1
|
Kelu JJ, Hughes SM. Muscle peripheral circadian clock drives nocturnal protein degradation via raised Ror/Rev-erb balance and prevents premature sarcopenia. Proc Natl Acad Sci U S A 2025; 122:e2422446122. [PMID: 40324095 PMCID: PMC12088385 DOI: 10.1073/pnas.2422446122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
How central and peripheral circadian clocks regulate protein metabolism and affect tissue mass homeostasis has been unclear. Circadian shifts in the balance between anabolism and catabolism control muscle growth rate in young zebrafish independent of behavioral cycles. Here, we show that the ubiquitin-proteasome system (UPS) and autophagy, which mediate muscle protein degradation, are each upregulated at night under the control of the muscle peripheral clock. Perturbation of the muscle transcriptional molecular clock disrupts nocturnal proteolysis, increases muscle growth measured over 12 h, and compromises muscle function. Mechanistically, the shifting circadian balance of Ror and Rev-erb regulates nocturnal UPS, autophagy, and muscle growth through altered TORC1 activity. Although environmental zeitgebers initially mitigate defects, lifelong muscle clock inhibition reduces muscle size and growth rate, accelerating aging-related loss of muscle mass and function. Circadian misalignment such as shift work, sleep deprivation, or dementia may thus unsettle muscle proteostasis, contributing to muscle wasting and sarcopenia.
Collapse
Affiliation(s)
- Jeffrey J. Kelu
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, LondonSE1 1UL, United Kingdom
| | - Simon M. Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, LondonSE1 1UL, United Kingdom
| |
Collapse
|
2
|
Webb CH, Wang Y. Cardiac regeneration in goldfish (Carassius auratus) associated with increased expression of key extracellular matrix molecules. Anat Rec (Hoboken) 2025; 308:1378-1390. [PMID: 39092661 DOI: 10.1002/ar.25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Cardiac regeneration is a natural phenomenon that occurs in many species outside of humans. The goldfish (Carassius auratus) is an understudied model of cardiac wound response, despite its ubiquity as pets as well as its relationship to the better-studied zebrafish. In this study, we examined the response of the goldfish heart to a resection injury. We found that by 70 days post-injury, goldfish scarlessly heal cardiac wounds under a certain size, with local cardiomyocyte proliferation driving the restoration of the myocardial layer. We also found the upregulation of extracellular matrix components related to cardiac regeneration in the injury site. This upregulation correlated with the level of cardiomyocyte proliferation occurring in the injury site, indicating an association between the two that warrants further exploration.
Collapse
Affiliation(s)
- Charles H Webb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Liu H, Li H, Liu Y, Zhao H, Peng R. Toxic effects of microplastic and nanoplastic on the reproduction of teleost fish in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62530-62548. [PMID: 39467868 DOI: 10.1007/s11356-024-35434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Microplastics and nanoplastics are widely present in aquatic environments and attract significant scholarly attention due to their toxicity, persistence, and ability to cross biological barriers, which pose substantial risks to various fish species. Microplastics and nanoplastics can enter fish through their digestive tract, gills and skin, causing oxidative damage to the body and adversely affecting their reproductive system. Given that fish constitute a crucial source of high-quality protein for humans, it is necessary to study the impact of microplastics on fish reproduction in order to assess the impact of pollutants on ecology, biodiversity conservation, environmental sustainability, and endocrine disruption. This review explores the reproductive consequences of microplastics and nanoplastics in fish, examining aspects such as fecundity, abnormal offspring, circadian rhythm, gonad index, spermatocyte development, oocyte development, sperm quality, ovarian development, and changes at the molecular and cellular level. These investigations hold significant importance in environmental toxicology.
Collapse
Affiliation(s)
- Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Peppi PF, Faria CA, Machado JPC, Virote BCR, Carneiro WF, Solis-Murgas LD, Portz L, Santos CR, Campos LRS, Lira GA, Lima EMM, Bicudo AJA, Barreto-Vianna ARC. The effects of isocaloric diets derived from different lipid sources on zebrafish. BRAZ J BIOL 2024; 84:e280948. [PMID: 39230077 DOI: 10.1590/1519-6984.280948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/06/2024] [Indexed: 09/05/2024] Open
Abstract
Characterizing the effects of saturated fat intake on metabolic health and its changes remains a major challenge. Lipid diets, from different sources, vary widely in their physiological effects on health; therefore, it is important to consider the specific lipid source consumed. The objective of the study was to evaluate the effect of the imposition of isocaloric diets with different lipid sources in zebrafish (fish oil/pork lard). Depicting how metabolic, morphological and behavioral parameters might express themselves in these fishes. Forty adult female fishes were used for the experiment. The animals were divided into a control group (C), fed with unsaturated fatty acid diet, and a saturated fatty acid group (Sat). They received food three times a day, during the 11-week period. The results showed that animals in the Sat group had increased body weight, with a difference relative to the C group, from the third week of diet until the end of the experiment. At the end of the last week, the Sat group had a body weight 32% higher (P=0.0182) than the body weight of the control group. The consumption of a diet rich in saturated fatty acids did not generate signs related to stress and anxiety in zebrafish. There was an increase in glycemia at T60 and T120, with a statistically significant difference between the two moments. Animals in the Sat group showed an increase (P=0.0086) in hepatic steatosis compared to animals in the control group. The results obtained on the relationship between diet and metabolic changes are fundamental to ensure the understanding and appropriate treatment of these problems.
Collapse
Affiliation(s)
- P F Peppi
- Universidade Federal do Paraná - UFPR, Palotina, PR, Brasil
| | - C A Faria
- Universidade Federal do Paraná - UFPR, Palotina, PR, Brasil
| | - J P C Machado
- Universidade Federal do Paraná - UFPR, Palotina, PR, Brasil
| | - B C R Virote
- Universidade Federal de Lavras - UFLA, Departamento de Medicina Veterinária, Lavras, MG, Brasil
| | - W F Carneiro
- Universidade Federal de Lavras - UFLA, Departamento de Medicina Veterinária, Lavras, MG, Brasil
| | - L D Solis-Murgas
- Universidade Federal de Lavras - UFLA, Departamento de Medicina Veterinária, Lavras, MG, Brasil
| | - L Portz
- Universidade Federal do Paraná - UFPR, Departamento de Zootecnia, Palotina, PR, Brasil
| | - C R Santos
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - L R S Campos
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - G A Lira
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - E M M Lima
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - A J A Bicudo
- Universidade Federal do Paraná - UFPR, Departamento de Zootecnia, Palotina, PR, Brasil
| | | |
Collapse
|
5
|
Posner M, Garver T, Kaye T, Brdicka S, Suttle M, Patterson B, Farnsworth DR. Loss of αBa-crystallin, but not αA-crystallin, increases age-related cataract in the zebrafish lens. Exp Eye Res 2024; 244:109918. [PMID: 38705506 DOI: 10.1016/j.exer.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The vertebrate eye lens is an unusual organ in that most of its cells lack nuclei and the ability to replace aging protein. The small heat shock protein α-crystallins evolved to become key components of this lens, possibly because of their ability to prevent aggregation of aging protein that would otherwise lead to lens opacity. Most vertebrates express two α-crystallins, αA- and αB-crystallin, and mutations in each are linked to human cataract. In a mouse knockout model only the loss of αA-crystallin led to early-stage lens cataract. We have used the zebrafish as a model system to investigate the role of α-crystallins during lens development. Interestingly, while zebrafish express one lens-specific αA-crystallin gene (cryaa), they express two αB-crystallin genes, with one evolving lens specificity (cryaba) and the other retaining the broad expression of its mammalian ortholog (cryabb). In this study we used individual mutant zebrafish lines for all three α-crystallin genes to determine the impact of their loss on age-related cataract. Surprisingly, unlike mouse knockout models, we found that the loss of the αBa-crystallin gene cryaba led to an increase in lens opacity compared to cryaa null fish at 24 months of age. Loss of αA-crystallin did not increase the prevalence of cataract. We also used single cell RNA-Seq and RT-qPCR data to show a shift in the lens expression of zebrafish α-crystallins between 5 and 10 days post fertilization (dpf), with 5 and 6 dpf lenses expressing cryaa almost exclusively, and expression of cryaba and cryabb becoming more prominent after 10 dpf. These data show that cryaa is the primary α-crystallin during early lens development, while the protective role for cryaba becomes more important during lens aging. This study is the first to quantify cataract prevalence in wild-type aging zebrafish, showing that lens opacities develop in approximately 25% of fish by 18 months of age. None of the three α-crystallin mutants showed a compensatory increase in the expression of the remaining two crystallins, or in the abundant βB1-crystallin. Overall, these findings indicate an ontogenetic shift in the functional importance of individual α-crystallins during zebrafish lens development. Our finding that the lens-specific zebrafish αBa-crystallin plays the leading role in preventing age-related cataract adds a new twist to our understanding of vertebrate lens evolution.
Collapse
Affiliation(s)
- Mason Posner
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA.
| | - Taylor Garver
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Taylor Kaye
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Stuart Brdicka
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Madison Suttle
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Bryce Patterson
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Dylan R Farnsworth
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
6
|
Licitra R, Fronte B, Verri T, Marchese M, Sangiacomo C, Santorelli FM. Zebrafish Feed Intake: A Systematic Review for Standardizing Feeding Management in Laboratory Conditions. BIOLOGY 2024; 13:209. [PMID: 38666821 PMCID: PMC11047914 DOI: 10.3390/biology13040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Zebrafish are one of the most used animal models in biological research and a cost-effective alternative to rodents. Despite this, nutritional requirements and standardized feeding protocols have not yet been established for this species. This is important to avoid nutritional effects on experimental outcomes, and especially when zebrafish models are used in preclinical studies, as many diseases have nutritional confounding factors. A key aspect of zebrafish nutrition is related to feed intake, the amount of feed ingested by each fish daily. With the goal of standardizing feeding protocols among the zebrafish community, this paper systematically reviews the available data from 73 studies on zebrafish feed intake, feeding regimes (levels), and diet composition. Great variability was observed regarding diet composition, especially regarding crude protein (mean 44.98 ± 9.87%) and lipid content (9.91 ± 5.40%). Interestingly, the gross energy levels of the zebrafish diets were similar across the reviewed studies (20.39 ± 2.10 kilojoules/g of feed). In most of the reviewed papers, fish received a predetermined quantity of feed (feed supplied). The authors fed the fish according to the voluntary intake and then calculated feed intake (FI) in only 17 papers. From a quantitative point of view, FI was higher than when a fixed quantity (pre-defined) of feed was supplied. Also, the literature showed that many biotic and abiotic factors may affect zebrafish FI. Finally, based on the FI data gathered from the literature, a new feeding protocol is proposed. In summary, a daily feeding rate of 9-10% of body weight is proposed for larvae, whereas these values are equal to 6-8% for juveniles and 5% for adults when a dry feed with a proper protein and energy content is used.
Collapse
Affiliation(s)
- Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (B.F.); (C.S.)
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Chiara Sangiacomo
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (B.F.); (C.S.)
| | - Filippo Maria Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| |
Collapse
|
7
|
Gong Y, Lu Q, Xi L, Liu Y, Yang B, Su J, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Xie S, Han D. F6P/G6P-mediated ChREBP activation promotes the insulin resistance-driven hepatic lipid deposition in zebrafish. J Nutr Biochem 2023; 122:109452. [PMID: 37748621 DOI: 10.1016/j.jnutbio.2023.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Insulin-sensitive lipogenesis dominates the body lipid deposition; however, nonalcoholic fatty liver disease (NAFLD) develops in the insulin-resistant state. The regulation mechanism of insulin resistance-driven NAFLD remains elusive. Using zebrafish model of insulin resistance (ZIR, insrb-/-) and mouse hepatocytes (NCTC 1469), we explored the regulation mechanism of insulin resistance-driven hepatic lipid deposition under the stimulation of carbohydrate diet (CHD). In ZIR model, insulin resistance induced hyperlipidemia and elevated hepatic lipid deposition via elevating the gene/protein expressions of lipogenic enzymes, that was activated by carbohydrate response element binding protein (ChREBP), rather than sterol regulatory element binding proteins 1c (SREBP-1c). The metabolomic analysis in zebrafish and silencing of chrebp in mouse hepatocytes revealed that the increased hepatic frucotose-6-phosphate (F6P) and glucose-6-phosphate (G6P) promoted the ChREBP-mediated lipid deposition. We further identified that F6P alone was sufficient to activate ChREBP-mediated lipid deposition by a SREBP-1c-independent manner. Moreover, we clarified the suppressed hepatic phosphofructokinase/glucose-6-phosphatase functions and the normal glucokinase function preserved by glucose transporter 2 (GLUT2) manipulated the increased F6P/G6P content in ZIR. In conclusion, the present study revealed that insulin resistance promoted hepatic lipid deposition via the F6P/G6P-mediated ChREBP activation. Our findings deciphered the main regulation pathway for the liver lipid deposition in the insulin-resistant state and identified F6P as a new potential regulator for ChREBP.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jingzhi Su
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
8
|
Xi L, Lu Q, Liu Y, Gong Y, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Han D, Xie S. Study on Carbohydrate Metabolism in Adult Zebrafish ( Danio rerio). AQUACULTURE NUTRITION 2023; 2023:1397508. [PMID: 37901279 PMCID: PMC10611541 DOI: 10.1155/2023/1397508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
Excessive carbohydrate intake leads to metabolic disorders in fish. However, few literatures have reported the appropriate carbohydrate level for zebrafish, and the metabolic response to dietary carbohydrate remains largely unknown in zebrafish. This study assessed the responses of zebrafish and zebrafish liver cell line (ZFL) to different carbohydrate levels. In vivo results showed that ≥30% dietary dextrin levels significantly increased the plasma glucose content, activated the expression of hepatic glycolysis-related genes, and inhibited the expression of hepatic gluconeogenesis-related genes in zebrafish. Oil red O staining, triglyceride content, and Hematoxylin-Eosin staining results showed that dietary dextrin levels of ≥30% significantly increased lipid accumulation and liver damage, as well as processes related to glycolipid metabolism and inflammation in zebrafish. In ZFL, the transcription factor sterol regulatory element binding protein-1c signal intensity, 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY 493/503) signal intensity, and triglyceride content were also significantly increased when incubated in high glucose, along with abnormal glycolipid metabolism and increased inflammation-related genes. In conclusion, we demonstrated that the maximum dietary carbohydrate level in adult zebrafish should be less than 30%. Excess dietary carbohydrates (30%-50%) caused hepatic steatosis and damage to zebrafish, similar to that seen in aquaculture species. Thus, this study assessed responses to different carbohydrate levels in zebrafish and illustrated that zebrafish is an optimal model for investigating glucose metabolism in some aquatic animals.
Collapse
Affiliation(s)
- Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Hala D. The use of in silico extreme pathway (ExPa) analysis to identify conserved reproductive transcriptional-regulatory networks in humans, mice, and zebrafish. Syst Biol Reprod Med 2023; 69:271-287. [PMID: 37023256 PMCID: PMC10461611 DOI: 10.1080/19396368.2023.2188996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Vertebrate sex determination and differentiation are coordinated by the activations and maintenance of reproductive transcriptional-regulatory networks (TRNs). There is considerable interest in studying the conserved design principles and functions of reproductive TRNs given that their intricate regulation is susceptible to disruption by gene mutations or exposures to exogenous endocrine disrupting chemicals (or EDCs). In this manuscript, the Boolean rules describing reproductive TRNs in humans, mice, and zebrafish, were represented as a pseudo-stoichiometric matrix model. This model mathematically described the interactions of 35 transcription factors with 21 sex determination and differentiation genes across the three species. The in silico approach of Extreme Pathway (ExPa) analysis was used to predict the extent of TRN gene activations subject to the species-specific transcriptomics data, from across various developmental life-stages. A goal of this work was to identify conserved and functional reproductive TRNs across the three species. ExPa analyses predicted the sex differentiation genes, DHH, DMRT1, and AR, to be highly active in male humans, mice, and zebrafish. Whereas FOXL2 was the most active gene in female humans and mice; and CYP19A1A in female zebrafish. These results agree with the expectation that regardless of a lack of sex determination genes in zebrafish, the TRNs responsible for canalizing male vs. female sexual differentiation are conserved with mammalian taxa. ExPa analysis therefore provides a framework with which to study the TRNs that influence the development of sexual phenotypes. And the in silico predicted conservation of sex differentiation TRNs between mammals and zebrafish identifies the piscine species as an effective in vivo model to study mammalian reproductive systems under normal or perturbed pathologies.
Collapse
Affiliation(s)
- David Hala
- Department of Marine Biology, Texas A&M University at Galveston, TX, USA
| |
Collapse
|
10
|
Rehman S, Gora AH, Abdelhafiz Y, Dias J, Pierre R, Meynen K, Fernandes JMO, Sørensen M, Brugman S, Kiron V. Potential of algae-derived alginate oligosaccharides and β-glucan to counter inflammation in adult zebrafish intestine. Front Immunol 2023; 14:1183701. [PMID: 37275890 PMCID: PMC10235609 DOI: 10.3389/fimmu.2023.1183701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Alginate oligosaccharides (AOS) are natural bioactive compounds with anti-inflammatory properties. We performed a feeding trial employing a zebrafish (Danio rerio) model of soybean-induced intestinal inflammation. Five groups of fish were fed different diets: a control (CT) diet, a soybean meal (SBM) diet, a soybean meal+β-glucan (BG) diet and 2 soybean meal+AOS diets (alginate products differing in the content of low molecular weight fractions - AL, with 31% < 3kDa and AH, with 3% < 3kDa). We analyzed the intestinal transcriptomic and plasma metabolomic profiles of the study groups. In addition, we assessed the expression of inflammatory marker genes and histological alterations in the intestine. Dietary algal β-(1, 3)-glucan and AOS were able to bring the expression of certain inflammatory genes altered by dietary SBM to a level similar to that in the control group. Intestinal transcriptomic analysis indicated that dietary SBM changed the expression of genes linked to inflammation, endoplasmic reticulum, reproduction and cell motility. The AL diet suppressed the expression of genes related to complement activation, inflammatory and humoral response, which can likely have an inflammation alleviation effect. On the other hand, the AH diet reduced the expression of genes, causing an enrichment of negative regulation of immune system process. The BG diet suppressed several immune genes linked to the endopeptidase activity and proteolysis. The plasma metabolomic profile further revealed that dietary SBM can alter inflammation-linked metabolites such as itaconic acid, taurochenodeoxycholic acid and enriched the arginine biosynthesis pathway. The diet AL helped in elevating one of the short chain fatty acids, namely 2-hydroxybutyric acid while the BG diet increased the abundance of a vitamin, pantothenic acid. Histological evaluation revealed the advantage of the AL diet: it increased the goblet cell number and length of villi of the intestinal mucosa. Overall, our results indicate that dietary AOS with an appropriate amount of < 3kDa can stall the inflammatory responses in zebrafish.
Collapse
Affiliation(s)
- Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H. Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Ronan Pierre
- CEVA (Centre d’Etude et de Valorisation des Algues), Pleubian, France
| | - Koen Meynen
- Kemin Aquascience, Division of Kemin Europa N.V., Herentals, Belgium
| | | | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Sylvia Brugman
- Animal Sciences Group, Host Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
11
|
Kozol RA, Yuiska A, Han JH, Tolentino B, Lopatto A, Lewis P, Paz A, Keene AC, Kowalko JE, Duboué ER. Novel Husbandry Practices Result in Rapid Rates of Growth and Sexual Maturation Without Impacting Adult Behavior in the Blind Mexican Cavefish. Zebrafish 2023; 20:86-94. [PMID: 37071855 PMCID: PMC10123811 DOI: 10.1089/zeb.2023.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Animal model systems are dependent on the standardization of husbandry protocols that maximize growth and reduce generation time. The Mexican tetra, Astyanax mexicanus, exists as eyed surface and blind cave dwelling populations. The opportunity for comparative approaches between independently evolved populations has led to the rapid growth of A. mexicanus as a model for evolution and biomedical research. However, a slow and inconsistent growth rate remains a major limitation to the expanded application of A. mexicanus. Fortunately, this temporal limitation can be addressed through husbandry changes that accelerate growth rates while maintaining optimal health outcomes. Here, we describe a husbandry protocol that produces rapid growth rates through changes in diet, feeding frequency, growth sorting and progressive changes in tank size. This protocol produced robust growth rates and decreased the age of sexual maturity in comparison to our previous protocol. To determine whether changes in feeding impacted behavior, we tested fish in exploration and schooling assays. We found no difference in behavior between the two groups, suggesting that increased feeding and rapid growth will not impact the natural variation in behavioral traits. Taken together, this standardized husbandry protocol will accelerate the development of A. mexicanus as a genetic model.
Collapse
Affiliation(s)
- Robert A. Kozol
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Anders Yuiska
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Ji Heon Han
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Bernadeth Tolentino
- Department of Biology, University of Southern California, Los Angeles, California, USA
| | - Arthur Lopatto
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Peter Lewis
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Alexandra Paz
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M, College Station, Texas, USA
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Erik R. Duboué
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
12
|
Ma F, Yang Y, Wang Y, Yin D, Liu K, Yin G. A proteomics approach reveals digestive and nutritional responses to food intake in anadromous Coilia nasus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:100995. [PMID: 35594610 DOI: 10.1016/j.cbd.2022.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The estuarine tapertail anchovy, Coilia nasus, is an anadromous fish that undertakes over a 600-km spawning migration along the Yangtze River of China. They generally cease feeding during this process, but we recently documented that a small proportion of them appear to feed. Research on proteomic responses is essential for understanding the phenomenon of C. nasus feeding. In this study, we used an iTRAQ-based proteomics approach to study the changes in protein expression in response to food intake in C. nasus following voluntary fasting. Coilia nasus in the feeding group (CSI) were fed shrimp or small fish, whereas those in the control group (CSN) were starved. We identified 3279 proteins in the gastric tissue/stomach, of which 279 were significantly differentially expressed. In all, 133 differentially expressed proteins (DEPs) were upregulated and 146 proteins were downregulated in CSI compared with those in CSN C. nasus. In addition to gastric acid secretion caused by gastric distention, a functional analysis suggested that a series of DEPs were involved mainly in the regulation of protein digestion (e.g., carboxypeptidase A1 and chymotrypsin A-like), immune response (e.g., lysozyme and alpha 2-macroglobulin), and nutrition metabolism (e.g., glyceraldehyde 3-phosphate dehydrogenase, glycogenin, long-chain acyl-CoA synthetase, and creatine kinase). Real-time PCR confirmed that the mRNA levels of the DEPs were similar those obtained using iTRAQ. These results indicate that the nutrients obtained through food were effectively utilized by C. nasus, thereby providing energy for swimming, gonadal maturation, primary metabolism, and an enhanced immune function to better resist pathogen interference. This research contributes to the elucidation of nutritional regulation mechanisms of C. nasus to better protect the wild population.
Collapse
Affiliation(s)
- Fengjiao Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Yinping Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
13
|
Mech AM, Merteroglu M, Sealy IM, Teh MT, White RJ, Havelange W, Brennan CH, Busch-Nentwich EM. Behavioral and Gene Regulatory Responses to Developmental Drug Exposures in Zebrafish. Front Psychiatry 2022; 12:795175. [PMID: 35082702 PMCID: PMC8785235 DOI: 10.3389/fpsyt.2021.795175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Developmental consequences of prenatal drug exposure have been reported in many human cohorts and animal studies. The long-lasting impact on the offspring-including motor and cognitive impairments, cranial and cardiac anomalies and increased prevalence of ADHD-is a socioeconomic burden worldwide. Identifying the molecular changes leading to developmental consequences could help ameliorate the deficits and limit the impact. In this study, we have used zebrafish, a well-established behavioral and genetic model with conserved drug response and reward pathways, to identify changes in behavior and cellular pathways in response to developmental exposure to amphetamine, nicotine or oxycodone. In the presence of the drug, exposed animals showed altered behavior, consistent with effects seen in mammalian systems, including impaired locomotion and altered habituation to acoustic startle. Differences in responses seen following acute and chronic exposure suggest adaptation to the presence of the drug. Transcriptomic analysis of exposed larvae revealed differential expression of numerous genes and alterations in many pathways, including those related to cell death, immunity and circadian rhythm regulation. Differential expression of circadian rhythm genes did not correlate with behavioral changes in the larvae, however, two of the circadian genes, arntl2 and per2, were also differentially expressed at later stages of development, suggesting a long-lasting impact of developmental exposures on circadian gene expression. The immediate-early genes, egr1, egr4, fosab, and junbb, which are associated with synaptic plasticity, were downregulated by all three drugs and in situ hybridization showed that the expression for all four genes was reduced across all neuroanatomical regions, including brain regions implicated in reward processing, addiction and other psychiatric conditions. We anticipate that these early changes in gene expression in response to drug exposure are likely to contribute to the consequences of prenatal exposure and their discovery might pave the way to therapeutic intervention to ameliorate the long-lasting deficits.
Collapse
Affiliation(s)
- Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Munise Merteroglu
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ian M. Sealy
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, England, United Kingdom
| | - Richard J. White
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - William Havelange
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Del Vecchio G, Murashita K, Verri T, Gomes AS, Rønnestad I. Leptin receptor-deficient (knockout) zebrafish: Effects on nutrient acquisition. Gen Comp Endocrinol 2021; 310:113832. [PMID: 34089707 DOI: 10.1016/j.ygcen.2021.113832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
In mammals, knockout of LEPR results in a hyperphagic, morbid obese, and diabetic phenotype, which supports that leptin plays an important role in the control of appetite and energy metabolism, and that its receptor, LEPR, mediates these effects. To date, little is known about the role(s) of lepr in teleost physiology. We investigated a zebrafish (Danio rerio) homozygous lepr knockout (lepr-/-) line generated by CRISPR/Cas9 in comparison to its wt counterpart with respect to nutrient acquisition, energy allocation, and metabolism. The metabolic characterization included oxygen consumption rate and morphometric parameters (yolk sac area, standard length, wet weight, and condition factor) as proxies for use and allocation of energy in developing (embryos, larvae, and juveniles) zebrafish and showed no particular differences between the two lines, in agreement with previous studies. One exception was found in oxygen consumption at 72 hpf, when zebrafish switch from embryonic to early larval stages and food-seeking behavior could be observed. In this case, the metabolic rate was significantly lower in lepr-/- than in wt. Both phenotypes showed similar responses, with respect to metabolic rate, to acute alterations (22 and 34 °C) in water temperature (measured in terms of Q10 and activation energy) compared to the standard (28 °C) rearing conditions. To assess lepr involvement in signaling the processing and handling of incoming nutrients when an exogenous meal is digested and absorbed, we conducted an in vivo analysis in lepr-/- and wt early (8 days post-fertilization) zebrafish larvae. The larvae were administered a bolus of protein hydrolysate (0%, 1%, 5%, and 15% lactalbumin) directly into the digestive tract lumen, and changes in the mRNA expression profile before and after (1 and 3 h) administration were quantified. The analysis showed transcriptional differences in the expressions of genes involved in the control of appetite and energy metabolism (cart, npy, agrp, and mc4r), sensing (casr, t1r1, t1r3, t1r2-1, t1r2-2, pept1a, and pept1b), and digestion (cck, pyy, try, ct, and amy), with more pronounced effects observed in the orexigenic than in the anorexigenic pathways, suggesting a role of lepr in their regulations. Differences in the mRNA levels of these genes in lepr-/-vs. wt larvae were also observed. Altogether, our analyses suggest an influence of lepr on physiological processes involved in nutrient acquisition, mainly control of food intake and digestion, during early development, whereas metabolism, energy allocation, and growth seem to be only slightly influenced.
Collapse
Affiliation(s)
- Gianmarco Del Vecchio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy; Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway
| | - Koji Murashita
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway; Aquaculture Research Department, Fisheries Technology Institute, Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway.
| |
Collapse
|
15
|
Wang J, Zheng M, Lu L, Li X, Zhang Z, Ru S. Adaptation of life-history traits and trade-offs in marine medaka (Oryzias melastigma) after whole life-cycle exposure to polystyrene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125537. [PMID: 33676243 DOI: 10.1016/j.jhazmat.2021.125537] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are ubiquitous in marine environments and may cause unexpected ecological effects. This study adopted a whole life-cycle exposure to illuminate the impact of polystyrene microplastics on life-history strategies of marine medaka (Oryzias melastigma), including the hatching of embryos, growth and reproduction of F0 generation, and embryonic and larval development of F1 offspring. Microplastics accumulated on the eggshell and reduced embryonic hatching rate and larval body length and weight. Similarly, 150 days of microplastic exposure decreased body mass and gonadosomatic index of adult fish, but accelerated sexual maturity of female fish, showing a trade-off between growth and reproduction. Microplastic exposure also caused obvious histopathological damages to gonads and decreased egg productions and fertilization rates. Moreover, parental microplastic exposure induced elevated heartbeats, premature hatching, and slow growth in F1 offspring. Anti-oxidative stress response, sex hormone disruption, and disturbed transcription of steroidogenic genes in the reproductive axis could partially explain the reproduction impairment and transgenerational trade-offs. Furthermore, transcriptome analysis revealed that the steroid hormone biosynthesis and cytochrome P450 pathways in the testes of male fish were significantly affected after 20 μg/L microplastic exposure. These findings suggest that microplastic pollution may be an emerging threat to the sustainability of marine fish population.
Collapse
Affiliation(s)
- Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Mingyi Zheng
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Lin Lu
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
16
|
Long DW, Webb CH, Wang Y. Persistent fibrosis and decreased cardiac function following cardiac injury in the Ctenopharyngodon idella (grass carp). Anat Rec (Hoboken) 2021; 305:66-80. [PMID: 34219409 DOI: 10.1002/ar.24706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/10/2022]
Abstract
Following the discovery of heart regeneration in zebrafish, several more species within the Cyprinidae family have been found to have the same capability, suggesting heart regeneration may be conserved within this family. Although gonad regeneration has been observed in grass carp (Ctenopharyngodon idella), one of the largest cyprinid fish, the species' response to cardiac injury has not been characterized. Surprisingly, we found cardiomyocytes do not repopulate the injured region following cryoinjury to the ventricle, instead exhibiting unresolved fibrosis and decreased cardiac function that persists for the 8-week duration of this study. Additionally, fibroblasts are likely depleted following injury, a phenomenon not previously described in any cardiac model. The data collected in this study indicate that heart regeneration is unlikely in grass carp (C. idella). It is possible that not all members of the Cyprinidae family possesses regenerative capability observed in zebrafish. Further study of these phenomenon may reveal the underlying differences between regeneration versus unresolved fibrosis in heart disease.
Collapse
Affiliation(s)
- Daniel W Long
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Charles H Webb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Brenes-Soto A, Tye M, Esmail MY. The Role of Feed in Aquatic Laboratory Animal Nutrition and the Potential Impact on Animal Models and Study Reproducibility. ILAR J 2020; 60:197-215. [PMID: 33094819 DOI: 10.1093/ilar/ilaa006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Feed plays a central role in the physiological development of terrestrial and aquatic animals. Historically, the feeding practice of aquatic research species derived from aquaculture, farmed, or ornamental trades. These diets are highly variable, with limited quality control, and have been typically selected to provide the fastest growth or highest fecundity. These variations of quality and composition of diets may affect animal/colony health and can introduce confounding experimental variables into animal-based studies that impact research reproducibility.
Collapse
Affiliation(s)
- Andrea Brenes-Soto
- Department of Animal Science, University of Costa Rica, San José, Costa Rica
| | - Marc Tye
- Zebrafish Core Facility, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Michael Y Esmail
- Tufts Comparative Medicine Services, Tufts University Health Science Campus, Boston, Massachusetts
| |
Collapse
|
18
|
Chowanadisai W, Hart MD, Strong MD, Graham DM, Rucker RB, Smith BJ, Keen CL, Messerli MA. Genetic and Genomic Advances in Developmental Models: Applications for Nutrition Research. Adv Nutr 2020; 11:971-978. [PMID: 32135011 PMCID: PMC7360451 DOI: 10.1093/advances/nmaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
There is increasing appreciation that dietary components influence and interact with genes important to metabolism. How such influences impact developmental regulation and programming or risks of chronic diseases remains unclear. Nutrition is recognized to affect development and chronic diseases, but our understanding about how genes essential to nutrient metabolism regulate development and impact risks of these diseases remains unclear. Historically, mammalian models, especially rodents such as rats and mice, have been the primary models used for nutrition and developmental nutrition science, although their complexity and relatively slow rate of development often compromise rapid progress in resolving fundamental, genetic-related questions. Accordingly, the objective of this review is to highlight the opportunities for developmental models in the context of uncovering the function of gene products that are relevant to human nutrition and provide the scientific bases for these opportunities. We present recent studies in zebrafish related to obesity as applications of developmental models in nutritional science. Although the control of external factors and dependent variables, such as nutrition, can be a challenge, suggestions for standardizations related to diet are made to improve consistency in findings between laboratories. The review also highlights the need for standardized diets across different developmental models, which could improve consistency in findings across laboratories. Alternative and developmental animal models have advantages and largely untapped potential for the advancement of nutrigenomics and nutritionally relevant research areas.
Collapse
Affiliation(s)
- Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Morgan D Strong
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - David M Graham
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Robert B Rucker
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Mark A Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
19
|
Somatostatin 4 regulates growth and modulates gametogenesis in zebrafish. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Fowler LA, Williams MB, Dennis-Cornelius LN, Farmer S, Barry RJ, Powell ML, Watts SA. Influence of Commercial and Laboratory Diets on Growth, Body Composition, and Reproduction in the Zebrafish Danio rerio. Zebrafish 2019; 16:508-521. [PMID: 31381491 DOI: 10.1089/zeb.2019.1742] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The value of the zebrafish (Danio rerio) as a model organism continues to expand. In developing the model, current feeding practice in zebrafish laboratories includes the use of commercially available diets. In this study, we compared outcomes in growth, body composition, and reproduction among zebrafish fed five highly utilized commercial diets and one formulated chemically defined reference diet. Wild-type zebrafish larvae were raised on live feed until 21 days postfertilization and then fed diets for 16 weeks. All fish received a daily ration of >5% of body weight (adjusted biweekly). Growth varied among diets throughout the feeding trial, and at study termination (week 16), significant differences among diets were observed for terminal weight gain, body condition index, body fat deposition, and reproductive outcomes. In addition, the proportion of viable embryos produced from females fed the formulated reference diet was high relative to the commercial diets. These data suggest that metabolic profiles, most likely reflecting nutrient/energy availability, utilization, and allocation, vary relative to diet in zebrafish. Undefined differences in metabolic profiles could result in erroneous predictions of health outcomes and make comparisons among laboratories more challenging. We recommend that dietary standards should be defined for zebrafish to support their common utility in biomedical research.
Collapse
Affiliation(s)
- L Adele Fowler
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael B Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Susan Farmer
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - R Jeff Barry
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mickie L Powell
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen A Watts
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Martins G, Diogo P, Pinto W, Gavaia PJ. Early Transition to Microdiets Improves Growth, Reproductive Performance and Reduces Skeletal Anomalies in Zebrafish (Danio rerio). Zebrafish 2019; 16:300-307. [DOI: 10.1089/zeb.2018.1691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Gil Martins
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Patrícia Diogo
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | | | - Paulo J. Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| |
Collapse
|
22
|
Opazo R, Plaza-Parrochia F, Cardoso dos Santos GR, Carneiro GRA, Sardela VF, Romero J, Valladares L. Fasting Upregulates npy, agrp, and ghsr Without Increasing Ghrelin Levels in Zebrafish ( Danio rerio) Larvae. Front Physiol 2019; 9:1901. [PMID: 30733682 PMCID: PMC6353792 DOI: 10.3389/fphys.2018.01901] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
Food intake in fish and mammals is orchestrated by hypothalamic crosstalk between orexigenic (food intake stimulation) and anorexigenic (food intake inhibition) signals. Some of these signals are released by peripheral tissues that are associated with energy homeostasis or nutrient availability. During the fish larva stage, orexigenic stimulation plays a critical role in individual viability. The goal of this study was to assess the mRNA levels of the main neuropeptides involved in food intake regulation (npy, agrp, carppt, and pomc), in concert with the mRNA levels and peptide levels of ghrelin, under a fasting intervention at the larval stage in zebrafish (Danio rerio). Prior to the fasting intervention, the zebrafish larva cohort was reared for 20 days post fertilization (dpf) and then randomly divided into two groups of 20 individuals. One group was subjected to a fasting intervention for 5 days (fasted group), and the other group was fed normally (fed group); this experimental protocol was performed twice independently. At the end of the fasting period, individuals from each experimental group were divided into different analysis groups, for evaluations such as relative gene expression, immunohistochemistry, and liquid chromatography coupled to nano high-resolution mass spectrometry (nLC-HRMS) analyses. The relative expression levels of the following genes were assessed: neuropeptide Y (npy), agouti-related peptide (agrp), proopiomelanocortin (pomc), cocaine and amphetamine-regulated transcript (cartpt), ghrelin (ghrl), ghrelin O-acyltransferase (mboat4), growth hormone secretagogue receptor (ghsr), and glucokinase (gck). In the fasted group, significant upregulation of orexigenic peptides (npy - agrp) and ghsr was observed, which was associated with significant downregulation of gck. The anorexigenic peptides (pomc and cartpt) did not show any significant modulation between the groups, similar to mboat4. Contrary to what was expected, the relative mRNA upregulation of the orexigenic peptides observed in the fasted experimental group could not be associated with significant ghrelin modulation as assessed by three different approaches: qPCR (relative gene expression of ghrelin), nLC-HRMS (des-acyl-ghrelin levels), and immunohistochemistry (integrated optical density of prepropeptides in intestinal and hepatopancreas tissues). Our results demonstrate that zebrafish larvae at 25 dpf exhibit suitable modulation of the relative mRNA levels of orexigenic peptides (npy and agrp) in response to fasting intervention; nevertheless, ghrelin was not coregulated by fasting. Therefore, it can be suggested that ghrelin is not an essential peptide for an increase in appetite in the zebrafish larva stage. These results give rise to new questions about food intake regulation factors in the early stages of fish.
Collapse
Affiliation(s)
- Rafael Opazo
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Francisca Plaza-Parrochia
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Gustavo R. Cardoso dos Santos
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R. A. Carneiro
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius F. Sardela
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime Romero
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Luis Valladares
- Laboratorio de Hormonas y Receptores INTA, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Lee CJ, Paull GC, Tyler CR. Effects of environmental enrichment on survivorship, growth, sex ratio and behaviour in laboratory maintained zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 94:86-95. [PMID: 30443966 DOI: 10.1111/jfb.13865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Environmental enrichment involves increasing the complexity of a fish's environment in order to improve welfare. Researchers are legally obliged to consider the welfare of laboratory animals and poor welfare may result in less robust data in experimental science. Laboratory zebrafish Danio rerio are usually kept in bare aquaria for ease of husbandry and, despite being a well-studied species, little is known about how laboratory housing affects their welfare. This study shows that environmental enrichment, in the form of the addition of gravel substratum and plants into the tank, affects survivorship, growth and behaviour in laboratory-maintained D. rerio. Larvae reared in enriched tanks had significantly higher survivorship compared with larvae reared in bare tanks. Effects of the tank conditions on growth were more variable. Females from enriched tanks had a higher body condition than females maintained in bare tanks, but intriguingly this was not the case for males, where the only difference was a more variable body condition in males maintained in bare tanks. Sex ratio in the rearing tanks did not differ between treatments. Resource monopolisation was higher for fish in enriched tanks than for those in bare tanks. Fish from enriched tanks displayed lower levels of behaviours associated with anxiety compared with fish from bare tanks when placed into a novel environment. Thus, this study demonstrates differences in welfare for D. rerio maintained under different environmental conditions with enhancements in welfare more commonly associated with tank enrichment.
Collapse
Affiliation(s)
- Carole J Lee
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Gregory C Paull
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
24
|
Silva MCGD, Silva JFD, Santos TP, Silva NPCD, Santos ARD, Andrade ALCD, Souza EHLDS, Sales Cadena MR, Sá FBD, Silva Junior VAD, Cadena PG. The complexation of steroid hormones into cyclodextrin alters the toxic effects on the biological parameters of zebrafish (Danio rerio). CHEMOSPHERE 2019; 214:330-340. [PMID: 30267906 DOI: 10.1016/j.chemosphere.2018.09.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to evaluate the toxic effects of progesterone (P4F) and estradiol (E2F) and the effect of these steroid hormones complexed into cyclodextrins, commercially available drugs, such as micronized progesterone (P4M) and transdermal estradiol (E2T), and evaluate them as endocrine disruptors through biological parameters of Danio rerio. An acute toxicity test was performed with hormones using D. rerio embryos according to OECD 236 guidelines. The heart rate, mortality, and teratogenic effects were evaluated. In addition, a chronic toxicity test was assayed with adult animals for evaluation of animal behavior, reproductive capacity, and electrophysiological responses of the retina. Analysis of the results of the acute toxicity test with embryos exposed to progestins and estrogens showed that free hormones caused a higher percentage of teratogenic effects such as pericardial edema, yolk sac edema, and spinal deformation. Behavioral evaluation (30-60 days) of adult animals exposed to P4M, E2F, and E2T demonstrated higher frequencies of aggressive behaviors such as Chase away, Persecution, Escape, and Attack. Analysis of reproductive capacity did not show significant differences in the number of viable eggs, and no significant changes were observed in the electrophysiological responses of the retina. According to these results, there is a higher toxicity effect of hormones in the free form when compared to the commercial forms and inclusion complexes. This indicates that complexation into cyclodextrin reduced the toxicity of the hormones according to the parameters studied.
Collapse
Affiliation(s)
- Marília Cordeiro Galvão da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Jadson Freitas da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Thamiris Pinheiro Santos
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Niely Priscila Correia da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Amanda Rodrigues Dos Santos
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - André Lucas Corrêa de Andrade
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Elton Hugo Lima da Silva Souza
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DBio), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Fabrício Bezerra de Sá
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Valdemiro Amaro da Silva Junior
- Departamento de Medicina Veterinária (DMV), Universidade Federal Rural de Pernambuco (UFRPE). Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil.
| |
Collapse
|
25
|
From mRNA Expression of Drug Disposition Genes to In Vivo Assessment of CYP-Mediated Biotransformation during Zebrafish Embryonic and Larval Development. Int J Mol Sci 2018; 19:ijms19123976. [PMID: 30544719 PMCID: PMC6321216 DOI: 10.3390/ijms19123976] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish (Danio rerio) embryo is currently explored as an alternative for developmental toxicity testing. As maternal metabolism is lacking in this model, knowledge of the disposition of xenobiotics during zebrafish organogenesis is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this study was to assess cytochrome P450 (CYP) activity in zebrafish embryos and larvae until 14 d post-fertilization (dpf) by using a non-specific CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR) and a CYP1-specific substrate, i.e., 7-ethoxyresorufin (ER). Moreover, the constitutive mRNA expression of CYP1A, CYP1B1, CYP1C1, CYP1C2, CYP2K6, CYP3A65, CYP3C1, phase II enzymes uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) and sulfotransferase 1st1 (SULT1ST1), and an ATP-binding cassette (ABC) drug transporter, i.e., abcb4, was assessed during zebrafish development until 32 dpf by means of quantitative PCR (qPCR). The present study showed that trancripts and/or the activity of these proteins involved in disposition of xenobiotics are generally low to undetectable before 72 h post-fertilization (hpf), which has to be taken into account in teratogenicity testing. Full capacity appears to be reached by the end of organogenesis (i.e., 120 hpf), although CYP1-except CYP1A-and SULT1ST1 were shown to be already mature in early embryonic development.
Collapse
|
26
|
Zeng X, Sun H, Huang Y, Liu J, Yu L, Liu C, Wang J. Effects of environmentally relevant concentrations of tris (2-butoxyethyl) phosphate on growth and transcription of genes involved in the GH/IGF and HPT axes in zebrafish (Danio rerio). CHEMOSPHERE 2018; 212:376-384. [PMID: 30149310 DOI: 10.1016/j.chemosphere.2018.08.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/18/2018] [Accepted: 08/19/2018] [Indexed: 05/12/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP), as one of the most widely used organophosphate flame retardants (OPFRs), is applied in nearly all manufactured items and materials. It has been reported that TBOEP could cause developmental impairments and disrupt the endocrine regulation of fish growth during acute toxic experiments. However, concentrations to which fish were exposed in these studies were greater than environmentally relevant concentrations ever reported. This study examined effects on growth associated with exposure of zebrafish to 0, 0.1, 1 and 10 μg/L TBOEP during 20-90 days post fertilization (dpf). The changes in growth indicators and bioaccumulation of TBOEP were examined along with the transcription of related genes in the growth hormone/insulin-like growth factor (GH/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis. The average body contents of TBOEP were higher in females than in males in all the exposure groups. Exposure to environmentally relevant concentrations of TBOEP significantly decreased body length and body mass and down-regulated expression of several genes involved in the GH/IGF and HPT axes. Exposure to TBOEP decreased plasma thyroxine (T4) content accompanied by decreased mRNA level of thyrotropin β-subunit (tshβ) in females at 60 dpf, but no effects were observed at 90 dpf. These results suggested that bioaccumulation of TBOEP and down-regulation of genes involved in the GH/IGF axis might be responsible for the observed growth inhibition in zebrafish exposed to TBOEP.
Collapse
Affiliation(s)
- Xinyue Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Sun
- Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China
| | - Yangyang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Gong Y, Zhai G, Su J, Yang B, Jin J, Liu H, Yin Z, Xie S, Han D. Different roles of insulin receptor a and b in maintaining blood glucose homeostasis in zebrafish. Gen Comp Endocrinol 2018; 269:33-45. [PMID: 30102881 DOI: 10.1016/j.ygcen.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/20/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
An inability of insulin to signal glycolysis and gluconeogenesis would largely result in type 2 diabetes. In this study, the physiological roles of zebrafish insulin receptor a and b in maintaining blood glucose homeostasis were characterized. We observed that, though blood glucose in insra-/- fish and insrb-/- fish were comparable with the control siblings at 0 h postprandium (hpp), the most evident hyperglycemia have been observed in insra-/- fish from 1 hpp to 3 hpp. A mild increase of blood glucose in insrb-/- fish has been seen only at 1.5 hpp. The down-regulated expressions of glycolytic enzymes were observed in insra-/- fish and insrb-/- fish liver and muscle, together with the significantly decreased activities or concentrations of glycolytic enzymes. These results suggest that both Insra and Insrb were critical in glycolysis. Intriguingly, the up-regulated expressions of gluconeogenic enzymes, pck1 and g6pca.1, along with the elevated enzyme activities, were observed in insra-/- fish liver at 1 hpp and 1.5 hpp. Compared with the control fish, the elevated plasma insulin and lowered phosphorylated AKT were observed in insra-/- fish and insrb-/- fish, suggesting that there is an insulin resistance in insra-/- fish and insrb-/- fish. The increased levels of both transcriptions of foxo1a and Foxo1a protein abundance in the insra-/- fish liver have been found. When insra-/- fish treated with the Foxo1 inhibitor, the postprandial blood glucose levels could be normalized, accompanied with the normalized expression levels and enzyme activities of both pck1 and g6pca.1. Therefore, Insra and Insrb demonstrate a similar role in promoting glycolysis, but Insra is involved in inhibiting gluconeogenesis via down-regulating the expression of foxo1a. Our results indicate that Insra and Insrb exhibit diversified functions in maintaining glucose homeostasis in zebrafish.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jingzhi Su
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binyuan Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
28
|
Chen YY, Chan KM. Modulations of TCDD-mediated induction of zebrafish cyp1a1 and the AHR pathway by administering Cd 2+in vivo. CHEMOSPHERE 2018; 210:577-587. [PMID: 30029150 DOI: 10.1016/j.chemosphere.2018.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Trace metal ions such as cadmium (Cd2+) and trace organics typified by 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD) are common co-contaminants in the environment and cause toxic effects in aquatic organisms that pose serious health risks. We studied the effects of Cd2+ on the regulation of cytochrome P450 1A1 (cyp1a1) gene-induction by TCDD using zebrafish embryos and larvae and adult zebrafish tissues. Our results showed that TCDD induced the cyp1a1 gene in all developmental stages and tissues of zebrafish, and the induction was higher in females than males. However, for the upstream genes (ahr2 and arnt2b) that mediate cyp1a1 gene induction in the zebrafish liver cell line was not induced by TCDD similar to the pattern of cyp1a1 in all investigated groups. After co-treatment with Cd2+, induction of the aryl hydrocarbon receptor pathway by TCDD was inhibited in the zebrafish larvae and the livers, intestines, kidneys and gills of adult zebrafish, but not in the embryos or brains of adult zebrafish, indicating that the toxicological effects of Cd2+ on TCDD are dependent on the developmental stages and tissue types. The present study confirms that Cd2+ blocks the TCDD-induced cyp1a1 gene in vivo but emphasizes that the effects are specific to the developmental stage, type of tissue and sex. The combined effects of Cd2+ and TCDD must be taken into consideration together with these parameters to accurately predict and assess cadmium and TCDD-induced toxicity in fish and carcinogenesis in animals in general.
Collapse
Affiliation(s)
- Ying Ying Chen
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| |
Collapse
|
29
|
The Impact of Two Different Cold-Extruded Feeds and Feeding Regimens on Zebrafish Survival, Growth and Reproductive Performance. J Dev Biol 2018; 6:jdb6030015. [PMID: 29933588 PMCID: PMC6162542 DOI: 10.3390/jdb6030015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022] Open
Abstract
Zebrafish (Danio rerio) is one of the top model organisms used in biomedical research. Therefore, it is fundamental that zebrafish facilities continuously improve husbandry methods to provide fish with the best physiological and welfare conditions that suit each experimental purpose. Nutrition is a husbandry aspect that needs further optimization, as it greatly affects growth, reproduction, health and behaviour. Here, we have compared the impact of different feeding regimens on zebrafish survival, growth and reproductive performance. Mutant and wild-type zebrafish were raised using several combinations of two cold-extruded processed feeds—Skretting®GemmaMicro and Sparos®Zebrafeed—and one live feed (rotifers). Zebrafeed® outperformed GemmaMicro® in terms of survival rate, and embryo viability was also higher when the spawners were fed with Zebrafeed® either from larval stage or upon sexual maturation. In contrast, GemmaMicro® favoured growth, both in size and weight. The use of rotifers until 60 days post-fertilization improved survival of fish co-fed with GemmaMicro®, while delaying their growth. Zebrafeed® performance was not affected by co-feeding rotifers. Overall, we showed that different nutritional formulas affect physiological parameters, allowing for the establishment of feeding protocols adapted to the objectives of each facility. At the same time, we validated Skretting®GemmaMicro and Sparos®Zebrafeed as two commercially available feeds that are well suited for zebrafish nutrition in a laboratory environment.
Collapse
|
30
|
Li H, Yu S, Cao F, Wang C, Zheng M, Li X, Qiu L. Developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:1-9. [PMID: 29304412 DOI: 10.1016/j.ecoenv.2017.12.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
As a newly developed, highly efficient strobilurin fungicide, pyraoxystrobin has been reported to be highly toxic to some aquatic organisms. However, the toxicity of pyraoxystrobin to different life stages of fish and the potential underlying mechanisms are still unknown. Hence, in the present study, the acute toxicity of pyraoxystrobin to different life stages of zebrafish (embryo, larva, and adult) was assessed. The developmental toxicity of pyraoxystrobin to zebrafish embryos and its effects on gene transcription in the embryo were also investigated. The results showed that the 96-h LC50 values of pyraoxystrobin to embryos [2h post-fertilization (hpf)], 12h post-hatching (hph) larvae (84 hpf), 72 hph larvae (144 hpf), and adult zebrafish were 4.099, 1.069, 3.236, and 5.970µg/L, respectively. This suggests that pyraoxystrobin has very high toxicity to different life stages of zebrafish, while the newly hatched larvae constitute the most sensitive period of zebrafish to pyraoxystrobin. Decreased heart rate, hatching inhibition, growth regression, and morphological deformities were observed in zebrafish embryos after acute exposure to different concentrations of pyraoxystrobin. The rate of malformation increased in a time- and concentration-dependent manner in embryos, and the most pronounced abnormality was pericardial edema and yolk sac edema. Pyraoxystrobin (2 and 4μg/L) significantly altered the mRNA levels of genes related to mitochondrial respiratory chain and ATP synthesis (NDI, uqcrc, and ATPo6), oxidative stress (Mn-Sod, Cat, and Gpx), apoptosis (p53, Bcl2, Bax, and Cas3), and immune system (TNFα, IFN, and IL-1b) in zebrafish embryos. This result indicates that the alteration of these genes is a potential mechanism underlying the toxic effects of pyraoxystrobin on zebrafish.
Collapse
Affiliation(s)
- Hui Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Song Yu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Fangjie Cao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Mingqi Zheng
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Abstract
The current body of work on rearing larval/juvenile zebrafish is based on (1) utilization of freshwater and (2) diurnal light/dark cycle, (3) provision of live feed at modest density, and (4) culture in high visibility environment. We challenged these rearing approaches by maintaining zebrafish under constant light for 46-48 days (days postfertilization [dpf]), while securing continuous feeding in high turbidity and saline (1.8-2.1 parts per thousand) environment for the experiment's duration, allowing 24 h feeding/growth of fish from first exogenous feeding to maturation. There was no evidence of negative effects on zebrafish larvae behavior, growth, survival, and life cycle duration at constant illumination when food was continuously available. Zebrafish were stocked at high initial density (100 larvae/L) in a static system and fed high densities of rotifers (Brachionus plicatilis) (200-400/mL) from 6 to 12 dpf. Fish density was then reduced by 50% and two diet treatments, live rotifers or brine shrimp (Artemia) nauplii (10/mL), followed. Fish were reared on these two diets until first maturation. Performance of adult zebrafish fed live rotifer followed by Artemia nauplii diet was the highest recorded in the literature after 42 dpf, 250 ± 29 (males) and 430 ± 5 mg (females). Use of these rearing conditions, during the entire life cycle, until reproduction, resulted in the shortest ever recorded generation time (from egg to egg) of 43-45 dpf and fertilization rate (1 dpf) of 80.3%-94%.
Collapse
Affiliation(s)
- Konrad Dabrowski
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, Ohio State University , Columbus, Ohio
| | - Mackenzie Miller
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, Ohio State University , Columbus, Ohio
| |
Collapse
|
32
|
Renner-Martin K, Brunner N, Kühleitner M, Nowak WG, Scheicher K. On the exponent in the Von Bertalanffy growth model. PeerJ 2018; 6:e4205. [PMID: 29312827 PMCID: PMC5756614 DOI: 10.7717/peerj.4205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
Von Bertalanffy proposed the differential equation m'(t) = p × m(t) a - q × m(t) for the description of the mass growth of animals as a function m(t) of time t. He suggested that the solution using the metabolic scaling exponent a = 2/3 (Von Bertalanffy growth function VBGF) would be universal for vertebrates. Several authors questioned universality, as for certain species other models would provide a better fit. This paper reconsiders this question. Based on 60 data sets from literature (37 about fish and 23 about non-fish species) it optimizes the model parameters, in particular the exponent 0 ≤ a < 1, so that the model curve achieves the best fit to the data. The main observation of the paper is the large variability in the exponent, which can vary over a very large range without affecting the fit to the data significantly, when the other parameters are also optimized. The paper explains this by differences in the data quality: variability is low for data from highly controlled experiments and high for natural data. Other deficiencies were biologically meaningless optimal parameter values or optimal parameter values attained on the boundary of the parameter region (indicating the possible need for a different model). Only 11 of the 60 data sets were free of such deficiencies and for them no universal exponent could be discerned.
Collapse
Affiliation(s)
- Katharina Renner-Martin
- Department of Integrative Biology and Biodiversity, Institute of Mathematics, Universität für Bodenkultur Wien, Vienna, Austria
| | - Norbert Brunner
- Department of Integrative Biology and Biodiversity, Institute of Mathematics, Universität für Bodenkultur Wien, Vienna, Austria
| | - Manfred Kühleitner
- Department of Integrative Biology and Biodiversity, Institute of Mathematics, Universität für Bodenkultur Wien, Vienna, Austria
| | - Werner Georg Nowak
- Department of Integrative Biology and Biodiversity, Institute of Mathematics, Universität für Bodenkultur Wien, Vienna, Austria
| | - Klaus Scheicher
- Department of Integrative Biology and Biodiversity, Institute of Mathematics, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
33
|
Morthorst JE, Lund BF, Holbech H, Bjerregaard P. Two common mild analgesics have no effect on general endocrine mediated endpoints in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:63-70. [PMID: 29180113 DOI: 10.1016/j.cbpc.2017.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
Mild analgesics such as acetylsalicylic acid (ASA) and acetaminophen (APAP) exert their pain-relieving effect in humans by inhibition of prostaglandin synthesis. Prostaglandins play key roles in developmental and reproductive processes in vertebrates, and in recent years, it has been suggested that weak analgesics might also act as endocrine disrupters. In a set of experiments we investigated if ASA and APAP affect well-established endocrine endpoints in zebrafish (Danio rerio), which is a commonly used model organism in the investigation of endocrine disrupting chemicals. Zebrafish were exposed to APAP (0.22, 2.3, and 30mgL-1) or ASA (0.2, 0.5, 1.7, and 8.2mgL-1) from hatch to sexual maturity in a test design resembling the OECD Fish Sexual Development Test. No effects on sex ratio and vitellogenin levels were observed. Adult zebrafish were exposed to high concentrations (mgL-1) of ASA or APAP for eight or 14days. ASA reduced the levels of prostaglandin E2, but had no effect on the concentration of 11-ketotestosterone and vitellogenin. Overall, ASA decrease prostaglandin E2 concentrations, but well-established endpoints for endocrine disruption in zebrafish are generally not affected by aquatic exposure neither during development nor adulthood. According to the WHO/IPCS definition of an endocrine disrupter, the present results do not define APAP and ASA as endocrine disrupters.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| | - Birgit F Lund
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Poul Bjerregaard
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| |
Collapse
|
34
|
Horri K, Alfonso S, Cousin X, Munschy C, Loizeau V, Aroua S, Bégout ML, Ernande B. Fish life-history traits are affected after chronic dietary exposure to an environmentally realistic marine mixture of PCBs and PBDEs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:531-545. [PMID: 28830046 DOI: 10.1016/j.scitotenv.2017.08.083] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants that have been shown to affect fish life-history traits such as reproductive success, growth and survival. At the individual level, their toxicity and underlying mechanisms of action have been studied through experimental exposure. However, the number of experimental studies approaching marine environmental situations is scarce, i.e., in most cases, individuals are exposed to either single congeners, or single types of molecules, or high concentrations, so that results can hardly be transposed to natural populations. In the present study, we evaluated the effect of chronic dietary exposure to an environmentally realistic marine mixture of PCB and PBDE congeners on zebrafish life-history traits from larval to adult stage. Exposure was conducted through diet from the first meal and throughout the life cycle of the fish. The mixture was composed so as to approach environmentally relevant marine conditions in terms of both congener composition and concentrations. Life-history traits of exposed fish were compared to those of control individuals using several replicate populations in each treatment. We found evidence of slower body growth, but to a larger asymptotic length, and delayed spawning probability in exposed fish. In addition, offspring issued from early spawning events of exposed fish exhibited a lower larval survival under starvation condition. Given their strong dependency on life-history traits, marine fish population dynamics and associated fisheries productivity for commercial species could be affected by such individual-level effects of PCBs and PBDEs on somatic growth, spawning probability and larval survival.
Collapse
Affiliation(s)
- Khaled Horri
- Ifremer, Laboratoire Ressources Halieutiques, Centre Manche Mer du Nord, 150 quai Gambetta, F-62200 Boulogne-sur-mer, France; UMR-I 02 SEBIO, INERIS, URCA, ULH, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063 Le Havre Cedex, France.
| | - Sébastien Alfonso
- Ifremer, Laboratoire Ressources Halieutiques, Station de La Rochelle, Place Gaby Coll, BP7, F-17137 L'Houmeau, France
| | - Xavier Cousin
- UMR MARBEC, IFREMER, IRD, UM2, CNRS, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, F-34250 Palavas, France; INRA, UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Catherine Munschy
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 3, France
| | - Véronique Loizeau
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, Centre Bretagne, ZI Pointe du Diable, CS 10070, F-29280 Plouzané, France
| | - Salima Aroua
- UMR-I 02 SEBIO, INERIS, URCA, ULH, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063 Le Havre Cedex, France
| | - Marie-Laure Bégout
- Ifremer, Laboratoire Ressources Halieutiques, Station de La Rochelle, Place Gaby Coll, BP7, F-17137 L'Houmeau, France
| | - Bruno Ernande
- Ifremer, Laboratoire Ressources Halieutiques, Centre Manche Mer du Nord, 150 quai Gambetta, F-62200 Boulogne-sur-mer, France
| |
Collapse
|
35
|
Parolini M, Bini L, Magni S, Rizzo A, Ghilardi A, Landi C, Armini A, Del Giacco L, Binelli A. Exposure to cocaine and its main metabolites altered the protein profile of zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:603-614. [PMID: 28993024 DOI: 10.1016/j.envpol.2017.09.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Illicit drugs have been identified as emerging aquatic pollutants because of their widespread presence in freshwaters and potential toxicity towards aquatic organisms. Among illicit drug residues, cocaine (COC) and its main metabolites, namely benzoylecgonine (BE) and ecgonine methyl ester (EME), are commonly detected in freshwaters worldwide at concentration that can induce diverse adverse effects to non-target organisms. However, the information of toxicity and mechanisms of action (MoA) of these drugs, mainly of COC metabolites, to aquatic species is still fragmentary and inadequate. Thus, this study was aimed at investigating the toxicity of two concentrations (0.3 and 1.0 μg/L) of COC, BE and EME similar to those found in aquatic ecosystems on zebrafish (Danio rerio) embryos at 96 h post fertilization through a functional proteomics approach. Exposure to COC and both its metabolites significantly altered the protein profile of zebrafish embryos, modulating the expression of diverse proteins belonging to different functional classes, including cytoskeleton, eye constituents, lipid transport, lipid and energy metabolism, and stress response. Expression of vitellogenins and crystallins was modulated by COC and both its main metabolites, while only BE and EME altered proteins related to lipid and energy metabolism, as well as to oxidative stress response. Our data confirmed the potential toxicity of low concentrations of COC, BE and EME, and helped to shed light on their MoA on an aquatic vertebrate during early developmental period.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, I-20133 Milano, Italy.
| | - Luca Bini
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Alessandro Rizzo
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, I-20133 Milano, Italy
| | - Anna Ghilardi
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Claudia Landi
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Alessandro Armini
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
36
|
Divya B, Yadav P, Masih P, Singh RK, Mohindra V. In silico characterization of Myogenic Factor 6 transcript of Hilsa, Tenualosa ilisha and putative role of its SNPs with differential growth. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Yang Y, Liu W, Mu X, Qi S, Fu B, Wang C. Biological response of zebrafish embryos after short-term exposure to thifluzamide. Sci Rep 2016; 6:38485. [PMID: 27924917 PMCID: PMC5141451 DOI: 10.1038/srep38485] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
Thifluzamide is a new amide fungicide, and its extensive application may have toxic effects on zebrafish. To better understand the underlying mechanism, we investigated in detail the potential toxic effects of thifluzamide on zebrafish embryos. In the present study, embryos were exposed to 0, 0.19, 1.90, and 2.85 mg/L thifluzamide for 4 days. Obvious pathological changes were found upon a histological exam, and negative changes in mitochondrial structure were observed under Transmission Electron Microscopy (TEM), which qualitatively noted the toxic effects of thifluzamide on embryos. Moreover, we quantitatively evaluated the enzyme activities [succinate dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspases], the contents of malonaldehyde (MDA) and interleukin-8 (IL-8) and the expression levels of the related genes. This study suggests that the negative changes in mitochondrial structure and SDH activity might be responsible for oxidative damage, cell apoptosis and inflammation, which would facilitate the action of these factors in cell death and might play a crucial role during toxic events. In addition to providing the first description of the mechanism of the toxic effects of thifluzamide on embryos, this study also represents a step towards using embryos to assess mitochondrial metabolism and disease.
Collapse
Affiliation(s)
- Yang Yang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiyan Mu
- Center of Fishery Resources and Ecology Environment Research, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Suzhen Qi
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Bin Fu
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
38
|
Babaheydari SB, Keyvanshokooh S, Dorafshan S, Johari SA. Effects of tetraploidy induction on rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) proteome at early stages of development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2016; 20:57-64. [PMID: 27561891 DOI: 10.1016/j.cbd.2016.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/21/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present study was to examine the effects of tetraploidy induction on proteome of rainbow trout during the early stages of development. After insemination, the eggs were incubated at 10°C for 350min. Thereafter, half of the eggs were exposed to a heat-shock of 28°C for 10min. The remainder were incubated normally and used as diploid controls. Fertilized egg specimens were selected 390min post-fertilization. Samples corresponding respectively to eyed embryos and fry stages were also taken on days 18 and 76 post-fertilization. Based on two-dimensional electrophoresis, all spots that were found to differ significantly in abundance between the untreated and heat-shock treated groups were selected for identification using MALDI-TOF/TOF mass spectrometry. Out of 19 protein spots showing altered abundance in the present study, 13 spots were successfully identified. Of the spots that were shown to change in abundance in the fertilized eggs with heat-shock treatment, three were identified as vitellogenin (spots 1, 2 and 3); while the others were creatine kinase (spot 5) and nucleoside diphosphate kinase (spot 6). All of the proteins identified in the embryos were related to vitellogenin (spots 8, 12 and 13). Among the identified spots from the fry muscle extracts, two were identified as beta-globin (spots 14 and 17); while the others were parvalbumin (spots 15 and 16) and creatine kinase (spot 19). The results obtained in our study may now set the ground for investigations on gene regulation and proteome modifications in polyploid fish.
Collapse
Affiliation(s)
- Samad Bahrami Babaheydari
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran.
| | - Salar Dorafshan
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| |
Collapse
|
39
|
Mente E, Pierce GJ, Antonopoulou E, Stead D, Martin SAM. Postprandial hepatic protein expression in trout Oncorhynchus mykiss a proteomics examination. Biochem Biophys Rep 2016; 9:79-85. [PMID: 28955992 PMCID: PMC5614473 DOI: 10.1016/j.bbrep.2016.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 01/24/2023] Open
Abstract
Following a meal, a series of physiological changes occurs in animals as they digest, absorb and assimilate ingested nutrients, the kinetics of these responses depends on metabolic rate and nutrient quality. Here we investigated the hepatic proteome in the ectothermic teleost, the rainbow trout, following a single meal to define the postprandial expression of hepatic proteins. The fish were fed a high marine fishmeal/fish oil single meal following a period of 24 h without feeding. Liver protein profiles were examined by 2D gel electrophoresis just before feeding (time 0 h) and at 6 and 12 h after feeding. Of a total of 588 protein spots analysed in a temporal fashion, 49 differed significantly in abundance between the three time groups (ANOVA, p<0.05), before and after feeding, 15 were increased and 34 were decreased in abundance after feeding. Amino acid metabolism-regulated proteins such as phenylalanine-4-hydroxylase and proliferating cell antigen were increased in abundance 12 and 6 h following the meal, suggesting by this time that the fish were increasing their protein turnover to utilize efficiently their dietary protein consumption. Overall, these results highlight some specificity of the trout metabolism and identify postprandial response of metabolism-related proteins 6–12 h after feeding a single meal. The effect of a single meal on the postprandial expression of hepatic proteins in fish is shown. Temporal changes occurred in the trout liver proteome following a single meal. There is a postprandial response of metabolism-related proteins 6–12 h after feeding a single meal.
Collapse
Affiliation(s)
- Eleni Mente
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Graham J Pierce
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.,CESAM & Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - David Stead
- Aberdeen Proteomics, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
40
|
Rodríguez-Estrada J, Sobrino-Figueroa AS, Martínez-Jerónimo F. Effect of sublethal α-cypermethrin exposure on main macromolecules concentration, energy content, and malondialdehyde concentration in free-feeding Danio rerio larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:859-868. [PMID: 26687149 DOI: 10.1007/s10695-015-0180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
α-Cypermethrin (Cyp) is a synthetic insecticide used to control pests in agricultural crops and to protect human health against noxious insects; this toxic can reach aquatic systems through ground infiltration or by runoff and could affect the aquatic biota. The present study was aimed at evaluating the acute toxicity of Cyp on zebrafish (Danio rerio) exogenous feeding larvae of 10 and 20 days post-fertilization (dpf), and of sublethal concentrations on only 10-dpf larvae. Proteins, lipids, carbohydrates, glycogen concentration, and total energy contents, as well as malondialdehyde (MDA) quantification, through thiobarbituric acid reactive substances, as a lipid peroxidation biomarker, were assessed in free-feeding larvae exposed to sublethal Cyp concentrations. The LC50 for 10-dpf larvae was 1.94 µg L(-1), and these were more sensitive than 20-dpf larvae (3.56 µg L(-1)). The amount of protein, carbohydrates, and glycogen were not significantly affected (p > 0.05), but sublethal Cyp concentrations exposure caused decrement in lipids from 9.05 to 3.74 µg larva(-1), as well as a reduction in MDA and in the total energy content, which affected significantly the development of this fish. Although Cyp is considered an insecticide of reduced residual effect in the environment, the present study revealed that relatively low Cyp concentrations produced significant toxic effects on exogenous feeding fish larvae, a situation that could contribute to increase deaths during this already critical developmental stage in which high mortality is observed frequently.
Collapse
Affiliation(s)
- Jesús Rodríguez-Estrada
- Universidad Autónoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340, Mexico, D. F., Mexico
- Experimental Hydrobiology Laboratory, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n, Col. Sto. Tomás, 11340, Mexico, D. F., Mexico
| | - Alma Socorro Sobrino-Figueroa
- Laboratory Alejandro Villalobos, Departamento de Hidrobiología, Universidad Autónoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340, Mexico, D. F., Mexico
| | - Fernando Martínez-Jerónimo
- Experimental Hydrobiology Laboratory, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n, Col. Sto. Tomás, 11340, Mexico, D. F., Mexico.
| |
Collapse
|
41
|
Yang Y, Qi S, Wang D, Wang K, Zhu L, Chai T, Wang C. Toxic effects of thifluzamide on zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2016; 307:127-136. [PMID: 26780700 DOI: 10.1016/j.jhazmat.2015.12.055] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/10/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Thifluzamide is a fungicide widely used to control crop diseases, and it therefore constitutes a hazard to the environment. In this study, zebrafish were selected to assess the aquatic toxicity of thifluzamide. The acute and development toxicity of thifluzamide to embryos, larvae, and adult zebrafish were measured and the corresponding 96h-LC50 values were as follows: adult fish (4.19mg/L) <larvae (3.52mg/L) <embryos (3.08mg/L). A large suite of symptoms was found in these three stages of zebrafish, including abnormal spontaneous movement, slow heartbeat, hatching inhibition, growth regression, and morphological deformities. In addition, for adult zebrafish, distinct pathological changes were noted in liver and kidney 21 days post exposure (dpe) to 0.19, 1.33, and 2.76mg/L. Liver damage was more severe than kidney damage. In another 28 days exposure of adult zebrafish to 0.019, 0.19, and 1.90mg/L, negative changes in mitochondrial structure and enzymes activities [succinate dehydrogenase (SDH) and respiratory chain complexes] were found. These might be responsible for the adverse expansion of the apoptosis- and immune-related genes, which would facilitate the action of these factors in programmed cell death and might play a key role during the toxic events.
Collapse
Affiliation(s)
- Yang Yang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Suzhen Qi
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Donghui Wang
- Plant Developmental Biology, College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, People's Republic of China
| | - Kai Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lizhen Zhu
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Tingting Chai
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
42
|
Perera E, Yúfera M. Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish. Zebrafish 2016; 13:61-9. [PMID: 26716770 DOI: 10.1089/zeb.2015.1131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is now strong evidence that early nutrition plays an important role in shaping later physiology. We assessed here whether soy protein concentrate (SPC) or soybean meal (SBM) in early diet would modify zebrafish responses to these products in later life. We fed zebrafish larvae with SPC-, SBM-, or a control-diet for the first 3 days of feeding and then grew all larvae on the control diet up to juveniles. Finally, we assessed the expression in juveniles of genes involved in inflammation/immunity, the breakdown of extracellular matrix, luminal digestion, and intestinal nutrient absorption/trafficking. First feeding SBM had wider, stronger, and more persistent effects on gene expression with respect to SPC. Juveniles fed with SPC at first feeding were more prone to inflammation after refeeding with SPC than fish that never experienced SPC before. Conversely, zebrafish that faced SBM at first feeding were later less responsive to refeeding with SBM through inflammation and had higher expression of markers of peptide absorption and fatty acid transport. Results indicate that some features of inflammation/remodeling, presumably at the intestine, and nutrient absorption/transport in fish can be programmed by early nutrition. These findings sustain the rationale of using zebrafish for depicting molecular mechanisms involved in nutritional programming.
Collapse
Affiliation(s)
- Erick Perera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) , Cádiz, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) , Cádiz, Spain
| |
Collapse
|
43
|
Zheng Y, Chen J, Bing X, Yang Y, Liang H, Wang Z. Gender-specific differences in gene expression profiles in gynogenetic Pengze crucian carp. ANIM BIOL 2016. [DOI: 10.1163/15707563-00002496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gynogenesis is a form of asexual reproduction that is used to obtain all-female fish stocks. In this study, we were interested in studying gender-specific differences in gene expression profiles in gynogenetic teleosts, using a carp species. The four-month old gynogenetic Pengze crucian carp F1 (Carassius auratus var. pengzensis, Pcc) showed a high ratio of males under laboratory culture condition. The present study aimed to investigate the differences between males and females. The gonadosomatic index of the females was significantly higher than that of the males. Moreover, the hepatosomatic index of the females was significantly lower than that of the males. Vitellogenin B mRNA was abnormally highly expressed in male hepatopancreas and testes compared to females. Similarly, zona pellucida 2 expressed at a significantly high level in the testes. For the sex related genes, dosage-sensitive sex reversal, adrenal hypoplasia congenital critical region on the X-chromosome gene 1, doublesex and mab-3 related transcription factor 1a, nuclear receptor subfamily 5, group A, member 1b and SRY-box containing gene 9a had significantly higher expression levels in the males than in the females, whereas there was no difference in expression of anti-Müllerian hormone, cytochrome P450 family 19 subfamily A member 1A and forkhead box L2 transcripts between the two genders. The females showed higher levels of estrogen but no significant difference in testosterone compared to the males. The data suggest remarkable differences between the two genders of the Pengze crucian carp.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yanping Yang
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
44
|
Guerrera MC, De Pasquale F, Muglia U, Caruso G. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:699-706. [PMID: 26477613 DOI: 10.1002/jez.b.22658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Francesca De Pasquale
- Institute for Coastal Marine Environment (IAMC), National Research Council, Messina, Italy
| | - Ugo Muglia
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Gabriella Caruso
- Institute for Coastal Marine Environment (IAMC), National Research Council, Messina, Italy
| |
Collapse
|
45
|
O'Brine TM, Vrtělová J, Snellgrove DL, Davies SJ, Sloman KA. Growth, Oxygen Consumption, and Behavioral Responses of Danio rerio to Variation in Dietary Protein and Lipid Levels. Zebrafish 2015; 12:296-304. [PMID: 26134575 DOI: 10.1089/zeb.2014.1008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, there has been increasing interest in the welfare of ornamental fish. Diet can significantly impact the welfare of fish, which can manifest as changes in the fish's physical health and behavior. The zebrafish, Danio rerio, is a popular ornamental species; however, little is known about their nutritional requirements with possible implications for their welfare. Here, we investigated the effect of diets with increasing crude protein (iso-caloric diets) and lipid (iso-nitrogenous diets) on the growth performance, oxygen consumption, and behavior of zebrafish. We found no significant effects of crude protein (32%-75%) or lipid (8%-16%) on the specific growth rate or oxygen consumption of fish fed 5% of their body mass (BM)/day, although the highest crude protein and lipid diet resulted in an increase in condition factor. Furthermore, the crude protein diets did not affect zebrafish behavior when fed a 2% BM ration, once a day. This study has shown that a diet with 32% crude protein and a diet with 8% crude lipid, when fed at a 5% BM ration, were sufficient to meet the growth requirements of our zebrafish. These diets supported the fish's physical health and thus benefited their welfare.
Collapse
Affiliation(s)
- Timothy M O'Brine
- 1 WALTHAM® Centre for Pet Nutrition , Melton Mowbray, United Kingdom .,2 School of Science and Sport, University of the West of Scotland , Paisley, Scotland
| | | | | | - Simon J Davies
- 4 School of Marine Science and Engineering, University of Plymouth , Plymouth, United Kingdom
| | - Katherine A Sloman
- 2 School of Science and Sport, University of the West of Scotland , Paisley, Scotland
| |
Collapse
|
46
|
Tian J, He G, Mai K, Liu C. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:773-787. [PMID: 25805459 DOI: 10.1007/s10695-015-0045-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The goal of this study was to systematically evaluate the molecular activities of endocrine-, amino acid and peptide transporters-, and metabolic enzyme-related genes in 35-day-old mixed-sex zebrafish (Danio rerio) after feeding . Zebrafish with initial body weights ranging from 9 to 11 mg were fasted for 384 h in a controlled indoor environment. Fish were sampled at 0, 3, 6, 12, 24, 48, 96, 192, and 384 h after fed. Overall, the present study results show that the regulatory mechanism that insulin-like growth factor I negative feedback regulated growth hormone is conserved in zebrafish, as it is in mammals, but that regulation of growth hormone receptors is highly intricate. Leptin and cholecystokinin are time-dependent negative feedback signals, and neuropeptide Y may be an important positive neuropeptide for food intake in zebrafish. The amino acid/carnitine transporters B(0,+) (ATB(0,+)) and broad neutral (0) amino acid transporter 1(B(0)AT1) mRNA levels measured in our study suggest that protein may be utilized during 24-96 h of fasting in zebrafish. Glutamine synthetase mRNA levels were downregulated, and glutamate dehydrogenase, alanine aminotransferase, aspartate transaminase, and trypsin mRNA levels were upregulated after longtime fasting in this study. The mRNA expression levels of fatty acid synthetase decreased significantly (P < 0.05), whereas those of lipoprotein lipase rapidly increased after 96 h of fasting. Fasting activated the expression of glucose synthesis genes when fasting for short periods of time; when fasting is prolonged, the mRNA levels of glucose breakdown enzymes and pentose phosphate shunt genes decreased.
Collapse
Affiliation(s)
- Juan Tian
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, No. 5 Yushan Rd., Qingdao, 266003, People's Republic of China,
| | | | | | | |
Collapse
|
47
|
Beaudouin R, Goussen B, Piccini B, Augustine S, Devillers J, Brion F, Péry ARR. An individual-based model of zebrafish population dynamics accounting for energy dynamics. PLoS One 2015; 10:e0125841. [PMID: 25938409 PMCID: PMC4418570 DOI: 10.1371/journal.pone.0125841] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/26/2015] [Indexed: 01/29/2023] Open
Abstract
Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.
Collapse
Affiliation(s)
- Rémy Beaudouin
- Unité Modèles pour l’Ecotoxicologie et la Toxicologie (METO), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
- * E-mail:
| | - Benoit Goussen
- Unité Modèles pour l’Ecotoxicologie et la Toxicologie (METO), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
| | - Benjamin Piccini
- Unité Ecotoxicologie in vitro et in vivo (ECOT), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
| | - Starrlight Augustine
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | | | - François Brion
- Unité Ecotoxicologie in vitro et in vivo (ECOT), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
| | - Alexandre R. R. Péry
- Unité Modèles pour l’Ecotoxicologie et la Toxicologie (METO), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
- AgroParisTech, Paris, France
| |
Collapse
|
48
|
Rurangwa E, Sipkema D, Kals J, Ter Veld M, Forlenza M, Bacanu GM, Smidt H, Palstra AP. Impact of a novel protein meal on the gastrointestinal microbiota and the host transcriptome of larval zebrafish Danio rerio. Front Physiol 2015; 6:133. [PMID: 25983694 PMCID: PMC4415425 DOI: 10.3389/fphys.2015.00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/14/2015] [Indexed: 01/06/2023] Open
Abstract
Larval zebrafish was subjected to a methodological exploration of the gastrointestinal microbiota and transcriptome. Assessed was the impact of two dietary inclusion levels of a novel protein meal (NPM) of animal origin (ragworm Nereis virens) on the gastrointestinal tract (GIT). Microbial development was assessed over the first 21 days post egg fertilization (dpf) through 16S rRNA gene-based microbial composition profiling by pyrosequencing. Differentially expressed genes in the GIT were demonstrated at 21 dpf by whole transcriptome sequencing (mRNAseq). Larval zebrafish showed rapid temporal changes in microbial colonization but domination occurred by one to three bacterial species generally belonging to Proteobacteria and Firmicutes. The high iron content of NPM may have led to an increased relative abundance of bacteria that were related to potential pathogens and bacteria with an increased iron metabolism. Functional classification of the 328 differentially expressed genes indicated that the GIT of larvae fed at higher NPM level was more active in transmembrane ion transport and protein synthesis. mRNAseq analysis did not reveal a major activation of genes involved in the immune response or indicating differences in iron uptake and homeostasis in zebrafish fed at the high inclusion level of NPM.
Collapse
Affiliation(s)
- Eugene Rurangwa
- Institute for Marine Resources and Ecosystem Studies, Wageningen University and Research Centre Yerseke, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Jeroen Kals
- Institute for Marine Resources and Ecosystem Studies, Wageningen University and Research Centre Yerseke, Netherlands
| | - Menno Ter Veld
- Aquaculture and Fisheries Group, Wageningen University Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University Wageningen, Netherlands
| | - Gianina M Bacanu
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Arjan P Palstra
- Institute for Marine Resources and Ecosystem Studies, Wageningen University and Research Centre Yerseke, Netherlands
| |
Collapse
|
49
|
Glucose metabolism and gene expression in juvenile zebrafish (Danio rerio) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life. Br J Nutr 2015; 113:403-13. [PMID: 25609020 DOI: 10.1017/s0007114514003869] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹⁴C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹⁴C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.
Collapse
|
50
|
Abstract
Sexual maturation and somatic growth cessation are associated with adolescent development, which is precisely controlled by interconnected neuroendocrine regulatory pathways in the endogenous endocrine system. The pituitary gland is one of the key regulators of the endocrine system. By analyzing the RNA sequencing (RNA-seq) transcriptome before and after sexual maturation, in this study, we characterized the global gene expression patterns in zebrafish pituitaries at 45 and 90 days post-fertilization (dpf). A total of 15 043 annotated genes were expressed in the pituitary tissue, 3072 of which were differentially expressed with a greater than or equal to twofold change between pituitaries at 45 and 90 dpf. In the pituitary transcriptome, the most abundant transcript was gh. The expression levels of gh remained high even after sexual maturation at 90 dpf. Among the eight major pituitary hormone genes, lhb was the only gene that exhibited a significant change in its expression levels between 45 and 90 dpf. Significant changes in the pituitary transcripts included genes involved in the regulation of immune responses, bone metabolism, and hormone secretion processes during the juvenile-sexual maturity transition. Real-time quantitative PCR analysis was carried out to verify the RNA-seq transcriptome results and demonstrated that the expression patterns of the eight major pituitary hormone genes did not exhibit a significant gender difference at 90 dpf. For the first time, we report the quantitative global gene expression patterns at the juvenile and sexual maturity stages. These expression patterns may account for the dynamic neuroendocrine regulation observed in body metabolism.
Collapse
Affiliation(s)
- Wenxia He
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of ChinaKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Xiangyan Dai
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of ChinaKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Xiaowen Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of ChinaKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Jiangyan He
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| |
Collapse
|