1
|
Kumar K, Sarkar P, Paul T, Shukla SP, Kumar S. Ecotoxicological effects of triclosan on Lemna minor: bioconcentration, growth inhibition and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56550-56564. [PMID: 39271616 DOI: 10.1007/s11356-024-34944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Triclosan (TCS), an emerging pollutant, is a notable contributor to adverse impacts on aquatic organisms due to its widespread use during COVID-19 and hydrophobic properties. There is extensive documented literature on TCS toxicity in commercially important fish species; however, studies on aquatic plants remain limited. In this prelude, the present study aims to evaluate the effect of TCS on Lemna minor, a commercially important aquatic plant species for 7 days. The results showed dose-dependent significant alterations in growth, pigments and stress enzymes of L. minor at varied concentrations of TCS (1 to 8 mg L-1). Median inhibitory concentration (IC50) was found to be 4.813 mg L-1. Total chlorophyll and carotenoid levels decreased 73.11 and 81.83%, respectively after 7 days of TCS exposure. A significant increase in catalase and superoxide dismutase activity was observed in TCS exposed groups as compared to the control. Bioconcentration factor was found to be in the range of 5.855 to 37.129 signifying TCS ability to accumulate and transfer through the food chain. Scanning electron microscopy (SEM) analysis showed deformation in the cell surface and alteration of stroma morphology of TCS exposed groups. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study also revealed that higher concentrations of TCS could cause alteration in the functional groups in the plant. This study demonstrates that TCS negatively impacts the growth and metabolism of primary producers, offering crucial insights into its interactions with aquatic plants and establishing baseline information essential for crafting effective mitigation strategies for TCS contamination in aquatic environments.
Collapse
Affiliation(s)
- Kundan Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Pritam Sarkar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, 855107, Bihar, India
| | - Satya Prakash Shukla
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Saurav Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| |
Collapse
|
2
|
Sender J, Różańska-Boczula M. Preliminary studies of selected Lemna species on the oxygen production potential in relation to some ecological factors. PeerJ 2024; 12:e17322. [PMID: 38903884 PMCID: PMC11188931 DOI: 10.7717/peerj.17322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/09/2024] [Indexed: 06/22/2024] Open
Abstract
Dissolved oxygen is fundamental for chemical and biochemical processes occurring in natural waters and critical for the life of aquatic organisms. Many organisms are responsible for altering organic matter and oxygen transfers across ecosystem or habitat boundaries and, thus, engineering the oxygen balance of the system. Due to such Lemna features as small size, simple structure, vegetative reproduction and rapid growth, as well as frequent mass occurrence in the form of thick mats, they make them very effective in oxygenating water. The research was undertaken to assess the impact of various species of duckweed (L. minor and L. trisulca) on dissolved oxygen content and detritus production in water and the role of ecological factors (light, atmospheric pressure, conductivity, and temperature) in this process. For this purpose, experiments were carried out with combinations of L. minor and L. trisulca. On this basis, the content of oxygen dissolved in water was determined depending on the growth of duckweed. Linear regression models were developed to assess the dynamics of changes in oxygen content and, consequently, organic matter produced by the Lemna. The research showed that the presence of L. trisulca causes an increase in dissolved oxygen content in water. It was also shown that an increase in atmospheric pressure had a positive effect on the ability of duckweed to produce oxygen, regardless of its type. The negative correlation between conductivity and water oxygenation, obtained in conditions of limited light access, allows us to assume that higher water conductivity limits oxygen production by all combinations of duckweeds when the light supply is low. Based on the developed models, it was shown that the highest increase in organic matter would be observed in the case of mixed duckweed and the lowest in the presence of the L. minor species, regardless of light conditions. Moreover, it was shown that pleustophytes have different heat capacities, and L. trisulca has the highest ability to accumulate heat in water for the tested duckweed combinations. The provided knowledge may help determine the good habitat conditions of duckweed, indicating its role in purifying water reservoirs as an effect of producing organic matter and shaping oxygen conditions with the participation of various Lemna species.
Collapse
Affiliation(s)
- Joanna Sender
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Lublin, Poland
| | - Monika Różańska-Boczula
- Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
3
|
Narayan A, Diogo BS, Mansilha C, Espinha Marques J, Flores D, Antunes SC. Assessment of ecotoxicological effects of Fojo coal mine waste elutriate in aquatic species (Douro Coalfield, North Portugal). FRONTIERS IN TOXICOLOGY 2024; 6:1334169. [PMID: 38465195 PMCID: PMC10920227 DOI: 10.3389/ftox.2024.1334169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: The exploitation of anthracite A in the Pejão mining complex (Douro Coalfield, North Portugal) resulted in the formation of several coal waste piles without proper environmental control. In 2017, a new pedological zonation emerged in the Fojo area, after the ignition and self-burning of some of the coal waste piles, namely: unburned coal waste (UW); burned coal waste, and a cover layer (BW and CL, respectively); uphill soil (US); mixed burned coal waste (MBW); downhill soil (DS). This study aimed to evaluate the toxic effects of 25 soil elutriates from different pedological materials. Methods: Allivibrio fischeri bioluminescence inhibition assay, Lemna minor growth inhibition assay, and Daphnia magna acute assay were used to assess the toxicity effects. Additionally, total chlorophyll and malondialdehyde (MDA) content and catalase (CAT) activity were also evaluated in L. minor. Results and Discussion: The results obtained from each endpoint demonstrated the extremely heterogeneous nature of soil properties, and the species showed different sensibilities to soil elutriates, however, in general, the species showed the same sensitivity trend (A. fischeri > L. minor > D. magna). The potentially toxic elements (PTE) present in the soil elutriates (e.g., Al, Pb, Cd, Ni, Zn) affected significantly the species understudy. All elutriates revealed toxicity for A. fischeri, while US1 and UW5 were the most toxic for L. minor (growth inhibition and significant alterations in CAT activity) and D. magna (100% mortality). This study highlights the importance of studying soil aqueous phase toxicity since the mobilization and percolation of bioavailable PTE can cause environmental impacts on aquatic ecosystems and biota.
Collapse
Affiliation(s)
- Aracelis Narayan
- Instituto de Ciências da Terra, Universidade do Porto, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - Bárbara S. Diogo
- Instituto Ciências Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Matosinhos, Portugal
| | - Catarina Mansilha
- Department of Environmental Health, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Jorge Espinha Marques
- Instituto de Ciências da Terra, Universidade do Porto, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - Deolinda Flores
- Instituto de Ciências da Terra, Universidade do Porto, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - Sara C. Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
4
|
Sarkheil M, Zahedi S, Safari O, Ahmadniaye Motlagh H. Effects of humic acid on nutrient removal efficiency of aquatic duckweed ( Lemna minor) and both growth performance, and hemato-biochemical parameters of Nile tilapia ( Oreochromis niloticus) cultured in water recirculating system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:481-492. [PMID: 37626022 DOI: 10.1080/15226514.2023.2250459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
This study was carried out to evaluate the effects of humic acid (HA) on the nutrient removal efficiencies of aquatic duckweed plant (Lemna minor) from a water recirculating system used to culture Nile tilapia (Oreochromis niloticus) fish for 30 days. The HA was added to water at three concentrations of 0 (Control), 1.5, and 3 mg/L in triplicate. Water quality parameters, growth performance, and some hemato-biochemical parameters of the fish in variable HA concentrations were compared. The total ammonia nitrogen (TAN) and total phosphorous (TP) removal efficiency of L. minor increased with increasing the HA concentration from 0 mg/L to 3 mg/L (p < 0.05). The concentration of nitrate (NO3-) in the HA-3 mg/L was higher than that in the other groups on days 20 and 30 of the fish cultivation period (p < 0.05). The growth performance of fish improved in the HA-3 mg/L compared to the other groups. The addition of different concentrations of HA to water had no adverse effect on the hematological properties of the Nile tilapia. The plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels in the HA-0 mg/L and HA-1.5 mg/L groups were higher than in the HA-3 mg/L (p < 0.05). No significant differences in the plasma glucose and cholesterol levels were observed between the HA-groups (p > 0.05), while the triglyceride level increased in the HA-3 mg/L compared to the control (p < 0.05). These results indicated that adding HA to water could be an effective method to enhance the bioremediation performance of the aquatic duckweed plants as biofilter and thus improve water quality, subsequently, fish growth performance in RASs.
Collapse
Affiliation(s)
- Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Zahedi
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Omid Safari
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamidreza Ahmadniaye Motlagh
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Fekete-Kertész I, Stirling T, Vaszita E, Berkl Z, Farkas É, Hedwig S, Remmen K, Lenz M, Molnár M, Feigl V. Ecotoxicity attenuation by acid-resistant nanofiltration in scandium recovery from TiO 2 production waste. Heliyon 2023; 9:e15512. [PMID: 37128350 PMCID: PMC10148044 DOI: 10.1016/j.heliyon.2023.e15512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
The lack of high-grade scandium (Sc) ores and recovery strategies has stimulated research on the exploitation of non-ore-related secondary sources that have great potential to safeguard the critical raw materials supply of the EU's economy. Waste materials may satisfy the growing global Sc demand, specifically residues from titanium dioxide (TiO2) production. New technologies are being developed for the recovery of Sc from such residues; however, the possible environmental impacts of intermediary products and residues are usually not considered. In order to provide a comprehensive ecotoxicity characterisation of the wastes and intermediate residues resulting from one promising new technology, acid-resistant nanofiltration (arNF), a waste-specific ecotoxicity toolkit was established. Three ecotoxicity assays were selected with specific test parameters providing the most diverse outcome for toxicity characterisation at different trophic levels: Aliivibrio fischeri (bacteria) bioluminescence inhibition (30 min exposure), Daphnia magna (crustacean) lethality and immobilisation (24 h exposure) and Lemna minor (plant) growth inhibition with determination of the frond number (7 d exposure). According to our results, the environmental impact of the generated intermediate and final residues on the aquatic ecosystem was mitigated by the consecutive steps of the filtration methods applied. High and statistically significant toxicity attenuation was achieved according to each test organism: toxicity was lowered based on EC20 values, according to the A. fischeri bioluminescence inhibition assay (by 97%), D. magna lethality (by 99%) and L. minor frond number (by 100%), respectively, after the final filtration step, nanofiltration, in comparison to the original waste. Our results underline the importance of assessing chemical technologies' ecotoxicological and environmental impacts with easy-to-apply and cost-effective test methods to showcase the best available technologies.
Collapse
Affiliation(s)
- Ildikó Fekete-Kertész
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, H-1111 Budapest, Műegyetem rkp. 3, Hungary
| | - Tamás Stirling
- Institute of Biochemistry, Szeged Biological Research Centre, 6726 Szeged, Hungary
- University of Szeged, 6726 Szeged, Hungary
| | - Emese Vaszita
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, H-1111 Budapest, Műegyetem rkp. 3, Hungary
| | - Zsófia Berkl
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, H-1111 Budapest, Műegyetem rkp. 3, Hungary
| | - Éva Farkas
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, H-1111 Budapest, Műegyetem rkp. 3, Hungary
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Høgskoleveien 7, 1432 Ås, Norway
| | - Sebastian Hedwig
- Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, 4132, Muttenz, Switzerland
| | - Kirsten Remmen
- Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, 4132, Muttenz, Switzerland
| | - Markus Lenz
- Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, 4132, Muttenz, Switzerland
- Sub-Department of Environmental Technology, Wageningen University, 6700 AA, Wageningen, the Netherlands
- Corresponding author. Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, 4132, Muttenz, Switzerland.
| | - Mónika Molnár
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, H-1111 Budapest, Műegyetem rkp. 3, Hungary
| | - Viktória Feigl
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, H-1111 Budapest, Műegyetem rkp. 3, Hungary
| |
Collapse
|
6
|
Varga M, Žuna Pfeiffer T, Begović L, Mlinarić S, Horvatić J, Miloloža T, Štolfa Čamagajevac I. Physiological Response of Nutrient-Stressed Lemna gibba to Pulse Colloidal Silver Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:1367. [PMID: 36987055 PMCID: PMC10055381 DOI: 10.3390/plants12061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Wastewater is a source of many environmental pollutants and potentially high concentrations of essential plant nutrients. Site-specific nutrient levels may influence the response of exposed plants to a chemical stressor. In the present study, we focused on the responses of model aquatic macrophyte swollen duckweed (Lemna gibba L.) to a short pulse exposure and a commercially available colloidal silver product as a potential environmental chemical stressor, combined with two levels of total nitrogen and phosphorus nutrition. Treatment with the commercially available colloidal silver product caused oxidative stress in L. gibba plants under both high and low nutrient levels. Plants grown and treated under high nutrient levels showed lower levels of lipid peroxidation and hydrogen peroxide accumulation, as well as higher levels of photosynthetic pigment content in comparison to treated plants under low nutrient levels. Higher free radical scavenging activity for plants treated with silver in combination with high nutrient levels resulted in better overall protection from silver-induced oxidative stress. The results showed that external nutrient levels significantly affected the L. gibba plant's response to the colloidal silver presence in the environment and that nutrient levels should be considered in the assessment of potential environmental impact for contaminants.
Collapse
|
7
|
Yang GL. Duckweed Is a Promising Feedstock of Biofuels: Advantages and Approaches. Int J Mol Sci 2022; 23:ijms232315231. [PMID: 36499555 PMCID: PMC9740428 DOI: 10.3390/ijms232315231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
With the growing scarcity of traditional sources of energy and the accompanying acute environmental challenges, biofuels based on biomass are favored as the most promising alternative. As one of the core raw materials for biomass energy, research on its production methods and synthesis mechanisms is emerging. In recent years, duckweed has been used as a high-quality new biomass feedstock for its advantages, including fast biomass accumulation, high starch content, high biomass conversion efficiency, and sewage remediation. This study provides a systematic review of the growth characteristics, starch metabolism pathways, and methods to improve starch accumulation in the new energy plant, duckweed. The study also presents a prospect that might be used as a reference for the development of duckweed as a new energy-providing plant.
Collapse
Affiliation(s)
- Gui-Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China;
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
8
|
Xie L, Song Y, Petersen K, Solhaug KA, Lind OC, Brede DA, Salbu B, Tollefsen KE. Ultraviolet B modulates gamma radiation-induced stress responses in Lemna minor at multiple levels of biological organisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157457. [PMID: 35868377 DOI: 10.1016/j.scitotenv.2022.157457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Elevated levels of ionizing and non-ionizing radiation may co-occur and pose cumulative hazards to biota. However, the combined effects and underlying toxicity mechanisms of different types of radiation in aquatic plants remain poorly understood. The present study aims to demonstrate how different combined toxicity prediction approaches can collectively characterise how chronic (7 days) exposure to ultraviolet B (UVB) radiation (0.5 W m-2) modulates gamma (γ) radiation (14.9, 19.5, 43.6 mGy h-1) induced stress responses in the macrophyte Lemna minor. A suite of bioassays was applied to quantify stress responses at multiple levels of biological organisation. The combined effects (no-enhancement, additivity, synergism, antagonism) were determined by two-way analysis of variance (2 W-ANOVA) and a modified Independent Action (IA) model. The toxicological responses and the potential causality between stressors were further visualised by a network of toxicity pathways. The results showed that γ-radiation or UVB alone induced oxidative stress and programmed cell death (PCD) as well as impaired oxidative phosphorylation (OXPHOS) and photosystem II (PSII) activity in L. minor. γ-radiation also activated antioxidant responses, DNA damage repair and chlorophyll metabolism, and inhibited growth at higher dose rates (≥20 mGy h-1). When co-exposed, UVB predominantly caused non-interaction (no-enhancement or additive) effects on γ-radiation-induced antioxidant gene expression, energy quenching in PSII and growth for all dose rates, whereas antagonistic effects were observed for lipid peroxidation, OXPHOS, PCD, oxidative stress, chlorophyll metabolism and genes involved in DNA damage responses. Synergistic effects were observed for changes in photochemical quenching and non-photochemical quenching, and up-regulation of antioxidant enzyme genes (GST) at one or more dose rates, while synergistic reproductive inhibition occurred at all three γ-radiation dose rates. The present study provides mechanistic knowledge, quantitative understanding and novel analytical strategies to decipher combined effects across levels of biological organisation, which should facilitate future cumulative hazard assessments of multiple stressors.
Collapse
Affiliation(s)
- Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Karina Petersen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway
| | - Knut Asbjørn Solhaug
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Dag Anders Brede
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway.
| |
Collapse
|
9
|
Physicochemical Water Quality Indicators in the Neretva River Basin (B&H) With Reference to Ecological Conditions for Endemic Salmonids. EKOLÓGIA (BRATISLAVA) 2022. [DOI: 10.2478/eko-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Due to its natural features, the Neretva River has been interesting throughout its stream for the construction of energy facilities, as well as its tributaries Rama, Trebišnica, Tihaljina, Lištica. Jablanica (1955), HPP Rama (1968), CHE Čapljina (1979), HPP Salakovac (1981), HPP Grabovica (1982), HPP Mostar (1987), HPP Peć Mlini, HPP Mostarsko blato have been built on the Neretva River and its tributaries. HPP. The aim of this paper is to determine the state of chemical and physical parameters of water in reservoirs and streams, as well as the parameters of the aquatic environment in which endemic salmonids previously lived and the possibility of revitalization of these watercourses. The ecological conditions of the Neretva reservoirs for the life of Neretva-endemic fish and the similarity to the conditions in the natural course of Neretva before the construction of the dam were examined. The research was conducted during 2017 and 2018 at several locations in the Neretva river basin (reservoirs and streams).
Collapse
|
10
|
Ecotoxicity of Concrete Containing Fine-Recycled Aggregate: Effect on Photosynthetic Pigments, Soil Enzymatic Activity and Carbonation Process. SUSTAINABILITY 2022. [DOI: 10.3390/su14031732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recycling of materials such as masonry or concrete is one of the suitable ways to reduce amount of disposed construction and demolition waste (CDW). However, the environmental safety of products containing recycled materials must be guaranteed. To verify overall environmental benefits of recycled concrete, this work considers ecotoxicity of recycled concrete, as well as potential environmental impacts of their life cycle. Moreover, impacts related with carbonation of concrete is considered in terms of durability and influence of potential CO2 uptake. Concrete containing fine recycled aggregate from two different sources (masonry and concrete) were examined experimentally at the biochemical level and compared with reference samples. Leaching experiments are performed in order to assess physicochemical properties and aquatic ecotoxicity using water flea, freshwater algae and duckweed. The consequences, such as effects of material on soil enzymatic activity (dehydrogenase activity), photosynthetic pigments (chlorophylls and carotenoids), and the carbonation process, are verified in the laboratory and included in the comparison with the theoretical life cycle assessment. As a conclusion, environmental safety of recycled concrete was verified, and its overall potential environmental impact was lower in comparison with reference concrete.
Collapse
|
11
|
Pietrini F, Iannilli V, Passatore L, Carloni S, Sciacca G, Cerasa M, Zacchini M. Ecotoxicological and genotoxic effects of dimethyl phthalate (DMP) on Lemna minor L. and Spirodela polyrhiza (L.) Schleid. plants under a short-term laboratory assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150972. [PMID: 34656584 DOI: 10.1016/j.scitotenv.2021.150972] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The environmental occurrence of phthalates (PAE) is of great concern for the ecosystem and human health. Despite of their recognized toxicity on biota, a lack of knowledge is still present about the effects of PAE on plants. In this scenario, the effects of dimethyl phthalate (DMP) on duckweed plants (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), two model plant species for ecotoxicological and trophic studies, were investigated. Under a 7-day lab assay, morphological (biometric indicators), physiological (pigment content and photosynthetic performance) and molecular (DNA damage) parameters were studied. No effects were observed at growth and physiological level in both plants at 3 and 30 mg/L DMP. On the contrary, at 600 mg/L DMP, a concentration used for plant acute toxicity studies, a remarkable growth inhibition and pigment content and photosynthetic parameters reduction compared to control were observed in both plants species, particularly in Spirodela. Alkaline Comet assay in 24 h-treated plants revealed a genotoxic damage induced by DMP, particularly relevant in Spirodela. These results described for the first time the adverse effects exerted by DMP on aquatic plants, contributing to highlight the environmental risk associated to the presence of this compound in the aquatic ecosystem.
Collapse
Affiliation(s)
- Fabrizio Pietrini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Valentina Iannilli
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development C.R. Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Laura Passatore
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Serena Carloni
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Giulia Sciacca
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development C.R. Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Marina Cerasa
- Institute on Atmospheric Pollution (IIA), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Massimo Zacchini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
12
|
Wang C, Sun Y, Ruan H, Yang J. Toxic effects of 2,4,4'- trichlorobiphenyl (PCB-28) on growth, photosynthesis characteristics and antioxidant defense system of Lemna minor L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:505-511. [PMID: 34166977 DOI: 10.1016/j.plaphy.2021.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a common category of persistent man-made organic pollutants that are widespread in the ambient environment. Although Lemna minor L. is an extensively applied plant for aquatic remediation in ecotoxicology research worldwide, little is known regarding its responses to the potentially toxic effects of PCBs. For this study, a 14-day dissolved exposure was conducted to explore the effects of 2,4,4'- trichlorobiphenyl (PCB-28) on the growth, photosynthesis characteristics and antioxidant defense system of L. minor plants. We found that 100 and 200 μg/L of PCB-28 decreased the fresh weight, chlorophyll and protein content, and activities of superoxide dismutase, peroxidase, glutathione S-transferase, and nitroreductase, whereas plasma membrane permeability, and the malondialdehyde and reactive oxygen species concentrations were increased. However, it was observed that 5 and 20 μg/L of PCB-28 had no significant effects on these physiological indices. The ultra-structure of chloroplast demonstrated that 100 and 200 μg/L PCB-28 severely damaged the chloroplast structures. Moreover, correlation analysis revealed that the content of reactive oxygen species had negative correlations with the fresh weight, chlorophyll and protein content, as well as the activities of superoxide dismutase, peroxidase, glutathione S-transferase, and nitroreductase, but had positive correlations with the malondialdehyde content and plasma membrane permeability. This work provides valuable data toward elucidating the physiology and biochemistry of PCBs induced phytotoxicity.
Collapse
Affiliation(s)
- Cuiting Wang
- Department of Ecology, Nanjing Forestry University, Nanjing, China
| | - Yuan Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng City, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| | - Honghua Ruan
- Department of Ecology, Nanjing Forestry University, Nanjing, China
| | - Jing Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China; Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
13
|
Fermented Duckweed as a Potential Feed Additive with Poultry Beneficial Bacilli Probiotics. Probiotics Antimicrob Proteins 2021; 13:1425-1432. [PMID: 33988837 DOI: 10.1007/s12602-021-09794-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
In this study, the duckweed varieties Lemna minor, Spirodela polyrhiza, and a commercially processed duckweed food supplement were investigated as potential substrates for the propagation of two probiotic Bacillus strains, B. subtilis KATMIRA1933 and B. amyloliquefaciens B-1895. Both L. minor and S. polyrhiza were found to be suitable substrates for the propagation of both bacilli, with 8.47-9.48 Log CFU/g and 10.17-11.31 Log CFU/g after 24 and 48 h growth on the substrates, respectively. The commercial duckweed product was a less favorable substrate, with growth reaching a maximum of 7.89-8.91 CFU/g after 24 h with no further growth after 48 h. Growth and adherence of the bacilli to the three products were confirmed via electron microscopy. These strains have demonstrated health-promoting benefits for poultry and thereby have the potential to enhance duckweed as an animal feed through the process of fermentation. Duckweed has been shown to be a promising alternative resource for protein and has the opportunity to become a valuable resource in multiple industries as a potential means to increase sustainability, food security, and reduce environmental impact.
Collapse
|
14
|
Renaud JB, DesRochers N, Hoogstra S, Garnham CP, Sumarah MW. Structure Activity Relationship for Fumonisin Phytotoxicity. Chem Res Toxicol 2021; 34:1604-1611. [PMID: 33891387 DOI: 10.1021/acs.chemrestox.1c00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fumonisins are mycotoxins produced by a number of species of Fusarium and Aspergillus. They are polyketides that possess a linear polyol structure with two tricarballylic acid side chains and an amine moiety. Toxicity results from their inhibition of Ceramide Synthase (CerS), which perturbs sphingolipid concentrations. The tricarballylic side chains and amine group of fumonisins are key molecular features responsible for inhibiting CerS, however their individual contributions toward overall toxicity are not fully understood. We have recently reported novel, deaminated fumonisins produced by A. niger and have identified an enzyme (AnFAO) responsible for their synthesis. Here we performed a structure/function activity assay to investigate the individual contributions of the tricarballylic acid and amine toward overall fumonisin toxicity. Lemna minor was treated at 40 μM against FB1, hydrolyzed FB1 (hFB1), deaminated FB1 (FPy1), or hydrolyzed/deaminated (hFPy1). Four end points were monitored: plant dry weight, frond surface area, lipidomics, and metabolomics. Overall, hFB1 was less toxic than FB1 and FPy1 was less toxic than hFB1. hFPy1 which lacks both the amine group and tricarballylic side chains was also less toxic than FB1 and hFB1, however it was not significantly less toxic than FPy1. Lipidomic analysis showed that FB1 treatment significantly increased levels of phosphotidylcholines, ceramides, and pheophorbide A, while significantly decreasing the levels of diacylglycerides, sulfoquinovosyl diacylglycerides, and chlorophyll. Metabolomic profiling revealed a number of significantly increased compounds that were unique to FB1 treatment including phenylalanine, asymmetric dimethylarginine (ADMA), S-methylmethionine, saccharopine, and tyrosine. Conversely, citrulline, N-acetylornithine and ornithine were significantly elevated in the presence of hFB1 but not any of the other fumonisin analogues. These data provide evidence that although removal of the tricarballylic side chains significantly reduces toxicity of fumonisins, the amine functional group is a key contributor to fumonisin toxicity in L. minor and justify future toxicity studies in mammalian systems.
Collapse
Affiliation(s)
- Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Natasha DesRochers
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Shawn Hoogstra
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Christopher P Garnham
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Mark W Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| |
Collapse
|
15
|
Ozyigit II, Arda L, Yalcin B, Yalcin IE, Ucar B, Hocaoglu-Ozyigit A. Lemna minor, a hyperaccumulator shows elevated levels of Cd accumulation and genomic template stability in binary application of Cd and Ni: a physiological and genetic approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1255-1269. [PMID: 33662215 DOI: 10.1080/15226514.2021.1892586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, to determine whether having potential to be used as hyperaccumulator for Cd and Ni, numerous experiments were designed for conducting assessments for physiological and genotoxic changes along with defining possible alterations on mineral nutrient status of Lemna minor L. by applying Cd-Ni binary treatments (0, 100, 200 and 400 µM). Our study revealed that there were increases in the concentrations of B, Cr, Fe, K, Mg, and Mn whereas decreases were noticed in the concentrations of Na and Zn and the levels of Ca were inversely proportional to Cd-Ni applications showing tendency to increase at the low concentration and to decrease at the high concentration. Randomly Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) analyses revealed that rather than band losses and new band formations, mostly intensity changes in the band profiles, and low polymorphism and high genomic template stability (GTS) were observed. Although, to date, L. minor was defined as an efficient hyperaccumulator/potential accumulator or competent phytoremedial agent by researchers. Our research revealed that L. minor showing high accumulation capability for Cd and having low polymorphism rate and high genomic template stability is a versatile hyperaccumulator, especially for Cd; therefore, highly recommended by us for decontamination of water polluted with Cd. NOVELTY STATEMENTMany studies have been focused on the effects of individual metal ions. However, heavy metal contaminants usually exist as their mixtures in natural aquatic environments. Especially, Cd and Ni coexist in industrial wastes.In this study, the accumulation properties of Lemna minor for both Cd and Ni were investigated and the effects of Cd and Ni on the bioaccumulation of B, Ca, Cu, Fe, Mg, K, Mn, Na, Pb and Zn in L. minor were also determined. This study furthermore aimed to assess the genotoxic effects of Cd and Ni found in being extended concentrations on DNA using the Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) method.
Collapse
Affiliation(s)
- Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Arts & Sciences, Marmara University, Istanbul, Turkey
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Lutfi Arda
- Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Besiktas, Turkey
| | - Bestenur Yalcin
- Program of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Besiktas, Turkey
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Besiktas, Turkey
| | - Bihter Ucar
- Department of Biology, Faculty of Arts & Sciences, Marmara University, Istanbul, Turkey
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Arts & Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
16
|
Marinho MDC, Diogo BS, Lage OM, Antunes SC. Ecotoxicological evaluation of fungicides used in viticulture in non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43958-43969. [PMID: 32748361 DOI: 10.1007/s11356-020-10245-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The effect of fungicides, commonly used in vine cultures, on the health of terrestrial and aquatic ecosystems has been poorly studied. The objective of this study was to evaluate the toxicity of three viticulture fungicides (myclobutanil, cymoxanil, and azoxystrobin) on non-target organisms, the bacteria Rhodopirellula rubra, Escherichia coli, Pseudomonas putida, and Arthrobacter sp., the microalgae Raphidocelis subcapitata, and the macrophyte Lemna minor. Fungicide toxicity was performed in acute cell viability assay for bacteria; 72-h and 7-day growth inhibition tests for R. subcapitata and L. minor, respectively. Contents of photosynthetic pigments and lipid peroxidation in L. minor were evaluated. Arthrobacter sp. and P. putida showed resistance to these fungicides. Even though azoxystrobin affected R. rubra and E. coli cell viability, this effect was due to the solvent used, acetone. Cell viability decrease was obtained for R. rubra exposed to cymoxanil and E. coli exposed to myclobutanil (30 min of exposure at 10 mg/L and 240 min of exposure at 46 mg/L, respectively). R. subcapitata showed about 10-fold higher sensitivity to azoxystrobin (EC50-72h = 0.25 mg/L) and cymoxanil (EC50-72h = 0.36 mg/L) than L. minor to azoxystrobin and myclobutanil (EC50-72h = 1.53 mg/L and EC50-72h = 1.89 mg/L, respectively). No lipid peroxidation was observed in L. minor after fungicide exposure, while changes of total chlorophyll were induced by azoxystrobin and myclobutanil. Our results showed that non-target aquatic organisms of different trophic levels are affected by fungicides used in viticulture.
Collapse
Affiliation(s)
- Maria da Conceição Marinho
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Bárbara Salazar Diogo
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal
| | - Olga Maria Lage
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Sara Cristina Antunes
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal.
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
17
|
Calvo OC, Quaglia G, Mohiley A, Cesarini M, Fangmeier A. Assessing potential aquatic toxicity of airport runoff using physicochemical parameters and Lemna gibba and Aliivibrio fischeri bioassays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40604-40617. [PMID: 32671701 PMCID: PMC8275521 DOI: 10.1007/s11356-020-09848-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
A critical problem derived from airport operations is the environmental impact of runoff water. Airport runoff includes a complex mixture of pollutants, e.g., from deicing agents, that may affect negatively natural water bodies. This study assesses the spatial and temporal aquatic ecotoxicity of runoff water and possible aeroplane drift in a German airport. Over winter 2012-2013, from November to May, water samples were collected within the airport and surrounding area. These samples were analyzed using traditional physicochemical analysis and biotests with two aquatic organisms from different trophic levels, Lemna gibba and Aliivibrio fischeri. Overall, the samples examined in this study were relatively non-toxic to the tested organisms. The physicochemical parameters were mainly influenced by the sampling period being higher in colder months. In contrast, the ecotoxicity was influenced by the sampling site. For sites within the airport, a high correlation between the physicochemical parameters (EC and TOC) and toxicity in L. gibba was found. These correlations were not evident in samples taken outside the airport or when A. fischeri was used as a bioindicator. However, a pronounced seasonality has been observed, linked to the coldest months with average inhibition values of 50% in L. gibba and 25% in A. fischeri, particularly in January. Both biotests yielded differing results; therefore, more biotests should be included. However, L. gibba showed a good response with this type of water samples to be included in future studies together with detailed chemical analysis. The present study provides data to assess the potential ecotoxicological effects of airport runoff affected by winter operations.
Collapse
Affiliation(s)
- Olga C Calvo
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann- Str. 3, D-70599, Stuttgart, Germany.
| | - Gisela Quaglia
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann- Str. 3, D-70599, Stuttgart, Germany
- Department of Environment, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Anubhav Mohiley
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann- Str. 3, D-70599, Stuttgart, Germany
- Institute of Evolution & Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076, Tübingen, Germany
| | - Maria Cesarini
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann- Str. 3, D-70599, Stuttgart, Germany
| | - Andreas Fangmeier
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann- Str. 3, D-70599, Stuttgart, Germany
| |
Collapse
|
18
|
O'Brien AM, Laurich J, Lash E, Frederickson ME. Mutualistic Outcomes Across Plant Populations, Microbes, and Environments in the Duckweed Lemna minor. MICROBIAL ECOLOGY 2020; 80:384-397. [PMID: 32123959 DOI: 10.1007/s00248-019-01452-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The picture emerging from the rapidly growing literature on host-associated microbiota is that host traits and fitness often depend on interactive effects of host genotype, microbiota, and abiotic environment. However, testing interactive effects typically requires large, multi-factorial experiments and thus remains challenging in many systems. Furthermore, most studies of plant microbiomes focus on terrestrial hosts and microbes. Aquatic habitats may confer unique properties to microbiomes. We grew different populations of duckweed (Lemna minor), a floating aquatic plant, in three microbial treatments (adding no, "home", or "away" microbes) at two levels of zinc, a common water contaminant in urban areas, and measured both plant and microbial performance. Thus, we simultaneously manipulated plant source population, microbial community, and abiotic environment. We found strong effects of plant source, microbial treatment, and zinc on duckweed and microbial growth, with significant variation among duckweed genotypes and microbial communities. However, we found little evidence of interactive effects: zinc did not alter effects of host genotype or microbial community, and host genotype did not alter effects of microbial communities. Despite strong positive correlations between duckweed and microbe growth, zinc consistently decreased plant growth, but increased microbial growth. Furthermore, as in recent studies of terrestrial plants, microbial interactions altered a duckweed phenotype (frond aggregation). Our results suggest that duckweed source population, associated microbiome, and contaminant environment should all be considered for duckweed applications, such as phytoremediation. Lastly, we propose that duckweed microbes offer a robust experimental system for study of host-microbiota interactions under a range of environmental stresses.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.
| | - Jason Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Emma Lash
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
19
|
Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12051927] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heavy-metal (HM) pollution is considered a leading source of environmental contamination. Heavy-metal pollution in ground water poses a serious threat to human health and the aquatic ecosystem. Conventional treatment technologies to remove the pollutants from wastewater are usually costly, time-consuming, environmentally destructive, and mostly inefficient. Phytoremediation is a cost-effective green emerging technology with long-lasting applicability. The selection of plant species is the most significant aspect for successful phytoremediation. Aquatic plants hold steep efficiency for the removal of organic and inorganic pollutants. Water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes) and Duck weed (Lemna minor) along with some other aquatic plants are prominent metal accumulator plants for the remediation of heavy-metal polluted water. The phytoremediation potential of the aquatic plant can be further enhanced by the application of innovative approaches in phytoremediation. A summarizing review regarding the use of aquatic plants in phytoremediation is gathered in order to present the broad applicability of phytoremediation.
Collapse
|
20
|
de Alkimin GD, Paisio C, Agostini E, Nunes B. Phytoremediation processes of domestic and textile effluents: evaluation of the efficacy and toxicological effects in Lemna minor and Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4423-4441. [PMID: 31832946 DOI: 10.1007/s11356-019-07098-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Phytoremediation has been proposed as a potential biotechnological strategy to remediate effluents before their release into the environment. The use of common aquatic plant species, such as macrophytes (e.g., Lemna spp.) as a cleanup solution has been proposed decades ago. However, the effectiveness of such processes must be assessed by analyzing the toxicity of resulting effluents, for the monitoring of wastewater quality. To attain this purpose, this work intended to quantify the efficacy of a Lemna-based wastewater phytoremediation process, by analyzing toxicological effects of domestic and textile effluents. The toxic effects were measured in Lemna minor (same organisms used in the phytoremediation process, by quantifying toxicological endpoints such as root length, pigment content, and catalase activity) and by quantifying individual parameters of Daphnia magna (immobilization, reproduction, and behavior analysis). Phytoremediation process resulted in a decrease of chemical oxygen demand in both effluents and in an increase in root length of exposed plants. Moreover, textile effluent decreased pigments content and increased catalase activity, while domestic effluent increased the anthocyanin content of exposed plants. D. magna acute tests allowed calculating a EC50 and Toxic Units interval of 53.82-66.89%/1.85-1.49, respectively, to raw textile effluent; however, it was not possible to calculate these parameters for raw and treated domestic effluent (RDE and TDE). Therefore, in general, the acute toxicity of effluent toward D. magna was null for RDE, and mild for the treated textile effluent (TTE), probably due to the effect of phytoremediation. Exposure to textile effluents (raw and treated) increased the total number of neonates of D. magna and, in general, both textile effluents decreased D. magna distance swim. Moreover, although both effluents were capable of causing morphological and physiological/biochemical alterations in L. minor plants, organisms of this species were able to survive in the presence of both effluents and to remediate them.
Collapse
Affiliation(s)
- Gilberto Dias de Alkimin
- Departamento de Biologia, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Cintia Paisio
- Department of Molecular Biology, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Department of Molecular Biology, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Bruno Nunes
- Departamento de Biologia, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
21
|
Sun Y, Gao P, Ding N, Zou X, Chen Y, Li T, Cuiting W, Xu X, Chen T, Ruan H. Feasible Green Strategy for the Quantitative Bioaccumulation of Heavy Metals by Lemna minor: Application of the Self-Thinning Law. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:282-287. [PMID: 31858152 DOI: 10.1007/s00128-019-02772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
This study involved the development of mathematical linear regression models to describe the relationships between mean plant biomass (M) and population density (D), M and frond diameter (L), frond numbers (N) and L of Lemna minor under different initial population densities (3200, 4450, and 6400 plants/m2), respectively, from the perspective of the self-thinning law. Our results revealed that the value of the allometric exponents for M and D were - 3/2. Further, the concentrations of Zn, Pb, Cu, Fe, and Ni accumulated in L. minor plants were 0.86, 0.32, 0.36, 0.62, and 0.39 mg/kg, respectively. Based on these developed equations and the heavy metal accumulations by L. minor, the phytoremediation capacity of L. minor was quantified via its frond diameters. Overall, the present study provides a cost-effective green method for managing the phytoremediation of heavy metal-contaminated aquatic environments.
Collapse
Affiliation(s)
- Yuan Sun
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Peike Gao
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, People's Republic of China
| | - Ning Ding
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, People's Republic of China
| | - Xiaoming Zou
- Department of Environmental Science, University of Puerto Rico, P.O. Box 70377, San Juan, PR, 00936-8377, USA
| | - Yiliang Chen
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Taihua Li
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wang Cuiting
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xuan Xu
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Tingting Chen
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Honghua Ruan
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
22
|
Su C, Jiang Y, Yang Y, Zhang W, Xu Q. Responses of duckweed (Lemna minor L.) to aluminum stress: Physiological and proteomics analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:127-140. [PMID: 30529611 DOI: 10.1016/j.ecoenv.2018.11.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Aluminum (Al) is commonly considered an abiotic stress factor under acidic conditions. Duckweed (Lemna minor L.) has wide application in ecotoxicological research as a model organism and, in this study, its response to Al bioaccumulation was evaluated at morphological, physiological and proteomic levels. The Al accumulation in L. minor was accompanied by chlorosis and growth inhibition. Overproduction of superoxide and hydrogen peroxide, and decreased chlorophyll and protein contents, suggested that Al exposure induced oxidative stress. Inhibition of photosynthesis was evident in a significant decrease in maximum photosystem II quantum yield. There were 261 proteins, with significant changes in expression, successfully identified and quantified through isobaric tags for relative and absolute quantification (iTRAQ) analysis. Among the KEGG pathway enrichment proteins, those related to the citrate cycle and amino acid metabolism were predominantly up-regulated, whereas those associated with energy metabolism and glyoxylate and dicarboxylate metabolism were predominantly down-regulated. In addition, antioxidant enzyme related proteins played an important role in the response of L. minor to Al. The western blot analysis further validated the changes in photosynthetic related proteins. These results provide comprehensive insights into the physiological and molecular mechanisms of Al toxicity and tolerance in L. minor.
Collapse
Affiliation(s)
- Chunlei Su
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yaru Yang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Qinsong Xu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
23
|
Varga M, Horvatić J, Barišić L, Lončarić Z, Dutour Sikirić M, Erceg I, Kočić A, Štolfa Čamagajevac I. Physiological and biochemical effect of silver on the aquatic plant Lemna gibba L.: Evaluation of commercially available product containing colloidal silver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:52-62. [PMID: 30521985 DOI: 10.1016/j.aquatox.2018.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
This paper aims to evaluate the effects of a product containing colloidal silver in the aquatic environment, using duckweed Lemna gibba as a model plant. Therefore, growth parameters, photosynthetic pigments content and protein content as physiological indices were evaluated. Changes in the content of non-enzymatic antioxidants and activity of several antioxidant enzymes, alongside with the accumulation of hydrogen peroxide and lipid peroxidation end-products were assessed to explore the potential of colloidal silver to induce oxidative stress. The commercially available colloidal silver product contained a primary soluble form of silver. The treatment with colloidal silver resulted in significant physiological and biochemical changes in L. gibba plants and a consequent reduction of growth. Accumulation of silver caused altered nutrient balance in the plants as well as a significant decrease in photosynthetic pigments content and protein concentration. The antioxidative response of L. gibba plants to treatment with colloidal silver was inadequate to protect the plants from oxidative stress caused by metal accumulation. Silver caused concentration-dependent and time-dependent hydrogen peroxide accumulation as well as the elevation of lipid peroxidation levels in L. gibba plants. The use of commercially available products containing colloidal silver, and consequent accumulation of silver, both ionic and nanoparticle form in the environment, represents a potential source of toxicity to primary producers in the aquatic ecosystem.
Collapse
Affiliation(s)
- Martina Varga
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Janja Horvatić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Lara Barišić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Zdenko Lončarić
- Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Ulica kralja Petra Svačića 1d, HR-31000, Osijek, Croatia
| | | | - Ina Erceg
- Rudjer Rošković Institute, Bijenička ulica 54, HR-10000, Zagreb, Croatia
| | - Aleksandra Kočić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Ivna Štolfa Čamagajevac
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000, Osijek, Croatia.
| |
Collapse
|
24
|
Abstract
Phytoextraction of zinc, copper, lead, iron, and nickel from landfill leachate by duckweed (L. minor) was investigated every 3 days over a period of 2 weeks. Bioconcentration factor and removal efficiency were also calculated. Results of this study proved that L. minor significantly reduced the concentration of heavy metals in landfill leachate. Removal efficiency of L. minor, for all the metals, from landfill leachate was more than 70% with the maximum value for copper (91%). Reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) was observed by 39% and 47%, respectively. However, other physiochemical parameters like pH, total suspended solids, (TSS) and total dissolved solids (TDS) were reduced by 13%, 33%, and 41%, respectively. The value of bioconcentration factor (BCF) was less than 1 with the maximum figure for copper (0.84) and lead (0.81), showing that the plant is a moderate accumulator for these heavy metals. Duckweed (L. minor) appeared as a sustainable alternative candidate and is recommended for the treatment of landfill leachate waste water contaminants.
Collapse
|
25
|
Zicari MA, d'Aquino L, Paradiso A, Mastrolitti S, Tommasi F. Effect of cerium on growth and antioxidant metabolism of Lemna minor L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:536-543. [PMID: 30077150 DOI: 10.1016/j.ecoenv.2018.07.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 05/23/2023]
Abstract
An increasing input rate of rare earth elements in the environment is expected because of the intense extraction of such elements form their ores to face human technological needs. In this study Lemna minor L. plants were grown under laboratory conditions and treated with increasing concentrations of cerium (Ce) ions to investigate the effects on plant growth and antioxidant systems. The growth increased in plants treated with lower Ce concentrations and reduced in plants treated with higher concentrations, compared to control plants. In plants treated with higher Ce concentrations lower levels of chlorophyll and carotenoid and the appearance of chlorotic symptoms were also detected. Increased levels of hydrogen peroxide, antioxidant metabolites and antioxidant activity confirmed that higher Ce concentrations are toxic to L. minor. Ce concentration in plant tissues was also determined and detectable levels were found only in plants grown on Ce-supplemented media. The use of duckweed plants as a tool for biomonitoring of Ce in freshwater is discussed.
Collapse
Affiliation(s)
| | - Luigi d'Aquino
- ENEA Portici Research Centre, Piazzale E. Fermi 1, 80055 Portici, Italy
| | - Annalisa Paradiso
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | | | - Franca Tommasi
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
26
|
Saraswat S, Rai DJPN. Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:876-884. [PMID: 29873544 DOI: 10.1080/15226514.2018.1438359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present study assessed Zn, Cr, Cd, and Pb removal efficiency of Colocasia esculenta, Hydrilla verticillata, Phragmitis australis, Typha latifolia, and Spirodella polyrhiza from sewage-mixed industrial effluent. The fresh/dry weight and relative growth rate of each macrophyte decreased with increasing effluent concentration. H. verticillata and C. esculenta exhibited better growth at 50% effluent over control. The maximum Zn, Cd, and Pb accumulation (1008.23, 28.03, and 483.55 mg/kg dry wt., respectively) was recorded in C. esculenta, whereas Cr (114.48 mg/kg dry wt.) in H. verticillata at 100% effluent. Metal accumulation in roots of all plants species was higher (≥50%) initially with increasing effluent concentration and later transferred to shoots. All plants exhibited BCF >1.0 for all heavy metals, highest being for Zn (91.2) and Cd (75.2) in H. verticillata, for Cr (97.9) and Pb (103) in C. esculenta. Except S. polyrhhiza, all other plants exhibited TF <1.0. Maximum removal efficiency of Zn was 82.8% by H. verticillata, whilst that of Cr, Cd, and Pb by C. esculenta at 50% effluent, demonstrating wide applicability of H. verticillata and C. esculenta for treatment of mixed industrial effluent having heavy metals.
Collapse
Affiliation(s)
- Shweta Saraswat
- a Environmental Sciences, College of Basic Science & Humanities, G. B. Pant University of Agriculture and Technology , U. S. Nagar , Uttarakhand , India
| | - Dr J P N Rai
- b Environmental Science, College of Basic Science & Humanities, G. B. Pant University of Agriculture and Technology , Pantnagar, Udham Singh Nagar , Uttarakhand , India
| |
Collapse
|
27
|
Basiglini E, Pintore M, Forni C. Effects of treated industrial wastewaters and temperatures on growth and enzymatic activities of duckweed (Lemna minor L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:54-59. [PMID: 29407738 DOI: 10.1016/j.ecoenv.2018.01.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 06/07/2023]
Abstract
The efficacy of the removal of contaminants from wastewater depends on physico-chemical properties of pollutants and the efficiency of treatment plant. Sometimes, low amounts of toxic compounds can be still present in the treated sewage. In this work we considered the effects of contaminant residues in treated wastewaters and of temperatures on Lemna minor L. Treated effluent waters were collected, analyzed and used as duckweed growth medium. In order to better understand the effects of micropollutants and seasonal variation, the plants were grown under ambient conditions for seven days in summer and winter. Relative growth rate, pigments and phenolic compounds concentrations were determined, as well as the activities of catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (G-POD) and polyphenol oxidase (PPO). The pollutant concentrations varied in the two seasons, depending on the industrial and municipal activities and efficiency of treatments. Treated waters contained heavy metals, nitrogenous and phosphorus compounds, surfactants and hydrocarbons. Compared to the control, duckweed growth of treated plants decreased by 25% in summer, while in the winter due to the lower temperatures and the presence of pollutants was completely impeded. The amounts of photosynthetic pigments of treated plants were not significantly affected in the summer, while they were higher than the control in the winter when the effluent had a high nitrogen amount. High CAT activity was registered in both seasons. Treated plants had significantly lower APX activity in the summer (53%) and winter (59%) respect to the controls. The observed inhibition of the peroxidase activities in the exposed plants, confirms the controversy existing in the literature about the variability of enzymatic response in stress condition.
Collapse
Affiliation(s)
- E Basiglini
- Dipartmento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - M Pintore
- Dipartmento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - C Forni
- Dipartmento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy.
| |
Collapse
|
28
|
Azizullah A, Shakir SK, Shoaib S, Bangash H, Taimur N, Murad W, Daud MK. Ecotoxicological evaluation of two anti-dandruff hair shampoos using Lemna minor. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:268. [PMID: 29619567 DOI: 10.1007/s10661-018-6636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Hair shampoos, a mixture of various organic and organic compounds, are commonly used personnel care products. Since shampoos are used in almost every household and beauty shop, their ingredients are common components of domestic and municipal wastewater. However, studies on the effect of shampoos to aquatic plants can hardly be found in literature. Therefore, the present study was conducted to investigate the phytotoxic effects of two commonly used anti-dandruff shampoos (named here AD 1 and AD 2) using Lemna minor as a biotest organism. For toxicity assessment, frond number, fresh and dry biomass, and light-harvesting pigments (chlorophyll a, b and total carotenoids) of Lemna were used as end points. Five different concentrations (0.001, 0.01, 0.1, 1, and 5%) of each shampoo were tested in comparison to the control. At lower concentrations of shampoos, some minor and non-significant stimulatory effects were observed in some parameters, but at concentrations above 0.01% both the shampoos significantly inhibited almost all parameters in Lemna. The EC50 values obtained for frond number were 0.034 and 0.11% for AD 1 and AD 2, respectively. The fresh biomass gave EC50 values of 0.07 and 0.066% for AD 1 and AD 2, respectively. Based on the preset study, it can be speculated that shampoo contamination at higher concentrations in water bodies can be a threat to aquatic organisms. This study can be used as a baseline to further investigate shampoo toxicity using other species and to explore the mechanism of shampoo toxicity in aquatic plants.
Collapse
Affiliation(s)
- Azizullah Azizullah
- Department of Botany, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| | - Shakirullah Khan Shakir
- Department of Botany, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Shahana Shoaib
- Department of Botany, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Halima Bangash
- Department of Botany, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Nadia Taimur
- Department of Botany, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Khan Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| |
Collapse
|
29
|
Drobniewska A, Wójcik D, Kapłan M, Adomas B, Piotrowicz-Cieślak A, Nałęcz-Jawecki G. Recovery of Lemna minor after exposure to sulfadimethoxine irradiated and non-irradiated in a solar simulator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27642-27652. [PMID: 27495922 DOI: 10.1007/s11356-016-7174-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Sulfonamides are the second most widely used group of veterinary antibiotics which are often detected in the environment. They are eliminated from freshwaters mainly through photochemical degradation. The toxicity of sulfadimethoxine (SDM) was evaluated with the use of Lemna minor before and after 1- and 4-h irradiation in a SunTest CPS+ solar simulator. Eight endpoints consisting of: number and total area of fronds, fresh weight, chlorophylls a and b, carotenoids, activity of catalase and guaiacol peroxidase, and protein content were determined. The total frond area and chlorophyll b content were the most sensitive endpoints with EC50 of 478 and 554 μg L-1, respectively. The activity of guaiacol peroxidase and catalase increased at SDM concentrations higher than 125 and 500 μg L-1, respectively. The SDM photodegradation rate for first order kinetics and the half-life were 0.259 h-1 and 2.67 h, respectively. The results show that the toxicity of irradiated solutions was caused by SDM only, and the photoproducts appeared to be either non-toxic or much less toxic to L. minor than the parent compound. To study the recovery potential of L. minor, after 7 days exposure in SDM solutions, the plants were transferred to fresh medium and incubated for the next 7 days. L. minor has the ability to regenerate, but a 7-day recovery phase is not sufficient for it to return to an optimal physiological state.
Collapse
Affiliation(s)
- Agata Drobniewska
- Department of Environmental Health Sciences, Medical University of Warsaw, 1 Banacha Str., 02-097, Warsaw, Poland.
| | - Dorota Wójcik
- Department of Environmental Health Sciences, Medical University of Warsaw, 1 Banacha Str., 02-097, Warsaw, Poland
| | - Monika Kapłan
- Department of Environmental Health Sciences, Medical University of Warsaw, 1 Banacha Str., 02-097, Warsaw, Poland
| | - Barbara Adomas
- Department of Air Protection and Environmental Toxicology, University of Warmia and Mazury in Olsztyn, 17 Prawocheńskiego Str., 10-726, Olsztyn, Poland
| | - Agnieszka Piotrowicz-Cieślak
- Department of Plant Physiology and Biotechnology, University of Warmia and Mazury in Olsztyn, 1A Oczapowskiego Str., 10-718, Olsztyn, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Medical University of Warsaw, 1 Banacha Str., 02-097, Warsaw, Poland
| |
Collapse
|
30
|
Zhao Z, Shi H, Kang X, Liu C, Chen L, Liang X, Jin L. Inter- and intra-specific competition of duckweed under multiple heavy metal contaminated water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:216-223. [PMID: 28985588 DOI: 10.1016/j.aquatox.2017.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/10/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
The influences of intra- and inter-species competition on ecosystems are poorly understood. Lemna aequinoctialis and Spirodela polyrhiza were used to assess the effects of exposure to different concentrations of multiple heavy metals (copper-cadmium-zinc), when the plants were grown in mixed- or mono-culture. Parameters assessed included relative growth rate (RGR), content of chlorophyll, glutathione (GSH), malondialdehyde (MDA), as well as the activity of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD). Inter-specific competition was affected by metal concentration, with results indicating that inter-specific competition significantly affected duckweed growth and metal uptake in different heavy metal exposure conditions. Inter-specific competition increased growth rate of duckweed under high metal concentrations, although when compared with intra-specific competition, it caused no obvious differences under low metal concentrations. The growth of L. aequinoctialis was further increased in mixed culture when exposed to high metal concentrations, with inter-specific competition increasing the content of cadmium and zinc, while decreasing copper content of L. aequinoctialis compared with under intra-specific conditions. Conversely, inter-specific competition increased the content of copper and cadmium of S. polyrhiza, without causing obvious differences in zinc accumulation under high ambient concentrations. Under high metal conditions, inter-specific competition increased antioxidant enzyme activities in duckweed species, increasing resistance to heavy metals. Results show that inter-specific competition makes duckweed develop mechanisms to increase fitness and survival, such as enhancement of antioxidant enzyme activities, rather than limiting metal uptake when exposed to high concentrations of multiple metals.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Life Sciences, Hebei University, 071002 Baoding, Hebei, China; Postdoctoral Research Station of Biology, College of Life Sciences, Hebei University, 071002 Baoding, Hebei, China.
| | - Huijuan Shi
- Museum, Hebei University, 071002 Baoding, Hebei, China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, 071002 Baoding, Hebei, China.
| | - Cunqi Liu
- College of Life Sciences, Hebei University, 071002 Baoding, Hebei, China.
| | - Lingci Chen
- College of Life Sciences, Hebei University, 071002 Baoding, Hebei, China.
| | - Xiaofei Liang
- College of Life Sciences, Hebei University, 071002 Baoding, Hebei, China.
| | - Lei Jin
- College of Life Sciences, Hebei University, 071002 Baoding, Hebei, China.
| |
Collapse
|
31
|
Sallah-Ud-Din R, Farid M, Saeed R, Ali S, Rizwan M, Tauqeer HM, Bukhari SAH. Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17669-17678. [PMID: 28600794 DOI: 10.1007/s11356-017-9290-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 05/14/2023]
Abstract
Phytoextraction is a cost-effective and eco-friendly technique for the removal of pollutants, mainly heavy metal(loids) especially from polluted water and metal-contaminated soils. The phytoextraction of heavy metals is, in general, limited due to the low availability of heavy metals in the growth medium. Organic chelators can help to improve the phytoextraction by increasing metal mobility and solubility in the growth medium. The present research was carried out to examine the possibility of citric acid (CA) in improving chromium (Cr) phytoextraction by Lemna minor (duckweed). For this purpose, healthy plants were collected from nearby marsh and grown in hydroponics under controlled conditions. Initial metal contents of both marsh water and plant were measured along with physico-chemical properties of the marsh water. Different concentrations of Cr and CA were applied in the hydroponics in different combinations after defined intervals. Continuous aeration was supplied and pH maintained at 6.5 ± 0.1. Results showed that increasing concentration of Cr significantly decreased the plant biomass, photosynthetic pigments, leaf area, and antioxidant enzyme activities (like catalase, ascorbate peroxidase, superoxide dismutase, peroxidase). Furthermore, Cr stress increased the Cr concentrations, electrolyte leakage, hydrogen peroxide, and malondialdehyde contents in plants. The addition of CA alleviated the Cr-induced toxicity in plants and further enhanced the Cr uptake and its accumulation in L. minor. The addition of CA enhanced the Cr concentration in L. minor by 6.10, 26.5, 20.5, and 20.2% at 0, 10, 100, and 200 μM Cr treatments, respectively, compared to the respective Cr treatments without CA. Overall, the results of the present study showed that CA addition may enhance the Cr accumulation and tolerance in L. minor by enhancing the plant growth and activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Rasham Sallah-Ud-Din
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan.
| | - Rashid Saeed
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Hafiz Muhammad Tauqeer
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | | |
Collapse
|
32
|
Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:587-599. [PMID: 27474848 DOI: 10.1016/j.jhazmat.2016.07.053] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 05/12/2023]
Abstract
Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Environmental Sustainability, Block C07, Level 2, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia.
| | - Shazwin Mat Taib
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia.
| | - Mohd Fadhil Md Din
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Environmental Sustainability, Block C07, Level 2, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia
| | - Farrah Aini Dahalan
- Water Research Group, The School of Environmental Engineering, Universiti Malaysia Perlis (UniMAP), Kompleks Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia
| | - Hesam Kamyab
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Environmental Sustainability, Block C07, Level 2, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia
| |
Collapse
|
33
|
Wang F, Liu D, Qu H, Chen L, Zhou Z, Wang P. A full evaluation for the enantiomeric impacts of lactofen and its metabolites on aquatic macrophyte Lemna minor. WATER RESEARCH 2016; 101:55-63. [PMID: 27258616 DOI: 10.1016/j.watres.2016.05.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Pesticide pollution of surface water represents a considerable danger for the aquatic plants which play very crucial roles in aquatic system such as oxygen production, nutrient cycling, water quality controlling and sediment stabilization. In this work, the toxic effects of the chiral herbicide lactofen and its three metabolites (desethyl lactofen, acifluorfene and amino acifluorfene) to the aquatic plant Lemna minor (L. minor) on enantiomeric level were evaluated. The influences on growth rate, fresh weight, content of photosynthetic pigment, protein and malondialdehyde (MDA) and the activities of antioxidant defense enzymes (catalase (CAT) and superoxide dismutase (SOD)) were measured after 7 days of exposure. L. minor growth was inhibited in the order of (S)-desethyl lactofen > racemic-desethyl lactofen > (R)-desethyl lactofen > racemic-lactofen > (S)-lactofen > (R)-lactofen > acifluorfene > amino acifluorfene, and the IC50 (7d) values showed desethyl lactofen was the most powerful compound which was about twice as toxic as lactofen. The contents of chlorophylls (Chl) and carotenoids (Car) were significantly reduced by the chemicals, while, the levels of protein, MDA and the activity of CAT and SOD enzymes increased in most cases. The obtained results revealed that lactofen and its metabolites had an undesirable effect on L. minor, in terms of physiological and biochemical aspects. Besides, enantioselective toxicity of lactofen and desethyl lactofen to L. minor was observed. The S-enantiomer of desethyl lactofen was more toxic than the corresponding R-enantiomer. Furthermore, racemic lactofen was more toxic than the individual enantiomers. The side effects of pesticide metabolites and the enantioselectivity should be considered in developing optically pure products and risk assessment.
Collapse
Affiliation(s)
- Fang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Han Qu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Li Chen
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
34
|
Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A. Phytoremediation potential of Lemna minor L. for heavy metals. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:25-32. [PMID: 26114480 DOI: 10.1080/15226514.2015.1058331] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phytoremediation potential of L. minor for cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) from two different types of effluent in raw form was evaluated in a glass house experiment using hydroponic studies for a period of 31 days. Heavy metals concentration in water and plant sample was analyzed at 3, 10, 17, 24, and 31 day. Removal efficiency, metal uptake and bio-concentration factor were also calculated. Effluents were initially analyzed for physical, chemical and microbiological parameters and results indicated that municipal effluent (ME) was highly contaminated in terms of nutrient and organic load than sewage mixed industrial effluent (SMIE). Results confirmed the accumulation of heavy metals within plant and subsequent decrease in the effluents. Removal efficiency was greater than 80% for all metals and maximum removal was observed for nickel (99%) from SMIE. Accumulation and uptake of lead in dry biomass was significantly higher than other metals. Bio-concentration factors were less than 1000 and maximum BCFs were found for copper (558) and lead (523.1) indicated that plant is a moderate accumulator of both metals. Overall, L. minor showed better performance from SMIE and was more effective in extracting lead than other metals.
Collapse
Affiliation(s)
- Syeda Huma Bokhari
- a Department of Plant and Environmental Protection, PARC Institute of Advanced Studies in Agriculture, National Agricultural Research Center , Islamabad , Pakistan
| | - Iftikhar Ahmad
- a Department of Plant and Environmental Protection, PARC Institute of Advanced Studies in Agriculture, National Agricultural Research Center , Islamabad , Pakistan
| | - Muhammad Mahmood-Ul-Hassan
- b Department of Natural Resource Management, PARC Institute of Advanced Studies in Agriculture, National Agricultural Research Center , Islamabad , Pakistan
| | - Ashiq Mohammad
- a Department of Plant and Environmental Protection, PARC Institute of Advanced Studies in Agriculture, National Agricultural Research Center , Islamabad , Pakistan
| |
Collapse
|
35
|
Van Hoeck A, Horemans N, Van Hees M, Nauts R, Knapen D, Vandenhove H, Blust R. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 150:195-202. [PMID: 26348936 DOI: 10.1016/j.jenvrad.2015.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 05/22/2023]
Abstract
The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h(-1) up to 1.5 Gy h(-1). Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h(-1). A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR10) was estimated at 95 ± 7 mGy h(-1), followed by 153 ± 13 mGy h(-1) and 169 ± 12 mGy h(-1) on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h(-1), antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h(-1) which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic stress conditions can induce endoreduplication events. Here an increase in ploidy level was observed at the highest tested dose rate. In conclusion, the results revealed that in plants several mechanisms and pathways interplay to cope with radiation induced stress.
Collapse
Affiliation(s)
- Arne Van Hoeck
- SCK•CEN, Boeretang 200, 2400 Mol, Belgium; Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Nele Horemans
- SCK•CEN, Boeretang 200, 2400 Mol, Belgium; Centre for Environmental Research, University of Hasselt, Universiteitslaan 1, 3590 Diepenbeek, Belgium
| | | | | | - Dries Knapen
- Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | | | - Ronny Blust
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
36
|
Zhao Z, Shi H, Duan D, Li H, Lei T, Wang M, Zhao H, Zhao Y. The influence of duckweed species diversity on ecophysiological tolerance to copper exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 164:92-98. [PMID: 25938979 DOI: 10.1016/j.aquatox.2015.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
In excess, copper is toxic to plants. In the plants, Landoltia punctata and Lemna minor grown in mixed and monoculture, the effects of exposure to varying concentrations of copper (0.01, 0.1, 0.5 and 1mgL(-1) Cu) for seven days were assessed by measuring changes in the chlorophyll, protein and malondialdehyde (MDA) content, catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity. According to results, Cu levels in plants increased with increasing Cu concentration. The level of photosynthetic pigments and crude proteins decreased only upon exposure to high Cu concentrations. However, the starch and malondialdehyde (MDA) content increased. These results suggested a stress alleviation that was possibly the result of antioxidants such as CAT and SOD, the activities of which increased with increasing Cu levels. APX activity increased in L. punctata, but decreased in L. minor, under monoculture or mixed culture conditions. In addition, the duckweed in mixed culture exhibited increased antioxidant enzyme activities which provide increased resistance to copper in moderate copper concentrations. As the copper concentration increased, the duckweed in the mixed culture limited the uptake of copper to avoid toxicity.
Collapse
Affiliation(s)
- Zhao Zhao
- School of Basic Medical Sciences, Guiyang Medical University, 550000 Guiyang, Guizhou, China; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, 610064 Chengdu, Sichuan, China; Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China.
| | - Huijuan Shi
- School of Basic Medical Sciences, Guiyang Medical University, 550000 Guiyang, Guizhou, China.
| | - Dongzhu Duan
- School of Basic Medical Sciences, Guiyang Medical University, 550000 Guiyang, Guizhou, China.
| | - Hongmei Li
- School of Basic Medical Sciences, Guiyang Medical University, 550000 Guiyang, Guizhou, China.
| | - Tingwen Lei
- School of Basic Medical Sciences, Guiyang Medical University, 550000 Guiyang, Guizhou, China.
| | - Maolin Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, 610064 Chengdu, Sichuan, China.
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, China.
| | - Yun Zhao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, 610064 Chengdu, Sichuan, China.
| |
Collapse
|
37
|
Santos CLV, Pourrut B, Ferreira de Oliveira JMP. The use of comet assay in plant toxicology: recent advances. Front Genet 2015; 6:216. [PMID: 26175750 PMCID: PMC4485349 DOI: 10.3389/fgene.2015.00216] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/02/2015] [Indexed: 12/13/2022] Open
Abstract
The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g., Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage.
Collapse
Affiliation(s)
| | - Bertrand Pourrut
- Laboratoire Génie Civil et géo-Environnement - Groupe ISA Lille, France
| | - José M P Ferreira de Oliveira
- Laboratory of Biotechnology and Cytometry, Centre for Environmental and Marine Studies, University of Aveiro Aveiro, Portugal
| |
Collapse
|
38
|
Huang B, Feng M, Li D, Yang Y. Antagonistic joint toxicity assessment of two current-use phthalates with waterborne copper in liver of Carassius auratus using biochemical biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 116:107-112. [PMID: 25791665 DOI: 10.1016/j.ecoenv.2015.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/06/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
Di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) are two kinds of widely-used phthalates, whereas Cu (II) is a common valence state of copper. They have been ubiquitously detected in the aquatic environment, but information on their joint toxicity on aquatic organisms is scarce. In this study, we evaluated the combined effects of copper and these two phthalates to the goldfish (Carassius auratus) by detecting the antioxidant responses in liver after exposure for 7 and 21 days. The exposure concentrations were in a range relevant to their levels in the natural aquatic environment. The results indicated that DBP, DEHP and Cu (II) can affect the antioxidant status in fish liver, evidenced by the significant alterations of antioxidant defenses (superoxide dismutase, catalase, glutathione) and malondialdehyde. Antagonistic effects were found in the joint toxicity of Cu (II) and DBP or DEHP using the integrated biomarker response (IBR) index. These findings have important implications in the risk assessments of phthalates mixed with some heavy metals in the aquatic environment.
Collapse
Affiliation(s)
- Boyang Huang
- School of Environmental & Safety Engineering, Changzhou University, Jiangsu, Changzhou 213164, PR China
| | - Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210046, PR China
| | - Dinglong Li
- School of Environmental & Safety Engineering, Changzhou University, Jiangsu, Changzhou 213164, PR China.
| | - Yan Yang
- School of Environmental & Safety Engineering, Changzhou University, Jiangsu, Changzhou 213164, PR China
| |
Collapse
|
39
|
Factori R, Leles SM, Novakowski GC, Rocha CLSC, Thomaz SM. Toxicity and genotoxicity of water and sediment from streams on dotted duckweed (Landoltia punctata). BRAZ J BIOL 2014; 74:769-78. [DOI: 10.1590/1519-6984.01013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/16/2013] [Indexed: 11/22/2022] Open
Abstract
Most rivers are used as a source to supply entire cities; the quality of water is directly related to the quality of tributaries. Unfortunately men have neglected the importance of streams, which receive domestic and industrial effluents and transport nutrients and pesticides from rural areas. Given the complexity of the mixtures discharged into these water bodies, this study aimed to evaluate the quality of water and sediment of ten tributaries of Pirapó River, in Maringá, Paraná State, Brazil. To this end, the free-floating macrophyte Landoltia punctata (G. Meyer) Les & D.J.Crawford was used as test organism in microcosm, and the toxicity of water and sediment samples was evaluated by the relative growth rate, dry/fresh biomass ratio, and genotoxic effects (comet assay). Samples of water and sediment of each stream were arranged in microcosms with L. punctata. Seven days later, plants were collected for analysis. Nutrient levels were higher than the reference location, indicating eutrophication, but the results indicated a toxic effect for only three streams, and a genotoxic effect for all streams.
Collapse
Affiliation(s)
- R Factori
- Universidade Estadual de Maringá – UEM, Brazil
| | - SM Leles
- Universidade Estadual de Maringá – UEM, Brazil
| | - GC Novakowski
- Universidade Estadual de Maringá – UEM, Brazil; Faculdade Ingá, Brazil
| | - CLSC Rocha
- Universidade Estadual de Maringá – UEM, Brazil
| | - SM Thomaz
- Universidade Estadual de Maringá – UEM, Brazil
| |
Collapse
|
40
|
Radić S, Vujčić V, Cvetković Ž, Cvjetko P, Oreščanin V. The efficiency of combined CaO/electrochemical treatment in removal of acid mine drainage induced toxicity and genotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:84-89. [PMID: 23895778 DOI: 10.1016/j.scitotenv.2013.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
Acid mine drainage (AMD) is a by-product of the mining industry that has a detrimental effect on aquatic plant and animal life due to high load of heavy metals and sulfates. In the present study, the toxic and genotoxic potential of AMD prior to and following combination of neutralization/electrocoagulation processes was evaluated using several bioassays and selected parameters. Regardless of pH correction of AMD prior to Daphnia bioassay, high acute toxicity was observed in Daphnia magna. The mine leachate also induced strong phyto-, cyto- and genotoxicity to Allium cepa roots. Short term exposure to AMD inhibited duckweed growth and chlorophyll a content and simultaneously promoted lipid peroxidation and DNA damage despite duckweed capability to upregulate antioxidative defense mechanisms. The results show that observed (geno)toxicity could be related to oxidative stress most probably induced by toxic metal action. However, influence of low pH as a contributing factor in the phytotoxicity of AMD cannot be excluded. The application of combined treatment eliminated genotoxicity and was highly efficient in reducing toxicity of AMD. Thus, the method seems to be suitable for treatment of AMD waters enabling their safe discharge to an aquatic environment.
Collapse
Affiliation(s)
- Sandra Radić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6/III, HR-10000, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
41
|
Gavina A, Antunes SC, Pinto G, Claro MT, Santos C, Gonçalves F, Pereira R. Can physiological endpoints improve the sensitivity of assays with plants in the risk assessment of contaminated soils? PLoS One 2013; 8:e59748. [PMID: 23565165 PMCID: PMC3615127 DOI: 10.1371/journal.pone.0059748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/17/2013] [Indexed: 11/19/2022] Open
Abstract
Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857-1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The results suggest that these parameters could improve the sensitivity of the standard assays.
Collapse
Affiliation(s)
- Ana Gavina
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
- CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Sara C. Antunes
- CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Glória Pinto
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
- CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Maria Teresa Claro
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
- CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Conceição Santos
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
- CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Fernando Gonçalves
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
- CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Ruth Pereira
- CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| |
Collapse
|
42
|
Khataee AR, Fathinia M, Naseri A, Hasanzadeh A, Vafaei F, Emami A, Hanifehpour Y, Joo SW. Modeling and optimization of simultaneous photocatalysis of three dyes on ceramic-coated TiO2 nanoparticles using chemometrics methods: phytotoxicological assessment during degradation process. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1038-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Marchand L, Mench M, Marchand C, Le Coustumer P, Kolbas A, Maalouf JP. Phytotoxicity testing of lysimeter leachates from aided phytostabilized Cu-contaminated soils using duckweed (Lemna minor L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 410-411:146-153. [PMID: 22000292 DOI: 10.1016/j.scitotenv.2011.09.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Abstract
Aided phytostabilization of a Cu-contaminated soil was conducted at a wood preservation site located in southwest France using outdoor lysimeters to study leaching from the root zone and leachate ecotoxicity. The effects of Cu-tolerant plants (Agrostis gigantea L. and Populus trichocarpa x deltoides cv. Beaupré) and four amendments were investigated with seven treatments: untreated soil without plants (UNT) and with plants (PHYTO), and planted soils amended with compost (OM, 5% per air-dried soil weight), dolomitic limestone (DL, 0.2%), Linz-Donawitz slag (LDS, 1%), OM with DL (OMDL), and OM with 2% of zerovalent iron grit (OMZ). Total Cu concentrations (mgkg(-1)) in lysimeter topsoil and subsoil were 1110 and 111-153, respectively. Lysimeter leachates collected in year 3 were characterized for Al, B, Ca, Cu, Fe, Mg, Mn, P, K and Zn concentrations, free Cu ions, and pH. Total Cu concentration in leachates (mgL(-1)) ranged from 0.15±0.08 (LDS) to 1.95±0.47 (PHYTO). Plants grown without soil amendment did not reduce total Cu and free Cu ions in leachates. Lemna minor L. was used to assess the leachate phytotoxicity, and based on its growth, the DL, LDS, OM and OMDL leachates were less phytotoxic than the OMZ, PHYTO and UNT ones. The LDS leachates had the lowest Cu, Cu(2+), Fe, and Zn concentrations, but L. minor developed less in these leachates than in a mineral water and a river freshwater. Leachate Mg concentrations were in decreasing order OMDL>DL>PHYTO=OM=LDS>UNT=OMZ and influenced the duckweed growth.
Collapse
Affiliation(s)
- Lilian Marchand
- UMR BIOGECO INRA 1202, Ecologie des Communautés, Université Bordeaux 1, Bât. B2 RDC Est, Avenue des facultés, 33405 Talence, France.
| | | | | | | | | | | |
Collapse
|
44
|
Khellaf N, Zerdaoui M. Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:1363-8. [PMID: 20680456 DOI: 10.1007/s10646-010-0522-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/14/2010] [Indexed: 05/15/2023]
Abstract
To assess the tolerance and phytoaccumulation ability of the duckweed Lemna gibba L. to copper (Cu) and nickel (Ni), the plants were exposed to different concentrations of Cu and Ni (0.1-2.0 mg/l) under laboratory conditions. The results showed that Cu and Ni were tolerated by L. gibba at concentrations ≤0.3 and ≤0.5 mg/l, respectively. However, plant growth decreased by 50% (I(50)) when the medium contained 0.45 mg Cu/l or 0.75 mg Ni/l. The observed LCI (lowest concentration causing complete inhibition) were 0.5 and 1.0 mg/l respectively in the presence of Cu and Ni. Results from metal analysis in plant biomass revealed a high accumulation of Cu (1.5 mg g(-1) DW), a low accumulation of Ni (0.5 mg g(-1) DW) within the plants and a corresponding decrease of metals in the water. The removal percentage of Cu was about 60-80%. We conclude that the duckweed L. gibba L. showed a higher accumulation potential for Cu from polluted water than Ni after 4 days of exposure.
Collapse
Affiliation(s)
- Nabila Khellaf
- Laboratory of Environmental Engineering, Faculty of Engineering, Badji Mokhtar University, PO Box 12, 23000 Annaba, Algeria.
| | | |
Collapse
|