancer patients and in a transgenic MMTV-PyMT mouse model of breast cancer, and significant levels of hydroxylated oestrogen accumulated in the mammary tissues of these patients and mice. We also observed that tumor-associated macrophages (TAMs) were the main population of immune cells present in the breast TME. TAM-dependent tumor metastasis could be triggered by hydroxylated oestrogen via NLRP3 inflammasome activation and IL-1β production. Mechanistically, TAM-derived inflammatory cytokines induced the expression of matrix metalloproteinases (MMPs) in breast tumor cells, leading to breast tumor invasion and metastasis. Conceptually, our study reveals a previously unknown role of hydroxylated oestrogen in the reprogramming of the TME via NLRP3 inflammasome activation in TAMs, which ultimately facilitates breast cancer cells proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Han Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 210017 Nanjing, China
| | - Jiahao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Ya'nan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Shiqing He
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Zhixiang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 221009 Xuzhou, China
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
20
|
Liu M, Wang Y, Wang C, Li P, Qiu J, Yang N, Sun M, Han L. A Microfluidic 3D-Tumor-Spheroid Model for the Evaluation of Targeted Therapies from Angiogenesis-Related Cytokines at the Single Spheroid Level. Adv Healthc Mater 2024; 13:e2402321. [PMID: 39126126 DOI: 10.1002/adhm.202402321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 08/12/2024]
Abstract
Angiogenesis is a key player in drug resistance to targeted therapies for breast cancer. The average expression of angiogenesis-related cytokines is widely associated with the treatments of target therapies for a population of cells or spheroids, overlooking the distinct responses for individuals. In this work, a highly integrated microfluidic platform is developed for the generation of monodisperse multicellular tumor spheroids (MTSs), drug treatments, and the measurement of cytokines for individual MTSs in a single chip. The platform allows the correlation evaluation between cytokine secretion and drug treatment at the level of individual spheroids. For validation, quantities of six representative proangiogenic cytokines are tested against treatments with four model drugs at varying times and concentrations. By applying a linear regression model, significant correlations are established between cytokine secretion and the treated drug concentration for individual spheroids. The proposed platform provides a high-throughput method for the investigation of the molecular mechanism of the cytokine response to targeted therapies and paves the way for future drug screening using predictive regression models at the single-spheroid level.
Collapse
Affiliation(s)
- Mengqi Liu
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Ping Li
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Ningkai Yang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, P. R. China
| |
Collapse
|
21
|
Mi L, Zhang H. Myriad factors and pathways influencing tumor radiotherapy resistance. Open Life Sci 2024; 19:20220992. [PMID: 39655194 PMCID: PMC11627069 DOI: 10.1515/biol-2022-0992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
Radiotherapy is a cornerstone in the treatment of various tumors, yet radioresistance often leads to treatment failure and tumor recurrence. Several factors contribute to this resistance, including hypoxia, DNA repair mechanisms, and cancer stem cells. This review explores the diverse elements that drive tumor radiotherapy resistance. Historically, resistance has been attributed to cellular repair and tumor repopulation, but recent research has expanded this understanding. The tumor microenvironment - characterized by hypoxia, immune evasion, and stromal interactions - further complicates treatment. Additionally, molecular mechanisms such as aberrant signaling pathways, epigenetic modifications, and non-B-DNA structures play significant roles in mediating resistance. This review synthesizes current knowledge, highlighting the interplay of these factors and their clinical implications. Understanding these mechanisms is crucial for developing strategies to overcome resistance and improve therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Lanjuan Mi
- School of Life and Health Sciences, Huzhou College, Hu Zhou, China
| | - Hongquan Zhang
- The First Affiliated Hospital of Huzhou University, Hu Zhou, China
| |
Collapse
|
22
|
Santerre JP, Yang Y, Du Z, Wang W, Zhang X. Biomaterials' enhancement of immunotherapy for breast cancer by targeting functional cells in the tumor micro-environment. Front Immunol 2024; 15:1492323. [PMID: 39600709 PMCID: PMC11588700 DOI: 10.3389/fimmu.2024.1492323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Immunotherapy for breast cancer is now being considered clinically, and more recently, the number of investigations aimed specifically at nano-biomaterials-assisted immunotherapy for breast cancer treatment is growing. Alterations of the breast cancer micro-environment can play a critical role in anti-tumor immunity and cancer development, progression and metastasis. The improvement and rearrangement of tumor micro-environment (TME) may enhance the permeability of anti-tumor drugs. Therefore, targeting the TME is also an ideal and promising option during the selection of effective nano-biomaterial-based immuno-therapeutic strategies excepted for targeting intrinsic resistant mechanisms of the breast tumor. Although nano-biomaterials designed to specifically release loaded anti-tumor drugs in response to tumor hypoxia and low pH conditions have shown promises and the diversity of the TME components also supports a broad targeting potential for anti-tumor drug designs, yet the applications of nano-biomaterials for targeting immunosuppressive cells/immune cells in the TME for improving the breast cancer treating outcomes, have scarcely been addressed in a scientific review. This review provides a thorough discussion for the application of the different forms of nano-biomaterials, as carrier vehicles for breast cancer immunotherapy, targeting specific types of immune cells in the breast tumor microenvironment. In parallel, the paper provides a critical analysis of current advances/challenges with leading nano-biomaterial-mediated breast cancer immunotherapeutic strategies. The current review is timely and important to the cancer research field and will provide a critical tool for nano-biomaterial design and research groups pushing the clinical translation of new nano-biomaterial-based immuno-strategies targeting breast cancer TME, to further open new avenues for the understanding, prevention, diagnosis and treatment of breast cancer, as well as other cancer types.
Collapse
Affiliation(s)
- J. Paul Santerre
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yangyang Yang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Ziwei Du
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenshuang Wang
- Department of Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoqing Zhang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
23
|
Meng S, Hara T, Miura Y, Ishii H. Fibroblast activation protein constitutes a novel target of chimeric antigen receptor T-cell therapy in solid tumors. Cancer Sci 2024; 115:3532-3542. [PMID: 39169645 PMCID: PMC11531970 DOI: 10.1111/cas.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
With recent advances in tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success in several hematologic tumors, significantly improving patient prognosis. However, in solid tumors, the efficacy of CAR-T cell therapy is limited because of high antigen uncertainty and the extremely restrictive tumor microenvironment (TME). This challenge has led to the exploration of new targets, among which fibroblast activation protein (FAP) has gained attention for its relatively stable and specific expression in the TME of various solid tumors, making it a potential new target for CAR-T cell therapy. This study comprehensively analyzed the biological characteristics of FAP and discussed its potential application in CAR-T cell therapy, including the theoretical basis, and preclinical and clinical research progress of targeting FAP with CAR-T cell therapy for solid tumor treatment. The challenges and future optimization directions of this treatment strategy were also explored, providing new perspectives and strategies for CAR-T cell therapy in solid tumors.
Collapse
Grants
- 2024 Princess Takamatsu Cancer Research Fund
- JP23ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- JP24ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- A20H0054100 Ministry of Education, Culture, Sports, Science and Technology
- T23KK01530 Ministry of Education, Culture, Sports, Science and Technology
- T22K195590 Ministry of Education, Culture, Sports, Science and Technology
- A22H031460 Ministry of Education, Culture, Sports, Science and Technology
- T23K183130 Ministry of Education, Culture, Sports, Science and Technology
- T23K195050 Ministry of Education, Culture, Sports, Science and Technology
- T24K199920 Ministry of Education, Culture, Sports, Science and Technology
- IFO Research Communications (2024)
- Oceanic Wellness Foundation (2024)
- Princess Takamatsu Cancer Research Fund
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yutaka Miura
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of TechnologyYokohamaKanagawaJapan
- Department of Life Science and Technology, School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
24
|
Buonvino S, Di Giuseppe D, Filippi J, Martinelli E, Seliktar D, Melino S. 3D Cell Migration Chip (3DCM-Chip): A New Tool toward the Modeling of 3D Cellular Complex Systems. Adv Healthc Mater 2024; 13:e2400040. [PMID: 38739022 DOI: 10.1002/adhm.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Indexed: 05/14/2024]
Abstract
3D hydrogel-based cell cultures provide models for studying cell behavior and can efficiently replicate the physiologic environment. Hydrogels can be tailored to mimic mechanical and biochemical properties of specific tissues and allow to produce gel-in-gel models. In this system, microspheres encapsulating cells are embedded in an outer hydrogel matrix, where cells are able to migrate. To enhance the efficiency of such studies, a lab-on-a-chip named 3D cell migration-chip (3DCM-chip) is designed, which offers substantial advantages over traditional methods. 3DCM-chip facilitates the analysis of biochemical and physical stimuli effects on cell migration/invasion in different cell types, including stem, normal, and tumor cells. 3DCM-chip provides a smart platform for developing more complex cell co-cultures systems. Herein the impact of human fibroblasts on MDA-MB 231 breast cancer cells' invasiveness is investigated. Moreover, how the presence of different cellular lines, including mesenchymal stem cells, normal human dermal fibroblasts, and human umbilical vein endothelial cells, affects the invasive behavior of cancer cells is investigated using 3DCM-chip. Therefore, predictive tumoroid models with a more complex network of interactions between cells and microenvironment are here produced. 3DCM-chip moves closer to the creation of in vitro systems that can potentially replicate key aspects of the physiological tumor microenvironment.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Davide Di Giuseppe
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Joanna Filippi
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, 00133, Italy
- NAST Center- University of Rome Tor Vergata, via della ricerca scientifica, Rome, 00133, Italy
| |
Collapse
|
25
|
Mu W, Gu P, Li H, Zhou J, Jian Y, Jia W, Ge Y. Exposure of benzo[a]pyrene induces HCC exosome-circular RNA to activate lung fibroblasts and trigger organotropic metastasis. Cancer Commun (Lond) 2024; 44:718-738. [PMID: 38840551 PMCID: PMC11260768 DOI: 10.1002/cac2.12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Benzo[a]pyrene (B[a]P), a carcinogen pollutant produced by combustion processes, is present in the western diet with grilled meats. Chronic exposure of B[a]P in hepatocellular carcinoma (HCC) cells promotes metastasis rather than primary proliferation, implying an unknown mechanism of B[a]P-induced malignancy. Given that exosomes carry bioactive molecules to distant sites, we investigated whether and how exosomes mediate cancer-stroma communications for a toxicologically associated microenvironment. METHOD Exosomes were isolated from B[a]P stimulated BEL7404 HCC cells (7404-100Bap Exo) at an environmental relevant dose (100 nmol/L). Lung pre-education animal model was prepared via injection of exosomes and cytokines. The inflammatory genes of educated lungs were evaluated using quantitative reverse transcription PCR array. HCC LM3 cells transfected with firefly luciferase were next injected to monitor tumor burdens and organotropic metastasis. Profile of B[a]P-exposed exosomes were determined by ceRNA microarray. Interactions between circular RNA (circRNA) and microRNAs (miRNAs) were detected using RNA pull-down in target lung fibroblasts. Fluorescence in situ hybridization and RNA immunoprecipitation assay was used to evaluate the "on-off" interaction of circRNA-miRNA pairs. We further developed an adeno-associated virus inhalation model to examine mRNA expression specific in lung, thereby exploring the mRNA targets of B[a]P induced circRNA-miRNA cascade. RESULTS Lung fibroblasts exert activation phenotypes, including focal adhesion and motility were altered by 7404-100Bap Exo. In the exosome-educated in vivo model, fibrosis factors and pro-inflammatory molecules of are up-regulated when injected with exosomes. Compared to non-exposed 7404 cells, circ_0011496 was up-regulated following B[a]P treatment and was mainly packaged into 7404-100Bap Exo. Exosomal circ_0011496 were delivered and competitively bound to miR-486-5p in recipient fibroblasts. The down-regulation of miR-486-5p converted fibroblast to cancer-associated fibroblast via regulating the downstream of Twinfilin-1 (TWF1) and matrix metalloproteinase-9 (MMP9) cascade. Additionally, increased TWF1, specifically in exosomal circ_0011496 educated lungs, could promote cancer-stroma crosstalk via activating vascular endothelial growth factor (VEGF). These modulated fibroblasts promoted endothelial cells angiogenesis and recruited primary HCC cells invasion, as a consequence of a pre-metastatic niche formation. CONCLUSION We demonstrated that B[a]P-induced tumor exosomes can deliver circ_0011496 to activate miR-486-5p/TWF1/MMP9 cascade in the lung fibroblasts, generating a feedback loop that promoted HCC metastasis.
Collapse
Affiliation(s)
- Wei Mu
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Pengfei Gu
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Huating Li
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Jinjin Zhou
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Yulun Jian
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Yang Ge
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| |
Collapse
|
26
|
Rodríguez-Bejarano OH, Parra-López C, Patarroyo MA. A review concerning the breast cancer-related tumour microenvironment. Crit Rev Oncol Hematol 2024; 199:104389. [PMID: 38734280 DOI: 10.1016/j.critrevonc.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is currently the most common malignant tumour in women and one of the leading causes of their death around the world. New and increasingly personalised diagnostic and therapeutic tools have been introduced over the last few decades, along with significant advances regarding the study and knowledge related to BC. The tumour microenvironment (TME) refers to the tumour cell-associated cellular and molecular environment which can influence conditions affecting tumour development and progression. The TME is composed of immune cells, stromal cells, extracellular matrix (ECM) and signalling molecules secreted by these different cell types. Ever deeper understanding of TME composition changes during tumour development and progression will enable new and more innovative therapeutic strategies to become developed for targeting tumours during specific stages of its evolution. This review summarises the role of BC-related TME components and their influence on tumour progression and the development of resistance to therapy. In addition, an account on the modifications in BC-related TME components associated with therapy is given, and the completed or ongoing clinical trials related to this topic are presented.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
27
|
Talia M, Cesario E, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, Mondino AA, Occhiuzzi MA, De Francesco EM, Belfiore A, Miglietta AM, Di Dio M, Capalbo C, Maggiolini M, Lappano R. Cancer-associated fibroblasts (CAFs) gene signatures predict outcomes in breast and prostate tumor patients. J Transl Med 2024; 22:597. [PMID: 38937754 PMCID: PMC11210052 DOI: 10.1186/s12967-024-05413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Over the last two decades, tumor-derived RNA expression signatures have been developed for the two most commonly diagnosed tumors worldwide, namely prostate and breast tumors, in order to improve both outcome prediction and treatment decision-making. In this context, molecular signatures gained by main components of the tumor microenvironment, such as cancer-associated fibroblasts (CAFs), have been explored as prognostic and therapeutic tools. Nevertheless, a deeper understanding of the significance of CAFs-related gene signatures in breast and prostate cancers still remains to be disclosed. METHODS RNA sequencing technology (RNA-seq) was employed to profile and compare the transcriptome of CAFs isolated from patients affected by breast and prostate tumors. The differentially expressed genes (DEGs) characterizing breast and prostate CAFs were intersected with data from public datasets derived from bulk RNA-seq profiles of breast and prostate tumor patients. Pathway enrichment analyses allowed us to appreciate the biological significance of the DEGs. K-means clustering was applied to construct CAFs-related gene signatures specific for breast and prostate cancer and to stratify independent cohorts of patients into high and low gene expression clusters. Kaplan-Meier survival curves and log-rank tests were employed to predict differences in the outcome parameters of the clusters of patients. Decision-tree analysis was used to validate the clustering results and boosting calculations were then employed to improve the results obtained by the decision-tree algorithm. RESULTS Data obtained in breast CAFs allowed us to assess a signature that includes 8 genes (ITGA11, THBS1, FN1, EMP1, ITGA2, FYN, SPP1, and EMP2) belonging to pro-metastatic signaling routes, such as the focal adhesion pathway. Survival analyses indicated that the cluster of breast cancer patients showing a high expression of the aforementioned genes displays worse clinical outcomes. Next, we identified a prostate CAFs-related signature that includes 11 genes (IL13RA2, GDF7, IL33, CXCL1, TNFRSF19, CXCL6, LIFR, CXCL5, IL7, TSLP, and TNFSF15) associated with immune responses. A low expression of these genes was predictive of poor survival rates in prostate cancer patients. The results obtained were significantly validated through a two-step approach, based on unsupervised (clustering) and supervised (classification) learning techniques, showing a high prediction accuracy (≥ 90%) in independent RNA-seq cohorts. CONCLUSION We identified a huge heterogeneity in the transcriptional profile of CAFs derived from breast and prostate tumors. Of note, the two novel CAFs-related gene signatures might be considered as reliable prognostic indicators and valuable biomarkers for a better management of breast and prostate cancer patients.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Eugenio Cesario
- Department of Cultures, Education and Society, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Adelina Assunta Mondino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | | | | | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Annunziata Hospital Cosenza, Cosenza, 87100, Italy
| | - Michele Di Dio
- Division of Urology, Department of Surgery, Annunziata Hospital, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Annunziata Hospital Cosenza, Cosenza, 87100, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
28
|
Abel J, Jain S, Rajan D, Padigela H, Leidal K, Prakash A, Conway J, Nercessian M, Kirkup C, Javed SA, Biju R, Harguindeguy N, Shenker D, Indorf N, Sanghavi D, Egger R, Trotter B, Gerardin Y, Brosnan-Cashman JA, Dhoot A, Montalto MC, Parmar C, Wapinski I, Khosla A, Drage MG, Yu L, Taylor-Weiner A. AI powered quantification of nuclear morphology in cancers enables prediction of genome instability and prognosis. NPJ Precis Oncol 2024; 8:134. [PMID: 38898127 PMCID: PMC11187064 DOI: 10.1038/s41698-024-00623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
While alterations in nucleus size, shape, and color are ubiquitous in cancer, comprehensive quantification of nuclear morphology across a whole-slide histologic image remains a challenge. Here, we describe the development of a pan-tissue, deep learning-based digital pathology pipeline for exhaustive nucleus detection, segmentation, and classification and the utility of this pipeline for nuclear morphologic biomarker discovery. Manually-collected nucleus annotations were used to train an object detection and segmentation model for identifying nuclei, which was deployed to segment nuclei in H&E-stained slides from the BRCA, LUAD, and PRAD TCGA cohorts. Interpretable features describing the shape, size, color, and texture of each nucleus were extracted from segmented nuclei and compared to measurements of genomic instability, gene expression, and prognosis. The nuclear segmentation and classification model trained herein performed comparably to previously reported models. Features extracted from the model revealed differences sufficient to distinguish between BRCA, LUAD, and PRAD. Furthermore, cancer cell nuclear area was associated with increased aneuploidy score and homologous recombination deficiency. In BRCA, increased fibroblast nuclear area was indicative of poor progression-free and overall survival and was associated with gene expression signatures related to extracellular matrix remodeling and anti-tumor immunity. Thus, we developed a powerful pan-tissue approach for nucleus segmentation and featurization, enabling the construction of predictive models and the identification of features linking nuclear morphology with clinically-relevant prognostic biomarkers across multiple cancer types.
Collapse
|
29
|
Talia M, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, De Rosis S, Miglietta AM, Capalbo C, De Francesco EM, Belfiore A, Grande F, Rizzuti B, Occhiuzzi MA, Fortino G, Guzzo A, Greco G, Maggiolini M, Lappano R. The G Protein Estrogen Receptor (GPER) is involved in the resistance to the CDK4/6 inhibitor palbociclib in breast cancer. J Exp Clin Cancer Res 2024; 43:171. [PMID: 38886784 PMCID: PMC11184778 DOI: 10.1186/s13046-024-03096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, 50018, Spain
| | | | - Giancarlo Fortino
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Antonella Guzzo
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
30
|
Linde C, Chien YT, Chen Z, Mu Q. Nanoparticle-enhanced PD-1/PD-L1 targeted combination therapy for triple negative breast cancer. Front Oncol 2024; 14:1393492. [PMID: 38756653 PMCID: PMC11096478 DOI: 10.3389/fonc.2024.1393492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer with triple-negative subtype (TNBC) presents significant challenges with limited treatment options and a poorer prognosis than others. While PD-1/PD-L1 checkpoint inhibitors have shown promise, their efficacy in TNBC remains constrained. In recent years, nanoparticle (NP) technologies offer a novel approach to enhance cancer therapy by optimizing the tumor microenvironment and augmenting chemo- and immunotherapy effects in various preclinical and clinical settings. This review discusses recent investigations in NP strategies for improving PD-1/PD-L1 blockade-based combination therapy for TNBC. Those include single or multi-therapeutic NPs designed to enhance immunogenicity of the tumor, induce immunogenic cell death, and target immunosuppressive elements within the tumor microenvironment. The investigations also include NPs co-loaded with PD-L1 inhibitors and other therapeutic agents, leveraging targeted delivery and synergistic effects to maximize efficacy while minimizing systemic toxicity. Overall, NP approaches represent a promising avenue for enhancing PD-1/PD-L1 checkpoint blockade-based combination therapy in TNBC and encourage further developmental studies.
Collapse
Affiliation(s)
| | | | | | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Trnkova L, Buocikova V, Mego M, Cumova A, Burikova M, Bohac M, Miklikova S, Cihova M, Smolkova B. Epigenetic deregulation in breast cancer microenvironment: Implications for tumor progression and therapeutic strategies. Biomed Pharmacother 2024; 174:116559. [PMID: 38603889 DOI: 10.1016/j.biopha.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer comprises a substantial proportion of cancer diagnoses in women and is a primary cause of cancer-related mortality. While hormone-responsive cases generally have a favorable prognosis, the aggressive nature of triple-negative breast cancer presents challenges, with intrinsic resistance to established treatments being a persistent issue. The complexity intensifies with the emergence of acquired resistance, further complicating the management of breast cancer. Epigenetic changes, encompassing DNA methylation, histone and RNA modifications, and non-coding RNAs, are acknowledged as crucial contributors to the heterogeneity of breast cancer. The unique epigenetic landscape harbored by each cellular component within the tumor microenvironment (TME) adds great diversity to the intricate regulations which influence therapeutic responses. The TME, a sophisticated ecosystem of cellular and non-cellular elements interacting with tumor cells, establishes an immunosuppressive microenvironment and fuels processes such as tumor growth, angiogenesis, and extracellular matrix remodeling. These factors contribute to challenging conditions in cancer treatment by fostering a hypoxic environment, inducing metabolic stress, and creating physical barriers to drug delivery. This article delves into the complex connections between breast cancer treatment response, underlying epigenetic changes, and vital interactions within the TME. To restore sensitivity to treatment, it emphasizes the need for combination therapies considering epigenetic changes specific to individual members of the TME. Recognizing the pivotal role of epigenetics in drug resistance and comprehending the specificities of breast TME is essential for devising more effective therapeutic strategies. The development of reliable biomarkers for patient stratification will facilitate tailored and precise treatment approaches.
Collapse
Affiliation(s)
- Lenka Trnkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Michal Mego
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia; 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Martin Bohac
- 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia; Regenmed Ltd., Medena 29, Bratislava 811 01, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava 811 08, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia.
| |
Collapse
|
32
|
Gu Q, Ma Z, Wang Q, Dai Y, Shi W, Jiao Z. Knockout of Shcbp1 sensitizes immunotherapy by regulating α-SMA positive cancer-associated fibroblasts. Mol Carcinog 2024; 63:601-616. [PMID: 38169303 DOI: 10.1002/mc.23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024]
Abstract
The crucial role of cancer-associated fibroblasts (CAFs) in promoting T-cell exclusion has a significant impact on tumor immune evasion and resistance to immunotherapy. Therefore, enhancing T-cell infiltration into solid tumors has emerged as a pivotal area of research. We achieved a conventional knockout of Shcbp1 (Shcbp1-/- ) through CRISPR/Cas9 gene editing and crossed these mice with spontaneous breast cancer MMTV-PyMT mice, resulting in PyMT Shcbp1-/- mice. The different CAF subtypes were detected by flow cytometry analysis (FCA). We evaluated collagen and CAFs levels using Sirius red staining, immunohistochemistry (IHC), and immunofluorescence (IF). Primary tumor cells and CAFs were isolated from both PyMT Shcbp1+/+ and PyMT Shcbp1-/- mice. We analyzed CAFs' proliferation, invasion, migration, apoptosis, and cell cycle. Transwell coculture experiments were performed with primary tumor cells and CAFs to evaluate the role of CAFs in increasing the sensitivity of tumor cells to Erdafitinib. Tumors from PyMT Shcbp1+/+ and PyMT Shcbp1-/- mice were orthotopically transplanted to assess the therapeutic effect of the Erdafitinib and PD-1 combination. CAFs and T-cell infiltration in these tumors were assessed using FCA and IF. Knockout of Shcbp1 leads to a significant reduction in tumor burden, promotes longer survival, and decreases CAFs in MMTV-PyMT. Moreover, knockout of Shcbp1 enhances the sensitivity of Erdafitinib, leading to effective inhibition of CAFs' proliferation and invasion, as well as the induction of apoptosis. Additionally, it results in cell cycle arrest at the G2/M phase in vitro. Meanwhile, Shcbp1-/- CAFs change the sensitivity of Shcbp1-/- tumor cells to Erdafitinib compared to Shcbp1+/+ CAFs. Importantly, knockout of Shcbp1 boosts the effectiveness of Erdafitinib in combination with immune checkpoint blockade therapy by augmenting T-cell infiltration through CAFs regulation in vivo. Our findings demonstrate that knockout of Shcbp1 holds significant potential in enhancing the therapeutic response of Erdafitinib combined with PD-1 antibody treatment, offering promising prospects for future breast cancer therapies.
Collapse
Affiliation(s)
- Qianlin Gu
- The Second Clinical Medical College, Lanzhou University, Lanzhou city, Gansu Province, China
| | - Zhijian Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou city, Gansu Province, China
| | - Qiaoyan Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou city, Gansu Province, China
| | - Yiwei Dai
- The Second Clinical Medical College, Lanzhou University, Lanzhou city, Gansu Province, China
| | - Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou city, Gansu Province, China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou city, Gansu Province, China
| | - Zuoyi Jiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou city, Gansu Province, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou city, Gansu Province, China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou city, Gansu Province, China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou city, Gansu Province, China
| |
Collapse
|
33
|
Affinito A, Quintavalle C, Chianese RV, Roscigno G, Fiore D, D'Argenio V, Thomas G, Savarese A, Ingenito F, Cocca L, Nuzzo S, Berezovski MV, Stoppelli MP, Condorelli G. MCT4-driven CAF-mediated metabolic reprogramming in breast cancer microenvironment is a vulnerability targetable by miR-425-5p. Cell Death Discov 2024; 10:140. [PMID: 38485929 PMCID: PMC10940713 DOI: 10.1038/s41420-024-01910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Multiple oncogenic alterations contribute to breast cancer development. Metabolic reprogramming, deeply contributing to tumor microenvironment (TME) education, is now widely recognized as a hallmark of cancer. The reverse Warburg effect induces cancer-associated fibroblasts (CAFs) to produce and secrete L-lactate, enhancing malignant characteristics such as neoangiogenesis, metastatic dissemination, and treatment resistance. Monocarboxylate transporter (MCT) 4 is involved in lactate efflux from CAFs into stromal and epithelial cells. Here, we first assess the expression of miR-425-5p and its target MCT4 in breast cancer CAFs and normal fibroblasts. We analyzed the metabolic changes induced by miR-425-5p in CAFs and its role in the education of breast cancer epithelial cells. We show that miR-425-5p-induced MCT4 knockdown decreased lactate extrusion from CAFs and its availability in the TME. miR-425-5p overexpression induced profound metabolic transformation in CAFs, ultimately influencing breast cancer metabolism. Furthermore, miR-425-5p impaired the capacity of CAFs to sustain vessel formation and breast cancer cell migration, viability, and proliferation. These findings emphasize the key role of miR-425-5p in breast cancer metabolism and aggressiveness, and its possible importance for breast cancer therapy and monitoring.
Collapse
Affiliation(s)
- Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
- AKA Biotech, Naples, Italy
| | - Cristina Quintavalle
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples, Italy
| | - Rosario Vincenzo Chianese
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples, Italy
| | - Valeria D'Argenio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Roma, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | | | - Alessia Savarese
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Lorenza Cocca
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | | | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples, Italy.
| |
Collapse
|
34
|
Li Y, Lin K, Ren X, Xu J, Yuan H, Bian L, He Y. Activated fibroblasts induce immune escape of TSCC through CCL25/AKT pathway. Oral Dis 2024; 30:448-461. [PMID: 36437627 DOI: 10.1111/odi.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Accumulating evidence suggests that activated fibroblasts are the key cells in the T-cell response to tumor immunosuppression. We attempted to investigate the effect of activated fibroblasts on PD-L1 expression and the related immune escape mechanism in tongue squamous cell carcinoma. METHODS Western blotting, qPCR, and other techniques were used to study the expression of PD-L1 in tongue squamous cell carcinoma cells and the nude mouse model of transplanted tumors in vivo; clinical tissue samples were verified. In addition, we established a direct coculture model of T cells and tongue squamous cell carcinoma cells explore the mechanisms of immune escape. RESULTS We found that PDGF-BB induces fibroblast activation by facilitating the oversecretion of chemokine CCL25. Further analysis showed that CCL25 derived from activated fibroblasts activated the Akt signaling pathway to promote PD-L1 expression. The activated fibroblasts inhibited T-cell IFN-γ secretion through the CCL25/Akt/PD-L1 pathway, which indirectly inhibited T-cell proliferation. CONCLUSION Activated fibroblasts can induce the high expression of PD-L1 in the oral and tongue squamous cell carcinoma cell line Cal-27 via the CCL25/CCR9/p-Akt axis, to significantly inhibit the proliferation and IFN-γ secretion of T cells and promote the immune escape of tongue squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Yiting Li
- Kunming Medical University, Kunming, Yunnan, China
| | - Ken Lin
- Department of Otolaryngology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Xiaobin Ren
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jianguo Xu
- Kunming Medical University, Kunming, Yunnan, China
| | - Haiming Yuan
- Department of Oral Prevention, Stomatological Hospital Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongwen He
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
35
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
36
|
Rasti Boroojeni F, Naeimipour S, Lifwergren P, Abrahamsson A, Dabrosin C, Selegård R, Aili D. Proteolytic remodeling of 3D bioprinted tumor microenvironments. Biofabrication 2024; 16:025002. [PMID: 38128125 DOI: 10.1088/1758-5090/ad17d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
In native tissue, remodeling of the pericellular space is essential for cellular activities and is mediated by tightly regulated proteases. Protease activity is dysregulated in many diseases, including many forms of cancer. Increased proteolytic activity is directly linked to tumor invasion into stroma, metastasis, and angiogenesis as well as all other hallmarks of cancer. Here we show a strategy for 3D bioprinting of breast cancer models using well-defined protease degradable hydrogels that can facilitate exploration of the multifaceted roles of proteolytic extracellular matrix remodeling in tumor progression. We designed a set of bicyclo[6.1.0]nonyne functionalized hyaluronan (HA)-based bioinks cross-linked by azide-modified poly(ethylene glycol) (PEG) or matrix metalloproteinase (MMP) degradable azide-functionalized peptides. Bioprinted structures combining PEG and peptide-based hydrogels were proteolytically degraded with spatial selectivity, leaving non-degradable features intact. Bioprinting of tumor-mimicking microenvironments using bioinks comprising human breast cancer cells (MCF-7) and fibroblast in hydrogels with different susceptibilities to proteolytic degradation shows that MCF-7 proliferation and spheroid size were significantly increased in protease degradable hydrogel compartments, but only in the presence of fibroblasts. In the absence of fibroblasts in the stromal compartment, cancer cell proliferation was reduced and did not differ between degradable and nondegradable hydrogels. The interactions between spatially separated fibroblasts and MCF-7 cells consequently resulted in protease-mediated remodeling of the bioprinted structures and a significant increase in cancer cell spheroid size, highlighting the close interplay between cancer cells and stromal cells in the tumor microenvironment and the influence of proteases in tumor progression.
Collapse
Affiliation(s)
- Fatemeh Rasti Boroojeni
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Sajjad Naeimipour
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Philip Lifwergren
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
37
|
Zheng J, Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol 2024; 13:1333839. [PMID: 38273859 PMCID: PMC10810416 DOI: 10.3389/fonc.2023.1333839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor microenvironment, exhibiting a strong association with the advancement of various types of cancer, including breast, pancreatic, and prostate cancer. CAFs represent the most abundant mesenchymal cell population in breast cancer. Through diverse mechanisms, including the release of cytokines and exosomes, CAFs contribute to the progression of breast cancer by influencing tumor energy metabolism, promoting angiogenesis, impairing immune cell function, and remodeling the extracellular matrix. Moreover, CAFs considerably impact the response to treatment in breast cancer. Consequently, the development of interventions targeting CAFs has emerged as a promising therapeutic approach in the management of breast cancer. This article provides an analysis of the role of CAFs in breast cancer, specifically in relation to diagnosis, treatment, drug resistance, and prognosis. The paper succinctly outlines the diverse mechanisms through which CAFs contribute to the malignant behavior of breast cancer cells, including proliferation, invasion, metastasis, and drug resistance. Furthermore, the article emphasizes the potential of CAFs as valuable tools for early diagnosis, targeted therapy, treatment resistance, and prognosis assessment in breast cancer, thereby offering novel approaches for targeted therapy and overcoming treatment resistance in this disease.
Collapse
Affiliation(s)
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Goggins E, Mironchik Y, Kakkad S, Jacob D, Wildes F, Bhujwalla ZM, Krishnamachary B. Reprogramming of VEGF-mediated extracellular matrix changes through autocrine signaling. Cancer Biol Ther 2023; 24:2184145. [PMID: 37389973 PMCID: PMC10012930 DOI: 10.1080/15384047.2023.2184145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) plays key roles in angiogenesis, vasculogenesis, and wound healing. In cancers, including triple negative breast cancer (TNBC), VEGF has been associated with increased invasion and metastasis, processes that require cancer cells to traverse through the extracellular matrix (ECM) and establish angiogenesis at distant sites. To further understand the role of VEGF in modifying the ECM, we characterized VEGF-mediated changes in the ECM of tumors derived from TNBC MDA-MB-231 cells engineered to overexpress VEGF. We established that increased VEGF expression by these cells resulted in tumors with reduced collagen 1 (Col1) fibers, fibronectin, and hyaluronan. Molecular characterization of tumors identified an increase of MMP1, uPAR, and LOX, and a decrease of MMP2, and ADAMTS1. α-SMA, a marker of cancer associated fibroblasts (CAFs), increased, and FAP-α, a marker of a subset of CAFs associated with immune suppression, decreased with VEGF overexpression. Analysis of human data from The Cancer Genome Atlas Program confirmed mRNA differences for several molecules when comparing TNBC with high and low VEGF expression. We additionally characterized enzymatic changes induced by VEGF overexpression in three different cancer cell lines that clearly identified autocrine-mediated changes, specifically uPAR, in these enzymes. Unlike the increase of Col1 fibers and fibronectin mediated by VEGF during wound healing, in the TNBC model, VEGF significantly reduced key protein components of the ECM. These results further expand our understanding of the role of VEGF in cancer progression and identify potential ECM-related targets to disrupt this progression.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Desmond Jacob
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Garnique ADMB, Machado-Santelli GM. Characterization of 3D NSCLC Cell Cultures with Fibroblasts or Macrophages for Tumor Microenvironment Studies and Chemotherapy Screening. Cells 2023; 12:2790. [PMID: 38132110 PMCID: PMC10742261 DOI: 10.3390/cells12242790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 12/23/2023] Open
Abstract
The study of 3D cell culture has increased in recent years as a model that mimics the tumor microenvironment (TME), which is characterized by exhibiting cellular heterogeneity, allowing the modulation of different signaling pathways that enrich this microenvironment. The TME exhibits two main cell populations: cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAM). The aim of this study was to investigate 3D cell cultures of non-small cell lung cancer (NSCLC) alone and in combination with short-term cultured dermal fibroblasts (FDH) and with differentiated macrophages of the THP-1 cell line. Homotypic and heterotypic spheroids were morphologically characterized using light microscopy, immunofluorescence and transmission electron microscopy. Cell viability, cycle profiling and migration assay were performed, followed by the evaluation of the effects of some chemotherapeutic and potential compounds on homotypic and heterotypic spheroids. Both homotypic and heterotypic spheroids of NSCLC were generated with fibroblasts or macrophages. Heterotypic spheroids with fibroblast formed faster, while homotypic ones reached larger sizes. Different cell populations were identified based on spheroid zoning, and drug effects varied between spheroid types. Interestingly, heterotypic spheroids with fibroblasts showed similar responses to the treatment with different compounds, despite being smaller. Cellular viability analysis required multiple methods, since the responses varied depending on the spheroid type. Because of this, the complexity of the spheroid should be considered when analyzing compound effects. Overall, this study contributes to our understanding of the behavior and response of NSCLC cells in 3D microenvironments, providing valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Glaucia Maria Machado-Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Ave., Prof, Lineu Prestes, 1524, Cidade Universitária, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
40
|
Huang X, Li L, Ou C, Shen M, Li X, Zhang M, Wu R, Kou X, Gao L, Liu F, Luo R, Wu Q, Gong C. Tumor Environment Regression Therapy Implemented by Switchable Prune-to-Essence Nanoplatform Unleashed Systemic Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303715. [PMID: 37875395 PMCID: PMC10724435 DOI: 10.1002/advs.202303715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/01/2023] [Indexed: 10/26/2023]
Abstract
Coevolution of tumor cells and surrounding stroma results in protective protumoral environment, in which abundant vessel, stiff structure and immunosuppression promote each other, cooperatively incurring deterioration and treatment compromise. Reversing suchenvironment may transform tumors from treatment-resistant to treatment-vulnerable. However, effective reversion requires synergistic comprehensive regression of such environment under precise control. Here, the first attempt to collaboratively retrograde coevolutionary tumor environment to pre-oncogenesis status, defined as tumor environment regression therapy, is made for vigorous immune response eruption by a switchable prune-to-essence nanoplatform (Pres) with simplified composition and fabrication process. Through magnetic targeting and multimodal imaging of Pres, tumor environment regression therapy is guided, optimized and accomplished in a trinity way: Antiangiogenesis is executed to rarefy vessels to impede tumor progression. By seizing the time, cancer associated fibroblasts are eliminated to diminish collagen and loosen the stiff structure for deep penetration of Pres, which alternately functioned in deeper tumors, forming a positive feedback loop. Through this loop, immune cell infiltration, immunosuppression mitigation and immunogenic cells death induction are all fulfilled and further escalated in the regressed environment. These transformations consequently unleashed systemic immune responses and generated immune memory against carcinoma. This study provides new insights intotreatment of solid tumors.
Collapse
Affiliation(s)
- Xianzhou Huang
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Lu Li
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Chunqing Ou
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Meiling Shen
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xinchao Li
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Miaomiao Zhang
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Wu
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaorong Kou
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Ling Gao
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Furong Liu
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Luo
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Qinjie Wu
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Changyang Gong
- Department of BiotherapyCancer center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
41
|
Ma B, Li F, Ma B. Down-regulation of COL1A1 inhibits tumor-associated fibroblast activation and mediates matrix remodeling in the tumor microenvironment of breast cancer. Open Life Sci 2023; 18:20220776. [PMID: 38045487 PMCID: PMC10693014 DOI: 10.1515/biol-2022-0776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
We investigated the effects of collagen type I alpha 1 (COL1A1) on tumor-associated fibroblast activation and matrix remodeling in the tumor microenvironment of breast cancer. Cells were divided into the blank control, negative control, and siRNA-COL1A1 groups, or HKF control, HKF + exosomes (EXO), HKF + siRNA negative control-EXO, and HKF + siRNA-COL1A1-EXO co-culture groups. Western blot and quantitative real-time PCR detected gene expressions. COL Ⅰ, COL Ⅲ, and TGF-β1 were detected by enzyme-linked immunosorbent assay. We found that compared with blank and negative control groups, COL1A1 expression and the secretion of exosomes by breast cancer cells were inhibited in the siRNA-COL1A1 group. Compared with the HKF control group, the COL Ⅰ, COL Ⅲ, TGF-β1, α-SMA, and fibroblast activation protein (FAP) were increased, while the E-cadherin and CAV-1 were decreased in the HKF + EXO, HKF + siRNA negative control-EXO, and HKF + siRNA-COL1A1-EXO co-culture groups. Compared with HKF + EXO and HKF + siRNA negative control-EXO co-culture groups, the COL Ⅰ, COL Ⅲ, TGF-β1, α-SMA, and FAP were decreased, and the E-cadherin and CAV-1 were increased in the HKF + siRNA-COL1A1-EXO co-culture group. Collectively, COL1A1 down-regulation may inhibit exosome secretion possibly via inhibiting COL Ⅰ and upregulating CAV-1, thereby inhibiting tumor-associated fibroblast activation and matrix remodeling in the tumor microenvironment.
Collapse
Affiliation(s)
- Bin Ma
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi830011, Xinjiang, China
- Department of Thyriod and Breast Surgery, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu610041, China
| | - Fangfang Li
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi830011, Xinjiang, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi830011, Xinjiang, China
| |
Collapse
|
42
|
Zhu QM, Li HX, Ma PQ, Wu LX, Wang TH, Li WB, Zhang L, Yang X, Kong X, Sun YL, Yan T. A potential immunotherapy target for breast cancer: parenchymal and immune-stromal expression of the NLRP3 inflammasome pathway. BMC Cancer 2023; 23:1163. [PMID: 38031068 PMCID: PMC10685553 DOI: 10.1186/s12885-023-11609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The NOD-, LRR- and pyrin domain‑containing 3 (NLRP3) inflammasome is a critical component of the innate immune system. It has been known to play an important role in the carcinogenesis and prognosis of breast cancer patients. While the clinical evidence of the relationship between NLRP3 inflammasome activation and long-term survival is still limited, the possible roles of parenchymal or immune-stromal cells of breast cancer tissues in contributing to such carcinogenesis and progression still need to be clarified. This study is an analysis of patients receiving breast cancer surgery in a previous clinical trial. METHODS Immunohistochemistry (IHC) was used to detect the expression levels of NLRP3 inflammasome pathway-related proteins, including NLRP3, caspase-1, apoptosis-associated speck-like protein (ASC), IL-1β, and IL-18, in parenchymal and immune-stromal cells of breast cancer tissues compared to those of adjacent normal tissues, respectively. The relationship between NLRP3 inflammasome expression and clinicopathological characteristics, as well as 5-year survivals were analyzed using the Chi-square test, Kaplan-Meier survival curves, and Cox regression analysis. RESULTS In the parenchymal cells, ASC and IL-18 protein levels were significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (P<0.05). In the immune-stromal cells, all the five NLRP3 inflammasome pathway-related proteins were significantly elevated in breast cancer tissues compared with adjacent normal tissues (P < 0.05). Carcinoma cell embolus was found to significantly correlate with high NLRP3 expression in parenchymal cells of the tumor (x2=4.592, P=0.032), while the expression of caspase-1 was negatively correlated with tumor progression. Histological grades were found to have a positive correlation with IL-18 expression in immune-stromal cells of the tumor (x2=14.808, P=0.001). Kaplan-Meier survival analysis revealed that high IL-18 expression in the immune-stromal cells and the positive carcinoma cell embolus were both associated with poor survival (P < 0.05). The multivariable Cox proportional hazards regression model implied that the high IL-18 expression and positive carcinoma cell embolus were both independent risk factors for unfavorable prognosis. CONCLUSIONS The activation of NLRP3 inflammasome pathways in immune-stromal and tumor parenchymal cells in the innate immune system was not isotropic and the main functions are somewhat different in breast cancer patients. Caspase-1 in parenchymal cells of the tumor was negatively correlated with tumor progression, and upregulation of IL-18 in immune-stromal cells of breast cancer tissues is a promising prognostic biomarker and a potential immunotherapy target. TRIAL REGISTRATION This clinical trial has been registered at the Chictr.org.cn registry system on 21/08/2018 (ChiCTR1800017910).
Collapse
Affiliation(s)
- Qian-Mei Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui-Xian Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pei-Qing Ma
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin-Xin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tai-Hang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Bin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Xue Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu-Lin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
43
|
Chen JG, Chávez-Fuentes JC, O'Brien M, Xu J, Ruiz E, Wang W, Amin I, Sarfraz I, Guckhool P, Sistig A, Yuan GC, Dries R. Giotto Suite: a multi-scale and technology-agnostic spatial multi-omics analysis ecosystem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.26.568752. [PMID: 38077085 PMCID: PMC10705291 DOI: 10.1101/2023.11.26.568752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Emerging spatial omics technologies continue to advance the molecular mapping of tissue architecture and the investigation of gene regulation and cellular crosstalk, which in turn provide new mechanistic insights into a wide range of biological processes and diseases. Such technologies provide an increasingly large amount of information content at multiple spatial scales. However, representing and harmonizing diverse spatial datasets efficiently, including combining multiple modalities or spatial scales in a scalable and flexible manner, remains a substantial challenge. Here, we present Giotto Suite, a suite of open-source software packages that underlies a fully modular and integrated spatial data analysis toolbox. At its core, Giotto Suite is centered around an innovative and technology-agnostic data framework embedded in the R software environment, which allows the representation and integration of virtually any type of spatial omics data at any spatial resolution. In addition, Giotto Suite provides both scalable and extensible end-to-end solutions for data analysis, integration, and visualization. Giotto Suite integrates molecular, morphology, spatial, and annotated feature information to create a responsive and flexible workflow for multi-scale, multi-omic data analyses, as demonstrated here by applications to several state-of-the-art spatial technologies. Furthermore, Giotto Suite builds upon interoperable interfaces and data structures that bridge the established fields of genomics and spatial data science, thereby enabling independent developers to create custom-engineered pipelines. As such, Giotto Suite creates an immersive ecosystem for spatial multi-omic data analysis.
Collapse
Affiliation(s)
- Jiaji George Chen
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | | | - Matthew O'Brien
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Junxiang Xu
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Edward Ruiz
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Wen Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Iqra Amin
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Irzam Sarfraz
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Pratishtha Guckhool
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adriana Sistig
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruben Dries
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
44
|
Domingues M, Leite Pereira C, Sarmento B, Castro F. Mimicking 3D breast tumor-stromal interactions to screen novel cancer therapeutics. Eur J Pharm Sci 2023; 190:106560. [PMID: 37557927 DOI: 10.1016/j.ejps.2023.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Most of the 3D breast tumor models used in drug screening studies only comprise tumor cells, keeping out other essential cell players of the tumor microenvironment. Tumor-associated macrophages and fibroblasts are frequently correlated with tumor progression and therapy resistance, and targeting these cells at the tumor site has been appointed as a promising therapeutic strategy. However, the translation of new therapies to the clinic has been hampered by the absence of cellular models that more closely mimic the features of in vivo breast tumor microenvironment. Therefore, the development of innovative 3D models able to provide consistent and predictive responses about the in vivo efficacy of novel therapeutics is still an unmet preclinical need. Herein, we have established an in vitro 3D heterotypic spheroid model including MCF-7 breast tumor cells, human mammary fibroblasts and human macrophages. To establish this model, different cell densities have been combined and characterized through the evaluation of the spheroid size and metabolic activity, as well as histological and immunohistochemistry analysis of the 3D multicellular structures. The final optimized 3D model consisted in a multicellular spheroid seeded at the initial density of 5000 cells and cell ratio of 1:2:1 (MCF-7:monocytes:fibroblasts). Our model recapitulates several features of the breast tumor microenvironment, including the formation of a necrotic core, spatial organization, and extracellular matrix production. Further, it was validated as a platform for drug screening studies, using paclitaxel, a currently approved drug for breast cancer treatment, and Gefitinib, a chemotherapeutic approved for lung cancer and in preclinical evaluation for breast cancer. Generally, the impact on the cell viability of the 3D model was less evident than in 2D model, reinforcing the relevance of such complex 3D models in addressing novel treatment approaches. Overall, the use of a 3D heterotypic spheroid of breast cancer could be a valuable tool to predict the therapeutic effect of new treatments for breast cancer patients, by recapitulating key features of the breast cancer microenvironment.
Collapse
Affiliation(s)
- Mariana Domingues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Doutor Roberto Frias, Porto 4200-465, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
| |
Collapse
|
45
|
Fu X, Deng Y, Xu H, Shu Y, Chen HN. Selenium metabolism heterogeneity in pan-cancer: insights from bulk and single-cell RNA sequencing. J Cancer Res Clin Oncol 2023; 149:15535-15551. [PMID: 37648807 DOI: 10.1007/s00432-023-05333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Selenium, a natural microelement with both nutritional and toxicological properties, is intertwined with tumorigenesis and progression. However, it is not fully understood how selenium metabolism affects immune response and cancer biology. METHODS We estimated selenium metabolism by Gene Set Enrichment Analysis (GSEA) to delineate the selenium metabolism landscape using The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE) and a integrated pan-cancer single-cell dataset. We systematically explored the prognostic implications of selenium metabolism and selenium-related regulatory patterns. The therapeutic value of selenium metabolism was explored through machine learning and examined in several immunotherapy cohorts. The heterogeneity and underlying mechanism of selenium metabolism were investigated by cell‒cell communication analysis at the single-cell level. RESULTS A GSEA analysis based on 86 genes was used to evaluate the selenium metabolism landscape. The selenium metabolism score exhibited prognostic value in predicting the lower risk of mortality, possibly due to its correlation with multiple cancer hallmarks, including a positive correlation with complement (R = 0.761, P < 0.001), inflammatory response (R = 0.663, P < 0.001), apoptosis (R = 0.626, P < 0.001), hypoxia (R = 0.587, P < 0.001), reactive oxygen species (ROS) (R = 0.558, P < 0.001), and interferon gamma response (R = 0.539, P < 0.001). We also observed heterogeneity in the relationship between selenium metabolism and immunity across different cancers. Based on selenium-related genes, we constructed a machine learning model with area under the ROC curve (AUC) of 0.82 in predicting immune checkpoint inhibitor (ICI)-based immunotherapy response. Single-cell selenium metabolism quantification revealed that adjacent and tumor tissues had higher selenium metabolism compared with normal tissues, especially in epithelial cells, fibroblasts and macrophages. The communication between high-selenium epithelium and high-selenium fibroblast was significantly higher than other cells, especially in cytokines, chemokines, collagen, Wnt, VEGF, IGF and FGF pathways. CONCLUSION Our study provides a comprehensive landscape of selenium metabolism levels and diverse regulatory patterns in different cancers, deepening the understanding of selenium's roles in tumorigenesis and immunity.
Collapse
Affiliation(s)
- Xiaorui Fu
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqi Deng
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Department of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy, Department of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Yang Shu
- Department of General Surgery, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Hai-Ning Chen
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
46
|
Zhang Y, Lv N, Li M, Liu M, Wu C. Cancer-associated fibroblasts: tumor defenders in radiation therapy. Cell Death Dis 2023; 14:541. [PMID: 37607935 PMCID: PMC10444767 DOI: 10.1038/s41419-023-06060-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that are involved in multiple aspects of cancer progression and considered contributors to tumor immune escape. CAFs exhibit a unique radiation resistance phenotype, and can survive clinical radiation doses; however, ionizing radiation can induce changes in their secretions and influence tumor progression by acting on tumor and immune cells. In this review, we describe current knowledge of the effects of radiation therapies on CAFs, as well as summarizing understanding of crosstalk among CAFs, tumor cells, and immune cells. We highlight the important role of CAFs in radiotherapy resistance, and discuss current and future radiotherapy strategies for targeting CAFs.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Na Lv
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Manshi Li
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ming Liu
- Department of Clinical Epidemiology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| | - Chunli Wu
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| |
Collapse
|
47
|
Ding J, Ji X, Liu L, Chen DZ, Luo N, Yu XT, Guo F. A prognostic and immunological analysis of 7B-containing Kelch structural domain (KLHDC7B) in pan-cancer: a potential target for immunotherapy and survival. J Cancer Res Clin Oncol 2023; 149:7857-7876. [PMID: 37039902 DOI: 10.1007/s00432-023-04738-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/01/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE KLHDC7B is a member of Kelch family, with a Kelch domain in the C-terminal half, which plays a role in various cellular events, such as cytoskeletal arrangement, protein degradation, gene expression. Although there is increasing evidence supporting KLHDC7B's vital role in tumorigenesis, a systematic analysis of KLHDC7B in cancers remains lacking. Therefore, we intended to investigate the prognostic value for KLHDC7B across 33 cancer types and explore its potential immunological function. METHODS GEO (Gene Expression Omnibus database) and TCGA (The Cancer Genome Atla) database were used to explore the role of KLHDC7B in 33 cancers. TIMER2, GEPIA2 and Kaplan-Meier plotter were utilized to explore the KLHDC7B expression level and prognostic value in different cancers. The pan cancer genetic variation and DNA methylation of KLHDC7B were analyzed by cBioPortal and MEXPRESS. TIMER2 was employed to investigate the correlation between KLHDC7B expression and immune infiltration. The relationship of KLHDC7B expression with TMB (tumor mutational burden) and MSI (microsatellite instability) were evaluated using Spearman correlation analysis. Finally, by GO and KEGG enrichment analysis, the underlying mechanisms of KLHDC7B in tumor pathophysiology were further investigated. RESULTS KLHDC7B expression level was related to pathological stages, MSI, TMB, immune checkpoint and immune cell infiltration in most cancers. Especially, we found that the KLHDC7B expression was negatively correlated with the immune infiltration of Myeloid derived suppressor cells into TGCT and GBM. Additionally, survival analysis showed that the expression of KLHDC7B was connected with overall survival (OS) in 3 cancers and disease-free survival (DFS) in 5 cancers. Furthermore, the enrichment analysis revealed that the KLHDC7B collecting genes and binding proteins are related to the function of proteins and immune response. CONCLUSION KLHDC7B demonstrates strong clinical utility as markers of prognostic and immune response in pan-cancer.
Collapse
Affiliation(s)
- Jiatong Ding
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315000, China
- The First School of Clinical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Xunhui Ji
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315000, China
- The First School of Clinical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Lanqi Liu
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - De-Zhi Chen
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Nan Luo
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Xiao-Ting Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Fei Guo
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
48
|
Hogstrom JM, Cruz KA, Selfors LM, Ward MN, Mehta TS, Kanarek N, Philips J, Dialani V, Wulf G, Collins LC, Patel JM, Muranen T. Simultaneous isolation of hormone receptor-positive breast cancer organoids and fibroblasts reveals stroma-mediated resistance mechanisms. J Biol Chem 2023; 299:105021. [PMID: 37423299 PMCID: PMC10415704 DOI: 10.1016/j.jbc.2023.105021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Recurrent hormone receptor-positive (HR+) breast cancer kills more than 600,000 women annually. Although HR+ breast cancers typically respond well to therapies, approximately 30% of patients relapse. At this stage, the tumors are usually metastatic and incurable. Resistance to therapy, particularly endocrine therapy is typically thought to be tumor intrinsic (e.g., estrogen receptor mutations). However, tumor-extrinsic factors also contribute to resistance. For example, stromal cells, such as cancer-associated fibroblasts (CAFs), residing in the tumor microenvironment, are known to stimulate resistance and disease recurrence. Recurrence in HR+ disease has been difficult to study due to the prolonged clinical course, complex nature of resistance, and lack of appropriate model systems. Existing HR+ models are limited to HR+ cell lines, a few HR+ organoid models, and xenograft models that all lack components of the human stroma. Therefore, there is an urgent need for more clinically relevant models to study the complex nature of recurrent HR+ breast cancer, and the factors contributing to treatment relapse. Here, we present an optimized protocol that allows a high take-rate, and simultaneous propagation of patient-derived organoids (PDOs) and matching CAFs, from primary and metastatic HR+ breast cancers. Our protocol allows for long-term culturing of HR+ PDOs that retain estrogen receptor expression and show responsiveness to hormone therapy. We further show the functional utility of this system by identifying CAF-secreted cytokines, such as growth-regulated oncogene α , as stroma-derived resistance drivers to endocrine therapy in HR+ PDOs.
Collapse
Affiliation(s)
- Jenny M Hogstrom
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kayla A Cruz
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Madelyn N Ward
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tejas S Mehta
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jordana Philips
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Vandana Dialani
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerburg Wulf
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura C Collins
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jaymin M Patel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Taru Muranen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
49
|
Lu G, Du R, Dong J, Sun Y, Zhou F, Feng F, Feng B, Han Y, Shang Y. Cancer associated fibroblast derived SLIT2 drives gastric cancer cell metastasis by activating NEK9. Cell Death Dis 2023; 14:421. [PMID: 37443302 PMCID: PMC10344862 DOI: 10.1038/s41419-023-05965-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The secretory properties of cancer-associated fibroblasts (CAFs) play predominant roles in shaping a pro-metastatic tumor microenvironment. The present study demonstrated that SLIT2, an axon guidance protein, produced by CAFs and promoted gastric cancer (GC) metastasis in two gastric cancer cell lines (AGS and MKN45) by binding to roundabout guidance receptor 1 (ROBO1). Mass-spectrometry analysis revealed that ROBO1 could interact with NEK9, a serine/threonine kinase. And their mutual binding activities were further enhanced by SLIT2. Domain analysis revealed the kinase domain of NEK9 was critical in its interaction with the intracellular domain (ICD) of ROBO1, and it also directly phosphorylated tripartite motif containing 28 (TRIM28) and cortactin (CTTN) in AGS and MKN45 cells. TRIM28 function as a transcriptional elongation factor, which directly facilitate CTTN activation. In addition, Bioinformatics analysis and experimental validation identified transcriptional regulation of STAT3 and NF-κB p100 by TRIM28, and a synergetic transcription of CTTN by STAT3 and NF-κB p100 was also observed in AGS and MKN45. Therefore, CAF-derived SLIT2 increased the expression and phosphorylation levels of CTTN, which induced cytoskeletal reorganization and GC cells metastasis. A simultaneous increase in the expression levels of NEK9, TRIM28 and CTTN was found in metastatic GC lesions compared with paired non-cancerous tissues and primary cancer lesions via IHC and Multiplex IHC. The analysis of the data from a cohort of patients with GC revealed that increased levels of NEK9, TRIM28 and CTTN were associated with a decreased overall survival rate. On the whole, these findings revealed the connections of CAFs and cancer cells through SLIT2/ROBO1 and inflammatory signaling, and the key molecules involved in this process may serve as potential biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Guofang Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Fan Feng
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Feng
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
50
|
Li Y, Wang C, Huang T, Yu X, Tian B. The role of cancer-associated fibroblasts in breast cancer metastasis. Front Oncol 2023; 13:1194835. [PMID: 37496657 PMCID: PMC10367093 DOI: 10.3389/fonc.2023.1194835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Breast cancer deaths are primarily caused by metastasis. There are several treatment options that can be used to treat breast cancer. There are, however, a limited number of treatments that can either prevent or inhibit the spread of breast tumor metastases. Thus, novel therapeutic strategies are needed. Studies have increasingly focused on the importance of the tumor microenvironment (TME) in metastasis of breast cancer. As the most abundant cells in the TME, cancer-associated fibroblasts (CAFs) play important roles in cancer pathogenesis. They can remodel the structure of the extracellular matrix (ECM) and engage in crosstalk with cancer cells or other stroma cells by secreting growth factors, cytokines, and chemokines, as well as components of the ECM, which assist the tumor cells to invade through the TME and cause distant metastasis. Clinically, CAFs not only foster the initiation, growth, angiogenesis, invasion, and metastasis of breast cancer but also serve as biomarkers for diagnosis, therapy, and prediction of prognosis. In this review, we summarize the biological characteristics and subtypes of CAFs and their functions in breast cancer metastasis, focusing on their important roles in the diagnosis, prognosis, and treatment of breast cancer. Recent studies suggest that CAFs are vital partners of breast cancer cells that assist metastasis and may represent ideal targets for prevention and treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyuan Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Hepatobiliary Surgery Department II, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ting Huang
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|