1
|
Ranjan A, Rajput VD, Shende S, Saxena P, Prazdnova EV, Sushkova S, Arora J, Chauhan A, Jindal T, Zargar SM, Minkina T. Eco-friendly fabrication of Zn-based nanoparticles: implications in agricultural advancement and elucidation of toxicity aspects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4130-4167. [PMID: 40189734 DOI: 10.1002/jsfa.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 05/17/2025]
Abstract
Zinc (Zn) is a vital micronutrient required for optimal plant growth and soil fertility. Its use in the form of nanoparticles (NPs) has gained significant attention in agricultural applications. Green synthesized Zn-based NPs offer an eco-friendly solution to several conventional problems in agriculture. Several plants, bacteria, fungi and yeast have shown significant potential in fabricating Zn NPs that can provide environmentally friendly solutions in agriculture and the approach is aligned with sustainable agricultural practices, reducing the dependency on harmful agrochemicals. Zn-based NPs act as plant growth promoters, enhance crop yield, promote resilience to abiotic stressors and are efficient crop protection agents. Their role as a smart delivery system, enabling targeted and controlled release of agrochemicals, further signifies their potential use in agriculture. Because agriculture requires repeated applications hence, the toxicological aspects of Zn NPs cannot be ignored. Zn NPs are reported to cause phytotoxicity, including root damage, physiological and biochemical disturbances, and genotoxic effects. Furthermore, exposure to Zn NPs poses risks to soil microbiota, and aquatic and terrestrial organisms potentially impacting the ecosystem. The green synthesis of Zn-based NPs has a promising aspect for advancing sustainable agriculture by reducing agrochemical use and improving crop productivity. Their diverse applications as plant growth promoters, crop protectants and smart delivery systems emphasize their potential. However, the toxicological aspects are essential to ensure the standardization of doses for their safe and effective use. Further research would help address such concerns and help in developing viable and eco-friendly solutions for modern agriculture. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Sudhir Shende
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Pallavi Saxena
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- Adjunct Faculty, Centre for Research and Outcome, Chitkara University, Rajpura, India
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Sajad Majeed Zargar
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
2
|
Su C, Chen A, Liang W, Xie W, Xu X, Zhan X, Zhang W, Peng C. Copper-based nanomaterials: Opportunities for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171948. [PMID: 38527545 DOI: 10.1016/j.scitotenv.2024.171948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The exponential growth of the global population has resulted in a significant surge in the demand for food worldwide. Additionally, the impact of climate change has exacerbated crop losses caused by pests and pathogens. The transportation and utilization of traditional agrochemicals in the soil are highly inefficient, resulting in significant environmental losses and causing severe pollution of both the soil and aquatic ecosystems. Nanotechnology is an emerging field with significant potential for market applications. Among metal-based nanomaterials, copper-based nanomaterials have demonstrated remarkable potential in agriculture, which are anticipated to offer a promising alternative approach for enhancing crop yields and managing diseases, among other benefits. This review firstly performed co-occurrence and clustering analyses of previous studies on copper-based nanomaterials used in agriculture. Then a comprehensive review of the applications of copper-based nanomaterials in agricultural production was summarized. These applications primarily involved in nano-fertilizers, nano-regulators, nano-stimulants, and nano-pesticides for enhancing crop yields, improving crop resistance, promoting crop seed germination, and controlling crop diseases. Besides, the paper concluded the potential impact of copper-based nanomaterials on the soil micro-environment, including soil physicochemical properties, enzyme activities, and microbial communities. Additionally, the potential mechanisms were proposed underlying the interactions between copper-based nanomaterials, pathogenic microorganisms, and crops. Furthermore, the review summarized the factors affecting the application of copper-based nanomaterials, and highlighted the advantages and limitations of employing copper-based nanomaterials in agriculture. Finally, insights into the future research directions of nano-agriculture were put forward. The purpose of this review is to encourage more researches and applications of copper-based nanomaterials in agriculture, offering a novel and sustainable strategy for agricultural development.
Collapse
Affiliation(s)
- Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Vaidya S, Deng C, Wang Y, Zuverza-Mena N, Dimkpa C, White JC. Nanotechnology in agriculture: A solution to global food insecurity in a changing climate? NANOIMPACT 2024; 34:100502. [PMID: 38508516 DOI: 10.1016/j.impact.2024.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Although the Green Revolution dramatically increased food production, it led to non- sustainable conventional agricultural practices, with productivity in general declining over the last few decades. Maintaining food security with a world population exceeding 9 billion in 2050, a changing climate, and declining arable land will be exceptionally challenging. In fact, nothing short of a revolution in how we grow, distribute, store, and consume food is needed. In the last ten years, the field of nanotoxicology in plant systems has largely transitioned to one of sustainable nano-enabled applications, with recent discoveries on the use of this advanced technology in agriculture showing tremendous promise. The range of applications is quite extensive, including direct application of nanoscale nutrients for improved plant health, nutrient biofortification, increased photosynthetic output, and greater rates of nitrogen fixation. Other applications include nano-facilitated delivery of both fertilizers and pesticides; nano-enabled delivery of genetic material for gene silencing against viral pathogens and insect pests; and nanoscale sensors to support precision agriculture. Recent efforts have demonstrated that nanoscale strategies increase tolerance to both abiotic and biotic stressors, offering realistic potential to generate climate resilient crops. Considering the efficiency of nanoscale materials, there is a need to make their production more economical, alongside efficient use of incumbent resources such as water and energy. The hallmark of many of these approaches involves much greater impact with far less input of material. However, demonstrations of efficacy at field scale are still insufficient in the literature, and a thorough understanding of mechanisms of action is both necessary and often not evident. Although nanotechnology holds great promise for combating global food insecurity, there are far more ways to do this poorly than safely and effectively. This review summarizes recent work in this space, calling out existing knowledge gaps and suggesting strategies to alleviate those concerns to advance the field of sustainable nano-enabled agriculture.
Collapse
Affiliation(s)
- Shital Vaidya
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Chaoyi Deng
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Yi Wang
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Nubia Zuverza-Mena
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Christian Dimkpa
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Jason C White
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States.
| |
Collapse
|
4
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4074. [PMID: 38140401 PMCID: PMC10748132 DOI: 10.3390/plants12244074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
This review covers the literature data on plant growth-promoting bacteria in soil, which can fix atmospheric nitrogen, solubilize phosphates, produce and secrete siderophores, and may exhibit several different behaviors simultaneously. We discuss perspectives for creating bacterial consortia and introducing them into the soil to increase crop productivity in agrosystems. The application of rhizosphere bacteria-which are capable of fixing nitrogen, solubilizing organic and inorganic phosphates, and secreting siderophores, as well as their consortia-has been demonstrated to meet the objectives of sustainable agriculture, such as increasing soil fertility and crop yields. The combining of plant growth-promoting bacteria with mineral fertilizers is a crucial trend that allows for a reduction in fertilizer use and is beneficial for crop production.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
5
|
Balu SK, Andra S, Jeevanandam J, Kulabhusan PK, Khamari A, Vedarathinam V, Hamimed S, Chan YS, Danquah MK. Exploring the potential of metal oxide nanoparticles as fungicides and plant nutrient boosters. CROP PROTECTION 2023; 174:106398. [DOI: 10.1016/j.cropro.2023.106398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Manzoor MA, Shah IH, Ali Sabir I, Ahmad A, Albasher G, Dar AA, Altaf MA, Shakoor A. Environmental sustainable: Biogenic copper oxide nanoparticles as nano-pesticides for investigating bioactivities against phytopathogens. ENVIRONMENTAL RESEARCH 2023; 231:115941. [PMID: 37100366 DOI: 10.1016/j.envres.2023.115941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are of interest in human physiopathology and have been extensively studied for their effects on the endocrine system. Research also focuses on the environmental impact of EDCs, including pesticides and engineered nanoparticles, and their toxicity to organisms. Green nanofabrication has surfaced as an environmentally conscious and sustainable approach to manufacture antimicrobial agents that can effectively manage phytopathogens. In this study, we examined the current understanding of the pathogenic activities of Azadirachta indica aqueous formulated green synthesized copper oxide nanoparticles (CuONPs) against phytopathogens. The CuONPs were analyzed and studied using a range of analytical and microscopic techniques, such as UV-visible spectrophotometer, Transmission electron microscope (TEM), Scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR). The XRD spectral results revealed that the particles had a high crystal size, with an average size ranging from 40 to 100 nm. TEM and SEM images were utilized to verify the size and shape of the CuONPs, revealing that they varied between 20 and 80 nm. The existence of potential functional molecules involved in the reduction of the nanoparticles was confirmed by FTIR spectra and UV analysis. Biogenically synthesized CuONPs revealed significantly enhanced antimicrobial activities at 100 mg/L concentration in vitro by the biological method. The synthesized CuONPs at 500 μg/ml had a strong antioxidant activity which was examined through the free radicle scavenging method. Overall results of the green synthesized CuONPs have demonstrated significant synergetic effects in biological activities which can play a crucial impact in plant pathology against numerous phytopathogens.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Awais Shakoor
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
7
|
Ogunyemi SO, Xu X, Xu L, Abdallah Y, Rizwan M, Lv L, Ahmed T, Ali HM, Khan F, Yan C, Chen J, Li B. Cobalt oxide nanoparticles: An effective growth promoter of Arabidopsis plants and nano-pesticide against bacterial leaf blight pathogen in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114935. [PMID: 37086623 DOI: 10.1016/j.ecoenv.2023.114935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Recently, the application of cobalt oxide nanoparticles (Co3O4NPs) has gained popularity owing to its magnetic, catalytic, optical, antimicrobial, and biomedical properties. However, studies on its use as a crop protection agent and its effect on photosynthetic apparatus are yet to be reported. Here, Co3O4NPs were first green synthesized using Hibiscus rosa-sinensis flower extract and were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), transmission/scanning electron microscopy methods. Formation of the Co3O4NPs was attested based on surface plasmon resonance at 210 nm. XRD assay showed that the samples were crystalline having a mean size of 34.9 nm. The Co3O4NPs at 200 µg/ml inhibited the growth (OD600 = 1.28) and biofilm formation (OD570 = 1.37) of Xanthomonas oryzae pv. oryzae (Xoo) respectively, by 72.87% and 79.65%. Rice plants inoculated with Xoo had disease leaf area percentage (DLA %) of 57.25% which was significantly reduced to 11.09% on infected plants treated with 200 µg/ml Co3O4NPs. Also, plants treated with 200 µg/ml Co3O4NPs only had significant increment in shoot length, root length, fresh weight, and dry weight in comparison to plants treated with double distilled water. The application of 200 µg/ml Co3O4NPs on the Arabidopsis plant significantly increased the photochemical efficacy of PSII (ΦPSII) and photochemical quenching (qP) respectively, by 149.10% and 125.00% compared to the control while the non-photochemical energy dissipation (ΦNPQ) was significantly lowered in comparison to control. In summary, it can be inferred that Co3O4NPs can be a useful agent in the management of bacterial phytopathogen diseases.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Plant Pathology Department, Faculty of Agriculture, Minia University, 61519, Elminya, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Luqiong Lv
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Wang X, Zhang W, Lamichhane S, Dou F, Ma X. Effects of physicochemical properties and co-existing zinc agrochemicals on the uptake and phytotoxicity of PFOA and GenX in lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43833-43842. [PMID: 36680712 DOI: 10.1007/s11356-023-25435-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Even though the potential toxicity and treatment methods for per- and polyfluoroalkyl substances (PFAS) have attracted extensive attention, the plant uptake and accumulation of PFAS in edible plant tissues as a potential pathway for human exposure received little attention. Our study in a hydroponic system demonstrated that perfluorooctanoic acid (PFOA) and its replacing compound, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX) displayed markedly different patterns of plant uptake and accumulation. For example, the root concentration factor (RCF) of PFOA in lettuce is almost five times of that of GenX while the translocation factor (TF) of GenX is about 66.7% higher than that for PFOA. The co-presence of zinc amendments affected the phyto-effect of these two compounds and their accumulation in plant tissues, and the net effect on their plant accumulation depended on both the properties of Zn amendments and PFAS. Zinc oxide nanoparticles (ZnONPs) at 100 mg/L did not affect the uptake of PFOA in either lettuce roots or shoots; however, Zn2+ at the same concentration significantly increased PFOA accumulation in both tissues. In contrast, both Zn amendments significantly lowered the accumulation of GenX in lettuce roots, but only ZnONPs significantly hindered the GenX accumulation in lettuce shoots. The co-exposure to ZnONPs and PFOA/GenX resulted in lower oxidative stress than the plants exposed to PFOA or GenX alone. However, both zinc agrochemicals with or without PFAS led to lower root dry biomass. The results shed light on the property-dependent plant uptake of PFAS and the potential impact of co-existing nanoagrochemicals and their dissolved ions on plant uptake of PFOA and GenX.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | | | - Fugen Dou
- Texas A&M Agrilife Research Center, Beaumont, TX, 77713, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
9
|
Mesquita AF, Gonçalves FJM, Gonçalves AMM. The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3706. [PMID: 36834400 PMCID: PMC9963512 DOI: 10.3390/ijerph20043706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, pollution levels have increased, mainly as a result of the intensive anthropogenic activities such industrial development, intensive agricultural practices, among others. The impact of metals and organic contaminants is, nowadays, a great concern to the scientific and political communities. Copper compounds are the main sold pesticides in Europe, as well as herbicides, including glyphosate. Diphenyl ethers are the second ones most sold. Glyphosate and copper compounds are intensively studied, but the opposite is seen in the case of diphenyl ethers, including fluorinated pesticides (e.g., oxyfluorfen). Some research has been performed to increase the knowledge about these contaminants, daily inputted on the aquatic systems and with dangerous effects at physical and biochemical levels on the organisms. A wide range of biomarkers (e.g., growth, survival, reproductive success, enzymatic activity, lipid metabolism) has been applied to determine the potential effects in many species. This review intends to: (a) perform a compilation of the knowledge in previous research about the action mode of organic (fluorinated-based herbicide) and inorganic (copper-based pesticides) contaminants; (b) carry out an information survey about the lethal and sub-lethal effects of the fluorinated-based pesticides, namely the oxyfluorfen and the copper-based pesticides, on aquatic species from different trophic levels, according to in vitro and in vivo studies; (c) understand the impact of oxyfluorfen and copper-based pesticides, considering their effects reported in in vitro studies and, simultaneously, the authorized concentrations by legal organizations and the effective concentrations of each pollutant found in the environment. The literature analyzed revealed noxious effects of Cu and oxyfluorfen to aquatic organisms, including freshwater and marine species, even when exposed to the reference as well as to environmental concentrations, thus highlighting the importance of more monitoring and ecotoxicological studies, to chemical pollutants and different species from different ecological niches, to sustain and improve the legislation.
Collapse
Affiliation(s)
- Andreia F. Mesquita
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Ana M. M. Gonçalves
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
10
|
Liu L, Nian H, Lian T. Plants and rhizospheric environment: Affected by zinc oxide nanoparticles (ZnO NPs). A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:91-100. [PMID: 35667318 DOI: 10.1016/j.plaphy.2022.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 05/27/2023]
Abstract
Nowadays, there are many critical concerns in the agricultural sector, including reduced productivity of plants due to various environmental factors. Hence, a continuous innovation of existing technologies is necessary. Among the available technologies for sustainable agriculture, nanotechnology is one of the more promising technologies and has a great scope for development in agriculture. Zinc oxide nanoparticles (ZnO NPs) have attracted much attention due to their good properties and can be put into agriculture as nano-fertilizers, nano-growth regulators and nano-pesticides, although much remains to be explored about their mechanisms. Here, we review the literature on the interaction of ZnO NPs with plants through (i) uptake and transport pathways of ZnO NPs in plants. (ii) The mechanisms involved in improving growth, development and resistance. (iii) their effects on the rhizospheric environment. (iv) The toxic effects and mechanisms in plants. Our major conclusions are as follows: (1) they can be absorbed by the plant through the roots and leaves, with subsequent transformation. (2) moderate application can promote plant growth and mitigate stress, while excessive application can produce toxic effects. (3) the effects of them on the rhizospheric environment cannot be ignored. This study may provide a reference for the safe and effective use of ZnO NPs in agricultural production.
Collapse
Affiliation(s)
- Lingrui Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Argo-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Argo-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Argo-bioresources, South China Agricultural University, Guangzhou, Guangdong, China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Shah IH, Ashraf M, Sabir IA, Manzoor MA, Malik MS, Gulzar S, Ashraf F, Iqbal J, Niu Q, Zhang Y. Green synthesis and Characterization of Copper oxide nanoparticles using Calotropis procera leaf extract and their different biological potentials. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Wang X, Jiang J, Dou F, Li X, Sun W, Ma X. Zinc Fertilizers Modified the Formation and Properties of Iron Plaque and Arsenic Accumulation in Rice ( Oryza sativa L.) in a Life Cycle Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8209-8220. [PMID: 35623092 DOI: 10.1021/acs.est.2c01767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study examined the effect of three forms of zinc fertilizers on arsenic (As) accumulation and speciation in rice tissues over the life cycle of this cereal crop in a paddy soil. The formation and properties of iron plaque on rice roots at the maximum tillering stage and the mature stage were also determined. Elevated As at 5 mg/kg markedly lowered the rice yield by 86%; however, 100 mg/kg Zn fertilizers significantly increased the rice yield by 354-686%, regardless of the Zn form. Interestingly, only Zn2+ significantly lowered the total As in rice grains by 17% to 3.5 mg/kg and As(III) by 64% to around 0.5 mg/kg. Zinc amendments substantially hindered and, in the case of zinc oxide bulk particles (ZnOBPs), fully prevented the crystallization of iron oxides (Fe3O4 and Fe2O3) and silicon oxide (SiO2) and altered the composition of iron plaques on rice roots. SiO2 was first reported to be a significant component of iron plaque. Overall, ZnOBPs, ZnO nanoparticles, and Zn2+ displayed significant yet distinctive effects on the properties of iron plaque and As accumulation in rice grains, providing a fresh perspective on the potentially unintended consequences of different Zn fertilizers on food safety.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jiechao Jiang
- Department of Materials Science and Engineering, University of Texas Arlington, Arlington, Texas 76019, United States
| | - Fugen Dou
- Texas A&M AgriLife Research Center at Beaumont, Texas A&M University System, Beaumont, Texas 77713, United States
| | - Xiufen Li
- Texas A&M AgriLife Research Center at Beaumont, Texas A&M University System, Beaumont, Texas 77713, United States
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Science, St. Cloud State University, St. Cloud, Minnesota 56301, United States
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Wu Q, Jiang X, Wu H, Zou L, Wang L, Shi J. Effects and Mechanisms of Copper Oxide Nanoparticles with Regard to Arsenic Availability in Soil-Rice Systems: Adsorption Behavior and Microbial Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8142-8154. [PMID: 35654440 DOI: 10.1021/acs.est.2c01393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are widely used as fungicides in agriculture. Arsenic (As) is a ubiquitous contaminant in paddy soil. The present study was focused on the adsorption behavior of CuO NPs with regard to As as well as the characteristics of the microbial community changes in As-contaminated soil-rice systems in response to CuO NPs. The study found that CuO NPs could be a temporary sink of As in soil; a high dose of CuO NPs promoted the release of As from crystalline iron oxide, which increased the As content in the liquid phase. The study also found that the As bioavailability changed significantly when the dose of CuO NPs was higher than 50 mg kg-1 in the soil-rice system. The addition of 100 mg kg-1 CuO NPs increased the microbial diversity and the abundance of genes involved in As cycling, decreased the abundance of Fe(III)-reducing bacteria and sulfate-reducing genes, and decreased As accumulation in grains. Treatment with 500 mg kg-1 CuO NPs increased the abundance of Fe(III)-reducing bacteria and sulfate-reducing genes, decreased Fe plaques, and increased As accumulation in rice. The adverse effects of CuO NPs on crops and associated risks need to be considered carefully.
Collapse
Affiliation(s)
- Qianhua Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Lina Zou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Lubin Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Khan MR, Siddiqui ZA, Fang X. Potential of metal and metal oxide nanoparticles in plant disease diagnostics and management: Recent advances and challenges. CHEMOSPHERE 2022; 297:134114. [PMID: 35240149 DOI: 10.1016/j.chemosphere.2022.134114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Plant diseases caused by phytopathogens are a severe threat to global food production. Management of plant diseases mostly rely on the application of pesticides which have several adverse effects on the ecosystem. Innovative and high-performance diagnostic tools are useful for the early detection of phytopathogens. Emerging role of metal and metal oxides nanoparticles (NPs) in plant disease diagnostics to combat crop diseases has been described. These NPs constitute new weapons against plant pathogens and facilitate the early diagnosis/management of crop diseases specifically in resource-poor conditions. The interactions between NPs, phytopathogens and plants showed great diversity and multiplicity which reduces chances of the development of resistant pathogen strains. The present article discusses the available literature as well as challenges and research gaps that are essential in the successful utilization of metal and metal oxide NPs for precise and timely detection and management of plant diseases.
Collapse
Affiliation(s)
- Manzoor R Khan
- Plant Pathology & Nematology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India; Department of Botany, Government Degree College Kupwara, Kupwara, Jammu & Kashmir, 193222, India
| | - Zaki A Siddiqui
- Plant Pathology & Nematology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
15
|
Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, Yadav SK, Das A, Yadav V, Yadav B, Shekhawat K, Upadhyay PK, Yadav DK, Singh VK. Nanofertilizers for agricultural and environmental sustainability. CHEMOSPHERE 2022; 292:133451. [PMID: 34973251 DOI: 10.1016/j.chemosphere.2021.133451] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Indiscriminate use of chemical fertilizers in the agricultural production systems to keep pace with the food and nutritional demand of the galloping population had an adverse impact on ecosystem services and environmental quality. Hence, an alternative mechanism is to be developed to enhance farm production and environmental sustainability. A nanohybrid construct like nanofertilizers (NFs) is an excellent alternative to overcome the negative impact of traditional chemical fertilizers. The NFs provide smart nutrient delivery to the plants and proves their efficacy in terms of crop productivity and environmental sustainability over bulky chemical fertilizers. Plants can absorb NFs by foliage or roots depending upon the application methods and properties of the particles. NFs enhance the biotic and abiotic stresses tolerance in plants. It reduces the production cost and mitigates the environmental footprint. Multitude benefits of the NFs open new vistas towards sustainable agriculture and climate change mitigation. Although supra-optimal doses of NFs have a detrimental effect on crop growth, soil health, and environmental outcomes. The extensive release of NFs into the environment and food chain may pose a risk to human health, hence, need careful assessment. Thus, a thorough review on the role of different NFs and their impact on crop growth, productivity, soil, and environmental quality is required, which would be helpful for the research of sustainable agriculture.
Collapse
Affiliation(s)
- Subhash Babu
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raghavendra Singh
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208 024, India
| | - Devideen Yadav
- ICAR- Indian Institute of Soil & Water Conservation, Dehradun, Uttarakhand, 248 195, India
| | - Sanjay Singh Rathore
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Rishi Raj
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ravikant Avasthe
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Sikkim, 737 102, India
| | - S K Yadav
- ICAR- Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh, 226 002, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre, Tripura, 799 210, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Brijesh Yadav
- ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, 173213, India
| | - Kapila Shekhawat
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - P K Upadhyay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Dinesh Kumar Yadav
- ICAR- Indian Institute of Soil Science, Bhopal, Madhya Pradesh, 462038, India
| | - Vinod K Singh
- ICAR-Central Research Institute on Dryland Agriculture, Hyderabad, Telangana, 500 059, India
| |
Collapse
|
16
|
Abd-Elsalam KA. Copper-based nanomaterials: Next-generation agrochemicals: A note from the editor. COPPER NANOSTRUCTURES: NEXT-GENERATION OF AGROCHEMICALS FOR SUSTAINABLE AGROECOSYSTEMS 2022:1-14. [DOI: 10.1016/b978-0-12-823833-2.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Wang X, Li X, Dou F, Sun W, Chen K, Wen Y, Ma X. Elucidating the impact of three metallic nanoagrichemicals and their bulk and ionic counterparts on the chemical properties of bulk and rhizosphere soils in rice paddies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118005. [PMID: 34419859 DOI: 10.1016/j.envpol.2021.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Growing applications of nanoagrichemicals have resulted in their increasing accumulation in agricultural soils, which could modify soil properties and affect soil health. A greenhouse pot trial was conducted to determine the effects of three metallic nanoagrichemicals on several fundamental chemical properties of a rice paddy soil, including zinc oxide nanoparticles (ZnO NPs) and copper oxide nanoparticles (CuO NPs) at 100 mg/kg, and silicon oxide nanoparticles (SiO2 NPs) at 500 mg/kg, as well as their bulk and ionic counterparts. The investigated soil amendments displayed significant and distinctive impact on the examined soil chemical properties relevant to agricultural production, including soil pH, redox potential, soil organic carbon (SOC), cation exchange capacity (CEC), and plant available As. For example, all amendments increased the bulk soil pH at day 47 to some extent, but the increase was substantially higher for SiO32- (37.7%) than other amendments (5.8%-13.7%). Soil Eh was elevated markedly at day 47 after the addition of soil amendments in both the bulk soil (45.9%-74.4%) and rice rhizosphere soil (20.3%-68.9%). CuO NPs and Cu2+ generally exhibited greater impact on soil chemical properties than other agrichemicals. Significantly different responses to soil amendments were observed between bulk and rhizosphere soils, suggesting the essential role of plants in affecting soil properties and their responses to environmental disturbance. Overall, our results confirmed that the tested amendments could have remarkable impacts on the fundamental chemical properties of rice paddy soils.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiufen Li
- Texas A&M AgriLife Research Center at Beaumont, Texas A&M University System, Beaumont, TX, 77713, USA
| | - Fugen Dou
- Texas A&M AgriLife Research Center at Beaumont, Texas A&M University System, Beaumont, TX, 77713, USA
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Science, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Kun Chen
- Department of Statistics, University of Connecticut, Storrs, CT, 06029, USA
| | - Yinghao Wen
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
18
|
Shemawar, Mahmood A, Hussain S, Mahmood F, Iqbal M, Shahid M, Ibrahim M, Ali MA, Shahzad T. Toxicity of biogenic zinc oxide nanoparticles to soil organic matter cycling and their interaction with rice-straw derived biochar. Sci Rep 2021; 11:8429. [PMID: 33875737 PMCID: PMC8055651 DOI: 10.1038/s41598-021-88016-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Given the rapidly increasing use of metal oxide nanoparticles in agriculture as well as their inadvertent addition through sewage sludge application to soils, it is imperative to assess their possible toxic effects on soil functions that are vital for healthy crop production. In this regard, we designed a lab study to investigate the potential toxicity of one of the most produced nanoparticles, i.e. zinc oxide nanoparticles (nZnO), in a calcareous soil. Microcosms of 80 g of dry-equivalent fresh soils were incubated in mason jars for 64 days, after adding 100 or 1000 mg of biogenically produced nZnO kg-1 soil. Moreover, we also added rice-straw derived biochar at 1 or 5% (w: w basis) hypothesizing that the biochar would alleviate nZnO-induced toxicity given that it has been shown to adsorb and detoxify heavy metals in soils. We found that the nZnO decreased microbial biomass carbon by 27.0 to 33.5% in 100 mg nZnO kg-1 soil and by 39.0 to 43.3% in 1000 mg nZnO kg-1 soil treatments across biochar treatments in the short term i.e. 24 days after incubation. However, this decrease disappeared after 64 days of incubation and the microbial biomass in nZnO amended soils were similar to that in control soils. This shows that the toxicity of nZnO in the studied soil was ephemeral and transient which was overcome by the soil itself in a couple of months. This is also supported by the fact that the nZnO induced higher cumulative C mineralization (i.e. soil respiration) at both rates of addition. The treatment 100 mg nZnO kg-1 soil induced 166 to 207%, while 1000 mg nZnO kg-1 soil induced 136 to 171% higher cumulative C mineralization across biochar treatments by the end of the experiment. However, contrary to our hypothesis increasing the nZnO addition from 100 to 1000 mg nZnO kg-1 soil did not cause additional decrease in microbial biomass nor induced higher C mineralization. Moreover, the biochar did not alleviate even the ephemeral toxicity that was observed after 24d of incubation. Based on overall results, we conclude that the studied soil can function without impairment even at 1000 mg kg-1 concentration of nZnO in it.
Collapse
Affiliation(s)
- Shemawar
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Abid Mahmood
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Sabir Hussain
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Faisal Mahmood
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Iqbal
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Shahid
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Ibrahim
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Arif Ali
- grid.411501.00000 0001 0228 333XDepartment of Soil Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Tanvir Shahzad
- grid.411786.d0000 0004 0637 891XDepartment of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| |
Collapse
|
19
|
Kalia A, Kaur J, Tondey M, Manchanda P, Bindra P, Alghuthaymi MA, Shami A, Abd-Elsalam KA. Differential Antimycotic and Antioxidant Potentials of Chemically Synthesized Zinc-Based Nanoparticles Derived from Different Reducing/Complexing Agents against Pathogenic Fungi of Maize Crop. J Fungi (Basel) 2021; 7:223. [PMID: 33803825 PMCID: PMC8003151 DOI: 10.3390/jof7030223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The present study aimed for the synthesis, characterization, and comparative evaluation of anti-oxidant and anti-fungal potentials of zinc-based nanoparticles (ZnNPs) by using different reducing or organic complexing-capping agents. The synthesized ZnNPs exhibited quasi-spherical to hexagonal shapes with average particle sizes ranging from 8 to 210 nm. The UV-Vis spectroscopy of the prepared ZnNPs showed variation in the appearance of characteristic absorption peak(s) for the various reducing/complexing agents i.e., 210 (NaOH and NaBH4), 220 (albumin, and thiourea), 260 and 330 (starch), and 351 nm (cellulose) for wavelengths spanning over 190-800 nm. The FT-IR spectroscopy of the synthesized ZnNPs depicted the functional chemical group diversity. On comparing the antioxidant potential of these ZnNPs, NaOH as reducing agent, (NaOH (RA)) derived ZnNPs presented significantly higher DPPH radical scavenging potential compared to other ZnNPs. The anti-mycotic potential of the ZnNPs as performed through an agar well diffusion assay exhibited variability in the extent of inhibition of the fungal mycelia with maximum inhibition at the highest concentration (40 mg L-1). The NaOH (RA)-derived ZnNPs showcased maximum mycelial inhibition compared to other ZnNPs. Further, incubation of the total genomic DNA with the most effective NaOH (RA)-derived ZnNPs led to intercalation or disintegration of the DNA of all the three fungal pathogens of maize with maximum DNA degrading effect on Macrophomina phaseolina genomic DNA. This study thus identified that differences in size and surface functionalization with the protein (albumin)/polysaccharides (starch, cellulose) diminishes the anti-oxidant and anti-mycotic potential of the generated ZnNPs. However, the NaOH emerged as the best reducing agent for the generation of uniform nano-scale ZnNPs which possessed comparably greater anti-oxidant and antimycotic activities against the three test maize pathogenic fungal cultures.
Collapse
Affiliation(s)
- Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Jashanpreet Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (J.K.); (M.T.)
| | - Manisha Tondey
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (J.K.); (M.T.)
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Pulkit Bindra
- Institute of Nanoscience and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India;
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia
| | - Ashwag Shami
- Biology Department, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| |
Collapse
|
20
|
Chen C, Unrine JM, Hu Y, Guo L, Tsyusko OV, Fan Z, Liu S, Wei G. Responses of soil bacteria and fungal communities to pristine and sulfidized zinc oxide nanoparticles relative to Zn ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124258. [PMID: 33153791 DOI: 10.1016/j.jhazmat.2020.124258] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are attracting much interest due to their potential toxicity and ubiquity in consumer products. However, understanding of pristine and transformed ZnO NPs impact on soil microbial communities is still limited. Here, we explored changes in the microbial communities of soils treated with pristine and sulfidized ZnO NPs (s-ZnO NPs), and their corresponding Zn ions (ZnSO4) for 30 and 90 days exposures at 100 and 500 mg Zn kg-1. The similarity in bacterial community responses was observed between ZnO NPs and s-ZnO NPs, and these Zn treatments significantly affected the bacterial communities at 90 days, which exhibited distinct patterns compared to ZnSO4. The single-time tested DTPA and H2O extractable Zn ions could not fully explain the observed ZnO NPs and s-ZnO NPs impact on bacterial communities. The two most dominant phylum Nitrospirae and Actinobacteria, associated with the reduction of NH4+-N and dissolved organic carbon, demonstrated significant changes in soils exposed to ZnO NPs and s-ZnO NPs. This suggests the potential long-term impact of transformed ZnO NPs on soil carbon and nitrogen cycling. For fungal communities, we did not find the distinct response patterns of fungal communities between nanoparticulate and ionic Zn exposures.
Collapse
Affiliation(s)
- Chun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Yingwei Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lulu Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Zhen Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shuang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
21
|
Fischer J, Evlanova A, Philippe A, Filser J. Soil properties can evoke toxicity of copper oxide nanoparticles towards springtails at low concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116084. [PMID: 33246757 DOI: 10.1016/j.envpol.2020.116084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Copper oxide nanoparticles (CuO-NP) are used as an efficient alternative to conventional Cu in agriculture and might end up in soils. They show a high toxicity towards cells and microorganisms, but only low toxicity towards soil invertebrates. However, most existing soil ecotoxicological studies were conducted in a sandy reference soil and at test concentrations ≥100 mg Cu/kg soil. Therefore, there is a knowledge gap concerning the effect of soil texture on the toxicity of CuO-NP at lower, more realistic test concentrations. In our study, a sandy reference soil and three loamy soils were spiked with CuO-NP at up to four concentrations, ranging from 5 to 158 mg Cu/kg. We investigated 28-day reproduction as well as weight and Cu content after 14-day bioaccumulation and subsequent 14-day elimination for the springtail Folsomia candida. For the first time we analysed the size distribution of CuO-NP in aqueous test soil extracts by single particle-ICP-MS which revealed that the diameter of CuO-NP significantly increased with increasing concentration, but did not vary between test soils. Negative effects on reproduction were only observed in loamy soils, most pronounced in a loamy-acidic soil (-61%), and they were always strongest at the lowest test concentration. The observed effects were much stronger than reported by other studies performed with sandy soils and higher CuO-NP concentrations. In the same soil and concentration, a moderate impact on growth (-28%) was observed, while Cu elimination from springtails was inhibited. Rather than Cu body concentration, the diameter of the CuO-NP taken up, as well as NP-clay interactions might play a crucial role regarding their toxicity. Our study reports for the first time toxic effects of CuO-NP towards a soil invertebrate at a low, realistic concentration range. The results strongly suggest including lower test concentrations and a range of soil types in nanotoxicity testing.
Collapse
Affiliation(s)
- Jonas Fischer
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359, Bremen, Germany.
| | - Anna Evlanova
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359, Bremen, Germany
| | - Allan Philippe
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Juliane Filser
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359, Bremen, Germany
| |
Collapse
|
22
|
Peixoto S, Henriques I, Loureiro S. Long-term effects of Cu(OH) 2 nanopesticide exposure on soil microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116113. [PMID: 33261963 DOI: 10.1016/j.envpol.2020.116113] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Copper-based (nano)pesticides in agroecosystems may result in unintended consequences on non-target soil microbial communities, due to their antimicrobial broad spectrum. We studied the impact of a commercial Cu(OH)2-nanopesticide, over 90 days, at single and season agricultural application doses, in the presence and absence of an edaphic organism (the isopod Porcellionides pruinosus), on microbial communities' function, structure and abundance. Results were compared to the effects of Cu(OH)2-ionic. The nanopesticide application resulted in significant changes on both bacterial and fungal communities' structure, particularly at the season application. The exposed bacterial community presented a significantly lower richness, and higher diversity and evenness while the exposed fungal community presented lower diversity and richness. At the functional level, a significant increase on microbial ability of carbon utilization and a significant decrease on the β-glucosidase activity was observed for communities exposed to the nanopesticide. Regarding Cu forms, less pronounced effects were observed in soils spiked with Cu(OH)2-ionic, which might result from lower Cu concentration in porewater. The presence of P. pruinosus did not induce significant changes in diversity indexes (fungal community) and community-level physiological profiling, suggesting an attenuation of the nanopesticide effect. This study revealed that Cu(OH)2-nanopesticide, at doses applied in agriculture, impact the soil microbial community, possibly affecting its ecological role. On the other hand, invertebrates may attenuate this effect, highlighting the importance of jointly including different interacting communities in the risk assessment of nanopesticides in soils.
Collapse
Affiliation(s)
- Sara Peixoto
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; University of Coimbra, Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
23
|
Ogunyemi SO, Zhang M, Abdallah Y, Ahmed T, Qiu W, Ali MA, Yan C, Yang Y, Chen J, Li B. The Bio-Synthesis of Three Metal Oxide Nanoparticles (ZnO, MnO 2, and MgO) and Their Antibacterial Activity Against the Bacterial Leaf Blight Pathogen. Front Microbiol 2020; 11:588326. [PMID: 33343527 PMCID: PMC7746657 DOI: 10.3389/fmicb.2020.588326] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO2, and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO2, and MgO, respectively. Biogenic ZnO, MnO2, and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO2, and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Crop Protection, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - Muchen Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Faculty of Agriculture, Minia University, Minya, Egypt
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wen Qiu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Md. Arshad Ali
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chengqi Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bin Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Kalia A, Abd-Elsalam KA, Kuca K. Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects. J Fungi (Basel) 2020; 6:E222. [PMID: 33066193 PMCID: PMC7711620 DOI: 10.3390/jof6040222] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
A facet of nanorenaissance in plant pathology hailed the research on the development and application of nanoformulations or nanoproducts for the effective management of phytopathogens deterring the growth and yield of plants and thus the overall crop productivity. Zinc nanomaterials represent a versatile class of nanoproducts and nanoenabled devices as these nanomaterials can be synthesized in quantum amounts through economically affordable processes/approaches. Further, these nanomaterials exhibit potential targeted antimicrobial properties and low to negligible phytotoxicity activities that well-qualify them to be applied directly or in a deviant manner to accomplish significant antibacterial, antimycotic, antiviral, and antitoxigenic activities against diverse phytopathogens causing plant diseases. The photo-catalytic, fluorescent, and electron generating aspects associated with zinc nanomaterials have been utilized for the development of sensor systems (optical and electrochemical biosensors), enabling quick, early, sensitive, and on-field assessment or quantification of the test phytopathogen. However, the proficient use of Zn-derived nanomaterials in the management of plant pathogenic diseases as nanopesticides and on-field sensor system demands that the associated eco- and biosafety concerns should be well discerned and effectively sorted beforehand. Current and possible utilization of zinc-based nanostructures in plant disease diagnosis and management and their safety in the agroecosystem is highlighted.
Collapse
Affiliation(s)
- Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center (ARC), Plant Pathology Research Institute, Giza 12619, Egypt;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
25
|
Baldassarre F, Tatulli G, Vergaro V, Mariano S, Scala V, Nobile C, Pucci N, Dini L, Loreti S, Ciccarella G. Sonication-Assisted Production of Fosetyl-Al Nanocrystals: Investigation of Human Toxicity and In Vitro Antibacterial Efficacy against Xylella Fastidiosa. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1174. [PMID: 32560195 PMCID: PMC7353234 DOI: 10.3390/nano10061174] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/27/2022]
Abstract
Recently, there is a growing demand in sustainable phytopathogens control research. Nanotechnology provides several tools such as new pesticides formulations, antibacterial nanomaterials and smart delivery systems. Metal nano-oxides and different biopolymers have been exploited in order to develop nanopesticides which can offer a targeted solution minimizing side effects on environment and human health. This work proposed a nanotechnological approach to obtain a new formulation of systemic fungicide fosetyl-Al employing ultrasonication assisted production of water dispersible nanocrystals. Moreover, chitosan was applicated as a coating agent aiming a synergistic antimicrobial effect between biopolymer and fungicide. Fosetyl-Al nanocrystals have been characterized by morphological and physical-chemical analysis. Nanotoxicological investigation was carried out on human keratinocytes cells through cells viability test and ultrastructural analysis. In vitro planktonic growth, biofilm production and agar dilution assays have been conducted on two Xylella fastidiosa subspecies. Fosetyl-Al nanocrystals resulted very stable over time and less toxic respect to conventional formulation. Finally, chitosan-based fosetyl-Al nanocrystals showed an interesting antibacterial activity against Xylella fastidiosa subsp. pauca and Xylella fastidiosa subsp. fastidiosa.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Viviana Vergaro
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| | - Stefania Mariano
- Biological and Environmental Sciences Department, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Concetta Nobile
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Luciana Dini
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| |
Collapse
|
26
|
Bio-functionalized CuO nanoparticles induced apoptotic activities in human breast carcinoma cells and toxicity against Aspergillus flavus: An in vitro approach. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Singh A, Dhiman N, Kar AK, Singh D, Purohit MP, Ghosh D, Patnaik S. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121525. [PMID: 31740313 DOI: 10.1016/j.jhazmat.2019.121525] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 05/26/2023]
Abstract
As the world is striving hard towards sustainable agricultural practices for a better tomorrow, one of the primary focuses is on effective pest management for enhanced crop productivity. Despite newer and potent chemicals as pesticides, there are still substantial crop losses, and if by any means this loss can be tackled; it will alleviate unwanted excessive use of chemical pesticides. Scientific surveys have already established that pesticides are not being utilized by the crops completely rather a significant amount remains unused due to various limiting factors such as leaching and bioconversion, etc., resulting in an adverse effect on human health and ecosystems. Concerted efforts from scientific diaspora toward newer and innovative strategies are already showing promise, and one such viable approach is controlled release systems (CRS) of pesticides. Moreover, to bring these smart formulations within the domain of current pesticide regulatory framework is still under debate. It is thus, paramount to discuss the pros and cons of this new technology vis-à-vis the conventional agrarian methods. This review deliberates on the developmental updates in this innovative field from the past decades and also appraises the challenges encumbered. Additionally, critical information and the foreseeable research gaps in this emerging area are highlighted.
Collapse
Affiliation(s)
- Amrita Singh
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Aditya Kumar Kar
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Divya Singh
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Mahaveer Prasad Purohit
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Debabrata Ghosh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India; Immunotoxicolgy Laboratory, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
28
|
Fu L, Wang Z, Dhankher OP, Xing B. Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:507-519. [PMID: 31270541 DOI: 10.1093/jxb/erz314] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/27/2019] [Indexed: 05/29/2023]
Abstract
Climate change will negatively affect crop production by exacerbating the incidence of disease and decreasing the efficacy of conventional approaches to disease control. Nanotechnology is a promising new strategy for plant disease management that has many advantages over conventional products and approaches, such as better efficacy, reduced input requirements, and lower eco-toxicity. Studies on crop plants using various nanomaterials (NMs) as protective agents have produced promising results. This review focuses on the use of NMs in disease management through three different mechanisms: (i) as antimicrobial agents; (ii) as biostimulants that induce plant innate immunity; and (iii) as carriers for active ingredients such as pesticides, micronutrients, and elicitors. The potential benefits of nanotechnology are considered, together with the role that NMs might play in future disease management and crop adaptation measures.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
29
|
Ogunyemi SO, Zhang F, Abdallah Y, Zhang M, Wang Y, Sun G, Qiu W, Li B. Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2230-2239. [PMID: 31161806 DOI: 10.1080/21691401.2019.1622552] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacterial brown stripe (BBS) is one of the most economically important diseases of rice caused by Acidovorax oryzae (Ao). In order to ensure food security and safe consumption, the use of non-chemical approach is necessary. In this study, MgO and MnO2 were synthesized using chamomile flower extract. The synthesized MgO and MnO2 nanoparticles were characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission/scanning electron microscopy. The sizes were 18.2 and 16.5 nm for MgO and MnO2 nanoparticles, respectively. The MgO and MnO2 nanoparticles reduced the growth of Ao strain RS-2 by 62.9 and 71.3%, respectively. Also, the biofilm formation and swimming motility were significantly reduced compared to the control. The antibacterial mechanisms of MgO and MnO2 nanoparticles against RS-2 reveals that MgO and MnO2 nanoparticles penetrated the cells and destroyed the cell membrane leading to leakage of cytoplasmic content. Also, the flow cytometry observation reveals that the apoptotic cell ratio of RS-2 increased from 0.97% to 99.52 and 99.94% when treated with MgO and MnO2 nanoparticles, respectively. Altogether, the results suggest that the synthesized MgO and MnO2 nanoparticles could serve as an alternative approach method for the management of BBS.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- a State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China.,b Department of Crop Protection, Federal University of Agriculture Abeokuta , Abeokuta , Nigeria
| | - Feng Zhang
- a State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China
| | - Yasmine Abdallah
- a State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China
| | - Muchen Zhang
- a State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China
| | - Yangli Wang
- c State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Guochang Sun
- c State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Wen Qiu
- a State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China
| | - Bin Li
- a State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China
| |
Collapse
|
30
|
Baldassarre F, De Stradis A, Altamura G, Vergaro V, Citti C, Cannazza G, Capodilupo AL, Dini L, Ciccarella G. Application of calcium carbonate nanocarriers for controlled release of phytodrugs against Xylella fastidiosa pathogen. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
Calcium carbonate-based hollow or porous particles are one of the preferred carriers for fabrication of drug delivery systems. We have developed an eco-friendly method to produce calcium carbonate nanocrystals, which have shown biocompatibility and optimal capacity to across cell membrane in human cell lines providing new tools in cancer therapy. The success of drug delivery systems has paved the way for the development of systems for controlled release of agrochemicals. In this work, we exploited calcium carbonate nanocrystals as carriers for targeted release of phytodrugs investigating a potential control strategy for the pathogen Xylella fastidiosa. This pathogen is the causal agent of the Olive Quick Decline Syndrome that is an unprecedented emergency in Italy and potentially in the rest of Europe. We studied nanocrystals interactions with bacteria cells and the application in planta to verify olive plants uptake. Ultrastructural analysis by electron microscopy shown an alteration of bacteria wall following nanocrystals interaction. Nanocrystals were adsorbed from roots and they translocated in plants tissues. Calcium carbonate carriers were able to encapsulate efficiently two types of antimicrobial substances and the potential efficacy was tested in experiment under greenhouse conditions.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento , Via Monteroni, 73100 Lecce , Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche , Via Monteroni, 73100 Lecce , Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, CNR – IPSP, Consiglio Nazionale delle Ricerche , Via Amendola 165/A, 70126 Bari , Italy
| | - Giuseppe Altamura
- Institute for Sustainable Plant Protection, CNR – IPSP, Consiglio Nazionale delle Ricerche , Via Amendola 165/A, 70126 Bari , Italy
| | - Viviana Vergaro
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento , Via Monteroni, 73100 Lecce , Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche , Via Monteroni, 73100 Lecce , Italy
| | - Cinzia Citti
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche , Via Monteroni, 73100 Lecce , Italy
- Department of Life Sciences , University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena , Italy
| | - Giuseppe Cannazza
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche , Via Monteroni, 73100 Lecce , Italy
- Department of Life Sciences , University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena , Italy
| | - Agostina L. Capodilupo
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche , Via Monteroni, 73100 Lecce , Italy
| | - Luciana Dini
- Department of Biology and Biotechnology “Charles Darwin” , University of Rome “La Sapienza” , Piazzale Aldo Moro 5, 00185 Roma , Italy
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento , Via Monteroni, 73100 Lecce , Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche , Via Monteroni, 73100 Lecce , Italy
| |
Collapse
|
31
|
Yokel RA, Hancock ML, Grulke EA, Unrine JM, Dozier AK, Graham UM. Carboxylic acids accelerate acidic environment-mediated nanoceria dissolution. Nanotoxicology 2019; 13:455-475. [PMID: 30729879 PMCID: PMC6609459 DOI: 10.1080/17435390.2018.1553251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Ligands that accelerate nanoceria dissolution may greatly affect its fate and effects. This project assessed the carboxylic acid contribution to nanoceria dissolution in aqueous, acidic environments. Nanoceria has commercial and potential therapeutic and energy storage applications. It biotransforms in vivo. Citric acid stabilizes nanoceria during synthesis and in aqueous dispersions. In this study, citrate-stabilized nanoceria dispersions (∼4 nm average primary particle size) were loaded into dialysis cassettes whose membranes passed cerium salts but not nanoceria particles. The cassettes were immersed in iso-osmotic baths containing carboxylic acids at pH 4.5 and 37 °C, or other select agents. Cerium atom material balances were conducted for the cassette and bath by sampling of each chamber and cerium quantitation by ICP-MS. Samples were collected from the cassette for high-resolution transmission electron microscopy observation of nanoceria size. In carboxylic acid solutions, nanoceria dissolution increased bath cerium concentration to >96% of the cerium introduced as nanoceria into the cassette and decreased nanoceria primary particle size in the cassette. In solutions of citric, malic, and lactic acids and the ammonium ion ∼15 nm, ceria agglomerates persisted. In solutions of other carboxylic acids, some select nanoceria agglomerates grew to ∼1 micron. In carboxylic acid solutions, dissolution half-lives were 800-4000 h; in water and horseradish peroxidase they were ≥55,000 h. Extending these findings to in vivo and environmental systems, one expects acidic environments containing carboxylic acids to degrade nanoceria by dissolution; two examples would be phagolysosomes and in the plant rhizosphere.
Collapse
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | | | - Eric A. Grulke
- Chemical & Materials Engineering, University of Kentucky, Lexington, KY
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY
- CDC/NIOSH, Cincinnati, OH
| |
Collapse
|
32
|
Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 2018; 123:505-526. [DOI: 10.1016/j.micpath.2018.08.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/15/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
|
33
|
Achari GA, Kowshik M. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8647-8661. [PMID: 30036480 DOI: 10.1021/acs.jafc.8b00691] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant mineral nutrition is important for obtaining higher agricultural productivity to meet the future demands of the increasing global human population. It is envisaged that nanotechnology can provide sustainable solutions by replacing traditional bulk fertilizers with their nanoparticulate counterparts possessing superior properties to overcome the current challenges of bioavailability and uptake of minerals, increasing crop yield, reducing fertilizer wastage, and protecting the environment. Recent studies have shown that nanoparticles of essential minerals and nonessential elements affect plant growth, physiology, and development, depending on their size, composition, concentration, and mode of application. The current review includes the recent findings on the positive as well as negative effects that nanofertilizers exert on plants when applied via foliar and soil routes, their effects on plant associated microorganisms, and potential for controlling agricultural pests. This review suggests future research needed for the development of sustained release nanofertilizers for enhancing food production and environmental protection.
Collapse
Affiliation(s)
- Gauri A Achari
- Department of Biological Sciences , Birla Institute of Technology and Science Pilani , KK Birla Goa Campus, Zuarinagar , Goa 403726 , India
| | - Meenal Kowshik
- Department of Biological Sciences , Birla Institute of Technology and Science Pilani , KK Birla Goa Campus, Zuarinagar , Goa 403726 , India
| |
Collapse
|
34
|
|
35
|
Rai M, Ingle AP, Paralikar P, Anasane N, Gade R, Ingle P. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Appl Microbiol Biotechnol 2018; 102:6827-6839. [PMID: 29948111 DOI: 10.1007/s00253-018-9145-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/25/2023]
Abstract
Ginger (Zingiber officinale Rosc.) is a tropical plant cultivated all over the world due to its culinary and medicinal properties. It is one of the most important spices commonly used in food, which increases its commercial value. However, soft rot (rhizome rot) is a common disease of ginger caused by fungi such as Pythium and Fusarium spp. It is the most destructive disease of ginger, which can reduce the production by 50 to 90%. Application of chemical fungicides is considered as an effective method to control soft rot of ginger but extensive use of fungicides pose serious risk to environmental and human health. Therefore, the development of ecofriendly and economically viable alternative approaches for effective management of soft rot of ginger such diseases is essentially required. An acceptable approach that is being actively investigated involves nanotechnology, which can potentially be used to control Pythium and Fusarium. The present review is aimed to discuss worldwide status of soft rot associated with ginger, the traditional methods available for the management of Pythium and Fusarium spp. and most importantly, the role of various nanomaterials in the management of soft rot of ginger. Moreover, possible antifungal mechanisms for chemical fungicides, biological agents and nanoparticles have also been discussed.
Collapse
Affiliation(s)
- Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India.
| | - Avinash P Ingle
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, Sao Paulo, Brazil
| | - Priti Paralikar
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India
| | - Netravati Anasane
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India
| | - Rajendra Gade
- Department of Plant Pathology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India
| | - Pramod Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444 602, India
| |
Collapse
|
36
|
Anderson AJ, McLean JE, Jacobson AR, Britt DW. CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6513-6524. [PMID: 28481096 DOI: 10.1021/acs.jafc.7b01302] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As the world population increases, strategies for sustainable agriculture are needed to fulfill the global need for plants for food and other commercial products. Nanoparticle formulations are likely to be part of the developing strategies. CuO and ZnO nanoparticles (NPs) offer potential as fertilizers, as they provide bioavailable essential metals, and as pesticides, because of dose-dependent toxicity. Effects of these metal oxide NPs on rhizosphere functions are the focus of this review. These NPs at doses of ≥10 mg metal/kg change the production of key metabolites involved in plant protection in a root-associated microbe, Pseudomonas chlororaphis O6. Altered synthesis occurs in the microbe for phenazines, which function in plant resistance to pathogens, the pyoverdine-like siderophore that enhances Fe bioavailability in the rhizosphere and indole-3-acetic acid affecting plant growth. In wheat seedlings, reprogramming of root morphology involves increases in root hair proliferation (CuO NPs) and lateral root formation (ZnO NPs). Systemic changes in wheat shoot gene expression point to altered regulation for metal stress resilience as well as the potential for enhanced survival under stress commonly encountered in the field. These responses to the NPs cross kingdoms involving the bacteria, fungi, and plants in the rhizosphere. Our challenge is to learn how to understand the value of these potential changes and successfully formulate the NPs for optimal activity in the rhizosphere of crop plants. These formulations may be integrated into developing practices to ensure the sustainability of crop production.
Collapse
Affiliation(s)
- Anne J Anderson
- Department of Biology , Utah State University , Logan , Utah 84322-5305 , United States
| | - Joan E McLean
- Department of Civil and Environmental Engineering, Utah Water Research Laboratory , Utah State University , Logan , Utah 84322-8200 , United States
| | - Astrid R Jacobson
- Department of Plants, Soils and Climate , Utah State University , Logan , Utah 84322-4820 , United States
| | - David W Britt
- Department of Bioengineering , Utah State University , Logan , Utah 84322-4105 , United States
| |
Collapse
|
37
|
Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C, Gardea-Torresdey J, White JC. Effect of Metalloid and Metal Oxide Nanoparticles on Fusarium Wilt of Watermelon. PLANT DISEASE 2018; 102:1394-1401. [PMID: 30673561 DOI: 10.1094/pdis-10-17-1621-re] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study explored the use of foliar sprays with nanoparticles (NP) of B, CuO, MnO, SiO, TiO, and ZnO to protect watermelon against Fusarium wilt. Leaves of young watermelon plants were sprayed (1 to 2 ml per plant) with NP suspensions (500 to 1,000 µg/ml) and were planted in potting mix infested with Fusarium oxysporum f. sp. niveum. In five of eight greenhouse experiments, CuO NP suppressed disease and, in six of eight experiments, CuO NP increased biomass or yield more than in untreated controls or other tested NP. More root Cu was detected in CuO NP-treated plants than other treatments (P = 0.015). In Griswold, CT, plants treated with CuO NP yielded 39% more fruit than untreated controls. In Hamden, CT, treatment with CuO NP produced 53% more fruit when compared with controls (P = 0.02) and was superior to other Cu fungicides. Gene expression in watermelon roots revealed strong upregulation of polyphenol oxidase (PPO) and PR1 genes when CuO NP and F. oxysporum f. sp. niveum were both present. Enzymatic assays for PPO supported the gene expression results. CuO NP may serve as a highly effective delivery agent for this micronutrient to suppress disease.
Collapse
Affiliation(s)
- Wade Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven
| | | | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Sanghamitra Majumdar
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station
| | - Christian Dimkpa
- International Fertilizer Development Center, Muscle Shoals, AL, 35662
| | | | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station
| |
Collapse
|
38
|
Ribeiro TC, Weiblen C, Botton SDA, Pereira DIB, de Jesus FPK, Verdi CM, Gressler LT, Sangioni LA, Santurio JM. In vitro susceptibility of the oomycete Pythium insidiosum to metallic compounds containing cadmium, lead, copper, manganese or zinc. Med Mycol 2018; 55:669-672. [PMID: 27816906 DOI: 10.1093/mmy/myw115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/21/2016] [Indexed: 11/14/2022] Open
Abstract
Pythium insidiosum is an aquatic oomycete that causes pythiosis, an important and severe disease of difficult treatment that affects humans, domestic and wild animals. This infection is often described in horses in Brazil and humans in Thailand. In clinical practice, we have observed many cases that do not respond to available therapies, indicating the need to explore alternative therapeutic approaches. In this sense, studies using metal compounds in conjunction with available antimicrobial agents have been demonstrated greater antimicrobial activity. Thus, in this research, we tested in vitro activities of metallic compounds containing cadmium, lead, copper, manganese, or zinc against 23 isolates of P. insidiosum. The assays were performed by broth microdilution based on CLSI M38-A2 document. The minimum inhibitory and fungicidal concentrations were established for all isolates. Copper acetate and cadmium acetate showed the highest inhibitory effects, with minimal inhibitory concentration ranging from 4-64 μg/ml and 16-256 μg/ml, respectively. The mean geometric for minimal fungicidal concentrations were, respectively, 26 μg/ml and 111.43 μg/ml for copper acetate and cadmium acetate. These results suggest that copper and cadmium can inhibit P. insidiosum growth, highlighting the greater inhibitory activity of copper acetate. In addition, our results propose that copper and/or cadmium compounds can be used in upcoming researches to formulate effective new complexed drugs against P. insidiosum in in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Tatiana Corrêa Ribeiro
- Laboratório de Pesquisas Micológicas, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), Campus Universitário, Prédio 20, 4139, 97105900, Santa Maria, RS, Brazil
| | - Carla Weiblen
- Departamento de Medicina Veterinária Preventiva (DMVP), Programa de Pós-graduação em Medicina Veterinária (PPGMV), Centro de Ciências Rurais, UFSM, Santa Maria, RS, Brazil
| | - Sônia de Avila Botton
- Departamento de Medicina Veterinária Preventiva (DMVP), Programa de Pós-graduação em Medicina Veterinária (PPGMV), Centro de Ciências Rurais, UFSM, Santa Maria, RS, Brazil
| | - Daniela Isabel Brayer Pereira
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Francielli Pantella Kunz de Jesus
- Laboratório de Pesquisas Micológicas, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), Campus Universitário, Prédio 20, 4139, 97105900, Santa Maria, RS, Brazil
| | - Camila Marina Verdi
- Laboratório de Pesquisas Micológicas, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), Campus Universitário, Prédio 20, 4139, 97105900, Santa Maria, RS, Brazil
| | - Leticia Trevisan Gressler
- Departamento de Medicina Veterinária Preventiva (DMVP), Programa de Pós-graduação em Medicina Veterinária (PPGMV), Centro de Ciências Rurais, UFSM, Santa Maria, RS, Brazil
| | - Luís Antonio Sangioni
- Departamento de Medicina Veterinária Preventiva (DMVP), Programa de Pós-graduação em Medicina Veterinária (PPGMV), Centro de Ciências Rurais, UFSM, Santa Maria, RS, Brazil
| | - Janio Morais Santurio
- Laboratório de Pesquisas Micológicas, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), Campus Universitário, Prédio 20, 4139, 97105900, Santa Maria, RS, Brazil
| |
Collapse
|
39
|
Liu J, Dhungana B, Cobb GP. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:11-20. [PMID: 28796373 DOI: 10.1002/etc.3945] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/22/2017] [Accepted: 08/08/2017] [Indexed: 05/27/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are widely used in many industries. The increasing release of CuO NPs from both intentional and unintentional sources into the environment may pose risks to rice plants, thereby reducing the quality or quantity of this staple grain in the human diet. Not only has arsenic (As) contamination decreased rice yield, but As accumulation in rice has also been a great human health concern for a few decades. New technologies have succeeded in removing As from water by nanomaterials. By all accounts, few studies have addressed CuO NP phytotoxicity to rice, and the interactions of CuO NPs with As are poorly described. The present study 1) reviews studies about the environmental behavior and phytotoxicity of CuO NPs and As and research about the interaction of CuO NPs with As in the environment, 2) discusses critically the potential mechanisms of CuO NP and As toxicity in plants and their interaction, and 3) proposes future research directions for solving the As problem in rice. Environ Toxicol Chem 2018;37:11-20. © 2017 SETAC.
Collapse
Affiliation(s)
- Jing Liu
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Birendra Dhungana
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
40
|
Wright M, Adams J, Yang K, McManus P, Jacobson A, Gade A, McLean J, Britt D, Anderson A. A Root-Colonizing Pseudomonad Lessens Stress Responses in Wheat Imposed by CuO Nanoparticles. PLoS One 2016; 11:e0164635. [PMID: 27776146 PMCID: PMC5077138 DOI: 10.1371/journal.pone.0164635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022] Open
Abstract
Nanoparticle (NPs) containing essential metals are being considered in formulations of fertilizers to boost plant nutrition in soils with low metal bioavailability. This paper addresses whether colonization of wheat roots by the bacterium, Pseudomonas chlororaphis O6 (PcO6), protected roots from the reduced elongation caused by CuO NPs. There was a trend for slightly elongated roots when seedlings with roots colonized by PcO6 were grown with CuO NPs; the density of bacterial cells on the root surface was not altered by the NPs. Accumulations of reactive oxygen species in the plant root cells caused by CuO NPs were little affected by root colonization. However, bacterial colonization did reduce the extent of expression of an array of genes associated with plant responses to stress induced by root exposure to CuO NPs. PcO6 colonization also reduced the levels of two important chelators of Cu ions, citric and malic acids, in the rhizosphere solution; presumably because these acids were used as nutrients for bacterial growth. There was a trend for lower levels of soluble Cu in the rhizosphere solution and reduced Cu loads in the true leaves with PcO6 colonization. These studies indicate that root colonization by bacterial cells modulates plant responses to contact with CuO NPs.
Collapse
Affiliation(s)
- Melanie Wright
- Department of Biological Engineering, Utah State University, Logan, Utah, 84322 4105, United States of America
| | - Joshua Adams
- Department of Biology, Utah State University, Logan, Utah, 84322 5305, United States of America
| | - Kwang Yang
- Department of Biological Engineering, Utah State University, Logan, Utah, 84322 4105, United States of America
| | - Paul McManus
- Utah Water Research Laboratory, Utah State University, Logan, Utah, 84321, United States of America
| | - Astrid Jacobson
- Plants Soils and Climate, Utah State University, Logan, Utah, 84322 4820, United States of America
| | - Aniket Gade
- Department of Biological Engineering, Utah State University, Logan, Utah, 84322 4105, United States of America
| | - Joan McLean
- Utah Water Research Laboratory, Utah State University, Logan, Utah, 84321, United States of America
| | - David Britt
- Department of Biology, Utah State University, Logan, Utah, 84322 5305, United States of America
| | - Anne Anderson
- Department of Biological Engineering, Utah State University, Logan, Utah, 84322 4105, United States of America
| |
Collapse
|
41
|
Hou R, Zhang Z, Pang S, Yang T, Clark JM, He L. Alteration of the Nonsystemic Behavior of the Pesticide Ferbam on Tea Leaves by Engineered Gold Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6216-6223. [PMID: 27254832 DOI: 10.1021/acs.est.6b01336] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A model system consisting of a nonsystemic pesticide (ferbam), engineered gold nanoparticles (AuNPs) and a plant tissue (tea leaves) was investigated using surface enhanced Raman spectroscopy (SERS). Ferbam has no ability by itself to penetrate into tea leaves. When AuNPs were placed with ferbam onto the surface of tea leaves, however, the SERS signal of the ferbam-AuNPs complex was observed inside of the tea leaves. Within 1 h, the ferbam-AuNPs complex rapidly penetrated into the leaf to a depth of approximately 190 μm, about (1)/3 to (1)/2 of the leaf's thickness. The rate of penetration was dependent on the size of AuNPs, with 30 nm AuNPs-ferbam penetrating more rapidly when compared with complexes made with the 50 and 69 nm AuNPs. These results clearly demonstrated an alteration of the nonsystemic behavior of ferbam in the combined presence with AuNPs. This finding might lead to the development of some new pesticide formulations. Conversely, new toxicity issues may arise as the behaviors and fate of pesticides are altered significantly upon interaction with engineered NPs in the pesticide formulation or environment.
Collapse
Affiliation(s)
- Ruyan Hou
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036, P. R. China
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Shintaro Pang
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Tianxi Yang
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - John M Clark
- Department of Veterinary & Animal Sciences, University of Massachusetts , Amherst, Massachusetts 01003, United States
- Massachusetts Pesticide Analysis Laboratory , Amherst, Massachusetts 01003, United States
| | - Lili He
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
42
|
Gade A, Adams J, Britt DW, Shen FA, McLean JE, Jacobson A, Kim YC, Anderson AJ. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis. Biometals 2016; 29:211-23. [DOI: 10.1007/s10534-015-9906-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/17/2015] [Indexed: 12/11/2022]
|