1
|
Lorenz S, Trau FN, Ruf LC, Meinikmann K, Fisch K, Stähler M, Schenke D, Blevins HL, Heinz M. Pesticide contamination of small standing water bodies in the agricultural landscape of northeast Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179250. [PMID: 40184998 DOI: 10.1016/j.scitotenv.2025.179250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Lentic small water bodies (LSWBs) play a crucial role in global freshwater ecology. Despite their ecological importance, LSWBs are often overlooked in many conservation strategies and scientific studies. A key problem for these ecosystems is anthropogenic stress, in particular the intensive use of pesticides in agriculture. The present study aimed to investigate the extent and variability of pesticide pollution in LSWBs at large spatial and temporal scales. It aimed to identify which substances are frequently detected in these waters and which have the greatest ecotoxicological impact. The study identified eight common pesticides that were detected in low concentrations in many samples at the regional scale. Nine substances also exceeded regulatory acceptable concentration levels (RACs), indicating potential ecological risks. Nicosulfuron, a widely used herbicide in maize growing areas, posed a particular threat as it frequently exceeded its RACs and is persistent in both soil and water. The constant herbicide contamination over three years in LSWBs shown in this study will most likely lead to cascading ecosystem-level effects by changed trophic interactions and altered habitat quality. Other substances, such as chlorpyrifos and clothianidin are no longer used in agriculture, but still showed similar exceedances of RACs. The study emphasizes that LSWBs are particularly prone to continuous pesticide contamination leading to serious ecological consequences that cannot be detected by one-off sampling, which could hold equally true for LSWBs in other agricultural regions of Germany.
Collapse
Affiliation(s)
- Stefan Lorenz
- Julius Kühn Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany.
| | - Fee Nanett Trau
- Julius Kühn Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Lena C Ruf
- Julius Kühn Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Karin Meinikmann
- Julius Kühn Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Kathrin Fisch
- Julius Kühn Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Matthias Stähler
- Julius Kühn Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Detlef Schenke
- Julius Kühn Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Holly Lyon Blevins
- Julius Kühn Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Marlen Heinz
- Julius Kühn Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| |
Collapse
|
2
|
Huang Y, Guo D, Qin L, Mo L, Zhao Y. Toxic effects of eight azole fungicides on the growth, photosynthetic activity, and oxidative stress of Raphidocelis subcapitata. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1259-1271. [PMID: 40044425 DOI: 10.1093/etojnl/vgaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/14/2024] [Accepted: 12/27/2024] [Indexed: 05/02/2025]
Abstract
This study investigates the 96 hr toxicity and physiological effects of eight azole fungicides on Raphidocelis subcapitata (R. subcapitata). The findings revealed significant differences in toxicity levels among these fungicides, with the hierarchy of toxicity as follows: difenoconazole ≈ tetraconazole ≈ fuberidazole > metconazole > terrazole ≈ triflumizole > flutriafol > hymexazol. Increased concentrations of azole fungicides corresponded with decreased cellular activity and inhibited algal growth, highlighting the concentration-dependent nature of toxicity. The toxicological mechanisms involved include reduced levels of chlorophyll (Chla, Chlb) and carotenoids, disrupting the photosynthetic process. Additionally, exposure to these fungicides resulted in decreased total protein levels, increased reactive oxygen species and malondialdehyde, and elevated activity of antioxidant enzymes such as superoxide dismutase and catalase. Consequently, there was a significant rise in apoptosis rates among algal cells. These findings provide important insights for assessing the ecological impact of azole fungicides on aquatic ecosystems and aquatic life.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Dijie Guo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
- Engineering Research Center of Watershed Protection and Green Development, University of Guangxi, Guilin University of Technology, Guilin, China
| | - Lingyun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Yuqing Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
3
|
Song H, Chen WJ, Chen SF, Liu M, Si G, Zhu X, Bhatt K, Mishra S, Ghorab MA, Chen S. Unveiling the hydrolase Oph2876 mediated chlorpyrifos degradation mechanism in Pseudomonas nitroreducens and its potential for environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136570. [PMID: 39603136 DOI: 10.1016/j.jhazmat.2024.136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Chlorpyrifos contamination is a currently on-going issue with significant environmental impacts. As such, rapid and effective techniques that remove chlorpyrifos from the environment are urgently required. Here, a strain of Pseudomonas nitroreducens W-7 exhibited exceptional degradation ability towards both chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol (TCP). W-7 can effectively reduce the toxicity of chlorpyrifos and TCP towards a variety of sensitive organisms through its superior degradation capacity. W-7 demonstrated efficient soil bioremediation by removing over 50 % of chlorpyrifos (25 mg/kg) from both sterile and non-sterile soils within 5 days, with significantly reduced half-lives. Additionally, 16S rDNA high-throughput sequencing of the soil revealed that the introduction of W-7 had no significant impact on the soil microbial community. A pivotal hydrolase Oph2876 containing conserved motif (HxHxDH) and a bimetallic catalytic center was identified from W-7. Oph2876 was a heat- and alkali-resistant enzyme with low sequence similarity (< 44 %) with other reported organophosphorus hydrolases, with a better substrate affinity for hydrolysis of chlorpyrifos to TCP. The molecular docking and site-directed mutagenesis studies indicated that the amino acid residues Asp235, His214, and His282, which were associated with the conserved sequence "HxHxDH", were crucial for the activity of Oph2876. These findings contribute to a better understanding of the biodegradation mechanism of chlorpyrifos and present useful agents for the development of effective chlorpyrifos bioremediation strategies.
Collapse
Affiliation(s)
- Haoran Song
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Liu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guiling Si
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xixian Zhu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kalpana Bhatt
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI 48824, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616-8741, USA
| | - Shaohua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Wang J, Li M, Yin T, Ma X, Zhu X. Concentration-dependent effects of spinetoram on nontarget freshwater microalgae: A comparative study on Chlorella vulgaris and Microcystis aeruginosa. ENVIRONMENTAL RESEARCH 2024; 252:118755. [PMID: 38555091 DOI: 10.1016/j.envres.2024.118755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
The rising global demand for agricultural products is leading to the widespread application of pesticides, such as spinetoram, resulting in environmental pollution and ecotoxicity to nontarget organisms in aquatic ecosystems. This research focused on assessing the toxicity of spinetoram at various concentrations (0, 0.01, 0.1, 0.5, 1.0, and 3.0 mg L-1) on two common freshwater microalgae, Chlorella vulgaris and Microcystis aeruginosa, to shed light on the ecotoxicological effects of insecticides. Our findings demonstrate that M. aeruginosa is more sensitive to spinetoram than is C. vulgaris, with a concentration-dependent reduction in the growth rate observed for M. aeruginosa, whereas only the highest concentration of spinetoram adversely affected C. vulgaris. At a concentration of 0.01 mg L-1, the growth rate of M. aeruginosa unexpectedly increased beginning on day 7, indicating a potential hormetic effect. Although initial exposure to spinetoram improved the photosynthetic efficiency of both microalgae strains at all concentrations, detrimental effects became apparent at higher concentrations and with prolonged exposure. The photosynthetic efficiency of C. vulgaris recovered, in contrast to that of M. aeruginosa, which exhibited limited recovery. Spinetoram more significantly inhibited the effective quantum yield of PSII (EQY) in M. aeruginosa than in C. vulgaris. Although spinetoram is not designed to target phytoplankton, its toxicity can disrupt primary productivity and modify phytoplankton-consumer interactions via bottom-up control mechanisms. This study enhances our understanding of spinetoram's ecotoxicity and potential effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Jun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Meng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Tianchi Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaogang Ma
- School of Civil Engineering, North Minzu University, Yinchuan 750030, China
| | - Xuexia Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Brooks SJ, Gomes T, Almeida AC, Christou M, Zheng C, Shaposhnikov S, Popa DG, Georgescu F, Oancea F. An ecotoxicological assessment of a strigolactone mimic used as the active ingredient in a plant biostimulant formulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116244. [PMID: 38537480 DOI: 10.1016/j.ecoenv.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
A risk assessment on the aquatic toxicity of the plant biostimulant strigolactone mimic (2-(4-methyl-5-oxo-2,5-dihydro-furan-2-yloxy)-benzo[de]isoquinoline-1,3-dione (SL-6) was performed using a suite of standardised bioassays representing different trophic groups and acute and chronic endpoints. In freshwater, three trophic groups of algae, crustacea and fish were used. Whilst in seawater, algae (unicellular and macroalgae), Crustacea and Mollusca were employed. In addition, the genotoxicity of SL-6 was determined with the comet assessment performed on unicellular marine algae, oysters, and fish embryos. This was the first time ecotoxicity tests have been performed on SL-6. In freshwater, the lowest LOEC was measured in the unicellular algae at 0.31 mg/L SL-6. Although, similar LOEC values were found for embryo malformations and impacts on hatching rate in zebrafish (LOEC 0.31-0.33 mg/L). Consistent malformations of pericardial and yolk sac oedemas were identified in the zebrafish embryos at 0.31 mg/L. In marine species, the lowest LOEC was found for both Tisbe battagliai mortality and microalgae growth at an SL-6 concentration of 1.0 mg/L. Significant genotoxicity was observed above control levels at 0.0031 mg/L SL-6 in the unicellular algae and 0.001 mg/L SL-6 in the oyster and zebrafish larvae. When applying the simple risk assessment, based on the lowest NOECs and appropriate assessment factors, the calculated predicted no effect concentration (PNEC), for the ecotoxicity and the genotoxicity tests were 1.0 µg/L and 0.01 µg/L respectively.
Collapse
Affiliation(s)
- Steven J Brooks
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway
| | | | - Maria Christou
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway
| | | | | | - Daria G Popa
- ICECHIM, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei No. 202, Sector 6, Bucharest 060021, Romania
| | | | - Florin Oancea
- ICECHIM, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei No. 202, Sector 6, Bucharest 060021, Romania
| |
Collapse
|
6
|
Baruah P, Srivastava A, Mishra Y, Chaurasia N. Modulation in growth, oxidative stress, photosynthesis, and morphology reveals higher toxicity of alpha-cypermethrin than chlorpyrifos towards a non-target green alga at high doses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104376. [PMID: 38278501 DOI: 10.1016/j.etap.2024.104376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Considering the frequent detection of pesticides in the aquatic environment, the ecotoxicological effects of Chlorpyrifos (CHP), an organophosphate, and alpha-cypermethrin (ACM), a pyrethroid, on freshwater microalgae were compared for the first time in this study. High concentrations of both CHP and ACM significantly suppressed the growth of test microalga Graesiella emersonii (p < 0.05). The 96-h EC50 of CHP and ACM were 54.42 mg L-1 and 29.40 mg L-1, respectively. Sub-inhibitory doses of both pesticides increased ROS formation in a concentration-dependent manner, which was accompanied by changes in antioxidant enzymes activities, lipid peroxidation, and variations in photosynthetic pigment concentration. Furthermore, both pesticides influenced photosystem II performance, oxygen-evolving complex efficiency and, intracellular ATP levels. Scanning electron microscopy analysis revealed that high concentrations of both CHP and ACM caused considerable morphological changes in the microalga. In comparison, CHP was more toxic than ACM at low concentrations, whereas ACM was more toxic at high concentrations.
Collapse
Affiliation(s)
- Prithu Baruah
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Akanksha Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Yogesh Mishra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
7
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
8
|
Applications of comet and MTT assays in studying Dunaliella algae species. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Pinto EP, Paredes E, Bellas J. Influence of microplastics on the toxicity of chlorpyrifos and mercury on the marine microalgae Rhodomonas lens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159605. [PMID: 36273570 DOI: 10.1016/j.scitotenv.2022.159605] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The growing use of plastics, including microplastics (MPs), has enhanced their potential release into aquatic environments, where microalgae represent the basis of food webs. Due to their physicochemical properties, MPs may act as carriers of organic and inorganic pollutants. The present study aimed to determine the toxicity of polyethylene MPs (plain and oxidized) and the model pollutants chlorpyrifos (CPF) and mercury (Hg) on the red microalgae Rhodomonas lens, to contribute to the understanding of the effects of MPs and associated pollutants on marine ecosystems, including the role of MPs as vectors of potentially harmful pollutants to marine food webs. R. lens cultures were exposed to MPs (1-1000 μg/L; 25-24,750 particles/mL), CPF (1-4900 μg/L), Hg (1-500 μg/L), and to CPF- and Hg-loaded MPs, for 96 h. Average specific growth rate (ASGR, day-1), cellular viability and pigment concentration (chlorophyll a, c2 and carotenoids) were measured at 48 and 96 h. No significant effects were observed on the growth pattern of the microalgae after 96-h exposure to plain and oxidized MPs. However, a significant increase in cell concentration was detected after 48-h exposure to plain MPs. A decrease of the ASGR was noticed after exposure to CPF, Hg and to CPF/Hg-loaded MPs, whereas viability was affected by exposure to MPs, CPF and Hg, alone and in combination. Chlorophyll a and c2 significantly decreased when microalgae were exposed to plain MPs and CPF, while both pigments significantly increased when exposed to CPF-loaded MPs. Similarly, chlorophyll and carotenoids content significantly decreased after exposure to Hg, whereas a significant increase in chlorophyll a was observed after 48-h exposure to Hg-loaded MPs, at the higher tested concentration. Overall, the presence of MPs modulates the toxicity of Hg and CPF to these microalgae, decreasing the toxic effects on R. lens, probably due to a lower bioavailability of the contaminants.
Collapse
Affiliation(s)
- Estefanía P Pinto
- Centro de investigación Mariña (CIM), Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), Universidade de Vigo, Spain.
| | - Estefanía Paredes
- Centro de investigación Mariña (CIM), Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), Universidade de Vigo, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
10
|
Smaali A, Berkani M, Benmatti H, Lakhdari N, Al Obaid S, Alharbi SA, Fakhreddine B, Ines A, Marouane F, Rezania S, Lakhdari N. Degradation of Azithromycin from aqueous solution using Chlorine-ferrous- oxidation: ANN-GA modeling and Daphnia magna biotoxicity test assessment. ENVIRONMENTAL RESEARCH 2022; 214:114026. [PMID: 35977588 DOI: 10.1016/j.envres.2022.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Azithromycin (AZM), an antibacterial considered one of the most consumed drugs, especially during the period against the Covid 19 pandemic, and it is one of the persistent contaminants that can be released into aquatic ecosystems. The purpose of this study is to determine the efficacy of a Fenton-like process (chlorine/iron) for the degradation of AZM in an aqueous medium by determining the impact of several factors (the initial concentration of (FeSO4, NaClO, pollutant), and the initial pH) on the degradation rate. The Response Surface Methodology (RSM) based on the Box-Wilson design as well as the Artificial Neural Network (ANN) modeling combined with a genetic algorithm (GA) approaches were used to determine the optimal levels of the selected variables and the optimal rate of degradation. The quadratic model of multi-linear regression developed indicated that the optimal conditions were a concentration of chlorine of 600 μM, the concentration of AZM is 32.8 mg/L, the mass of the catalyst FeSO4 is 3.5 mg and a pH of 2.5, these optimal values gave a predicted and experimental yield of 64.05% and 70% respectively, the lack of fit test in RSM modeling (F0 = 3.31 which is inferior to Fcritic (0.05, 10.4) = 5.96) indicates that the true regression function is not linear therefore, the ANN-GA modeling as non-linear regression indicated that the optimal conditions were a concentration of chlorine of 256 μM, the concentration of AZM is 5 mg/L, the mass of the catalyst FeSO4 is 9.5 mg and a pH of 2.8, these optimal values gave a predicted and experimental yield of 79.69% and close to 80% respectively, Furthermore, biotoxicity tests were conducted to confirm the performance of our process using bio-indicators called daphnia (Daphnia magna), which demonstrated the efficacy of the like-Fenton process after 4 h of degradation.
Collapse
Affiliation(s)
- Anfel Smaali
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Hadjer Benmatti
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Belhadef Fakhreddine
- Laboratoire de Biologie et Environnement, Campus Chaab-Erssas, Biopole université des frères Mentouri Constantine 1, Ain Bey, 25000, Constantine, Algeria
| | - Amri Ines
- Laboratoire SARL HupPharma 25100, Constantine, Algeria
| | - Fateh Marouane
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| |
Collapse
|
11
|
Almeida AC, Gomes T, Lomba JAB, Lillicrap A. Specific toxicity of azithromycin to the freshwater microalga Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112553. [PMID: 34325198 DOI: 10.1016/j.ecoenv.2021.112553] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals are produced to inflict a specific physiological response in organisms. However, as only partially metabolized after administration, these types of compounds can also originate harmful side effects to non-target organisms. Additionally, there is still a lack of knowledge on the toxicological effects of legacy pharmaceuticals such as the antibiotic azithromycin. This macrolide occurs at high concentrations in the aquatic environment and can constitute a threat to aquatic organisms that are at the basis of the aquatic food chain, namely microalgae. This study established a high-throughput methodology to study the toxicity of azithromycin to the freshwater microalga Raphidocelis subcapitata. Flow cytometry and pulse amplitude modulated (PAM) fluorometry were used as screening tools. General toxicity was shown by effects in growth rate, cell size, cell complexity, cell viability and cell cycle. More specific outcomes were indicated by the analysis of mitochondrial and cytoplasmatic membrane potentials, DNA content, formation of ROS and LPO, natural pigments content and photosystem II performance. The specific mode of action (MoA) of azithromycin to crucial components of microalgae cells was revealed. Azithromycin had a negative impact on the regulation of energy dissipation at the PSII centers, along with an insufficient protection by the regulatory mechanisms leading to photodamage. The blockage of photosynthetic electrons led to ROS formation and consequent oxidative damage, affecting membranes and DNA. Overall, the used methodology exhibited its high potential for detecting the toxic MoA of compounds in microalgae and should be considered for future risk assessment of pharmaceuticals.
Collapse
Affiliation(s)
- Ana Catarina Almeida
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| | | | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| |
Collapse
|
12
|
Pino-Otín MR, Ballestero D, Navarro E, Mainar AM, Val J. Effects of the insecticide fipronil in freshwater model organisms and microbial and periphyton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142820. [PMID: 33121789 DOI: 10.1016/j.scitotenv.2020.142820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 05/24/2023]
Abstract
Fipronil is a broad-spectrum insecticide whose release in the environment damages many non-target organisms. This study evaluated the toxicity of fipronil at two biological levels using in vivo conditions and environmentally relevant concentrations: the first based on two model organisms (aquatic invertebrate Daphnia magna and the unicellular freshwater alga Chlamydomonas reinhardtii) and a second based on three natural communities (river periphyton and freshwater and soil microbial communities). The physicochemical properties of fipronil make it apparently unstable in the environment, so its behaviour was followed with high performance liquid chromatography (HPLC) under the different test conditions. The most sensitive organism to fipronil was D. magna, with median lethal dose (LC50) values from 0.07 to 0.38 mg/L (immobilisation test). Toxicity was not affected by the media used (MOPS or river water), but it increased with temperature. Fipronil produced effects on the photosynthetic activity of C. reinhardtii at 20 °C in MOPS (EC50 = 2.44 mg/L). The freshwater periphyton presented higher sensitivity to fipronil (photosynthetic yield EC50 of 0.74 mg/L) in MOPS and there was a time-dependent effect (toxicity increased with time). Toxicity was less evident when periphyton and C. reinhardtii tests were performed in river water, where the solubility of fipronil is poor. Finally, the assessment of the metabolic profiles using Biolog EcoPlates showed that bacteria communities were minimally affected by fipronil. The genetic identification of these communities based on 16S rRNA gene sequencing revealed that many of the taxa are specialists in degrading high molecular weight compounds, including pesticides. This work allows us to better understand the impact of fipronil on the environment at different levels of the food chain and in different environmental conditions, a necessary point given its presence in the environment and the complex behaviour of this compound.
Collapse
Affiliation(s)
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain.
| | - Enrique Navarro
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, Zaragoza 50059, Spain.
| | - Ana M Mainar
- I3A, Universidad de Zaragoza, c/ Mariano Esquillor s/n, 50018 Zaragoza, Spain.
| | - Jonatan Val
- Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain; Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, Zaragoza 50059, Spain.
| |
Collapse
|
13
|
Schiavo S, Oliviero M, Chiavarini S, Dumontet S, Manzo S. Polyethylene, Polystyrene, and Polypropylene leachate impact upon marine microalgae Dunaliella tertiolecta. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:249-260. [PMID: 33357043 DOI: 10.1080/15287394.2020.1860173] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the aquatic environment, plastics may release several hazardous substances of severe ecotoxicological concern not covalently bound to the polymers. The aim of this study was to examine the adverse effects of leachates of different virgin polymers, polypropylene (PP), polyethylene (PE), and polystyrene (PS) on marine microalgae Dunaliella tertiolecta. The tests carried out on D. tertiolecta included: growth inhibition, oxidative stress (DCFH-DA), and DNA damage (COMET assay). Polypropylene and PS leachates produced growth inhibition at the lowest concentration (3.1% of leachate). In contrast, a hormesis phenomenon was observed with PE leachates. An algae inhibition growth ranking (PP>PS>PE) was noted, based upon EC50 values. Reactive oxygen species (ROS) generated were increased with leachates concentrations with PS exhibiting the highest ROS levels, while a marked genotoxic effect (30%) was found only with PP. All leachates were free from detectable quantities of organic compounds (GC/MS) but showed the presence of transition, post-transition and alkaline earth metals, metalloids, and nonmetals (<limit of quantification (LOQ) to 83.5 µg/L). Therefore, the observed toxic action might reasonably be attributable to the presence of metals and in conjunction with polymeric actions. This investigation underlines the need to better characterize the potential impact of virgin polymers.
Collapse
Affiliation(s)
- Simona Schiavo
- ENEA CR Portici, SSPT-PROTER Division, Portici, Italy
- International PhD Programme "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | | | | | - Stefano Dumontet
- International PhD Programme "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - Sonia Manzo
- ENEA CR Portici, SSPT-PROTER Division, Portici, Italy
| |
Collapse
|
14
|
Huang X, Cui H, Duan W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110731. [PMID: 32450436 DOI: 10.1016/j.ecoenv.2020.110731] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 05/08/2023]
Abstract
Pesticides play an important role in promoting agricultural development, while their unreasonable use has led to environmental problems. Chlorpyrifos (CPF), a typical organophosphate pesticide, is used globally as an insecticide in agriculture. The extensive application of CPF has resulted in water contamination, and CPF has been detected in rivers, lakes, seawater, and even in rain. In the present review, CPF was selected due to its extensive use in agriculture and higher detection rate in surface waters. In this review we summarised the evidence related to CPF pollution and focused on discussing the ecotoxicity of CPF to aquatic systems and revealed the mechanism of action of CPF. The aim of this literature review was to summarise the knowledge of the toxicity to marine and freshwater organisms of CPF as well as try to select a series of sensitive biomarkers, which are suitable for ecotoxicological assessment and environmental monitoring in aquatic systems.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province, PR China
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China.
| |
Collapse
|
15
|
Ilyushina NA, Egorova OV, Masaltsev GV, Averianova NS, Revazova YA, Rakitskii VN, Goumenou M, Vardavas A, Stivaktakis P, Tsatsakis A. Genotoxicity of mixture of imidacloprid, imazalil and tebuconazole. Toxicol Rep 2020; 7:1090-1094. [PMID: 32953461 PMCID: PMC7484519 DOI: 10.1016/j.toxrep.2020.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022] Open
Abstract
Genotoxicity of the mixture of generic pesticides imidacloprid + imazalil + tebuconazole in a ratio of 14.0/1.7/1.0 by weight was assessed using Ames test (Salmonella typhimurium) and micronucleus test in vivo on mammalian bone marrow erythrocytes (CD-1 mice) supporting the data creation for the Real Life Risk Simulation (RLRS) approach. This pesticides' combination is used in the commercial formulation for seed treatment in advance of or immediately before sowing. Tested pesticides' technical grade active ingredients (TGAIs) showed no evidence of genotoxicity upon separate treatments. In combination, the three pesticides demonstrated negative results in the Ames test but induced a statistically significant, dose-depended increase in MN-PCEs in mice bone marrow at doses lower than those used separately. The observed effect may be mediated by the synergistic action of the tested TGAIs, their metabolites or impurities.
Collapse
Affiliation(s)
- Nataliya A. Ilyushina
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Olga V. Egorova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Gleb V. Masaltsev
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Nataliya S. Averianova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Yulia A. Revazova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Valerii N. Rakitskii
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Marina Goumenou
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Alexander Vardavas
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Polychronis Stivaktakis
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
16
|
Baruah P, Chaurasia N. Ecotoxicological effects of alpha-cypermethrin on freshwater alga Chlorella sp.: Growth inhibition and oxidative stress studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103347. [PMID: 32058321 DOI: 10.1016/j.etap.2020.103347] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/15/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Alpha-cypermethrin (ACy) is a synthetic pyrethroid insecticide commonly used in agricultural practices for controlling a broad range of insect pests particularly belonging to the order Lepidoptera and Coleoptera. The present study aims to evaluate the toxic effect of ACy on microalgae by studying its influence on Chlorella sp. According to our knowledge, this is the first detailed study of ACy toxicity on microalgae. Significant growth inhibition of Chlorella sp. was observed at high ACy concentration (6-48 mg L-1) during the entire 96 h bioassay. The 96 h median effective concentration (EC50) of ACy was estimated to be 11.00 mg L-1. Flow cytometry analysis showed an enhanced generation of reactive oxygen species (ROS) and intracellular lipid accumulation after 96 h exposure to 11.00 mg L-1 of ACy. Further, the same ACy concentration showed a significant decrease in photosynthetic pigment content and an increase in antioxidant enzyme activity and malondialdehyde (MDA) content in Chlorella sp.
Collapse
Affiliation(s)
- Prithu Baruah
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, India
| | - Neha Chaurasia
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
17
|
Wang XD, Lu YC, Xiong XH, Yuan Y, Lu LX, Liu YJ, Mao JH, Xiao WW. Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11246-11259. [PMID: 31960244 DOI: 10.1007/s11356-020-07704-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent that is broadly used in personal care products. It has been shown to cause the contamination of a variety of aquatic environments. Since algae has been the primary producers of aquatic ecosystems, understanding the toxicological mechanisms and the metabolic fate of TCS is vital for assessing its risk in an aquatic environment. In our study, 0.5-4 mg L-1 TCS treatments for 72 h in a culture of Chlamydomonas reinhardtii (C. reinhardtii) showed progressive inhibition of cell growth and reduced the chlorophyll content. The EC50 value of C. reinhardtii after 72 h was 1.637 mg L-1, which showed its higher level of resistance to TCS in comparison with other algal species. The exposure to TCS led to oxidative injuries of algae in relation to the increment of malonaldehyde content, cell membrane permeability, and H2O2 levels. Furthermore, the oxidative stress from TCS stimulated a series of antioxidant enzyme activities and their gene expressions. Simultaneously, the accumulated TCS in C. reinhardtii arouses the detoxification/degradation-related enzymes and related gene transcriptions. In the medium, approximately 82% of TCS was removed by C. reinhardtii. Importantly, eight TCS metabolites were identified by ultra-performance liquid chromatography-high-resolution mass spectrometry and their relative abundances were measured in a time-course experiment. Six of these metabolites are reported here for the first time. The metabolic pathways of triclosan via C. reinhardtii including reductive dechlorination, hydroxylation, sulfhydrylation, and binding with thiol/cysteine/GSH/glycosyl were manifested to broaden our understanding of the environmental fate of TCS. Graphical Abstract.
Collapse
Affiliation(s)
- Xiao Dong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Yi Chen Lu
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China.
| | - Xiao Hui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Yi Yuan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Li Xia Lu
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Yuan Jian Liu
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Jia Hao Mao
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Wei Wei Xiao
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| |
Collapse
|
18
|
Almeida AC, Gomes T, Habuda-Stanić M, Lomba JAB, Romić Ž, Turkalj JV, Lillicrap A. Characterization of multiple biomarker responses using flow cytometry to improve environmental hazard assessment with the green microalgae Raphidocelis subcapitata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:827-838. [PMID: 31412486 DOI: 10.1016/j.scitotenv.2019.06.124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
Microalgal toxicity tests using integrative endpoints as algal growth are regularly required to analyse the toxicity of potentially hazardous substances in the aquatic environment. However, these do not provide mechanistic information on the toxic mode of action by which contaminants may affect algae. Bottled waters can be used as a substitute for culturing media and should not impose any stress to the cultured organisms. However, certain chemical components can interfere with specific cell targets which are not revealed by general toxicity assays. The present study investigated the sensitivity of flow cytometry (FCM) to analyse sub-lethal effects of different bottled waters to the freshwater microalgae Raphidocelis subcapitata. Several endpoints were analysed including growth rate, natural pigments content, cell size, complexity, viability and cycle, Reactive Oxygen Species (ROS) formation, mitochondrial membrane potential and Lipid Peroxidation (LPO). Additionally, photosystem II (PSII) performance was analysed by PAM fluorometry, to provide further information on the absorption, distribution and use of energy in photosynthesis. Results indicated that the most sensitive endpoints were the oxidative stress related endpoints ROS formation and LPO, pigment content, morphological endpoints as cell size, complexity and cycle, with growth rate being one of the least sensitive. Although being essential macronutrients for algal growth, the chemical elements Ca, Na, Mg, and NH4 were identified as being primarily responsible for the observed toxicological effects to exposed algae. The applied methodology proved to be of high throughput, simultaneously assembling information on morphological, biochemical, and physiological status of algal cells. FCM also showed potential to reveal mechanistic information on the toxic mode of action of the bottled waters before any effects on algal growth was observed. The used approach demonstrated its potential for being integrated into future microalgal toxicity bioassays for testing chemicals to improve the hazard information obtained from currently approved internationally accepted test guidelines.
Collapse
Affiliation(s)
- Ana Catarina Almeida
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| | - Mirna Habuda-Stanić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| | | | - Željka Romić
- Vodovod-Osijek d.o.o., Poljski put 1, 31000 Osijek, Croatia
| | | | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| |
Collapse
|
19
|
Garrido S, Linares M, Campillo JA, Albentosa M. Effect of microplastics on the toxicity of chlorpyrifos to the microalgae Isochrysis galbana, clone t-ISO. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:103-109. [PMID: 30769202 DOI: 10.1016/j.ecoenv.2019.02.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
It is highly likely that phytoplanktonic organisms will interact with MPs in the ocean, and consequently with the pollutants sorbed onto their surfaces. Microalgae play an essential role in maintaining the balance of the marine ecosystem due to the fact that they are a primary producer and the base of marine trophic chains. Therefore, their fitness represents an important index in the assessment of water quality. The objectives of this study were i) to assess the toxicity of MPs and the pesticide chlorpyrifos (CPF) to the microalgae, Isochrysis galbana, clone t-ISO and ii) to ascertain whether the presence of MPs affects the toxicity of CPF. Microalgae growth rate was selected as the endpoint and a commercial virgin PE micronized powder was chosen as a micro-plastic model, with mean size ranging from 2 to 6 µm, assayed until 25 mg L-1. CPF was tested at concentrations ranging from 0 to 4 mg L-1. A constant concentration of MPs (5 mg L-1) was loaded with increasing doses of CPF (0-3 mg L-1) with a 2 h incubation period. Bioassays were performed at 20 °C, in glass tubes of 50 ml, with air and constant light and an exposure time of 72 h. Cell counts were performed using a Coulter Counter Multisizer III and HPLC was used to quantify the partition of this pollutant among MPs and water. Although microalgae growth was not impacted by MPs, growth was clearly affected by exposure to CPF from 2 mg L-1 and above, with a total growth inhibition at concentrations over 3 mg L-1. Subsequent to incubation, 80% of CPF was sorbed onto MP surfaces. Two different dose-response curves resulted from CPF bioassays depending on the presence of MP, with lower percentages of inhibition when CPF was presented through MP. Thus, the adsorption of CPF onto MP surfaces modulates the toxicity of CPF on I. galbana growth through a reduction in its toxicity, as CPF is adsorbed onto MP surfaces which are less bio-available to the algal cells.
Collapse
Affiliation(s)
- Soledad Garrido
- Spanish Institute of Oceanography, IEO, Oceanographic Center of Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain
| | - Marta Linares
- Spanish Institute of Oceanography, IEO, Oceanographic Center of Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain
| | - Juan Antonio Campillo
- Spanish Institute of Oceanography, IEO, Oceanographic Center of Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain
| | - Marina Albentosa
- Spanish Institute of Oceanography, IEO, Oceanographic Center of Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
20
|
Garanzini DS, Medici S, Moreyra LD, Menone ML. Acute exposure to a commercial formulation of Azoxystrobin alters antioxidant enzymes and elicit damage in the aquatic macrophyte Myriophyllum quitense. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:135-143. [PMID: 30804636 PMCID: PMC6352532 DOI: 10.1007/s12298-018-0603-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 06/09/2023]
Abstract
Azoxystrobin is a strobilurin of growing concern in aquatic environments because it is the most sold fungicide worldwide, however, the information available about its effect on aquatic non-target organisms is scarce. The objective of the present study was to evaluate potential physiological, biochemical, and genetic effects at environmentally relevant (1-10 μg/L) and elevated (100-500 μg/L) concentrations in the aquatic macrophyte Myriophyllum quitense exposed to the commercial formulation AMISTAR®. Following an acute 24-h exposure, there were no effects of AMISTAR® on photosynthetic pigments at any of the concentrations evaluated. Glutathione-S-transferase activity was significantly elevated at 1 and 10 μg/L AZX. Significant decrease of catalase and guaiacol peroxidase activities in plants exposed to 500 μg/L, and to 100 and 500 μg/L, respectively, and an increase in glycolate oxidase activity at 500 μg/L was observed. DNA damage at 100 and 500 μg/L was observed. These data indicate that although environmentally relevant levels of AMISTAR® did not result cytotoxic, this fungicide was genotoxic, affecting the physiological process of photorespiration and caused oxidative damage at high concentrations. In this sense, it is necessary to explore sub-lethal responses in non-target organisms because some effects could promote further potential long-term biological consequences in a context of repeated pulses of exposure.
Collapse
Affiliation(s)
- Daniela S. Garanzini
- Lab. Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC)-UNMDP/CONICET, Funes 3350, 7600 Mar del Plata, Buenos Aires Argentina
| | - Sandra Medici
- Fares Taie Instituto de Análisis, Magallanes 3019, 7600 Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Argentina
| | - Lucía D. Moreyra
- Facultad de Ciencias Exactas y Naturales- UNMDP, Funes 3350, 7600 Mar del Plata, Argentina
| | - Mirta L. Menone
- Lab. Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC)-UNMDP/CONICET, Funes 3350, 7600 Mar del Plata, Buenos Aires Argentina
| |
Collapse
|
21
|
Xiao Y, Zhao P, Yang Y, Li M. Ecotoxicity evaluation of natural suspended particles using the microalga, Euglena gracilis. CHEMOSPHERE 2018; 206:802-808. [PMID: 29804002 DOI: 10.1016/j.chemosphere.2018.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
As vectors for pollutants, suspended particles (SPs) have been studied for many years. However, limited studies have focused on the ecotoxicity of natural SPs. This study examined ecotoxicity of natural SPs isolated from Gonghu Bay and its Ecological Restoration Area (ERA) water samples by Tangential Flow Filtration (TFF) using the microalga Euglena gracilis as a model organism. Effects of SPs on algae growth, photosynthesis pigment contents, superoxide dismutase (SOD) activity and DNA damage were characterized to determine the effects of ecological restoration. Additionally, SPs were separated into nanoscale (<1 μm diameter) and common-scale (≥1 μm diameter) groups by size, to compare the differences in toxicity of SPs with different sizes. We found, in naturally occurring concentrations in Gonghu Bay, nanoscale SPs were more toxic than common-scale ones. However, no significant adverse effects were detected in the nanoscale SPs from the ERA, which demonstrated that ecological restoration might reduce the toxicity of nanoscale SPs. The results were supported by the inhibition of growth, SOD activities and DNA damage, while no adverse influences were detected on pigment contents of E. gracilis in all the treated groups. Our study provides new insights into the toxic effects of SPs.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
22
|
Mu W, Chen Y, Liu Y, Pan X, Fan Y. Toxicological effects of cadmium and lead on two freshwater diatoms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:152-162. [PMID: 29597078 DOI: 10.1016/j.etap.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
In recent years, there have been significant advances in the knowledge and understanding of the pollution attributed to effects of aquatic toxic metals on fresh water benthic diatoms. In this study, the cell growth, chlorophyll a content and superoxide dismutase activity in Halamphora veneta (Kützing) Levkov and Surirella crumena Brébisson exposed to cadmium and lead, were investigated. Furthermore, in order to explore the potential function of H. veneta on environmental monitoring and environmental remediation, expression of two genes (psbA, psaB) and morphological analysis of H. veneta were carried out. The cells growth of H. veneta and S. crumena were generally inhibited with cadmium and lead exposure during 96 h, while cells density of H. veneta was significantly increased under the low concentration at 24 h cadmium exposure. Our results indicated that H. veneta had a certain tolerance to toxic metals at initial treated time. In addition, the significantly changes of chlorophyll a content and SOD activities in H. veneta and S. crumena indicated that both photosynthetic system and the antioxidant system in benthic diatom might play important roles on the toxic metals tolerant mechanism. Meanwhile, it can be confirmed that the diatom photosynthetic systems play roles on toxic metals resistance inferred from the gene expression of psbA and psaB in H. veneta. Finally, the results of scanning electron microscopy showed that there was a slightly deformation on cells following the cadmium exposure in H. veneta, while obvious deformation with cell greatly widened after lead exposure. The present work will be helpful to understand the effect mechanisms of toxic metal by comparing two kinds of diatom on cell inhibition, biological response and morphological changes, which will provide more information for possible use of benthic diatoms in bioremediation.
Collapse
Affiliation(s)
- Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ying Chen
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yan Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
23
|
Šiviková K, Holečková B, Schwarzbacherová V, Galdíková M, Dianovský J. Potential chromosome damage, cell-cycle kinetics/and apoptosis induced by epoxiconazole in bovine peripheral lymphocytes in vitro. CHEMOSPHERE 2018; 193:82-88. [PMID: 29127838 DOI: 10.1016/j.chemosphere.2017.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
The epoxiconazole was tested in vitro for its potential on induction of chromosome damage and/or cell cycle kinetics in cultured bovine peripheral lymphocytes. Cytogenetic endpoints such as: Chromosome Aberrations (CA); Sister Chromatid Exchanges (SCE); Micronuclei (MN); Mitotic Index (MI); Proliferation Index (PI); and Cytokinesis Block Proliferation Index (CBPI) were investigated for 24 h and 48 h of incubation. The cultured lymphocytes were exposed to the epoxiconazole at concentrations of 2.5, 5, 10, 25, 50 and 100 μg mL-1. From our results is evident that treatment of bovine peripheral lymphocytes with the epoxiconazole was not related to DNA damage; no genotoxic effect and/or clastogenic/aneugenic effects were recorded. However, epoxiconazole has ability to significantly affect cell cycle kinetics/and induce apoptosis. A decrease of proliferation in the MI, CBPI and identically in the PI were observed; hence, cytostatic/cytotoxic effects of epoxiconazole have been recorded. The prolonged time of exposure at the highest concentration caused an inhibition of the replication. Electrophoretic analysis confirmed the epoxiconazole potential to induce ladder-like patterns of DNA fragments that are a hallmark of apoptosis.
Collapse
Affiliation(s)
- Katarína Šiviková
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic.
| | - Beáta Holečková
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Viera Schwarzbacherová
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Martina Galdíková
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Ján Dianovský
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| |
Collapse
|
24
|
Tian L, Chen M, Ren C, Wang Y, Li L. Anticyanobacterial effect ofl-lysine onMicrocystis aeruginosa. RSC Adv 2018; 8:21606-21612. [PMID: 35539908 PMCID: PMC9080921 DOI: 10.1039/c8ra00434j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/30/2018] [Indexed: 11/30/2022] Open
Abstract
Cyanobacterial blooms can cause serious environmental problems and threaten aquatic organisms and human health. It is therefore essential to effectively control cyanobacterial blooms in aquatic ecosystems. In the present study, the anticyanobacterial effect of l-lysine on Microcystis aeruginosa was examined. The results showed that the growth of M. aeruginosa (>90%) was effectively inhibited by l-lysine at dosages of 5.0, 6.5, and 8.0 mg L−1 after 3 d treatment. The content of superoxide anion radicals, MDA content and SOD activity in M. aeruginosa cells increased after 1 d of treatment with l-lysine (3.0, 5.0, 6.5, and 8.0 mg L−1), revealing that l-lysine induced oxidative stress in the cyanobacterial cells. The chlorophyll-a and protein contents in M. aeruginosa treated with l-lysine (3.0, 5.0, 6.5, and 8.0 mg L−1) decreased after 2 d, indicating damage of the photosynthetic system by l-lysine treatment. Additionally, the production of exopolysaccharide by M. aeruginosa also increased and the expression of polysaccharide synthesis genes was upregulated by 3.0 mg L−1l-lysine after 3 d of treatment. In response to the algicidal effects of l-Lysine, M. aeruginosa upregulated exopolysaccharide synthesis. Electron microscopic observations demonstrated that the cell membrane of M. aeruginosa was broken down during treatment with l-lysine (≥3.0 mg L−1). Our results revealed that the effects of l-lysine on M. aeruginosa cells were comprehensive, and l-lysine is therefore an efficient anticyanobacterial reagent. l-lysine had an anticyanobacterial effect on Microcystis aeruginosa, which involved growth inhibition, physiological and metabolic disturbance, and cell membrane damage.![]()
Collapse
Affiliation(s)
- Lili Tian
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- China
| | - Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- China
| | - Chongyang Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- China
| | - Yiying Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
25
|
Belhaj D, Athmouni K, Frikha D, Kallel M, El Feki A, Maalej S, Zhou JL, Ayadi H. Biochemical and physiological responses of halophilic nanophytoplankton (Dunaliella salina) from exposure to xeno-estrogen 17α-ethinylestradiol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7392-7402. [PMID: 28108920 DOI: 10.1007/s11356-017-8415-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
The environmental impacts of various pollutants on the entire levels of organisms are under investigation. Among these pollutants, endocrine-disrupting compounds (EDCs) present a serious hazard, even though the environmental significance of these compounds remains basically unknown. To drop some light on this field, we assessed the effects of a 11-day exposure of 17α-ethinylestradiol (EE2) on the growth, metabolic content, antioxidant response, oxidative stress, and genetic damage of Dunaliella salina, isolated from Tunisian biotopes. The results showed that at 10 ng L-1, EE2 could stimulate the growth of D. salina and increase its cellular content of photosynthetic pigments and metabolites; however, it did not significantly increase the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) or the level of malondialdehyde (MDA) and hydrogen peroxide (H2O2). In contrast, exposure to high levels of EE2 concentrations significantly inhibited the growth of D. salina (P < 0.05), decreased the cellular content of photosynthetic pigments, increased the cellular content of all of the metabolites and the SOD activity, and inhibited CAT and GPx activities. Nevertheless, the balance between oxidant and antioxidant enzymes was disrupted because H2O2 content along with MDA content simultaneously increased. Contrary to expected results, DNA damage (strand breaks) decreased after the exposure of algae to EE2. The results of this study suggest that EE2 toxicity could result in environmental impacts with consequences on the whole aquatic community. Graphical abstract.
Collapse
Affiliation(s)
- Dalel Belhaj
- FSS, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, Street of Soukra, Km 3.5, BP 1171, CP 3000, Sfax, Tunisia.
- ENIS. Engineering Laboratory of Environment and Ecotechnology. LR16ES19, University of Sfax-Tunisia, Street Soukra Km 3.5, BP 1173, CP 3038, Sfax, Tunisia.
| | - Khaled Athmouni
- FSS, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, Street of Soukra, Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
- FSS, Department of Life Sciences, Laboratory of Animal Ecophysiology, University of Sfax-Tunisia, Street of Soukra Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| | - Doniez Frikha
- FSS, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, Street of Soukra, Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| | - Monem Kallel
- ENIS. Engineering Laboratory of Environment and Ecotechnology. LR16ES19, University of Sfax-Tunisia, Street Soukra Km 3.5, BP 1173, CP 3038, Sfax, Tunisia
| | - Abdelfattah El Feki
- FSS, Department of Life Sciences, Laboratory of Animal Ecophysiology, University of Sfax-Tunisia, Street of Soukra Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| | - Sami Maalej
- FSS, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, Street of Soukra, Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| | - John L Zhou
- School of Civil and Environmental Engineering, Center of Technology in Water and Wastewater, University of Technology Sydney, Broadway, Ultimo, Australia
| | - Habib Ayadi
- FSS, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, University of Sfax-Tunisia, Street of Soukra, Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| |
Collapse
|
26
|
Sharma S, Singh PB, Chadha P, Saini HS. Chlorpyrifos pollution: its effect on brain acetylcholinesterase activity in rat and treatment of polluted soil by indigenous Pseudomonas sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:381-387. [PMID: 27722883 DOI: 10.1007/s11356-016-7799-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
The study was aimed to evaluate the levels of chlorpyrifos (CPF) pollution in agricultural soil of Punjab, India, its detrimental effects on acetylcholinesterase (AChE) activity in rat brain and bioremediation of soils polluted with CPF using indigenous and adapted bacterial lab isolate. The analysis revealed that soil samples of Bathinda and Amritsar regions are highly contaminated with chlorpyrifos showing 19 to 175 mg/kg concentrations of CPF. The non-targeted animals may get poisoned with CPF by its indirect dermal absorption, inhalation of toxic fumes and regular consumption of soiled food grains. The study indicated that even the lowermost concentrations of CPF, 19 and 76 mg/kg of soil found in the Amritsar and Bathinda regions respectively can significantly inhibit the AChE activity in rat brain within 24 h of its treatment. This represents the antagonistic effect of CPF on AChE which is a prime neurotransmitter present in all living beings including humans. In light of this, an attempt was made to remediate the polluted soil, a major reservoir of CPF, using Pseudomonas sp. (ChlD), an indigenous bacterial isolate. The culture efficiently degraded 10 to 100 mg/kg chlorpyrifos supplemented in the soil and utilized it as sole source of carbon and energy for its growth. Thus, this study provides a detailed insight regarding the level of CPF pollution in Punjab, its detrimental effects on mammals and bio-based solution to remediate the sites polluted with CPF.
Collapse
Affiliation(s)
- Shelly Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Partap Bir Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143 005, India.
| | | |
Collapse
|
27
|
Schwarzbacherová V, Wnuk M, Lewinska A, Potocki L, Zebrowski J, Koziorowski M, Holečková B, Šiviková K, Dianovský J. Evaluation of cytotoxic and genotoxic activity of fungicide formulation Tango ® Super in bovine lymphocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:255-263. [PMID: 27667677 DOI: 10.1016/j.envpol.2016.09.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Tango® Super is a two-compound fungicide formulation widely employed in grain protection. However, details of Tango® Super effects on cell cultures have not been fully investigated. In this study, bovine lymphocytes were exposed to a concentration range 0.5; 1.5; 3; 6; and 15 μg mL-1 for 4 h to assess the cytotoxicity and genotoxicity of the fungicide. Our experiments revealed that this fungicide treatment reduced cell viability, decreased cell proliferation and provoked apoptotic cell death. Cell cycle analysis showed predominant accumulation of cells in the G0/G1 phase of the cell cycle. The fungicide was able to induce mitochondrial superoxide production accompanied by elevated levels of carbonylated proteins and changes in the lipid membrane composition. The fungicide did not induce micronuclei production, but stimulated both DNA double-strand breaks and the formation of p53 binding protein, which is accumulated during the DNA repair process at the site of double-strand breaks. Based on the obtained data we suppose that the fungicide-induced DNA damage is the result of oxidative stress, which may contribute to higher occurrence of apoptotic cell death. Because ergosterol biosynthesis-inhibiting fungicides are widely used in agriculture to ensure higher crop yields and may cause health impairment of animals and humans, there is a need for further testing to elucidate their potential genotoxic effects using in vivo and/or in vitro systems.
Collapse
Affiliation(s)
- Viera Schwarzbacherová
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Leszek Potocki
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Beáta Holečková
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Katarína Šiviková
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Ján Dianovský
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| |
Collapse
|
28
|
Drážovská M, Šiviková K, Holečková B, Dianovský J, Galdíková M, Schwarzbacherová V. Evaluation of potential genotoxic/cytotoxic effects induced by epoxiconazole and fenpropimorph-based fungicide in bovine lymphocytes in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:769-776. [PMID: 27428828 DOI: 10.1080/03601234.2016.1198643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Potential genotoxic/cytotoxic effects of the epoxiconazole/fenpropimorph-based fungicide were investigated using single cell gel electrophoresis and cytogenetic assays: chromosomal aberrations, sister chromatid exchanges, micronuclei and fluorescence in situ hybridization in cultured bovine lymphocytes. No statistically significant elevations of DNA damage and increases in cytogenetic endpoints were seen. However, evident cytotoxic effect presented as a decrease in mitotic and proliferation indices were recorded after exposure of bovine lymphocytes to the fungicide for 24 and 48 h at concentrations ranging from 3 to 15 µg mL(-1) (P < 0.05, P < 0.01, P < 0.001). Similarly, for 24 h an inhibition in the cytokinesis block proliferation index (CBPI) was obtained after exposure to the fungicide at concentrations ranging from 1.5 to 15 µg mL(-1) (P < 0.01, P < 0.001) in each donor.
Collapse
Affiliation(s)
- Monika Drážovská
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Katarína Šiviková
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Beáta Holečková
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Ján Dianovský
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Martina Galdíková
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Viera Schwarzbacherová
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| |
Collapse
|
29
|
Wang Q, Li C, Zheng R, Que X. Phytoremediation of chlorpyrifos in aqueous system by riverine macrophyte, Acorus calamus: toxicity and removal rate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16241-16248. [PMID: 27154841 DOI: 10.1007/s11356-016-6673-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
The potential of Acorus calamus to remove chlorpyrifos from water was assessed under laboratory conditions. Toxic effects of the insecticide in A. calamus were evaluated using pulse-amplitude modulated chlorophyll fluorescence techniques as well. At exposure concentrations above 8 mg L(-1), A. calamus showed obvious phytotoxic symptom with significant reduction in quantum efficiency of PSII (ΦPSII) and photochemical quenching coefficient (qP) in 20-day test; the inhibition of maximal quantum efficiency of PSII (Fv/Fm) was accompanied by a significant rise in initial chlorophyll fluorescence (Fo) within 15-day exposures. Fv/Fm and Fo recover to the normal level after 20-day exposure. The reduced removal rate to chlorpyrifos was observed with increase of initial chlorpyrifos concentrations. At application levels of 1, 2, and 4 mg L(-1), the disappearance rate of chlorpyrifos in the hydroponic system with plants was significantly greater than that without plants during the 20-day test periods. Chlorpyrifos was taken up from medium and transferred to above ground tissues by the plant and significant amounts of chlorpyrifos accumulated in plant tissues. The result indicated that A. calamus can promote the disappearance of chlorpyrifos from water and may be used for phytoremediation of water contaminated with a relatively low concentration of chlorpyrifos insecticide (<4 mg L(-1)).
Collapse
Affiliation(s)
- Qinghai Wang
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Cui Li
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Ruilun Zheng
- Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Xiaoe Que
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| |
Collapse
|
30
|
Esperanza M, Seoane M, Rioboo C, Herrero C, Cid Á. Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 554-555:237-245. [PMID: 26950638 DOI: 10.1016/j.scitotenv.2016.02.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Chlamydomonas reinhardtii cells were exposed to a sublethal concentration of the widespread herbicide atrazine for 3h. Physiological cellular parameters, such as chlorophyll a fluorescence and oxidative stress monitored by flow cytometry and pigments levels were altered in microalgal cells exposed to 0.25 μM of atrazine. Furthermore, the effects of this herbicide on C. reinhardtii were explored using "omics" techniques. Transcriptomic analyses, carried out by RNA-Seq technique, displayed 9 differentially expressed genes, related to photosynthesis, between control cultures and atrazine exposed cultures. Proteomic profiles were obtained using iTRAQ tags and MALDI-MS/MS analysis, identifying important changes in the proteome during atrazine stress; 5 proteins related to photosynthesis were downexpressed. The results of these experiments advance the understanding of photosynthetic adjustments that occur during an early herbicide exposure. Inhibition of photosynthesis induced by atrazine toxicity will affect the entire physiological and biochemical states of microalgal cells.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain.
| |
Collapse
|
31
|
Shakir SK, Kanwal M, Murad W, Daud MK, Azizullah A. Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:329-341. [PMID: 26603051 DOI: 10.1007/s10646-015-1591-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
Pesticides are highly toxic substances. Their toxicity may not be absolutely specific to the target organisms but can adversely affect different processes in the non-target host plants. In the present study, the effect of over application of four commonly used pesticides (emamectin benzoate, alpha-cypermethrin, lambda-cyhalothrin and imidacloprid) was evaluated on the germination, seedling vigor and photosynthetic pigments in tomato. The obtained results revealed that seed germination was decreased by the pesticides and this effect was more prominent at early stages of exposure. All the tested pesticides reduced the growth of tomato when applied in higher concentration than the recommended dose, but at lower doses the pesticides had some stimulatory effects on growth as compared to the control. A similar effect of pesticides was observed on the photosynthetic pigments, i.e. a decrease in pigments concentrations was caused at higher doses but an increase was observed at lower doses of pesticides. The calculation of EC50 values for different parameters revealed the lowest EC50 values for emamectin (ranged as 51-181 mg/L) followed by alpha-cypermethrin (191.74-374.39), lambda-cyhalothrin (102.43-354.28) and imidacloprid (430.29-1979.66 mg/L). A comparison of the obtained EC50 values for different parameters of tomato with the recommended doses revealed that over application of these pesticides can be harmful to tomato crop. In a few cases these pesticides were found toxic even at the recommended doses. However, a field based study in this regard should be conducted to further verify these results.
Collapse
Affiliation(s)
- Shakirullah Khan Shakir
- Department of Botany, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Memoona Kanwal
- Department of Botany, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Waheed Murad
- Department of Botany, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - M K Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Azizullah Azizullah
- Department of Botany, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
32
|
Asselborn V, Fernández C, Zalocar Y, Parodi ER. Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:334-341. [PMID: 26099464 DOI: 10.1016/j.ecoenv.2015.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
The effect of the organophosphorus insecticide chlorpyrifos on the growth, biovolume, and ultrastructure of the green microalga Ankistrodesmus gracilis was evaluated. Concentrations of 9.37, 18.75, 37.5, 75 and 150mgL(-1) of chlorpyrifos were assayed along with a control culture. At the end of the bioassay the ultrastructure of algal cells from control culture and from cultures exposed to 37.5 and 150mgL(-1) was observed under transmission (TEM) and scanning electron microscopy (SEM). After 24 and 48h, treatments with 75 and 150mgL(-1) inhibited the growth of A. gracilis; whereas after 72 and 96h, all the treatments except at 9.37mgL(-1) significantly affected the algae growth. The effective concentration 50 (EC50) after 96h was 22.44mgL(-1) of chlorpyrifos. After the exposure to the insecticide, an increase in the biovolume was observed, with a larger increase in cells exposed to 75 and 150mgL(-1). Radical changes were observed in the ultrastructure of cells exposed to chlorpyrifos. The insecticide affected the cell shape and the distribution of the crests in the wall. At 37.5mgL(-1) electodense bodies were observed along with an increase in the size and number of starch granules. At 150mgL(-1) such bodies occupied almost the whole cytoplasm together with lipids and remains of thylakoids. Autospores formation occurred normally at 37.5mgL(-1) while at 150mgL(-1) karyokinesis occurred, but cell-separation-phase was inhibited. The present study demonstrates that the exposure of phytoplankton to the insecticide chlorpyrifos leads to effects observed at both cellular and population level.
Collapse
Affiliation(s)
- Viviana Asselborn
- Laboratorio de Ecología Acuática, Depto. Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, B8000ICL Bahía Blanca, Argentina
| | - Carolina Fernández
- CONICET-BB-IADO (Instituto Argentino de Oceanografía), CC 804, B8000FWB Bahía Blanca, Argentina
| | - Yolanda Zalocar
- CONICET-CECOAL (Centro de Ecología Aplicada del Litoral), CC 291, 3400 Corrientes, Argentina
| | - Elisa R Parodi
- Laboratorio de Ecología Acuática, Depto. Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, B8000ICL Bahía Blanca, Argentina; CONICET-BB-IADO (Instituto Argentino de Oceanografía), CC 804, B8000FWB Bahía Blanca, Argentina.
| |
Collapse
|
33
|
Galdiero E, Maselli V, Falanga A, Gesuele R, Galdiero S, Fulgione D, Guida M. Integrated analysis of the ecotoxicological and genotoxic effects of the antimicrobial peptide melittin on Daphnia magna and Pseudokirchneriella subcapitata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:145-152. [PMID: 25884346 DOI: 10.1016/j.envpol.2015.03.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/23/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Melittin is a major constituent of the bee venom of Apis mellifera with a broad spectrum of activities. Melittin therapeutical potential is subject to its toxicity and the assessment of ecotoxicity and genotoxicity is of particular interest for therapeutic use. Here we analyzed the biological effects of melittin on two aquatic species, which are representative of two different levels of the aquatic trophic chain: the invertebrate Daphnia magna and the unicellular microalgae Pseudokirchneriella subcapitata. The attention was focused on the determination of: i) ecotoxicity; ii) genotoxicity; iii) antigenotoxicity. Our main finding is that melittin is detrimental to D. magna reproduction and its sub-lethal concentrations create an accumulation dependent on exposition times and a negative effect on DNA. We also observed that melittin significantly delayed time to first eggs. Moreover, results showed that melittin exerted its toxic and genotoxic effects in both species, being a bit more aggressive towards P. subcapitata.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy.
| | - Valeria Maselli
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Renato Gesuele
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Domenico Fulgione
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| |
Collapse
|
34
|
Esperanza M, Cid Á, Herrero C, Rioboo C. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:210-221. [PMID: 26117094 DOI: 10.1016/j.aquatox.2015.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of mitochondrial membrane), genotoxicity (oxidative DNA damage, DNA strand breakage, alterations in nuclear morphology), and cell cycle disturbances (subG1-nuclei, decrease of 4N population) in paraquat-treated cells. Overall, the genotoxicity results indicate that the production of ROS caused by exposure to paraquat induces oxidative DNA damage followed by DNA single- and double-strand breaks and cell cycle alterations, possibly leading to apoptosis in C. reinhardtii cells. This is supported by the observation of typical hallmarks of apoptosis, such as mitochondrial membrane depolarization, alterations in nuclear morphology and subG1 nuclei in cells exposed to the highest assayed concentrations. To our knowledge, this is the first study that provides a comprehensive analysis of oxidative DNA base damage in unicellular algal cells exposed to a prooxidant pollutant, as well as of its possible relation with other physiological effects. These results reinforce the need for additional studies on the genotoxicity of environmental pollutants on ecologically relevant organisms such as microalgae that can provide a promising basis for the characterization of potential pollutant hazards in the aquatic environment.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|