1
|
Phelps HM, Warner BW. Intestinal adaptation and rehabilitation. Semin Pediatr Surg 2023; 32:151314. [PMID: 37276784 DOI: 10.1016/j.sempedsurg.2023.151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Massive intestinal resection is a regrettably necessary but life-saving intervention for progressive or fulminant necrotizing enterocolitis (NEC). However, the resultant short bowel syndrome (SBS) poses its own array of challenges and complications. Within hours of such an abrupt loss of intestinal length, the intestine begins to adapt. Our ability to understand this process of intestinal adaptation has proven critical in our ability to clinically treat the challenging problem of short bowel syndrome. This review first highlights key data relating to intestinal adaptation including structural and functional changes, biochemical regulation, and other factors affecting the magnitude of intestinal adaptation responses. We then focus on intestinal rehabilitation as it relates to strategies to enhance intestinal adaptation while meeting nutritional needs and preventing complications of parenteral nutrition.
Collapse
Affiliation(s)
- Hannah M Phelps
- Division of Pediatric Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, 9901 Wohl Hospital, Campus Box 8109, St. Louis, MO 63110, USA.
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University in St. Louis School of Medicine, 9901 Wohl Hospital, Campus Box 8109, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Tappenden KA. Anatomical and physiological considerations in short bowel syndrome: Emphasis on intestinal adaptation and the role of enterohormones. Nutr Clin Pract 2023; 38 Suppl 1:S27-S34. [PMID: 37115026 DOI: 10.1002/ncp.10991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Short bowel syndrome (SBS)-associated intestinal failure (IF) is a complex, life-threatening condition that requires complex care of multiple factors impacting the patient's long-term prognosis. Various etiologies result in SBS-IF, with three primary anatomical subtypes occurring following intestinal resection. Depending on the extent and segment(s) of the intestine resected, malabsorption can be nutrient specific or sweeping; however, such issues and the associated prognosis for the patient can be predicted with analysis of the residual intestine, along with baseline nutrient and fluid deficits and extent of malabsorption. The provision of parenteral nutrition/intravenous (PN-IV) fluids and antisymptomatic agents is fundamental; however, optimal management should focus on intestinal rehabilitation, wherein intestinal adaptation is prioritized and PN-IV fluids are weaned over time. Key strategies to maximize intestinal adaptation include hyperphagic consumption of an individualized SBS diet and the appropriate use of trophic agents, such as a glucagon-like peptide 2 analog.
Collapse
Affiliation(s)
- Kelly A Tappenden
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Kounatidis D, Vallianou NG, Tsilingiris D, Christodoulatos GS, Geladari E, Stratigou T, Karampela I, Dalamaga M. Therapeutic Potential of GLP-2 Analogs in Gastrointestinal Disorders: Current Knowledge, Nutritional Aspects, and Future Perspectives. Curr Nutr Rep 2022; 11:618-642. [PMID: 35933503 DOI: 10.1007/s13668-022-00433-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Although Glucagon-like peptide (GLP)-1 receptor agonists have been used for almost two decades in the treatment of diabetes mellitus type 2 and, lately, in obesity, recent years have seen an increasing interest in the pharmacological agonism of other proglucagon-derived peptides, including GLP-2. Herein, we aimed to review the available evidence on the effects of GLP-2 agonism from animal and clinical studies. Furthermore, we summarize the current clinical applications of GLP-2 agonists among patients with intestinal failure associated with short bowel syndrome (SBS-IF) as well as potential future expansion of their indications to other intestinal disorders. RECENT FINDINGS Evidence from preclinical studies has highlighted the cellular trophic and functional beneficial actions of GLP-2 on small intestinal and colonic mucosa. Subsequently, pharmacologic agonism of GLP-2 has gathered interest for the treatment of patients with conditions pertaining to the loss of intestinal anatomical and/or functional integrity to a degree requiring parenteral support, collectively referred to as intestinal failure. GLP-2 analogs positively influence nutrient absorption in animal models and humans, although continued therapy is likely needed for sustained effects. The degradation-resistant GLP-2-analog teduglutide has received approval for the treatment of SBS-IF, in which it may decisively reduce patient dependency on parenteral support and improve quality of life. Another two longer-acting analogs, glepaglutide and apraglutide, are currently undergoing phase III clinical trials. The use of GLP-2 analogs is effective in the management of SBS-IF and may show promise in the treatment of other severe gastrointestinal disorders associated with loss of effective intestinal resorptive surface area.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Departments of Internal Medicine and Endocrinology, Evangelismos General Hospital, 45-47 Ypsilantou Street, 10676, Athens, Greece
| | - Natalia G Vallianou
- Departments of Internal Medicine and Endocrinology, Evangelismos General Hospital, 45-47 Ypsilantou Street, 10676, Athens, Greece.
| | - Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 17 St Thomas Street, 11527, Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| | - Eleni Geladari
- Departments of Internal Medicine and Endocrinology, Evangelismos General Hospital, 45-47 Ypsilantou Street, 10676, Athens, Greece
| | - Theodora Stratigou
- Departments of Internal Medicine and Endocrinology, Evangelismos General Hospital, 45-47 Ypsilantou Street, 10676, Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, Chaidari, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece.
| |
Collapse
|
4
|
Le Beyec J, Billiauws L, Bado A, Joly F, Le Gall M. Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition? Annu Rev Nutr 2020; 40:299-321. [PMID: 32631145 DOI: 10.1146/annurev-nutr-011720-122203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Short bowel syndrome (SBS) is a rare disease that results from extensive resection of the intestine. When the remaining absorption surface of the intestine cannot absorb enough macronutrients, micronutrients, and water, SBS results in intestinal failure (IF). Patients with SBS who suffer from IF require parenteral nutrition for survival, but long-term parenteral nutrition may lead to complications such as catheter sepsis and metabolic diseases. Spontaneous intestinal adaptation occurs weeks to months after resection, resulting in hyperplasia of the remnant gut, modification of gut hormone levels, dysbiosis, and hyperphagia. Oral nutrition and presence of the colon are two major positive drivers for this adaptation. This review aims to summarize the current knowledge of the mechanisms underlying spontaneous intestinal adaptation, particularly in response to modifications of luminal content, including nutrients. In the future, dietary manipulations could be used to treat SBS.
Collapse
Affiliation(s)
- Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Biochimie Endocrinienne et Oncologique, Hôpital Pitié-Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75013 Paris, France
| | - Lore Billiauws
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - Maude Le Gall
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| |
Collapse
|
5
|
de Laffolie J, Sheridan D, Reinshagen K, Wessel L, Zimmermann C, Stricker S, Lerch MM, Weigel M, Hain T, Domann E, Rudloff S, Nichols BL, Naim HY, Zimmer KP. Digestive enzyme expression in the large intestine of children with short bowel syndrome in a late stage of adaptation. FASEB J 2020; 34:3983-3995. [PMID: 31957074 DOI: 10.1096/fj.201901758rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Intestinal adaptation in short bowel syndrome (SBS) includes morphologic processes and functional mechanisms. This study investigated whether digestive enzyme expression in the duodenum and colon is upregulated in SBS patients. METHOD Sucrase-isomaltase (SI), lactase-phlorizin hydrolase (LPH), and neutral Aminopeptidase N (ApN) were analyzed in duodenal and colonic biopsies from nine SBS patients in a late stage of adaptation as well as healthy and disease controls by immunoelectron microscopy (IEM), Western blots, and enzyme activities. Furthermore, proliferation rates and intestinal microbiota were analyzed in the mucosal specimen. RESULTS We found significantly increased amounts of SI, LPH, and ApN in colonocytes in most SBS patients with large variation and strongest effect for SI and ApN. Digestive enzyme expression was only partially elevated in duodenal enterocytes due to a low proliferation level measured by Ki-67 staining. Microbiome analysis revealed high amounts of Lactobacillus resp. low amounts of Proteobacteria in SBS patients with preservation of colon and ileocecal valve. Colonic expression was associated with a better clinical course in single cases. CONCLUSION In SBS patients disaccharidases and peptidases can be upregulated in the colon. Stimulation of this colonic intestinalization process by drugs, nutrients, and pre- or probiotics might offer better therapeutic approaches.
Collapse
Affiliation(s)
- Jan de Laffolie
- Department of Paediatrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Diana Sheridan
- Department of Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, UKE: University Hospital Eppendorf, Altona Children's Hospital, Hamburg, Germany
| | - Lucas Wessel
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | | | - Sebastian Stricker
- Department of Paediatrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus M Lerch
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Eugen Domann
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Rudloff
- Department of Paediatrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Buford L Nichols
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus-Peter Zimmer
- Department of Paediatrics, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Onishi S, Kaji T, Yamada W, Nakame K, Machigashira S, Kawano M, Yano K, Harumatsu T, Yamada K, Masuya R, Kawano T, Mukai M, Hamada T, Souda M, Yoshioka T, Tanimoto A, Ieiri S. Ghrelin stimulates intestinal adaptation following massive small bowel resection in parenterally fed rats. Peptides 2018; 106:59-67. [PMID: 29966680 DOI: 10.1016/j.peptides.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Since short bowel syndrome (SBS) patients face life-threatening conditions, the development of therapeutic strategies to induce intestinal adaptation has been investigated. Ghrelin, a ligand of growth hormone (GH) secretagogue-receptor that stimulates the release of GH and insulin like growth factor-1 (IGF-1), has several pleiotropic effects. We investigated whether ghrelin induces intestinal adaptation in parenterally fed rats with SBS. METHODS Sprague-Dawley rats underwent venous catheterization and were divided into 3 groups: those receiving 90% small bowel resection while leaving the proximal jejunum and distal ileum (90% SBR) with TPN (SBS/TPN group), those receiving 90% SBR with TPN + ghrelin (SBS/TPN/ghrelin group), and those receiving sham operation and fed chow (sham group). Ghrelin was administered intravenously at 10 μg/kg/day. On Day 13, the rats were euthanized and the small intestine harvested, and the histology and crypt cell proliferation rates (CCPR), apoptosis, and nutrient transporter protein levels were analyzed and the plasma hormones were measured. RESULTS The villus height and crypt depth of the ileum in the SBS/TPN/ghrelin group were significantly higher than in the SBS/TPN group. The CCPR of the jejunum and the ileum significantly increased by the administration of ghrelin; however, the apoptosis rates did not significantly differ between the SBS/TPN and SBS/TPN/ghrelin groups. Significant differences did not exist in the plasma IGF-1 and nutrient transporter protein levels among three groups. CONCLUSIONS The intravenous administration of ghrelin stimulated the morphological intestinal adaptation of the ileum to a greater degree than the jejunum due to the direct effect of ghrelin.
Collapse
Affiliation(s)
- Shun Onishi
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Waka Yamada
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Kazuhiko Nakame
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Seiro Machigashira
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Masato Kawano
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Keisuke Yano
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Toshio Harumatsu
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Koji Yamada
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Ryuta Masuya
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Takafumi Kawano
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Motoi Mukai
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Masakazu Souda
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan; Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takako Yoshioka
- National Center for Children Health and Development, Pathology, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, Japan.
| |
Collapse
|
7
|
Courtney CM, Onufer EJ, Seiler KM, Warner BW. An anatomic approach to understanding mechanisms of intestinal adaptation. Semin Pediatr Surg 2018; 27:229-236. [PMID: 30342597 DOI: 10.1053/j.sempedsurg.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cathleen M Courtney
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Emily J Onufer
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Kristen M Seiler
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | - Brad W Warner
- Division of Pediatric Surgery, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, 63110 MO, USA; Department of Surgery, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|
8
|
Ukleja A, To C, Alvarez A, Lara LF. Long-Term Therapy With Teduglutide in Parenteral Support-Dependent Patients With Short Bowel Syndrome: A Case Series. JPEN J Parenter Enteral Nutr 2018; 42:821-825. [DOI: 10.1002/jpen.1149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew Ukleja
- Department of Gastroenterology; Cleveland Clinic Florida; Weston Florida USA
| | - Chau To
- St. John's Episcopal Hospital; Far Rockaway; New York USA
| | | | - Luis F. Lara
- Department of Gastroenterology; Cleveland Clinic Florida; Weston Florida USA
| |
Collapse
|
9
|
Abstract
Short-bowel syndrome represents the most common cause of intestinal failure and occurs when the remaining intestine cannot support fluid and nutrient needs to sustain adequate physiology and development without the use of supplemental parenteral nutrition. After intestinal loss or damage, the remnant bowel undergoes multifactorial compensatory processes, termed adaptation, which are largely driven by intraluminal nutrient exposure. Previous studies have provided insight into the biological processes and mediators after resection, however, there still remains a gap in the knowledge of more comprehensive mechanisms that drive the adaptive responses in these patients. Recent data support the microbiota as a key mediator of gut homeostasis and a potential driver of metabolism and immunomodulation after intestinal loss. In this review, we summarize the emerging ideas related to host-microbiota interactions in the intestinal adaptation processes.
Collapse
Key Words
- Adaptive Responses
- CONV, conventional
- ENS, enteric nervous system
- Enteric Flora
- GF, germ-free
- GI, gastrointestinal
- GLP-2, glucagon-like peptide 2
- IBD, inflammatory bowel disease
- ICR, ileocecal resection
- IF, intestinal failure
- IL, interleukin
- Immune System
- Intestinal Failure
- Microbial Metabolites
- NEC, necrotizing enterocolitis
- PN, parenteral nutrition
- SBR, small bowel resection
- SBS, short-bowel syndrome
- SCFA, short-chain fatty acid
- SFB, segmented filamentous bacteria
- TGR5, Takeda-G-protein-receptor 5
Collapse
|
10
|
Zhang Z, Wu X, Cao L, Zhong Z, Zhou Y. Generation of glucagon-like peptide-2-expressing Saccharomyces cerevisiae and its improvement of the intestinal health of weaned rats. Microb Biotechnol 2016; 9:846-857. [PMID: 27641625 PMCID: PMC5072200 DOI: 10.1111/1751-7915.12412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/15/2016] [Accepted: 08/20/2016] [Indexed: 02/05/2023] Open
Abstract
We aimed to assess the feasibility of enhancing the intestinal development of weaned rats using glucagon-like peptide-2 (GLP-2)-expressing Saccharomyces cerevisiae (S. cerevisiae). GLP-2-expressing S. cerevisiae (GLP2-SC) was generated using a recombinant approach. The diet of weaned rats was supplemented with the GLP2-SC strain. The average daily gain (ADG), the intestinal morphology and the activities of the digestive enzymes in the jejunum were tested to assess the influence of the GLP2-SC strain on intestinal development. The proliferation of rat enterocytes was also assessed in vitro. The study revealed that the ADG of the weaned rats that received GLP2-SC was significantly greater than that of the controls fed a basal diet (Control) and S. cerevisiae harbouring an empty vector (EV-SC) (P < 0.05) but was equivalent to that of positive control rats fed recombinant human GLP-2 (rh-GLP2) (P > 0.05). Furthermore, GLP2-SC significantly increased villous height (P < 0.01) and digestive enzyme activity (P < 0.05) in the jejunum. Immunohistochemistry analysis further affirmed that enterocyte proliferation was stimulated in rats fed the GLP2-SC strain, as indicated by the greater number of enterocytes stained with proliferative cell nuclear antigen (P < 0.05). In vitro, the proliferation of rat enterocytes was also stimulated by GLP-2 expressed by the GLP2-SC strain (P < 0.01). Herein, the combination of the GLP-2 approach and probiotic delivery constitute a possible dietary supplement for animals after weaning.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaodong Wu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, 610041, China
| | - Lili Cao
- Medical School, Chengdu University, Chengdu, Sichuan, 610041, China
| | - Zhengdong Zhong
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610041, China
| | - Yan Zhou
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Intestinal failure because of more or less extensive resection of parts of the small and large intestine (short bowel syndrome) results from the reduction of absorptive surface of the remaining intestine and frequently results in dependence on parenteral nutrition. Parenteral nutrition, although lifesaving, is associated with short and long-term complications as well as with reduced quality of life and overall survival. RECENT FINDINGS Pharmacological enhancement of the physiological intestinal adaptive response by subcutaneous application of the glucagon-like peptide 2 analogue teduglutide results in an improved, hyperadaptive response. This is reflected by decreased parenteral calorie and fluid requirements, decreased parenteral nutrition infusion days per week including complete weaning off parenteral nutrition with complete oral autonomy, improved quality of life, and metabolic and nutritional stability. SUMMARY The advent of teduglutide as an authority-approved specific medication for intestinal failure in parenteral nutrition-dependent short bowel syndrome offers an effective and beneficial treatment for these patients. As a result, patients are more stable whether for medical or further surgical management including intestinal transplantation. Long-term efficacy and safety still have to be proven.
Collapse
|
12
|
Mumphrey MB, Hao Z, Townsend RL, Patterson LM, Berthoud HR. Sleeve Gastrectomy Does Not Cause Hypertrophy and Reprogramming of Intestinal Glucose Metabolism in Rats. Obes Surg 2016; 25:1468-73. [PMID: 25566744 DOI: 10.1007/s11695-014-1547-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Clinical studies have shown similar rapid improvements in body mass and glycemic control after Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG). Evidence suggests that adaptive intestinal tissue growth and reprogramming of intestinal glucose disposal play a key role in the beneficial effects on glucose homeostasis after RYGB, but it is not known whether such adaptive changes also occur after sleeve gastrectomy. METHODS High-fat diet-induced obese rats were subjected to either VSG or RYGB, and intestinal growth and functional adaptations were assessed by using morphometric, immunohistochemical, and immuno-blot techniques, 3 months after surgery or sham surgery. RESULTS The cross-sectional areas of the Roux and common limbs are significantly increased after RYGB compared with sham surgery (Roux limb: 17.1 ± 4.0 vs. 5.5 ± 0.1 mm(2); common limb: 11.7 ± 0.6 vs. 5.1 ± 0.5 mm(2); p < 0.01), but the cross-sectional area of the corresponding jejunum is not different from controls after VSG. Similarly, mucosal thickness and the number of GLP-1 cells are not increased after VSG. Protein expression of hexokinase II is increased fourfold (p < 0.01) in the Roux limb after RYGB, but not in the jejunum after VSG. CONCLUSIONS Adaptive hypertrophy and reprogramming of glucose metabolism in the small intestine are not necessary for VSG to improve body composition and glycemic control. The similar beneficial effects of VSG and RYGB on glucose homeostasis might be mediated by different mechanisms.
Collapse
Affiliation(s)
- Michael B Mumphrey
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | | | | | | | | |
Collapse
|
13
|
Nakame K, Kaji T, Mukai M, Shinyama S, Matsufuji H. The protective and anti-inflammatory effects of glucagon-like peptide-2 in an experimental rat model of necrotizing enterocolitis. Peptides 2016; 75:1-7. [PMID: 26551873 DOI: 10.1016/j.peptides.2015.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 12/12/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease, that affects premature infants. Glucagon-like peptide-2 (GLP-2) is an intestinotrophic hormone and reduces the inflammation. We suspected that GLP-2 would have protective and anti-inflammatory effects in an experimental rat model of NEC. NEC was induced in newborn rats by enteral feeding with hyperosmolar formula, asphyxial stress and enteral administration of lipopolysaccharide (LPS). Rats were randomly divided into the following four groups: dam-fed, NEC, NEC+GLP-2(L) given 80 μg/kg/day of GLP-2, and NEC+GLP-2(H) given 800 μg/kg/day of GLP-2. GLP-2 was administered subcutaneously every 6 h before stress. All animals surviving beyond 96 h or any that developed signs of distress were euthanized. The clinical sickness score in the NEC+GLP-2(H) group was significantly lower than that in the NEC group. The NEC score and the survival rate in the NEC+GLP-2(H) group was significantly improved compared with those in the NEC and the NEC+GLP-2(L) groups. Villous height and crypt depth in both the GLP-2 treatment groups were significantly increased compared with those in the NEC group. There were no significant differences in the crypt cell proliferation indices among the groups. Ileal interstitial TNF-α and IL-6 level in the NEC+GLP-2(H) group was decreased to the same levels in the dam-fed group. High dose GLP-2 administration improved the incidence and survival rate for NEC. It also decreased mucosal inflammatory cytokine production. These results support a potential therapeutic role for GLP-2 in the treatment of NEC.
Collapse
Affiliation(s)
- Kazuhiko Nakame
- Department of Pediatric Surgery, Kagoshima University Graduate, School of Medical and Dental Sciences 8-35-1, Kagoshima shi, Kagoshima 890-8520, Japan.
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Kagoshima University Graduate, School of Medical and Dental Sciences 8-35-1, Kagoshima shi, Kagoshima 890-8520, Japan
| | - Motoi Mukai
- Department of Pediatric Surgery, Kagoshima University Graduate, School of Medical and Dental Sciences 8-35-1, Kagoshima shi, Kagoshima 890-8520, Japan
| | - Shin Shinyama
- Department of Pediatric Surgery, Kagoshima University Graduate, School of Medical and Dental Sciences 8-35-1, Kagoshima shi, Kagoshima 890-8520, Japan
| | - Hiroshi Matsufuji
- Department of Pediatric Surgery, St Luke's International Hospital 9-1, Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
| |
Collapse
|
14
|
Koffeman GI, Hulscher JB, Schoots IG, van Gulik TM, Heij HA, van Gemert WG. Intestinal lengthening and reversed segment in a piglet short bowel syndrome model. J Surg Res 2015; 195:433-43. [DOI: 10.1016/j.jss.2014.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 01/23/2023]
|
15
|
Chen J, Dong JT, Li XJ, Gu Y, Cheng ZJ, Cai YK. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats. World J Gastroenterol 2015; 21:484-490. [PMID: 25593463 PMCID: PMC4292279 DOI: 10.3748/wjg.v21.i2.484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/03/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect.
METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group.
RESULTS: In the rat model, jaundice was obvious, and the rats’ activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01).
CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin.
Collapse
|
16
|
Suri M, Turner JM, Sigalet DL, Wizzard PR, Nation PN, Ball RO, Pencharz PB, Brubaker PL, Wales PW. Exogenous glucagon-like peptide-2 improves outcomes of intestinal adaptation in a distal-intestinal resection neonatal piglet model of short bowel syndrome. Pediatr Res 2014; 76:370-7. [PMID: 24995913 DOI: 10.1038/pr.2014.97] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Endogenous glucagon-like peptide-2 (GLP-2) levels and intestinal adaptation are reduced in distal-intestinal resection animal models of short bowel syndrome (SBS) that lack remnant ileum. We hypothesized that exogenous GLP-2 would improve intestinal adaptation in a distal-intestinal resection neonatal piglet model of SBS. METHODS In all, 35 piglets were randomized to 2 treatment and 3 surgical groups: control (sham), 75% mid-intestinal resection (JI), and 75% distal-intestinal resection (JC). Parenteral nutrition (PN) commenced on day 1 and was weaned as enteral nutrition (EN) advanced. IV GLP-2 (11 nmol/kg/d) or saline was initiated on day 2. Piglets were maintained for 14 d. Clinical, functional, morphological, and histological outcomes were obtained. RESULTS JC-GLP-2 piglets had fewer days on PN (10.0 ± 0.6 vs. 13.8 ± 0.2), more days on EN (4.0 ± 0.6 vs. 0.2 ± 0.2), a higher percentage of EN at termination (92 ± 5 vs. 52 ± 10%), fewer days of diarrhea (8.0 ± 0.7 vs. 12.3 ± 0.4), increased intestinal length (19 ± 4 vs. -5 ± 3%), and deeper jejunal crypts (248 ± 21 vs. 172 ± 12 μm), compared with saline piglets. CONCLUSION GLP-2 therapy improves clinical, morphological, and histological outcomes of intestinal adaptation in a distal-intestinal resection model of SBS. Since this anatomical subtype represents the majority of clinical cases of neonatal SBS, these results support a potential role for GLP-2 therapy in pediatric SBS.
Collapse
Affiliation(s)
- Megha Suri
- Department of General Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Justine M Turner
- Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - David L Sigalet
- Department of General Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Pamela R Wizzard
- Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick N Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Ron O Ball
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Paul B Pencharz
- 1] Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada [2] Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada [3] Department of Nutritional Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Patricia L Brubaker
- 1] Department of Physiology, University of Toronto, Toronto, Ontario, Canada [2] Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul W Wales
- 1] Department of General Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada [2] Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada [3] Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Sueyoshi R, Woods Ignatoski KM, Okawada M, Hartmann B, Holst J, Teitelbaum DH. Stimulation of intestinal growth and function with DPP4 inhibition in a mouse short bowel syndrome model. Am J Physiol Gastrointest Liver Physiol 2014; 307:G410-9. [PMID: 24970775 DOI: 10.1152/ajpgi.00363.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) has been shown to be effective in patients with short bowel syndrome (SBS), but it is rapidly inactivated by dipeptidyl peptidase IV (DPP4). We used an orally active DPP4 inhibitor (DPP4-I), MK-0626, to determine the efficacy of this approach to promote adaptation after SBS, determined optimal dosing, and identified further functional actions in a mouse model of SBS. Ten-week-old mice underwent a 50% proximal small bowel resection. Dose optimization was determined over a 3-day post-small bowel resection period. The established optimal dose was given for 7, 30, and 90 days and for 7 days followed by a 23-day washout period. Adaptive response was assessed by morphology, intestinal epithelial cell (IEC) proliferation (proliferating cell nuclear antigen), epithelial barrier function (transepithelial resistance), RT-PCR for intestinal transport proteins and GLP-2 receptor, IGF type 1 receptor, and GLP-2 plasma levels. Glucose-stimulated sodium transport was assessed for intestinal absorptive function. Seven days of DPP4-I treatment facilitated an increase in GLP-2 receptor levels, intestinal growth, and IEC proliferation. Treatment led to differential effects over time, with greater absorptive function at early time points and enhanced proliferation at later time points. Interestingly, adaptation continued in the group treated for 7 days followed by a 23-day washout. DPP4-I enhanced IEC proliferative action up to 90 days postresection, but this action seemed to peak by 30 days, as did GLP-2 plasma levels. Thus DPP4-I treatment may prove to be a viable option for accelerating intestinal adaptation with SBS.
Collapse
Affiliation(s)
- Ryo Sueyoshi
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan; and
| | | | - Manabu Okawada
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan; and
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Jens Holst
- Department of Biomedical Sciences, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Daniel H Teitelbaum
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
18
|
Abstract
Autism spectrum disorder (ASD) is characterised by deficits in the ability to socialise, communicate and use imagination, and displays of stereotypical behaviour. It is widely accepted that ASD involves a disorder in brain development. However, the real causes of the neurodevelopmental disorders associated with ASD are not clear. In this respect, it has been found that a majority of children with ASD display gastrointestinal symptoms, and an increased intestinal permeability. Moreover, large differences in microbiotic composition between ASD patients and controls have been reported. Therefore, nutrition-related factors have been hypothesised to play a causal role in the aetiology of ASD and its symptoms. Through a review of the literature, it was found that abnormalities in carbohydrate digestion and absorption could explain some of the gastrointestinal problems observed in a subset of ASD patients, although their role in the neurological and behavioural problems remains uncertain. In addition, the relationship between an improved gut health and a reduction of symptoms in some patients was evaluated. Recent trials involving gluten-free diets, casein-free diets, and pre- and probiotic, and multivitamin supplementation show contradictive but promising results. It can be concluded that nutrition and other environmental influences might trigger an unstable base of genetic predisposition, which may lead to the development of autism, at least in a subset of ASD patients. Clear directions for further research to improve diagnosis and treatment for the different subsets of the disorder are provided.
Collapse
|
19
|
Abstract
Intestinal adaptation is a natural compensatory process that occurs following extensive intestinal resection, whereby structural and functional changes in the intestine improve nutrient and fluid absorption in the remnant bowel. In animal studies, postresection structural adaptations include bowel lengthening and thickening and increases in villus height and crypt depth. Functional changes include increased nutrient transporter expression, accelerated crypt cell differentiation, and slowed transit time. In adult humans, data regarding adaptive changes are sparse, and the mechanisms underlying intestinal adaptation remain to be fully elucidated. Several factors influence the degree of intestinal adaptation that occurs post resection, including site and extent of resection, luminal stimulation with enteral nutrients, and intestinotrophic factors. Two intestinotrophic growth factors, the glucagon-like peptide 2 analog teduglutide and recombinant growth hormone (somatropin), are now approved for clinical use in patients with short bowel syndrome (SBS). Both agents enhance fluid absorption and decrease requirements for parenteral nutrition (PN) and/or intravenous fluid. Intestinal adaptation has been thought to be limited to the first 1-2 years following resection in humans. However, recent data suggest that a significant proportion of adult patients with SBS can achieve enteral autonomy, even after many years of PN dependence, particularly with trophic stimulation.
Collapse
Affiliation(s)
- Kelly A Tappenden
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
20
|
Sigalet DL, de Heuvel E, Wallace L, Bulloch E, Turner J, Wales PW, Nation P, Wizzard PR, Hartmann B, Assad M, Holst JJ. Effects of chronic glucagon-like peptide-2 therapy during weaning in neonatal pigs. ACTA ACUST UNITED AC 2013; 188:70-80. [PMID: 24368164 DOI: 10.1016/j.regpep.2013.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND The enteroendocrine hormone glucagon like peptide-2 (GLP-2) and its ligands are under development as therapeutic agents for a variety of intestinal pathologies. A number of these conditions occur in neonates and infants, and thus a detailed understanding of the effects of GLP-2 during the phase of rapid growth during infancy is required to guide the development of therapeutic applications. We studied the effects of GLP-2 in the neonatal pig to determine the potential effects of exogenous administration. METHODS Two day old newborn domestic piglets were treated with GLP-2 (1-33) at 40 μg/kg/day or control drug vehicle (saline), by subcutaneous injection, given in two doses per day, (n=6/group) for 42 days. Animals were weaned normally, over days 21-25. In the fifth week of life, they underwent neuro-developmental testing, and a pharmacokinetic study. On day 42, they were euthanized, and a complete necropsy performed, with histological assessment of tissues from all major organs. RESULTS GLP-2 treatment was well tolerated, one control animal died from unrelated causes. There were no effects of GLP-2 on weight gain, feed intake, or behavior. In the treated animals, GLP-2 levels were significantly elevated at 2400±600 pM while at necropsy, organ weights and histology were not affected except in the intestine, where the villus height in the small intestine and the crypt depth, throughout the small intestine and colon, were increased. Similarly, the rate of crypt cell proliferation (Ki-67 staining) was increased in the GLP-2 treated animals and the rate of apoptosis (Caspase-3) was decreased, the depth of the microvilli was increased and the expression of the mRNA for the GLP-2 receptor was decreased throughout the small and large intestine. CONCLUSIONS In these growing animals, exogenous GLP-2 at pharmacologic doses was well tolerated, with effects confined to the gastrointestinal tract.
Collapse
Affiliation(s)
- David L Sigalet
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Elaine de Heuvel
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurie Wallace
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Estrella Bulloch
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Justine Turner
- Dept of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Paul W Wales
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Patrick Nation
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| | | | | | - Meena Assad
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jens J Holst
- Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Vegge A, Thymann T, Lund P, Stoll B, Bering SB, Hartmann B, Jelsing J, Qvist N, Burrin DG, Jeppesen PB, Holst JJ, Sangild PT. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates. Am J Physiol Gastrointest Liver Physiol 2013; 305:G277-G285. [PMID: 23764891 PMCID: PMC4073902 DOI: 10.1152/ajpgi.00064.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/06/2013] [Indexed: 01/31/2023]
Abstract
Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following intestinal resection in preterm pigs. Preterm pigs were fed enterally for 48 h before undergoing resection of 50% of the small intestine and establishment of a jejunostomy. Following resection, pigs were maintained on total parenteral nutrition (TPN) without (SBS, n = 8) or with GLP-2 treatment (3.5 μg/kg body wt per h, SBS+GLP-2, n = 7) and compared with a group of unresected preterm pigs (control, n = 5). After 5 days of TPN, all piglets were fed enterally for 24 h, and a nutrient balance study was performed. Intestinal resection was associated with markedly reduced endogenous GLP-2 levels. GLP-2 increased the relative absorption of wet weight (46 vs. 22%), energy (79 vs. 64%), and all macronutrients (all parameters P < 0.05). These findings were supported by a 200% increase in sucrase and maltase activities, a 50% increase in small intestinal epithelial volume (P < 0.05), as well as increased DNA and protein contents and increased total protein synthesis rate in SBS+GLP-2 vs. SBS pigs (+100%, P < 0.05). Following intestinal resection in preterm pigs, GLP-2 induced structural and functional adaptation, resulting in a higher relative absorption of fluid and macronutrients. GLP-2 treatment may be a promising therapy to enhance intestinal adaptation and improve digestive function in preterm infants with jejunostomy following intestinal resection.
Collapse
Affiliation(s)
- Andreas Vegge
- Dept. of Human Nutrition, Faculty of Life Sciences, Univ. of Copenhagen, 30 Rolighedsvej, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
23
|
Role of glucagon-like peptide-2 deficiency in neonatal short-bowel syndrome using neonatal piglets. Pediatr Res 2013; 73:742-9. [PMID: 23481550 DOI: 10.1038/pr.2013.44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Short-bowel syndrome (SBS) is the most common cause of neonatal intestinal failure. Recovery requires intestinal adaptation, dependent on enteral nutrition (EN) and growth factors such as glucagon-like peptide-2 (GLP-2), which is secreted from L cells in the ileum. Neonatal SBS often results in loss of ileum; therefore, we hypothesized that without ileum, endogenous GLP-2 production would be inadequate to promote adaptation. We compared endogenous GLP-2 production and adaptation in neonatal animals with SBS, with and without ileum. METHODS Neonatal piglets (4-6 d) were randomized to 75% mid-intestinal resection, 75% distal-intestinal resection, or sham control without resection. Postoperatively, all piglets commenced parenteral nutrition (PN), tapering as EN was increased to maintain specific growth. RESULTS The resected SBS piglets developed intestinal failure, requiring a longer duration of PN support and experiencing fat malabsorption. The piglets without ileum were not able to wean from PN during the study and did not show adaptation, specifically growth in intestinal length or crypt hyperplasia on histology of the jejunum. Adaptation was observed in the resected SBS piglets with ileum, and these piglets also had an increased plasma GLP-2 level that was not observed in piglets without ileum. CONCLUSION SBS piglets with ileum undergo adaptation associated with increased endogenous GLP-2 production. SBS piglets without ileum undergo limited adaptation and severe intestinal failure, requiring prolonged PN support. This appears to be related to a deficiency in endogenous GLP-2 production.
Collapse
|
24
|
Abstract
OBJECTIVES Necrotizing enterocolitis (NEC) is complex disease thought to occur as a result of an immaturity of the gastrointestinal tract of preterm infants. Intestinal dysfunction induced by total parental nutrition (TPN) may increase the risk for NEC upon introduction of enteral feeding. We hypothesized that the intestinal trophic and anti-inflammatory actions previously ascribed to the gut hormone, glucagon-like peptide-2 (GLP-2), would reduce the incidence of NEC when given in combination with TPN in preterm piglets. METHODS Preterm, newborn piglets were nourished by TPN and infused continuously with either human GLP-2 (100 μg · kg⁻¹ · day⁻¹) or control saline for 2 days (n = 12/group). On day 3, TPN was discontinued and pigs were given orogastric formula feeding every 3 hours, and continued GLP-2 or control treatment until the onset of clinical signs of NEC for an additional 96 hours and tissue was collected for molecular and histological endpoints. RESULTS GLP-2 treatment delayed the onset of NEC but was unable to prevent a high NEC incidence (~70%) and severity that occurred in both groups. GLP-2-treated pigs had less histological injury and increased proximal intestinal weight and mucosal villus height, but not crypt depth or Ki-67-positive cells. Inflammatory markers of intestinal myeloperoxidase were unchanged and serum amyloid A levels were higher in GLP-2-treated pigs. CONCLUSIONS GLP-2 did not prevent NEC and a proinflammatory response despite some reduction in mucosal injury and increased trophic effect.
Collapse
|
25
|
Connor E, Kahl S, Elsasser T, Baldwin R, Fayer R, Santin-Duran M, Sample G, Evock-Clover C. Glucagon-like peptide 2 therapy reduces negative effects of diarrhea on calf gut. J Dairy Sci 2013; 96:1793-802. [DOI: 10.3168/jds.2012-6216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/12/2012] [Indexed: 01/21/2023]
|
26
|
Time- and segment-related changes of postresected intestine: a 4-dimensional model of intestinal adaptation. J Pediatr Gastroenterol Nutr 2013; 56:40-5. [PMID: 22820122 DOI: 10.1097/mpg.0b013e318268a9a4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the segment- and time-related changes in rat short bowel syndrome and construct a 4-dimensional (4D) geometrical model of intestinal adaptation. METHODS Sprague-Dawley rats were divided into 3 groups: 2-day, 7-day, and 15-day postresection groups in which 75% of the jejunoileum was removed. Histological and morphometrical parameters in the remaining proximal to distal intestinal segments, from the jejunum to the distal colon, were comparatively evaluated in the groups. The data were used to construct a 4D geometric model in which villi were considered as cylinders, and their surface area was expressed as cylinder lateral area. RESULTS Major adaptive changes were observed in the ileum consisting of an increase in both the diameter of base and the height of villi. A parallel reduction in their number/mm was observed. The resulting ileal architecture was characterized by a limited number of large villi. An opposite pattern was observed in the jejunum whose postresection structure consisted of an increased number of villi. No changes were observed in the colon. Postresection restructuring was early and faster in the ileum than in the jejunum resulting in an increase in absorptive area of 81.5% and 22.5% in the ileum and jejunum, respectively. CONCLUSIONS Postresection adaptation is intestinal segment-specific because all of the major changes occur in the ileum rather than in the jejunum. Sparing ileal segments during resection may improve the outcome of patients undergoing extensive intestinal resection. Our 4D model can be used to test interventions aimed at optimizing postresection intestinal adaptation.
Collapse
|
27
|
Mumphrey MB, Patterson LM, Zheng H, Berthoud HR. Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol Motil 2013; 25:e70-9. [PMID: 23095091 PMCID: PMC3543783 DOI: 10.1111/nmo.12034] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is very effective in reducing excess body weight and improving glucose homeostasis in obese subjects. Changes in the pattern of gut hormone secretion are thought to play a major role, but the mechanisms leading to both changed hormone secretion and beneficial effects remain unclear. Specifically, it is not clear whether changes in the number of hormone-secreting enteroendocrine cells, or changes in the releasing stimuli, or both, are important. METHODS We estimated numbers of enteroendocrine cells after immunohistochemical staining in fixed tissue samples from rats at 10-11 months after RYGB. KEY RESULTS Numbers of glucagon-like peptide-1 (GLP-1) (L-cells, co-expressing peptide YY (PYY)), cholecystokinin (CCK), neurotensin, and 5-HT-immunoreactive cells were significantly increased in the Roux and common limbs, but not the biliopancreatic limb in RYGB rats compared with sham-operated, obese rats fed high-fat diet, and chow-fed controls. This increase was mostly accounted for by general hyperplasia of all intestinal wall layers of the nutrient-perfused Roux and common limbs, and less to increased density of expression. The number of ghrelin cells in the bypassed stomach was not different among the three groups. CONCLUSIONS & INFERENCES The findings suggest that the number of enteroendocrine cells increases passively as the gut adapts, and that the increased total number of L- and I-cells is likely to contribute to the higher circulating levels of GLP-1, PYY, and CCK, potentially leading to suppression of food intake and stimulation of insulin secretion. Whether changes in releasing stimuli also contribute to altered circulating levels will have to be determined in future studies.
Collapse
Affiliation(s)
- M B Mumphrey
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
28
|
Shaw D, Gohil K, Basson MD. Intestinal mucosal atrophy and adaptation. World J Gastroenterol 2012; 18:6357-6375. [PMID: 23197881 PMCID: PMC3508630 DOI: 10.3748/wjg.v18.i44.6357] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/06/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
Mucosal adaptation is an essential process in gut homeostasis. The intestinal mucosa adapts to a range of pathological conditions including starvation, short-gut syndrome, obesity, and bariatric surgery. Broadly, these adaptive functions can be grouped into proliferation and differentiation. These are influenced by diverse interactions with hormonal, immune, dietary, nervous, and mechanical stimuli. It seems likely that clinical outcomes can be improved by manipulating the physiology of adaptation. This review will summarize current understanding of the basic science surrounding adaptation, delineate the wide range of potential targets for therapeutic intervention, and discuss how these might be incorporated into an overall treatment plan. Deeper insight into the physiologic basis of adaptation will identify further targets for intervention to improve clinical outcomes.
Collapse
|
29
|
Goulet O, Olieman J, Ksiazyk J, Spolidoro J, Tibboe D, Köhler H, Yagci RV, Falconer J, Grimble G, Beattie RM. Neonatal short bowel syndrome as a model of intestinal failure: physiological background for enteral feeding. Clin Nutr 2012; 32:162-71. [PMID: 23159212 DOI: 10.1016/j.clnu.2012.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 08/26/2012] [Accepted: 09/12/2012] [Indexed: 01/17/2023]
Abstract
Intestinal failure (IF) is a well identified clinical condition, which is characterised by the reduction of functional gut capacity below the minimum needed for adequate digestion and absorption of nutrients for normal growth in children. Short bowel syndrome (SBS) is the leading cause of IF in neonates, infants and young children usually as a result of extensive intestinal resection during the neonatal period. Simultaneously maintaining optimal nutritional status and achieving intestinal adaptation is a clinical challenge in short bowel patients. Both growth and development of the child as well as gut adaptation should be considered synergistically as primary outcome parameters. Enteral nutrition (EN) can be introduced orally and/or by tube feeding (TF). Several controversies over nutritional treatment of children with SBS related intestinal failure remain. As reported from different centres around the world, most practices are more "experienced based" rather than "evidence based". This is partly due to the small number of patients with this condition. This review (based on a consensus) discusses the physiological principles and nutritional management, including the type of diet and route of delivery. Perspectives in optimizing intestinal adaptation and reducing the consequences of small intestinal bacterial overgrowth are also discussed.
Collapse
Affiliation(s)
- O Goulet
- Department of Pediatric Gastroenterology-Hepatology and Nutrition, Reference Center for Rare Digestive Diseases, Intestinal Failure Rehabilitation Center, Hôpital Necker-Enfants Malades, University of Paris Descartes, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barnes JL, Hartmann B, Holst JJ, Tappenden KA. Intestinal adaptation is stimulated by partial enteral nutrition supplemented with the prebiotic short-chain fructooligosaccharide in a neonatal intestinal failure piglet model. JPEN J Parenter Enteral Nutr 2012; 36:524-37. [PMID: 22517051 DOI: 10.1177/0148607112444131] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Butyrate has been shown to stimulate intestinal adaptation when added to parenteral nutrition (PN) following small bowel resection but is not available in current PN formulations. The authors hypothesized that pre- and probiotic administration may be a clinically feasible method to administer butyrate and stimulate intestinal adaptation. METHODS AND MATERIALS Neonatal piglets (48 hours old, n = 87) underwent placement of a jugular catheter and an 80% jejunoileal resection and were randomized to one of the following treatment groups: control (20% standard enteral nutrition/80% standard PN), control plus prebiotic (10 g/L short-chain fructooligosaccharides [scFOS]), control plus probiotic (1 × 10(9) CFU Lactobacillus rhamnosus GG [LGG]), or control plus synbiotic (scFOS + LGG). Animals received infusions for 24 hours, 3 days, or 7 days, and markers of intestinal adaptation were assessed. RESULTS Prebiotic treatment increased ileal mucosa weight compared with all other treatments (P = .017) and ileal protein compared with control (P = .049), regardless of day. Ileal villus length increased in the prebiotic and synbiotic group (P = .011), regardless of day, specifically due to an increase in epithelial proliferation (P = .003). In the 7-day prebiotic group, peptide transport was upregulated in the jejunum (P = .026), whereas glutamine transport was increased in both the jejunum and colon (P = .001 and .003, respectively). CONCLUSIONS Prebiotic and/or synbiotic supplementation resulted in enhanced structure and function throughout the residual intestine. Identification of a synergistic prebiotic and probiotic combination may enhance the promising results obtained with prebiotic treatment alone.
Collapse
|
31
|
Abstract
Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide, and a rapidly rising incidence, diabetes mellitus poses a great burden on healthcare systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dys-regulation of the intestinal barrier. Via alterations in the intestinal permeability, intestinal barrier function becomes compromised whereby access of infectious agents and dietary antigens to mucosal immune elements is facilitated, which may eventually lead to immune reactions with damage to pancreatic beta cells and can lead to increased cytokine production with consequent insulin resistance. Understanding the factors regulating the intestinal barrier function will provide important insight into the interactions between luminal antigens and immune response elements. This review analyses recent advances in the mechanistic understanding of the role of the intestinal epithelial barrier function in the development of type 1 and type 2 diabetes. Given our current knowledge, we may assume that reinforcing the intestinal barrier can offer and open new therapeutic horizons in the treatment of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- S de Kort
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | | |
Collapse
|
32
|
Jiang HP, Chen T, Yan GR, Chen D. Differential protein expression during colonic adaptation in ultra-short bowel rats. World J Gastroenterol 2011; 17:2572-9. [PMID: 21633663 PMCID: PMC3103816 DOI: 10.3748/wjg.v17.i20.2572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/13/2011] [Accepted: 04/20/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the proteins involved in colonic adaptation and molecular mechanisms of colonic adaptation in rats with ultra-short bowel syndrome (USBS).
METHODS: Sprague Dawley rats were randomly assigned to three groups: USBS group (10 rats) undergoing an approximately 90%-95% small bowel resection; sham-operation group (10 rats) undergoing small bowel transaction and anastomosis; and control group (ten normal rats). Colon morphology and differential protein expression was analyzed after rats were given post-surgical enteral nutrition for 21 d. Protein expression in the colonic mucosa was analyzed by two-dimensional electrophoresis (2-DE) in all groups. Differential protein spots were detected by ImageMaster 2D Platinum software and were further analyzed with matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometric (MALDI-TOF/TOF-MS) analysis.
RESULTS: The colonic mucosal thickness significantly increased in the USBS group compared with the control group (302.1 ± 16.9 μm vs 273.7 ± 16.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation group and control group (P > 0.05). The height of colon plica markedly improved in USBS group compared with the control group (998.4 ± 81.2 μm vs 883.4 ± 39.0 μm, P < 0.05). There was no statistically significant difference between the sham-operation and control groups (P > 0.05). A total of 141 differential protein spots were found in the USBS group. Forty-nine of these spots were down-regulated while 92 protein spots were up-regulated by over 2-folds. There were 133 differential protein spots in USBS group. Thirty of these spots were down-regulated and 103 were up-regulated. There were 47 common differential protein spots among the three groups, including 17 down-regulated protein spots and 30 up-regulated spots. Among 47 differential spots, eight up-regulated proteins were identified by MALDI-TOF/TOF-MS. These proteins were previously reported to be involved in sugar and fat metabolism, protein synthesis and oxidation reduction, which are associated with colonic adaption.
CONCLUSION: Eight proteins found in this study play important roles in colonic compensation and are associated with sugar and fat metabolism, protein synthesis, and molecular chaperoning
Collapse
|
33
|
Abstract
The short bowel syndrome (SBS) is a state of malabsorption following intestinal resection where there is less than 200 cm of intestinal length. The management of short bowel syndrome can be challenging and is best managed by a specialised multidisciplinary team. A good understanding of the pathophysiological consequences of resection of different portions of the small intestine is necessary to anticipate and prevent, where possible, consequences of SBS. Nutrient absorption and fluid and electrolyte management in the initial stages are critical to stabilisation of the patient and to facilitate the process of adaptation. Pharmacological adjuncts to promote adaptation are in the early stages of development. Primary restoration of bowel continuity, if possible, is the principle mode of surgical treatment. Surgical procedures to increase the surface area of the small intestine or improve its function may be of benefit in experienced hands, particularly in the paediatric population. Intestinal transplant is indicated at present for patients who have failed to tolerate long-term parenteral nutrition but with increasing experience, there may be a potentially expanded role for its use in the future.
Collapse
Affiliation(s)
- Claire L Donohoe
- Department of Surgery, Trinity Centre for Health Sciences, Trinity College Dublin, St James' Hospital, Dublin 8, Ireland
| | | |
Collapse
|
34
|
Hu XF, Guo YM, Huang BY, Bun S, Zhang LB, Li JH, Liu D, Long FY, Yang X, Jiao P. The effect of glucagon-like peptide 2 injection on performance, small intestinal morphology, and nutrient transporter expression of stressed broiler chickens. Poult Sci 2010; 89:1967-74. [PMID: 20709983 DOI: 10.3382/ps.2009-00547] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An experiment was conducted to determine the effect of injecting glucagon-like peptide 2 (GLP-2) on the small intestinal weight, morphology, and nutrient transporter expression in pharmacologically stressed broiler chickens. A total of 144 seven-day-old birds were fed either a basal diet (CTRL) or a basal diet plus 30 mg of corticosterone (CORT)/kg of diet for a total of 14 d. Half of the birds from each group were injected daily with GLP-2 (6.7 nmol/kg of BW) or saline for 14 d. The average final BW, ADG, ADFI, and the ratio of feed intake to weight gain (F:G) was recorded over 21 d for the 4 groups of 36 birds, namely CTRL + saline, CTRL + GLP-2, CORT + saline, and CORT + GLP-2. In addition, the absolute and relative small intestinal weight, villus height (VH), and crypt depth (CD) of the duodenum and jejunum, as well as the abundance of sodium and glucose co-transporter 1 (SGLT-1), vitamin D-dependent calcium-binding protein-28,000 molecular weight (CaBP-D28k), and peptide transporter 1 (PepT-1) mRNA in the duodenum and of liver fatty acid-binding protein (L-FABP) mRNA in the jejunum. The total DNA, RNA, and protein content in small intestinal mucosa were also determined. The results showed that CORT administration significantly lowered average final BW, ADG, ADFI, absolute small intestinal weight, VH, and CD of duodenum and jejunum (P < 0.05) while increasing the relative small intestinal weight, F:G, relative abundance of SGLT-1, CaBP-D28k, PepT-1, and L-FABP mRNA (P < 0.05). Glucagon-like peptide 2 injection increased the average final BW, ADG, VH, and CD in duodenum and jejunum and relative abundance of SGLT-1, CaBP-28k, PepT1, and PepT1 mRNA of broiler chickens, respectively (P < 0.05), and decreased F:G (P < 0.05). In chickens fed basal diet plus CORT, injecting GLP-2 decreased F:G (P < 0.05); increased VH and CD of duodenum and CD of jejunum; and increased relative abundance of SGLT-1, CaBP-D28k, PepT-1, and L-FABP mRNA, RNA, and total protein content in small intestine compared with the injection of saline (P < 0.05). In birds fed the basal diet, GLP-2 injection decreased F:G (P < 0.05) and increased final BW, ADG, small bowel weight, CD of jejunum, and relative abundance of CaBP-D28k and PepT-1 mRNA compared with injecting saline (P < 0.05). In conclusion, GLP-2 injection reversed the negative effect of stress on the weight and morphology and the absorptive function of small bowel of broiler chickens. Glucagon-like peptide 2 injection also had a positive effect on the growth performance of healthy broiler chickens.
Collapse
Affiliation(s)
- X F Hu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The effect of glucagon-like Peptide-2 receptor agonists on colonic anastomotic wound healing. Gastroenterol Res Pract 2010; 2010. [PMID: 20953406 PMCID: PMC2952794 DOI: 10.1155/2010/672453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/23/2010] [Accepted: 07/29/2010] [Indexed: 01/01/2023] Open
Abstract
Background. Glucagon-like peptide 2 (GLP-2) is an intestinal specific trophic hormone, with therapeutic potential; the effects on intestinal healing are unknown. We used a rat model of colonic healing, under normoxic, and stress (hypoxic) conditions to examine the effect of GLP-2 on intestinal healing. Methods. Following colonic transection and reanastomosis, animals were randomized to one of six groups (n = 8/group): controls, native GLP-2, long-acting GLP-2 (GLP-2- MIMETIBODY, GLP-2-MMB), animals were housed under normoxic or hypoxic (11% O2) conditions. Animals were studied five days post-operation for anastomotic strength and wound characteristics. Results. Anastomotic bursting pressure was unchanged by GLP-2 or GLP-2-MMB in normoxic or hypoxic animals; both treatments increased crypt cell proliferation. Wound IL-1β increased with GLP-2; IFNγ with GLP-2 and GLP-2-MMB. IL-10 and TGF-β were decreased; Type I collagen mRNA expression increased in hypoxic animals while Type III collagen was reduced with both GLP-2 agonists. GLP-2 MMB, but not native GLP-2 increased TIMP 1-3 mRNA levels in hypoxia. Conclusions. The effects on CCP, cytokines and wound healing were similar for both GLP-2 agonists under normoxic and hypoxic conditions; anastomotic strength was not affected. This suggests that GLP-2 (or agonists) could be safely used peri-operatively; direct studies will be required.
Collapse
|
36
|
Buchman AL, Katz S, Fang JC, Bernstein CN, Abou-Assi SG. Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn's disease. Inflamm Bowel Dis 2010; 16:962-73. [PMID: 19821509 DOI: 10.1002/ibd.21117] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Teduglutide, an analog of glucagon-like peptide-2 (GLP-2), is associated with trophic effects on gut mucosa. Its role in the treatment of active Crohn's disease (CD) was assessed in a pilot, randomized, placebo-controlled, double-blinded, dose-ranging study. METHODS Subjects with moderate-to-severe CD were randomized 1:1:1:1 to placebo or 1 of 3 doses of teduglutide (0.05, 0.10, or 0.20 mg/kg daily) delivered as a daily subcutaneous injection for 8 weeks. The primary outcome measure was the percentage of subjects in each group that responded to treatment, defined as a decrease in Crohn's Disease Activity Index (CDAI) score to <150 or a decrease of > 100 points. At week 8 there was an optional 12-week open-label period of treatment with teduglutide 0.10 mg/kg/d. RESULTS One hundred subjects were enrolled and 71 completed the study. The mean baseline CDAI score was 290.8 +/- 57.6 and was similar across groups. There were numerically higher response and remission rates in all teduglutide-treated groups as compared with placebo, although the percentage of subjects who achieved a clinical response or remission was more substantial, and seen as early as week 2 of treatment in the highest dose (0.2 mg/kg/d) group (44% response and 32% remission versus 32% response and 20% remission in the placebo group). Of subjects who had not achieved remission during the 8-week placebo-controlled phase in the higher-dose group, 50% achieved remission during the more prolonged, open-label treatment phase. Plasma citrulline was similar across groups at baseline, but increased substantially over time in all teduglutide groups when compared with placebo at week 8. Adverse events were not different between placebo and active treatment groups. CONCLUSIONS Teduglutide is a novel and potentially effective therapy for inducing remission and mucosal healing in patients with active moderate-to-severe CD. Further clinical investigation of this growth factor is warranted.
Collapse
Affiliation(s)
- Alan L Buchman
- Division of Gastroenterology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Sigalet DL, Lam V, Boctor D. The assessment, and glucagon-like peptide-2 modulation, of intestinal absorption and function. Semin Pediatr Surg 2010; 19:44-9. [PMID: 20123273 DOI: 10.1053/j.sempedsurg.2009.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The treatment of patients with short bowel syndrome is hampered by a lack of treatment and measurement methods. This article reviews our evolving understanding of the role of glucagon-like peptide 2 (GLP-2) in controlling the adaptive process. The ability of the remnant intestine to produce GLP-2 appears to be predictive of the adaptive process; exogenous GLP-2 may be a therapy to augment adaptation. Strategies for monitoring patients, including conventional means, such as anthropomorphic measurements, plasma levels of specific nutrients, and vitamins and radiological contrast studies are reviewed. Investigational methods, such as nutrient balance studies, plasma citrulline levels, and the absorption of inert sugars (3-0 methyl glucose, mannitol, and lactulose) are discussed with the evidence to support their use.
Collapse
Affiliation(s)
- David L Sigalet
- Alberta Children's Hospital Intestinal Rehabilitation Program, Alberta Children's Hospital and University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
38
|
McMellen ME, Wakeman D, Longshore SW, McDuffie LA, Warner BW. Growth factors: possible roles for clinical management of the short bowel syndrome. Semin Pediatr Surg 2010; 19:35-43. [PMID: 20123272 PMCID: PMC2891767 DOI: 10.1053/j.sempedsurg.2009.11.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural and functional changes during intestinal adaptation are necessary to compensate for the sudden loss of digestive and absorptive capacity after massive intestinal resection. When the adaptive response is inadequate, short bowel syndrome (SBS) ensues and patients are left with the requirement for parenteral nutrition and its associated morbidities. Several hormones have been studied as potential enhancers of the adaptation process. The effects of growth hormone, insulin-like growth factor-1, epidermal growth factor, and glucagon-like peptide 2 on adaptation have been studied extensively in animal models. In addition, growth hormone and glucagon-like peptide 2 have shown promise for the treatment of SBS in clinical trials in human beings. Several lesser studied hormones, including leptin, corticosteroids, thyroxine, testosterone, and estradiol, are also discussed.
Collapse
Affiliation(s)
- Mark E. McMellen
- Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek Wakeman
- Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Shannon W. Longshore
- Department of Surgery, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Lucas A. McDuffie
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Brad W. Warner
- Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA,Correspondence: Brad W. Warner, MD Division of Pediatric Surgery St. Louis Children's Hospital, One Children's Place Suite 5S40, St. Louis, MO 63110 Tel.: 1 314 454 6022 Fax: 1 314 454 2442
| |
Collapse
|
39
|
Kaji T, Tanaka H, Wallace LE, Kravarusic D, Holst J, Sigalet DL. Nutritional effects of the serial transverse enteroplasty procedure in experimental short bowel syndrome. J Pediatr Surg 2009; 44:1552-9. [PMID: 19635304 DOI: 10.1016/j.jpedsurg.2008.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND/PURPOSE The serial transverse enteroplasty (STEP) procedure appears beneficial clinically, but the mechanism(s) underlying these effects remains unclear. The present study evaluated the nutritional, hormonal, and morphologic effects of the STEP procedure in a rodent model of short bowel syndrome. METHODS With institutional animal care ethics approval, Sprague-Dawley rats underwent an 80% distal bowel resection, anastomosing the 30 cm remnant of jejunum to the ascending colon; at day 14, animals were randomly assigned to control or a STEP procedure (n = 8/group). Animals were pair-fed with normal chow; after a further 3 weeks, intestinal transit, hormonal and metabolic balance studies were done, and intestinal tissues were taken for analysis. RESULTS The STEP group had increased weight gain (resected: -0.34% +/- 2.9% vs STEP: 2.5% +/- 1.5%), increased bowel length (34.1 +/- 1.5 vs 36.9 +/- 2.2 cm), increased jejunal villus height (555 +/- 59 vs 635 +/- 65 microm), decreased rates of crypt cell apoptosis, increased expression of mRNA for the GLP-2 receptor, and increased postprandial production of glucagon-like peptide 2 (45 +/- 14 vs 65 +/- 12 pmol/L) (P < .05 by Student t test). There were no differences in intestinal transit; absorption of total calories, protein, fat, or carbohydrate; crypt cell proliferation rates; or the expression of intestinal transporter proteins (SGLT-1, GLUT-2, and GLUT-5). CONCLUSIONS The STEP procedure improves weight gain and augments gross and microscopic intestinal morphology in severe experimental short bowel syndrome. Postprandial GLP-2 levels are increased, as is the expression of the GLP-2 receptor; these mechanisms may contribute to these metabolic effects and may be useful in guiding the use of the STEP procedure clinically.
Collapse
Affiliation(s)
- Tatsuru Kaji
- Alberta Children's Hospital, Department of Surgery and Gastrointestinal Research Group, Institution of Infection Immunity and Inflammation, Faculty of Medicine, University of Calgary, Health Science Center, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Yazbeck R, Howarth GS, Abbott CA. Growth factor based therapies and intestinal disease: is glucagon-like peptide-2 the new way forward? Cytokine Growth Factor Rev 2009; 20:175-184. [PMID: 19324585 DOI: 10.1016/j.cytogfr.2009.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, debilitating disease associated with severe damage to the intestinal mucosa. Glucagon-like peptide-2 (GLP-2) is a potent and specific gastrointestinal growth factor that is demonstrating therapeutic potential for the prevention or treatment of an expanding number of intestinal diseases, including short bowel syndrome (SBS), small bowel enteritis and IBD. The biological activity of GLP-2 is limited due to proteolytic inactivation by the protease dipeptidyl peptidase (DP)IV. Inhibitors of DPIV activity may represent a novel strategy to prolong the growth promoting actions of GLP-2. This review outlines evidence for the clinical application of GLP-2, its degradation resistant analogue, Teduglutide, and novel DPIV inhibitors in efficacy studies utilizing pre-clinical models of intestinal damage, in particular IBD.
Collapse
Affiliation(s)
- Roger Yazbeck
- School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
41
|
Iqbal CW, Qandeel HG, Zheng Y, Duenes JA, Sarr MG. Mechanisms of ileal adaptation for glucose absorption after proximal-based small bowel resection. J Gastrointest Surg 2008; 12:1854-64; discussion 1864-5. [PMID: 18766411 PMCID: PMC2743989 DOI: 10.1007/s11605-008-0666-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 08/08/2008] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The hexose transmembrane transporters SGLT1 and GLUT2 are present in low quantities in ileum where little glucose absorption occurs normally; however, glucose uptake in ileum is highly adaptable after small bowel resection. HYPOTHESIS Ileal adaptability for glucose absorption after jejunal resection is mediated predominately by upregulation of GLUT2. METHODS Rats underwent 70% proximal-based jejunoileal resection. Transporter-mediated glucose uptake was measured in proximal and distal remnant ileum 1 and 4 wk postoperatively (n = 6 rats, each) and in corresponding ileal segments in control and 1 wk sham laparotomy rats (n = 6, each) without and with selective inhibitors of SGLT1 and GLUT2. In separate groups of rats (n = 6, each), protein (Western blots), mRNA (reverse transcriptase polymerase chain reaction [RT-PCR]), and villus height (histomorphology) were measured. RESULTS After 70% proximal intestinal resection, there was no dramatic change in protein or mRNA expression per cell of either SGLT1 or GLUT2, but median glucose uptake (nmol/cm/min) increased markedly from 52 (range 28-63) in controls to 118 (range 80-171) at 1 wk, and 203 (range 93-248) at 4 wk (p < or = 0.04 each) correlating with change in villus height (p < or = 0.03). CONCLUSIONS Ileal adaptation for glucose transport occurs through cellular proliferation (hyperplasia) and not through cellular upregulation of glucose transporters.
Collapse
Affiliation(s)
- C W Iqbal
- Gastrointestinal Research Unit and Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
42
|
Kaji T, Tanaka H, Holst JJ, Redstone H, Wallace L, de Heuval E, Sigalet DL. The effects of variations in dose and method of administration on glucagon like peptide-2 activity in the rat. Eur J Pharmacol 2008; 596:138-45. [PMID: 18762180 DOI: 10.1016/j.ejphar.2008.07.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 07/17/2008] [Accepted: 07/23/2008] [Indexed: 01/18/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) is a potent, intestinal-specific trophic hormone. However, the relationship between the dose and timing of GLP-2 administration and these trophic effects is not clear. We investigated the effects of variations in the dose and timing of GLP-2 administration on its intestinal trophic activity. A rodent model of total parenteral nutrition (TPN) mucosal atrophy was used, examining intestinal morphology in the adult male rat after 5 days. Groups were: controls, maintained with TPN alone and GLP-2 treated groups (high dose; 240 microg/kg/day, low dose; 24 microg/kg/day) given by continuous or intermittent (over 1 h, twice daily) intravenous infusion. Body weight and total small bowel length were significantly increased in the high dose, continuous infusion group. Both high dose infusion methods increased total small bowel weight, villus height, crypt depth, and total mucosal surface area. Both high dose infusion and low dose intermittent infusion routes increased crypt cell proliferation (P<0.05 for all comparisons). Both high dose routes gave nearly equivalent exposures; low dose continuous infusion gave higher exposure but intermittent low dose infusion resulted in an increase in crypt proliferation; neither low dose method resulted in morphologic changes. There were no differences in transporter protein expression or apoptosis rates. High dose continuous infusion appears to maximally induce intestinal growth, and also increases weight gain, while high dose GLP-2 intermittent infusion results in similar morphologic effects. A threshold level for the induction of proliferative and morphologic effects was seen in the low dose groups. These observations may be relevant for planning therapeutic trials.
Collapse
Affiliation(s)
- Tatsuru Kaji
- Department of Pediatric Surgery, Kagoshima University Faculty of Medicine, 8-35-1 Kagoshima-shi, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Koopmann MC, Nelson DW, Murali SG, Liu X, Brownfield MS, Holst JJ, Ney DM. Exogenous glucagon-like peptide-2 (GLP-2) augments GLP-2 receptor mRNA and maintains proglucagon mRNA levels in resected rats. JPEN J Parenter Enteral Nutr 2008; 32:254-65. [PMID: 18443137 DOI: 10.1177/0148607108316198] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent proglucagon-derived hormone that stimulates intestinal adaptive growth. Our aim was to determine whether exogenous GLP-2 increases resection-induced adaptation without diminishing endogenous proglucagon and GLP-2 receptor expression. METHODS Rats underwent transection or 70% jejunoileal resection +/- GLP-2 infusion (100 microg/kg body weight/d) and were fed a semipurified diet with continuous infusion of GLP-2 or saline by means of jugular catheter. After 7 days, body weight, mucosal cellularity (dry mass, protein and DNA), crypt-villus height, and crypt cell proliferation (by bromodeoxyuridine staining) were determined. Plasma bioactive GLP-2 (by radioimmunoassay), proglucagon and GLP-2 receptor mRNA expression (by Northern blot and real-time reverse transcriptase quantitative polymerase chain reaction) were measured. GLP-2 receptor was colocalized to neuroendocrine markers by immunohistochemistry. RESULTS Low-dose exogenous GLP-2 increased mucosal cellularity and crypt-villus height in the duodenum, jejunum, and ileum; enterocyte proliferation in the jejunal crypt; and duodenal and jejunal sucrase segmental activity. Plasma bioactive GLP-2 concentration increased 70% upon resection, with an additional 54% increase upon GLP-2 infusion in resected rats (P < .05). Ileal proglucagon mRNA expression increased with resection, and exogenous ileum GLP-2 failed to blunt this response. Exogenous GLP-2 increased ileum GLP-2 receptor expression 3-fold in resected animals and was colocalized to vasoactive intestinal peptide-positive and endothelial nitric oxide synthase-expressing enteric neurons and serotonin-containing enteroendocrine cells in the jejunum and ileum of resected rats. CONCLUSIONS Exogenous GLP-2 augments adaptive growth and digestive capacity of the residual small intestine in a rat model of mid-small bowel resection by increasing plasma GLP-2 concentrations and GLP-2 receptor expression without diminishing endogenous proglucagon expression.
Collapse
Affiliation(s)
- Matthew C Koopmann
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Robertson MA, Sigalet DL, Holst JJ, Meddings JB, Wood J, Sharkey KA. Intestinal Permeability and Glucagon-like peptide-2 in Children with Autism: A Controlled Pilot Study. J Autism Dev Disord 2008; 38:1066-71. [DOI: 10.1007/s10803-007-0482-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 10/12/2007] [Indexed: 12/11/2022]
|
45
|
Amin H, Holst JJ, Hartmann B, Wallace L, Wright J, Sigalet DL. Functional ontogeny of the proglucagon-derived peptide axis in the premature human neonate. Pediatrics 2008; 121:e180-6. [PMID: 18166537 DOI: 10.1542/peds.2007-1461] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The regulation of intestinal growth and development in human neonates is incompletely understood, which hinders the provision of nutrients enterally. The "hindgut" hormones glucagon-like peptides 1 and 2 have been shown to play an important role in the regulation of nutrient assimilation, intestinal growth, and function. OBJECTIVE Our goal was to investigate the production of glucagon-like peptides 1 and 2 in premature human infants and examine the effects of prematurity and feeding on hormone release. PATIENTS AND METHODS With informed consent, premature infants who were admitted to a tertiary neonatal intensive care nursery (gestational age: 28-32 weeks) were monitored with weekly determinations of postprandial glucagon-like peptide 1 and 2 levels. Comparison studies with groups of normal infants and adults were performed. Hormone levels were obtained by using specific radioimmunoassay for glucagon-like peptide 1 (1-36) and glucagon-like peptide 2 (1-33), modified for small sample volumes; accurate monitoring of enteral intake was performed at all of the sampling time points. RESULTS Forty-five infants with a mean gestational age of 29.6 +/- 1.9 weeks were studied; fasting levels of both glucagon-like peptides 1 and 2 were elevated. There was no correlation between gestational age and glucagon-like peptide 2 output. However, both glucagon-like peptide 1 and 2 levels were correlated with the caloric value of feeds. CONCLUSIONS The premature human neonate has significantly higher fasting levels of glucagon-like peptides 1 and 2 compared with adults; feeding increases these levels further. These findings suggest that the proglucagon-derived peptides may have a role in normal intestinal development and nutrient handling.
Collapse
Affiliation(s)
- Harish Amin
- Department of Neonatology, Foothills Hospital, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The prevalence of short bowel syndrome appears to be increasing because of more aggressive surgical and medical approaches to the management of neonatal intraabdominal catastrophies. Hence, a large cohort of neonates with intestinal failure occupies neonatal intensive care units, requiring chronic total parenteral nutrition (TPN) in hopes that the residual bowel will adapt, thereby permitting weaning of TPN. Alternatively, when there is no hope for adaptation, these infants are maintained on TPN in hopes that they will grow to a size and state of general health satisfactory for either isolated intestinal transplant when liver function is preserved or combined liver-intestinal transplantation when the liver is irreparably damaged. Thus, it is imperative to provide enough parenteral nutrition to facilitate growth while minimizing TPN constituents predisposing to liver damage. Liver disease associated with intestinal failure (IFALD) seems to occur due to a variety of host factors combined with deleterious components of TPN. Host factors include an immature bile secretory mechanism, bile stasis due to fasting, and repeated septic episodes resulting in endotoxemia. Many constituents of TPN are associated with liver damage. Excessive glucose may result in fatty liver and/or hepatic fibrosis, excessive protein may lead to reduced bile flow, and phytosterols present in intravenous lipid may produce direct oxidant damage to the liver or may impede cholesterol synthesis and subsequent bile acid synthesis. Parenteral strategies employed to minimize TPN damage include reducing glucose infusion rates, reducing parenteral protein load, and reducing parenteral lipid load. Furthermore, preliminary studies suggest that fish oil-based lipid solutions may have a salutary effect on IFALD. Ultimately, provision of enteral nutrition is imperative for preventing or reversing IFALD as well as facilitating bowel adaptation. While studies of trophic hormones are ongoing, the most reliable current method to facilitate adaptation is to provide enteral nutrition. Continuous enteral feeding remains the mainstay of enteral nutrition support.
Collapse
Affiliation(s)
- Jacqueline J Wessel
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|