1
|
Lu X, Cummings C, Osuala UA, Yennawar NH, Namitz KEW, Hellner B, Besada-Lombana PB, Peterson RD, Clark AJ. Characterization of recombinant human lactoferrin expressed in Komagataella phaffii. Analyst 2024; 149:3636-3650. [PMID: 38814097 PMCID: PMC11215759 DOI: 10.1039/d4an00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This work presents a thorough characterization of Helaina recombinant human lactoferrin (rhLF, Effera™) expressed in a yeast system at an industrial scale for the first time. Proteomic analysis confirmed that its amino acid sequence is identical to that of native human LF. N-linked glycans were detected at three known glycosylation sites, namely, Asparagines-156, -497, and -642 and they were predominantly oligomannose structures having five to nine mannoses. Helaina rhLF's protein secondary structure was nearly identical to that of human milk lactoferrin (hmLF), as revealed by microfluidic modulation spectroscopy. Results of small-angle X-ray scattering (SAXS) and analytical ultracentrifugation analyses confirmed that, like hmLF, Helaina rhLF displayed well-folded globular structures in solution. Reconstructed solvent envelopes of Helaina rhLF, obtained through the SAXS analysis, demonstrated a remarkable fit with the reported crystalline structure of iron-bound native hmLF. Differential scanning calorimetry investigations into the thermal stability of Helaina rhLF revealed two distinct denaturation temperatures at 68.7 ± 0.9 °C and 91.9 ± 0.5 °C, consistently mirroring denaturation temperatures observed for apo- and holo-hmLF. Overall, Helaina rhLF differed from hmLF in the N-glycans they possessed; nevertheless, the characterization results affirmed that Helaina rhLF was of high purity and exhibited globular structures closely akin to that of hmLF.
Collapse
Affiliation(s)
- Xiaoning Lu
- Helaina Inc., 345 Park Avenue South, 5th Floor, New York, NY 10010, USA.
| | - Chad Cummings
- Helaina Inc., 345 Park Avenue South, 5th Floor, New York, NY 10010, USA.
| | - Udodili A Osuala
- Helaina Inc., 345 Park Avenue South, 5th Floor, New York, NY 10010, USA.
| | - Neela H Yennawar
- X-ray Crystallography Core Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin E W Namitz
- X-ray Crystallography Core Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Brittney Hellner
- Helaina Inc., 345 Park Avenue South, 5th Floor, New York, NY 10010, USA.
| | | | - Ross D Peterson
- Helaina Inc., 345 Park Avenue South, 5th Floor, New York, NY 10010, USA.
| | - Anthony J Clark
- Helaina Inc., 345 Park Avenue South, 5th Floor, New York, NY 10010, USA.
| |
Collapse
|
2
|
Yen CC, Wu PY, Ou-Yang H, Chen HL, Chong KY, Chang RL, Chen CM. Production of Bioactive Porcine Lactoferrin through a Novel Glucose-Inducible Expression System in Pichia pastoris: Unveiling Antimicrobial and Anticancer Functionalities. Int J Mol Sci 2024; 25:1818. [PMID: 38339093 PMCID: PMC10855427 DOI: 10.3390/ijms25031818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Lactoferrin (LF) stands as one of the extensively investigated iron-binding glycoproteins within milk, exhibiting diverse biological functionalities. The global demand for LF has experienced consistent growth. Biotechnological strategies aimed at enhancing LF productivity through microbial expression systems offer substantial cost-effective advantages and exhibit fewer constraints compared to traditional animal bioreactor technologies. This study devised a novel recombinant plasmid, wherein the AOX1 promoter was replaced with a glucose-inducible G1 promoter (PG1) to govern the expression of recombinant porcine LF (rpLF) in Pichia pastoris GS115. High-copy-number PG1-rpLF yeast clones were meticulously selected, and subsequent induction with 0.05 g/L glucose demonstrated robust secretion of rpLF. Scaling up production transpired in a 5 L fermenter, yielding an estimated rpLF productivity of approximately 2.8 g/L by the conclusion of glycerol-fed fermentation. A three-step purification process involving tangential-flow ultrafiltration yielded approximately 6.55 g of rpLF crude (approximately 85% purity). Notably, exceptional purity of rpLF was achieved through sequential heparin and size-exclusion column purification. Comparatively, the present glucose-inducible system outperformed our previous methanol-induced system, which yielded a level of 87 mg/L of extracellular rpLF secretion. Furthermore, yeast-produced rpLF demonstrated affinity for ferric ions (Fe3+) and exhibited growth inhibition against various pathogenic microbes (E. coli, S. aureus, and C. albicans) and human cancer cells (A549, MDA-MB-231, and Hep3B), similar to commercial bovine LF (bLF). Intriguingly, the hydrolysate of rpLF (rpLFH) manifested heightened antimicrobial and anticancer effects compared to its intact form. In conclusion, this study presents an efficient glucose-inducible yeast expression system for large-scale production and purification of active rpLF protein with the potential for veterinary or medical applications.
Collapse
Affiliation(s)
- Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung 404, Taiwan;
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (P.-Y.W.); (H.O.-Y.)
| | - Pei-Ying Wu
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (P.-Y.W.); (H.O.-Y.)
| | - Huan Ou-Yang
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (P.-Y.W.); (H.O.-Y.)
| | - Hsiao-Ling Chen
- Department of Biomedical Science, Da-Yeh University, Changhua 515, Taiwan;
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Hyperbaric Oxygen Medical Research Laboratory, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ro-Lin Chang
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (P.-Y.W.); (H.O.-Y.)
| | - Chuan-Mu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (P.-Y.W.); (H.O.-Y.)
- The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
4
|
Gu X, Huang L, Lian J. Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts. Synth Syst Biotechnol 2023; 8:469-478. [PMID: 37692201 PMCID: PMC10485790 DOI: 10.1016/j.synbio.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/12/2023] Open
Abstract
γ-Linolenic acid-enriched galactosyldiacylglycerols (GDGs-GLA), as the natural form of γ-linolenic acid in microalgae, have a range of functional activities, including anti-inflammatory, antioxidant, and anti-allergic properties. The low abundance of microalgae and the structural stereoselectivity complexity impede microalgae extraction or chemical synthesis, resulting in a lack of supply of GDGs-GLA with a growing demand. At present, there is a growing interest in engineering oleaginous yeasts for mass production of GDGs-GLA based on their ability to utilize a variety of hydrophobic substrates and a high metabolic flux toward fatty acid and lipid (triacylglycerol, TAG) production. Here, we first introduce the GDGs-GLA biosynthetic pathway in microalgae and challenges in the engineering of the native host. Subsequently, we describe in detail the applications of oleaginous yeasts with Yarrowia lipolytica as the representative for GDGs-GLA biosynthesis, including the development of synthetic biology parts, gene editing tools, and metabolic engineering of lipid biosynthesis. Finally, we discuss the development trend of GDGs-GLA biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Xiaosong Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
6
|
Nguyen TK, Niaz Z, Kruzel ML, Actor JK. Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas During Mycobacterial Infection of C57Bl/6 Mice. Arch Immunol Ther Exp (Warsz) 2022; 70:9. [PMID: 35226195 PMCID: PMC8922470 DOI: 10.1007/s00005-022-00648-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Infection with Mycobacterium tuberculosis (Mtb) results in the primary formation of a densely packed inflammatory foci that limits entry of therapeutic agents into pulmonary sites where organisms reside. No current therapeutic regimens exist that modulate host immune responses to permit increased drug penetration to regions of pathological damage during tuberculosis disease. Lactoferrin is a natural iron-binding protein previously demonstrated to modulate inflammation and granuloma cohesiveness, while maintaining control of pathogenic burden. Studies were designed to examine recombinant human lactoferrin (rHLF) to modulate histological progression of Mtb-induced pathology in a non-necrotic model using C57Bl/6 mice. The rHLF was oral administered at times corresponding to initiation of primary granulomatous response, or during granuloma maintenance. Treatment with rHLF demonstrated significant reduction in size of primary inflammatory foci following Mtb challenge, and permitted penetration of ofloxacin fluoroquinolone therapeutic to sites of pathological disruption where activated (foamy) macrophages reside. Increased drug penetration was accompanied by retention of endothelial cell integrity. Immunohistochemistry revealed altered patterns of M1-like and M2-like phenotypic cell localization post infectious challenge, with increased presence of M2-like markers found evenly distributed throughout regions of pulmonary inflammatory foci in rHLF-treated mice.
Collapse
Affiliation(s)
- Thao K.T. Nguyen
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA,The University of Texas MD Anderson Cancer Center – UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zainab Niaz
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Marian L. Kruzel
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Jeffrey K. Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| |
Collapse
|
7
|
Olszewska P, Pazdrak B, Kruzel ML. A Novel Human Recombinant Lactoferrin Inhibits Lung Adenocarcinoma Cell Growth and Migration with No Cytotoxic Effect on Normal Human Epithelial Cells. Arch Immunol Ther Exp (Warsz) 2021; 69:33. [PMID: 34748082 PMCID: PMC8575758 DOI: 10.1007/s00005-021-00637-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Lung cancer remains the leading cause of cancer death worldwide. Despite the recent advances in cancer treatment, only a subset of patients responds to targeted and immune therapies, and many patients developing resistance after an initial response. Lactoferrin (Lf) is a natural glycoprotein with immunomodulatory and anticancer activities. We produced a novel recombinant human Lf (rhLf) that exhibits glycosylation profile compatible with the natural hLf for potential parenteral therapeutic applications. The aim of this study was to evaluate the anticancer effects of this novel rhLf in human lung adenocarcinoma cells and its mechanisms of action. The results showed a concentration-dependent inhibition of A549 cancer cell growth in response to rhLf. Treatment with 1 mg/ml of rhLf for 24 h and 72 h resulted in a significant inhibition of cancer cell growth by 32% and 25%, respectively. Moreover, rhLf increased fourfold the percentage of early and late apoptotic cells compared to the control. This effect was accompanied by increased levels of caspase-3 activity and cell cycle arrest at the S phase in rhLf-treated cancer cells. Furthermore, rhLf significantly attenuated A549 cell migration. Importantly, treatment of normal human bronchial epithelial (NHBE) cells with rhLf showed the cell viability and morphology comparable to the control. In contrast, chemotherapeutic etoposide induced cytotoxicity in NHBE cells and reduced the cell viability by 40%. These results demonstrate the selective anticancer effects of rhLf against lung adenocarcinoma cells without cytotoxicity on normal human cells. This study highlights a potential for clinical utility of this novel rhLf in patients with lung cancer.
Collapse
Affiliation(s)
- Paulina Olszewska
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | - Barbara Pazdrak
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
8
|
Zlatina K, Galuska SP. The N-glycans of lactoferrin: more than just a sweet decoration. Biochem Cell Biol 2021; 99:117-127. [DOI: 10.1139/bcb-2020-0106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nearly all extracellular proteins undergo post-translational modification with sugar chains during their transit through the endoplasmic reticulum and the Golgi apparatus. These “sweet” modifications not only influence the activity of its carrier protein, but they themselves often have bioactivity, independent of the carrier function. Lactoferrin belongs to the group of glycoproteins and is modified with several different N-glycans. This minireview summarizes several studies dealing with the diverse glycosylation patterns of lactoferrin from different origins, and the potential impact of these post-translational modifications on the functionality of lactoferrin. A special emphasis is placed on the differences between human and bovine lactoferrin, because the latter form is often selected for the development of novel therapeutic approaches in humans. For this reason, the potential impact of the bovine-specific glycosylation patterns on the observed heterogeneous effects of lactoferrin in humans is discussed within this minireview.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Sebastian P. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
9
|
Zhao X, Kruzel M, Ting SM, Sun G, Savitz SI, Aronowski J. Optimized lactoferrin as a highly promising treatment for intracerebral hemorrhage: Pre-clinical experience. J Cereb Blood Flow Metab 2021; 41:53-66. [PMID: 32438861 PMCID: PMC7747168 DOI: 10.1177/0271678x20925667] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intracerebral hemorrhage (ICH) is the deadliest form of stroke for which there is no effective treatment, despite an endless number of pre-clinical studies and clinical trials. The obvious therapeutic target is the neutralization of toxic products of red blood cell (RBC) lysis that lead to cytotoxicity, inflammation, and oxidative damage. We used rigorous approaches and translationally relevant experimental ICH models to show that lactoferrin-(LTF)-based monotherapy is uniquely robust in reducing brain damage after ICH. Specifically, we designed, produced, and pharmacokinetically/toxicologically characterized an optimized LTF, a fusion of human LTF and the Fc domain of human IgG (FcLTF) that has a 5.8-fold longer half-life in the circulation than native LTF. Following dose-optimization studies, we showed that FcLTF reduces neurological injury caused by ICH in aged male/female mice, and in young male Sprague Dawley (SD) and spontaneously hypertensive rats (SHR). FcLTF showed a remarkably long 24-h therapeutic window. In tissue culture systems, FcLTF protected neurons from the toxic effects of RBCs and promoted microglia toward phagocytosis of RBCs and dead neurons, documenting its pleotropic effect. Our findings indicate that FcLTF is safe and effective in reducing ICH-induced damage in animal models used in this study.
Collapse
Affiliation(s)
- Xiurong Zhao
- Department of Neurology and Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Marian Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Shun-Ming Ting
- Department of Neurology and Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | | | - Sean I Savitz
- Department of Neurology and Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jaroslaw Aronowski
- Department of Neurology and Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
10
|
Naidu SAG, Clemens RA, Pressman P, Zaigham M, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum. J Diet Suppl 2020; 19:78-114. [PMID: 33164606 DOI: 10.1080/19390211.2020.1834047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As the COVID-19 pandemic intensified the global health crisis, the containment of SARS-CoV-2 infection in pregnancies, and the inherent risk of vertical transmission of virus from mother-to-fetus (or neonate) poses a major concern. Most COVID-19-Pregnancy patients showed mild to moderate COVID-19 pneumonia with no pregnancy loss and no congenital transmission of the virus; however, an increase in hypoxia-induced preterm deliveries was apparent. Also, the breastmilk of several mothers with COVID-19 tested negative for the virus. Taken together, the natural barrier function during pregnancy and postpartum seems to deter the SARS-CoV-2 transmission from mother-to-child. This clinical observation warrants to explore the maternal-fetal interface and identify the innate defense factors for prevention and control of COVID-19-Pregnancy. Lactoferrin (LF) is a potent antiviral iron-binding protein present in the maternal-fetal interface. In concert with immune co-factors, maternal-LF modulates chemokine release and lymphocyte migration and amplify host defense during pregnancy. LF levels during pregnancy may resolve hypertension via down-regulation of ACE2; consequently, may limit the membrane receptor access to SARS-CoV-2 for cellular entry. Furthermore, an LF-derived peptide (LRPVAA) has been shown to block ACE receptor activity in vitro. LF may also reduce viral docking and entry into host cells and limit the early phase of COVID-19 infection. An in-depth understanding of LF and other soluble mammalian milk-derived innate antiviral factors may provide insights to reduce co-morbidities and vertical transmission of SARS-CoV-2 infection and may lead to the development of effective nutraceutical supplements.
Collapse
Affiliation(s)
| | - Roger A Clemens
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | - Mehreen Zaigham
- Department of Obstetrics & Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, USA.,Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, USA.,Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
11
|
Ma B, Guan X, Li Y, Shang S, Li J, Tan Z. Protein Glycoengineering: An Approach for Improving Protein Properties. Front Chem 2020; 8:622. [PMID: 32793559 PMCID: PMC7390894 DOI: 10.3389/fchem.2020.00622] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Natural proteins are an important source of therapeutic agents and industrial enzymes. While many of them have the potential to be used as highly effective medical treatments for a wide range of diseases or as catalysts for conversion of a range of molecules into important product types required by modern society, problems associated with poor biophysical and biological properties have limited their applications. Engineering proteins with reduced side-effects and/or improved biophysical and biological properties is therefore of great importance. As a common protein modification, glycosylation has the capacity to greatly influence these properties. Over the past three decades, research from many disciplines has established the importance of glycoengineering in overcoming the limitations of proteins. In this review, we will summarize the methods that have been used to glycoengineer proteins and briefly discuss some representative examples of these methods, with the goal of providing a general overview of this research area.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Wang Q, Chen X, Xie Z, Liu X, Fu W, Huang K, Xu W, Lin X. Untargeted Metabonomics of Genetically Modified Cows Expressing Lactoferrin Based on Serum and Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:686-696. [PMID: 31877248 DOI: 10.1021/acs.jafc.9b06630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolites of serum and milk from genetically modified (GM) cows and contrast check (CK) cows were comparatively investigated. Serum and milk were collected from genetically modified (GM) cows and contrast check (CK) cows, and then, they were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS). Although the level of some blood biochemical indexes for GM cows was shifted up or down, they were generally in normal physiological condition. Serum samples from lactoferrin GM cows exhibited reduced levels of amino acids and elevated levels of indoleacetate, α-keto acids, long-chain fatty acids, etc. GM milk possessed elevated levels of pentose and amino sugar metabolites, including arabitol, xylulose, glucuronate, and N-acetylgalactosamine. Interestingly, some essential nutrients, such as certain unsaturated fatty acids (e.g., eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA)), and some necessary rare sugars were significantly upregulated. Compared to the CK group, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted based on the increased or decreased metabolites identified in the serum and milk samples of the GM group. The results showed that the GM cows were in healthy condition and their milk has improved benefits for customers. The milk from genetically modified cows was found to be a promising milk source for producing recombinant human lactoferrin (rhLF) for human beings.
Collapse
Affiliation(s)
- Qin Wang
- Institute of Animal Quarantine , Chinese Academy of Inspection and Quarantine , Beijing 100123 , China
| | - Xu Chen
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Zixin Xie
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Xiaofei Liu
- Institute of Animal Quarantine , Chinese Academy of Inspection and Quarantine , Beijing 100123 , China
| | - Wei Fu
- Institute of Animal Quarantine , Chinese Academy of Inspection and Quarantine , Beijing 100123 , China
| | - Kunlun Huang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Wentao Xu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Xiangmei Lin
- Institute of Animal Quarantine , Chinese Academy of Inspection and Quarantine , Beijing 100123 , China
| |
Collapse
|
13
|
A silkworm based silk gland bioreactor for high-efficiency production of recombinant human lactoferrin with antibacterial and anti-inflammatory activities. J Biol Eng 2019; 13:61. [PMID: 31312254 PMCID: PMC6612213 DOI: 10.1186/s13036-019-0186-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background Silk glands are used by silkworms to spin silk fibers for making their cocoons. These have recently been regarded as bioreactor hosts for the cost-effective production of other valuable exogenous proteins and have drawn wide attention. Results In this study, we established a transgenic silkworm strain which synthesizes the recombinant human lactoferrin (rhLF) in the silk gland and spins them into the cocoon by our previously constructed silk gland based bioreactor system. The yield of the rhLF with the highest expression level was estimated to be 12.07 mg/g cocoon shell weight produced by the transgenic silkworm strain 34. Utilizing a simple purification protocol, 9.24 mg of the rhLF with recovery of 76.55% and purity of 95.45% on average could be purified from 1 g of the cocoons. The purified rhLF was detected with a secondary structure similar with the commercially purchased human lactoferrin. Eight types of N-glycans which dominated by the GlcNAc (4) Man (3) (61.15%) and the GlcNAc (3) Man (3) (17.98%) were identified at the three typical N-glycosylation sites of the rhLF. Biological activities assays showed the significant evidence that the purified rhLF could relief the lipopolysaccharide (LPS)-induced cell inflammation in RAW264.7 cells and exhibit potent antibacterial bioactivities against the Escherichia coli (E. coli) and Bacillus subtilis. Conclusions These results show that the middle silk gland of silkworm can be an efficient bioreactor for the mass production of rhLF and the potential application in anti-inflammation and antibacterial. Electronic supplementary material The online version of this article (10.1186/s13036-019-0186-z) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Iglesias-Figueroa BF, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Rascón-Cruz Q. Lactoferrin as a nutraceutical protein from milk, an overview. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Using response surface methodology optimize culture conditions for human lactoferrin production in desert Chlorella. Protein Expr Purif 2018; 155:130-135. [PMID: 30508587 DOI: 10.1016/j.pep.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 09/17/2018] [Accepted: 11/15/2018] [Indexed: 11/23/2022]
Abstract
To optimize the expression conditions for human lactoferrin production, we have constructed the transgenic chlorella with human lactoferrin named as GTD8A1-HLF, the original chlorella was separated from Gurbantunggut Desert in Xinjiang China. To further improve the production of human lactoferrin, a sequential methodology was used to optimize human lactoferrin production by GTD8A1-HLF. First, a screening trial using a Plackett-Burman design was done, and variables with statistically significant effects on human lactoferrin bio-production were identified. These were further optimized by central composite design experiments and response surface methodology. Finally, we found that the maximum human lactoferrin production (52.70 mg/L) was achieved under the following optimized conditions: Initial pH 5.0, NaNO3 concentration of 0.600 mol/L, FeSO4 concentration of 0.006 mol/L, and a CuSO4 concentration of 0.002 mol/L, with the other medium components constituting the basal culture medium BBM. The yield of HLF protein under optimized culture conditions was approximately 4-fold higher than that obtained by using the basal culture medium BBM. The findings are significant for the potential industrial use of GTD8A1-HLF.
Collapse
|
16
|
Aw R, McKay PF, Shattock RJ, Polizzi KM. A systematic analysis of the expression of the anti-HIV VRC01 antibody in Pichia pastoris through signal peptide optimization. Protein Expr Purif 2018; 149:43-50. [PMID: 29601964 PMCID: PMC5982643 DOI: 10.1016/j.pep.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/10/2023]
Abstract
Pichia pastoris (Komagataella phaffi) has been used for recombinant protein production for over 30 years with over 5000 proteins reported to date. However, yields of antibody are generally low. We have evaluated the effect of secretion signal peptides on the production of a broadly neutralizing antibody (VRC01) to increase yield. Eleven different signal peptides, including the murine IgG1 signal peptide, were combinatorially evaluated for their effect on antibody titer. Strains using different combinations of signal peptides were identified that secreted approximately 2-7 fold higher levels of VRC01 than the previous best secretor, with the highest yield of 6.50 mg L-1 in shake flask expression. Interestingly it was determined that the highest yields were achieved when the murine IgG1 signal peptide was fused to the light chain, with several different signal peptides leading to high yield when fused to the heavy chain. Finally, we have evaluated the effect of using a 2A signal peptide to create a bicistronic vector in the attempt to reduce burden and increase transformation efficiency, but found it to give reduced yields compared to using two independent vectors.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology and Innovation, Imperial College London, SW7 2AZ, UK
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Robin J Shattock
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Karen M Polizzi
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology and Innovation, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
17
|
Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a Context of Inflammation-Induced Pathology. Front Immunol 2017; 8:1438. [PMID: 29163511 PMCID: PMC5681489 DOI: 10.3389/fimmu.2017.01438] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
Much progress has been achieved to elucidate the function of lactoferrin (LTF), an iron-binding glycoprotein, in the milieu of immune functionality. This review represents a unique examination of LTF toward its importance in physiologic homeostasis as related to development of disease-associated pathology. The immunomodulatory nature of this protein derives from its unique ability to "sense" the immune activation status of an organism and act accordingly. Underlying mechanisms are proposed whereby LTF controls disease states, thereby pinpointing regions of entry for LTF in maintenance of various physiological pathways to limit the magnitude of tissue damage. LTF is examined as a first line mediator in immune defense and response to pathogenic and non-pathogenic injury, as well as a molecule critical for control of oxidative cell function. Mechanisms of interaction of LTF with its receptors are examined, with a focus on protective effects via regulation of enzyme activities and reactive oxygen species production, immune deviation, and prevention of cell apoptosis. Indeed, LTF serves as a critical control point in physiologic homeostasis, functioning as a sensor of immunological performance related to pathology. Specific mediation of tissue pathophysiology is described for maintenance of intestinal integrity during endotoxemia, elicited airway inflammation due to allergens, and pulmonary damage during tuberculosis. Finally, the role of LTF to alter differentiation of adaptive immune function is examined, with specific recognition of its utility as a vaccine adjuvant to control subsequent lymphocytic reactivity. Overall, it is clear that while the ability of LTF to both sequester iron and to direct reactive oxygen intermediates is a major factor in lessening damage due to excessive inflammatory responses, further effects are apparent through direct control over development of higher order immune functions that regulate pathology due to insult and injury. This culminates in attenuation of pathological damage during inflammatory injury.
Collapse
Affiliation(s)
- Marian L. Kruzel
- McGovern Medical School, University of Texas, Health Science Center, Houston, TX, United States
| | - Michal Zimecki
- Polish Academy of Sciences, Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Jeffrey K. Actor
- McGovern Medical School, University of Texas, Health Science Center, Houston, TX, United States
| |
Collapse
|
18
|
Zemankova N, Chlebova K, Matiasovic J, Prodelalova J, Gebauer J, Faldyna M. Bovine lactoferrin free of lipopolysaccharide can induce a proinflammatory response of macrophages. BMC Vet Res 2016; 12:251. [PMID: 27829421 PMCID: PMC5103330 DOI: 10.1186/s12917-016-0878-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Background Lactoferrin (LF) is an 80 kDa glycoprotein which is known for its effects against bacteria, viruses and other pathogens. It also has a high potential in nutrition therapy and welfare of people and a variety of animals, including piglets. The ability to bind lipopolysaccharide (LPS) is one of the described anti-inflammatory mechanisms of LF. Previous studies suggested that cells can be stimulated even by LPS-free LF. Therefore, the aim of our study was to bring additional information about this possibility. Porcine monocyte derived macrophages (MDMF) and human embryonic kidney (HEK) cells were stimulated with unpurified LF in complex with LPS and with purified LF without bound LPS. Results Both cell types were stimulated with unpurified as well as purified LF. On the other hand, neither HEK0 cells not expressing any TLR nor HEK4a cells transfected with TLR4 produced any pro-inflammatory cytokine transcripts after stimulation with purified LF. This suggests that purified LF without LPS stimulates cells via another receptor than TLR4. An alternative, TLR4-independent, pathway was further confirmed by analyses of the NF-kappa-B-inducing kinase (NIK) activation. Western blot analyses showed NIK which activates different NFκB subunits compared to LF-LPS signaling via TLR4. Though, this confirmed an alternative pathway which is used by the purified LF free of LPS. This stimulation of MDMF led to low, but significant amounts of pro-inflammatory cytokines, which can be considered as a positive stimulation of the immune system. Conclusion Our results suggest that LF’s ability is not only to bind LPS, but LF itself may be a stimulant of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Nada Zemankova
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katarina Chlebova
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Matiasovic
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Jana Prodelalova
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Jan Gebauer
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic.
| |
Collapse
|
19
|
Lactoferrin: A Modulator for Immunity against Tuberculosis Related Granulomatous Pathology. Mediators Inflamm 2015; 2015:409596. [PMID: 26788020 PMCID: PMC4691619 DOI: 10.1155/2015/409596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/30/2015] [Indexed: 01/21/2023] Open
Abstract
There is great need for a therapeutic that would limit tuberculosis related pathology and thus curtail spread of disease between individuals by establishing a "firebreak" to slow transmission. A promising avenue to increase current therapeutic efficacy may be through incorporation of adjunct components that slow or stop development of aggressive destructive pulmonary pathology. Lactoferrin, an iron-binding glycoprotein found in mucosal secretions and granules of neutrophils, is just such a potential adjunct therapeutic agent. The focus of this review is to explore the utility of lactoferrin to serve as a therapeutic tool to investigate "disruption" of the mycobacterial granuloma. Proposed concepts for mechanisms underlying lactoferrin efficacy to control immunopathology are supported by data generated based on in vivo models using nonpathogenic trehalose 6,6'-dimycolate (TDM, cord factor).
Collapse
|
20
|
Parc AL, Karav S, De Moura Bell JMLN, Frese SA, Liu Y, Mills DA, Block DE, Barile D. A novel endo-β-N-acetylglucosaminidase releases specific N-glycans depending on different reaction conditions. Biotechnol Prog 2015; 31:1323-1330. [PMID: 26101185 DOI: 10.1002/btpr.2133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/17/2015] [Indexed: 12/11/2022]
Abstract
Milk glycoproteins are involved in different functions and contribute to different cellular processes, including adhesion and signaling, and shape the development of the infant microbiome. Methods have been developed to study the complexities of milk protein glycosylation and understand the role of N-glycans in protein functionality. Endo-β-N-acetylglucosaminidase (EndoBI-1) isolated from Bifidobacterium longum subsp. infantis ATCC 15697 is a recently isolated heat-stable enzyme that cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core. The effects of different processing conditions (pH, temperature, reaction time, and enzyme/protein ratio) were evaluated for their ability to change EndoBI-1 activity on bovine colostrum whey glycoproteins using advanced mass spectrometry. This study shows that EndoBI-1 is able to cleave a high diversity of N-glycan structures. Nano-LC-Chip-Q-TOF MS data also revealed that different reaction conditions resulted in different N-glycan compositions released, thus modifying the relative abundance of N-glycan types. In general, more sialylated N-glycans were released at lower temperatures and pH values. These results demonstrated that EndoBI-1 is able to release a wide variety of N-glycans, whose compositions can be selectively manipulated using different processing conditions.
Collapse
Affiliation(s)
- Annabelle Le Parc
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616
| | - Sercan Karav
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616
| | | | - Steven A Frese
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616
| | - Yan Liu
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616
| | - David A Mills
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616
| | - David E Block
- Dept. of Viticulture and Enology, University of California, Davis, CA 95616
| | - Daniela Barile
- Dept. of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
21
|
Asthana S, Gupta PK, Jaiswal AK, Dube A, Chourasia MK. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: in vitro and in vivo studies. Nanomedicine (Lond) 2015; 10:1093-109. [DOI: 10.2217/nnm.14.182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: Exploitation of lactoferrin-appended amphotericin B bearing nanoreservoir (LcfPGNP-AmB) for targeted eradication of Leishmania donovani. Materials & methods: LcfPGNP-AmB was architechtured through ionic adsorption of lactoferrin over core poly (d,l-lactide-co-glycolide) nanoparticles and characterized. Anti-Leishmania activity in visceral leishmaniasis models, immunomodulatory potential, biodistribution and toxicity profile were also assessed. Results: LcfPGNP-AmB (size, 196.0 ± 5.28 nm; zeta-potential, +21.7 ± 1.52 mV; encapsulation efficiency, ∼89%) showed reduced toxicity, increased protective proinflammatory mediators expression and down-regulation of disease-promoting cytokines. Biodistribution study illustrated preferential accumulation of LcfPGNP-AmB in liver and spleen. LcfPGNP-AmB showed augmented antileishmanial activity by significantly reducing (∼88%) splenic parasite burden of infected hamsters, compared with commercial-formulations. Conclusion: Superior efficacy, desired stability and reliable safety of cost-effective LcfPGNP-AmB, suggest its potential for leishmaniasis therapeutics.
Collapse
Affiliation(s)
- Shalini Asthana
- Pharmaceutics Division, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Lucknow-226031, India
| | - Pramod K Gupta
- Pharmaceutics Division, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Lucknow-226031, India
| | - Anil K Jaiswal
- Parasitology Division, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Lucknow-226031, India
| | - Anuradha Dube
- Parasitology Division, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Lucknow-226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Lucknow-226031, India
| |
Collapse
|
22
|
Abstract
While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways.
Collapse
|
23
|
Hwang SA, Kruzel ML, Actor JK. Effects of CHO-expressed recombinant lactoferrins on mouse dendritic cell presentation and function. Innate Immun 2014; 21:553-61. [PMID: 25537452 DOI: 10.1177/1753425914564609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/15/2014] [Indexed: 12/11/2022] Open
Abstract
Lactoferrin (LF), a natural iron-binding protein, has previously demonstrated effectiveness in enhancing the Bacillus Calmette-Guérin (BCG) tuberculosis vaccine. This report investigates immune modulatory effects of Chinese hamster ovary (CHO) cell-expressed recombinant mouse and human LFs on mouse bone marrow-derived dendritic cells (BMDCs), comparing homologous and heterologous functions. BCG-infected BMDCs were cultured with LF, and examined for class II presentation molecule expression. Culturing of BCG-infected BMDCs with either LF decreased the class II molecule-expressing population. Mouse LF significantly increased the production of IL-12p40, IL-1β and IL-10, while human LF-treated BMDCs increased only IL-1β and IL-10. Overlaying naïve CD4 T-cells onto BCG-infected BMDCs cultured with mouse LF increased IFN-γ, whereas the human LF-exposed group increased IFN-γ and IL-17 from CD4 T cells. Overlay of naïve CD8 T cells onto BCG-infected BMDCs treated with mouse LF increased the production of IFN-γ and IL-17, while similar experiments using human LF only increased IL-17. This report is the first to examine mouse and human recombinant LFs in parallel experiments to assess murine DC function. These results detail the efficacy of the human LF counterpart used in a heterologous system to understand LF-mediated events that confer BCG efficacy against Mycobacterium tuberculosis challenge.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology, University of Texas-Houston Medical School, Houston, TX, USA
| | - Marian L Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, TX, USA
| | - Jeffrey K Actor
- Department of Pathology, University of Texas-Houston Medical School, Houston, TX, USA Program in Immunology, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
24
|
Meehl MA, Stadheim TA. Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 2014; 30:120-7. [PMID: 25014890 DOI: 10.1016/j.copbio.2014.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 01/02/2023]
Abstract
The selection of an expression platform for recombinant biopharmaceuticals is often centered upon suitable product titers and critical quality attributes, including post-translational modifications. Although notable differences between microbial, yeast, plant, and mammalian host systems exist, recent advances have greatly mitigated any inherent liabilities of yeasts. Yeast expression platforms are important to both the supply of marketed biopharmaceuticals and the pipelines of novel therapeutics. In this review, recent advances in yeast-based expression of biopharmaceuticals will be discussed. The advantages of using glycoengineered yeast as a production host and in the discovery space will be illustrated. These advancements, in turn, are transforming yeast platforms from simple production systems to key technological assets in the discovery and selection of biopharmaceutical lead candidates.
Collapse
Affiliation(s)
- Michael A Meehl
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA
| | - Terrance A Stadheim
- GlycoFi, Biologics Research, Merck & Co., Inc., 16 Cavendish Court, Lebanon, NH 03766, USA.
| |
Collapse
|
25
|
Yemets AI, Tanasienko IV, Krasylenko YA, Blume YB. Plant-based biopharming of recombinant human lactoferrin. Cell Biol Int 2014; 38:989-1002. [PMID: 24803187 DOI: 10.1002/cbin.10304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/31/2014] [Indexed: 11/08/2022]
Abstract
Recombinant proteins are currently recognized as pharmaceuticals, enzymes, food constituents, nutritional additives, antibodies and other valuable products for industry, healthcare, research, and everyday life. Lactoferrin (Lf), one of the promising human milk proteins, occupies the expanding biotechnological food market niche due to its important versatile properties. Lf shows antiviral, antimicrobial, antiprotozoal and antioxidant activities, modulates cell growth rate, binds glycosaminoglycans and lipopolysaccharides, and also inputs into the innate/specific immune responses. Development of highly efficient human recombinant Lf expression systems employing yeasts, filamentous fungi and undoubtedly higher plants as bioreactors for the large-scale Lf production is a biotechnological challenge. This review highlights the advantages and disadvantages of the existing non-animal Lf expression systems from the standpoint of protein yield and its biological activity. Special emphasis is put on the benefits of monocot plant system for Lf expression and the biosafety aspects of the transgenic Lf-expressing plants.
Collapse
Affiliation(s)
- Alla I Yemets
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo Str., 2a, Kyiv, 04123, Ukraine
| | | | | | | |
Collapse
|
26
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Kruzel ML, Actor JK, Zimecki M, Wise J, Płoszaj P, Mirza S, Kruzel M, Hwang SA, Ba X, Boldogh I. Novel recombinant human lactoferrin: differential activation of oxidative stress related gene expression. J Biotechnol 2013; 168:666-75. [PMID: 24070904 DOI: 10.1016/j.jbiotec.2013.09.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/15/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins. The aim of this study was to scale-up expression and purification of rhLF in a CHO expression system, verify its glycan primary structure, and assess its biological properties in cell culture models. A stable CHO cell line producing >200mg/L of rhLF was developed and established. rhLF was purified by a single-step cation-exchange chromatography procedure. The highly homogenous rhLF has a molecular weight of approximately 80 kDa. MALDI-TOF mass spectrometric analysis revealed N-linked, partially sialylated glycans at two glycosylation sites, typical for human milk LF. This novel rhLF showed a protective effect against oxidative stress in a similar manner to its natural counterpart. In addition, rhLF revealed a modulatory effect on cellular redox via upregulation of key antioxidant enzymes. These data imply that the CHO-derived rhLF is fully compatible with the native molecule, thus it has promise for human therapeutic applications.
Collapse
Affiliation(s)
- Marian L Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas-Houston, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
García-Montoya I, González-Chávez SA, Salazar-Martínez J, Arévalo-Gallegos S, Sinagawa-García S, Rascón-Cruz Q. Expression and characterization of recombinant bovine lactoferrin in E. coli. Biometals 2012; 26:113-22. [PMID: 23212211 DOI: 10.1007/s10534-012-9598-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/24/2012] [Indexed: 12/16/2022]
Abstract
Lactoferrin is a member of the transferrin family of iron-binding proteins with a number of properties, including antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria. bovine lactoferrin cDNA was isolated, cloned and expressed as a fusion protein. The amino acid sequence of the fusion was analyzed and compared with other species. Crystallographic data were used to compare structural differences between bovine and human lactoferrin in 3-D models. A thioredoxin fusion protein was expressed and shown to have a different molecular weight compared with native bLf. After purification using Ni-NTA, the yield of recombinant bovine lactoferrin was 15.3 mg/l with a purity of 90.3 %. Recombinant bLf and pepsin-digested rbLf peptides demonstrated antibacterial activity of 79.8 and 86.9 %, respectively. The successful expression of functional, active and intact rbLf allows us to study the biochemical interactions of antimicrobial proteins and peptides and will facilitate their study as immunomodulators.
Collapse
Affiliation(s)
- Isui García-Montoya
- Laboratorio de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito 1, Nuevo Campus Universitario, 31125, Chihuahua, Mexico
| | | | | | | | | | | |
Collapse
|
29
|
Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 2012; 95:671-82. [PMID: 22569635 DOI: 10.1007/s00253-012-4067-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Yeast is capable of performing posttranslational modifications, such as N- or O-glycosylation. It has been demonstrated that N-glycans play critical biological roles in therapeutic glycoproteins by modulating pharmacokinetics and pharmacodynamics. However, N-glycan sites on recombinant glycoproteins produced in yeast can be underglycosylated, and hence, not completely occupied. Genomic homology analysis indicates that the Pichia pastoris oligosaccharyltransferase (OST) complex consists of multiple subunits, including OST1, OST2, OST3, OST4, OST5, OST6, STT3, SWP1, and WBP1. Monoclonal antibodies produced in P. pastoris show that N-glycan site occupancy ranges from 75-85 % and is affected mainly by the OST function, and in part, by process conditions. In this study, we demonstrate that N-glycan site occupancy of antibodies can be improved to greater than 99 %, comparable to that of antibodies produced in mammalian cells (CHO), by overexpressing Leishmania major STT3D (LmSTT3D) under the control of an inducible alcohol oxidase 1 (AOX1) promoter. N-glycan site occupancy of non-antibody glycoproteins such as recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was also significantly improved, suggesting that LmSTT3D has broad substrate specificity. These results suggest that the glycosylation status of recombinant proteins can be improved by heterologous STT3 expression, which will allow for the customization of therapeutic protein profiles.
Collapse
|
30
|
Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: recent advances. Biotechnol Adv 2012; 31:17-37. [PMID: 22484115 DOI: 10.1016/j.biotechadv.2012.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022]
Abstract
The glycan code of glycoproteins can be conceptually defined at molecular level by the sequence of well characterized glycans attached to evolutionarily predetermined amino acids along the polypeptide chain. Functional consequences of protein glycosylation are numerous, and include a hierarchy of properties from general physicochemical characteristics such as solubility, stability and protection of the polypeptide from the environment up to specific glycan interactions. Definition of the glycan code for glycoproteins has been so far hampered by the lack of chemically defined glycoprotein glycoforms that proved to be extremely difficult to purify from natural sources, and the total chemical synthesis of which has been hitherto possible only for very small molecular species. This review summarizes the recent progress in chemical and chemoenzymatic synthesis of complex glycans and their protein conjugates. Progress in our understanding of the ways in which a particular glycoprotein glycoform gives rise to a unique set of functional properties is now having far reaching implications for the biotechnology of important glycodrugs such as therapeutical monoclonal antibodies, glycoprotein hormones, carbohydrate conjugates used for vaccination and other practically important protein-carbohydrate conjugates.
Collapse
|
31
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
32
|
Wang LX, Lomino JV. Emerging technologies for making glycan-defined glycoproteins. ACS Chem Biol 2012; 7:110-22. [PMID: 22141574 DOI: 10.1021/cb200429n] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation is a common and complex posttranslational modification of proteins, which expands functional diversity while boosting structural heterogeneity. Glycoproteins, the end products of such a modification, are typically produced as mixtures of glycoforms possessing the same polypeptide backbone but differing in the site of glycosylation and/or in the structures of pendant glycans, from which single glycoforms are difficult to isolate. The urgent need for glycan-defined glycoproteins in both detailed structure-function relationship studies and therapeutic applications has stimulated an extensive interest in developing various methods for manipulating protein glycosylation. This review highlights emerging technologies that hold great promise in making a variety of glycan-defined glycoproteins, with a particular emphasis in the following three areas: specific glycoengineering of host biosynthetic pathways, in vitro chemoenzymatic glycosylation remodeling, and chemoselective and site-specific glycosylation of proteins.
Collapse
Affiliation(s)
- Lai-Xi Wang
- Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Joseph V. Lomino
- Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
33
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
34
|
Nadolska B, Frączek M, Kręcicki T, Kocięba M, Zimecki M. Lactoferrin inhibits the growth of nasal polyp fibroblasts. Pharmacol Rep 2011; 62:1139-47. [PMID: 21273671 DOI: 10.1016/s1734-1140(10)70376-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 01/08/2010] [Indexed: 12/25/2022]
Abstract
The aim of this study was to evaluate the effects of lactoferrin (LF) on the growth of fibroblasts derived from nasal polyps. We showed that the proliferation of fibroblasts was inhibited in a dose-dependent manner by both native and recombinant LF. The greatest inhibition of proliferation was caused by human milk-derived, iron-saturated LF. The inhibition of fibroblast proliferation was not species specific because bovine LF also was active. The interaction between LFs and a putative cell receptor did not depend on the sugar composition of the glycan moiety of the LF molecule because lactoferrins of different origins were active and the addition of monosaccharides to the cultures did not block proliferation. However, the treatment of fibroblasts with sodium chlorate (an inhibitor of glycosaminoglycan sulfation) or the addition of heparin abolished the inhibitory effect of LF, suggesting that LF binds heparan sulfate-containing proteoglycans. The significance of LF in nasal excretions in controlling polyp formation is discussed.
Collapse
Affiliation(s)
- Beata Nadolska
- Department of Otolaryngology, Head & Neck Surgery, Wroclaw Medical University, Borowska 213, PL 50-556 Wrocław, Poland
| | | | | | | | | |
Collapse
|
35
|
Gomathinayagam S, Mitchell T, Zartler ER, Heiss C, Azadi P, Zha D, Houston-Cummings NR, Jiang Y, Li F, Giaccone E, Porambo RJ, Anderson CL, Sethuraman N, Li H, Stadheim TA. Structural elucidation of an -1,2-mannosidase resistant oligosaccharide produced in Pichia pastoris. Glycobiology 2011; 21:1606-15. [DOI: 10.1093/glycob/cwr082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Lactoferrin Augmentation of the BCG Vaccine Leads to Increased Pulmonary Integrity. Tuberc Res Treat 2011; 2011:835410. [PMID: 22567270 PMCID: PMC3335707 DOI: 10.1155/2011/835410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/19/2011] [Accepted: 03/01/2011] [Indexed: 11/21/2022] Open
Abstract
The goal of vaccination to prevent tuberculosis disease (TB) is to offer long-term protection to the individual and the community. In addition, the success of any protective TB vaccine should include the ability to limit cavitary formation and disease progression. The current BCG vaccine protects against disseminated TB disease in children by promoting development of antigenic-specific responses. However, its efficacy is limited in preventing postprimary pulmonary disease in adults that is responsible for the majority of disease and transmission. This paper illustrates the use of lactoferrin as an adjuvant to boost efficacy of the BCG vaccine to control organism growth and limit severe manifestation of pulmonary disease. This resulting limitation in pathology may ultimately, limit spread of bacilli and subsequent transmission of organisms between individuals. The current literature is reviewed, and data is presented to support molecular mechanisms underlying lactoferrin's utility as an adjuvant for the BCG vaccine.
Collapse
|
37
|
Conesa C, Calvo M, Sánchez L. Recombinant human lactoferrin: A valuable protein for pharmaceutical products and functional foods. Biotechnol Adv 2010; 28:831-8. [DOI: 10.1016/j.biotechadv.2010.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/14/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
|
38
|
De Pourcq K, De Schutter K, Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 2010; 87:1617-31. [PMID: 20585772 DOI: 10.1007/s00253-010-2721-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
Abstract
With the increasing demand for recombinant proteins and glycoproteins, research on hosts for producing these proteins is focusing increasingly on more cost-effective expression systems. Yeasts and other fungi are promising alternatives because they provide easy and cheap systems that can perform eukaryotic post-translational modifications. Unfortunately, yeasts and other fungi modify their glycoproteins with heterogeneous high-mannose glycan structures, which is often detrimental to a therapeutic protein's pharmacokinetic behavior and can reduce the efficiency of downstream processing. This problem can be solved by engineering the glycosylation pathways to produce homogeneous and, if so desired, human-like glycan structures. In this review, we provide an overview of the most significant recently reported approaches for engineering the glycosylation pathways in yeasts and fungi.
Collapse
Affiliation(s)
- Karen De Pourcq
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, 9052, Ghent-Zwijnaarde, Belgium
| | | | | |
Collapse
|
39
|
Castilho A, Strasser R, Stadlmann J, Grass J, Jez J, Gattinger P, Kunert R, Quendler H, Pabst M, Leonard R, Altmann F, Steinkellner H. In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 2010; 285:15923-30. [PMID: 20305285 PMCID: PMC2871460 DOI: 10.1074/jbc.m109.088401] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/03/2010] [Indexed: 12/29/2022] Open
Abstract
Many therapeutic proteins are glycosylated and require terminal sialylation to attain full biological activity. Current manufacturing methods based on mammalian cell culture allow only limited control of this important posttranslational modification, which may lead to the generation of products with low efficacy. Here we report in vivo protein sialylation in plants, which have been shown to be well suited for the efficient generation of complex mammalian glycoproteins. This was achieved by the introduction of an entire mammalian biosynthetic pathway in Nicotiana benthamiana, comprising the coordinated expression of the genes for (i) biosynthesis, (ii) activation, (iii) transport, and (iv) transfer of Neu5Ac to terminal galactose. We show the transient overexpression and functional integrity of six mammalian proteins that act at various stages of the biosynthetic pathway and demonstrate their correct subcellular localization. Co-expression of these genes with a therapeutic glycoprotein, a human monoclonal antibody, resulted in quantitative sialylation of the Fc domain. Sialylation was at great uniformity when glycosylation mutants that lack plant-specific N-glycan residues were used as expression hosts. Finally, we demonstrate efficient neutralization activity of the sialylated monoclonal antibody, indicating full functional integrity of the reporter protein. We report for the first time the incorporation of the entire biosynthetic pathway for protein sialylation in a multicellular organism naturally lacking sialylated glycoconjugates. Besides the biotechnological impact of the achievement, this work may serve as a general model for the manipulation of complex traits into plants.
Collapse
Affiliation(s)
| | | | | | | | - Jakub Jez
- From the Department of Applied Genetics and Cell Biology
| | - Pia Gattinger
- From the Department of Applied Genetics and Cell Biology
| | - Renate Kunert
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna and
| | | | | | | | | | | |
Collapse
|
40
|
Puddu P, Latorre D, Valenti P, Gessani S. Immunoregulatory role of lactoferrin-lipopolysaccharide interactions. Biometals 2010; 23:387-97. [PMID: 20191308 DOI: 10.1007/s10534-010-9307-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 02/12/2010] [Indexed: 12/27/2022]
Abstract
Lactoferrin (Lf) is a mammalian exclusive protein widely distributed in milk and exocrine secretions exhibiting multifunctional properties. Many of the proven or proposed functions of Lf, apart from its iron binding activity, depend on its capacity to bind to other macromolecules. Lf can bind and sequester lipopolysaccharide (LPS), thus preventing pro-inflammatory pathway activation, sepsis and tissue damage. However, the interplay between Lf and LPS is complex, and may result in different outcomes, including both suppression of the inflammatory response and immune activation. These findings are critically relevant in the development of Lf-based therapeutic interventions in humans. Understanding the molecular basis and functional consequences of Lf-LPS interaction will provide insights for determining its role in health and disease.
Collapse
Affiliation(s)
- Patrizia Puddu
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | | | | | | |
Collapse
|
41
|
Bai X, Teng D, Tian Z, Zhu Y, Yang Y, Wang J. Contribution of bovine lactoferrin inter-lobe region to iron binding stability and antimicrobial activity against Staphylococcus aureus. Biometals 2010; 23:431-9. [PMID: 20145976 DOI: 10.1007/s10534-010-9300-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 01/31/2010] [Indexed: 10/19/2022]
Abstract
The investigation of the recombinant bovine lactoferrin-derived antimicrobial protein (rBLfA) demonstrates that the inter-lobe region of bovine lactoferrin contributes to iron binding stability and antimicrobial activity against Staphylococcus aureus. rBLfA containing N-lobe (amino acid residues 1-333) and inter-lobe region (residues 334-344) was expressed in Pichia pastoris at shaking flask and fermentor level. The recombinant intact bovine lactoferrin (rBLf) and N-lobe (rBLfN) were expressed in the same system as control. The physical-chemical parameters of rBLfA, rBLfN and rBLf including amino acid residues, molecular weight, isoelectric point, net positive charge and instability index were computed and compared. The simulated tertiary structure and the calculated surface net charge showed that rBLfA maintained original structure and exhibited a higher cationic feature than rBLf and rBLfN. The three proteins showed different iron binding stability and antimicrobial activity. rBLfA released iron in the pH range of 7.0-3.5, whereas rBLfN lost its iron over the pH range of 7.0-4.0 and iron release from rBLf occurred in the pH range of 5.5-3.0. However, the minimum inhibition concentration of rBLfA against S. aureus ATCC25923 was 6.5 micromol/L, compared with 12.5 and 25 micromol/L that of rBLfN and rBLf, respectively. These results revealed that S. aureus was more sensitive to rBLfA than rBLfN and rBLf. It appeared that the strong cationic character of inter-lobe region related positively to the higher anti-S. aureus activity.
Collapse
Affiliation(s)
- Xuejing Bai
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, 100081 Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Wang J, Tian Z, Teng D, Yang Y, Hu J, Wang J. Cloning, expression and characterization of Kunming mice lactoferrin and its N-lobe. Biometals 2010; 23:523-30. [PMID: 20130963 DOI: 10.1007/s10534-010-9294-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 01/23/2010] [Indexed: 01/28/2023]
Abstract
The lactoferrin cDNA of Kunming mice was isolated by reverse transcription polymerase chain reaction and cloned into vector pET28a(+). Its deduced amino acid sequence was analyzed and compared with lactoferrin of other species. Its secondary and tertiary structure are predicted and modeled by bioinformatics tools online. Then recombinant Kunming mice lactoferrin and its N-lobe were both expressed successfully in the Escherichia coli BL21(DE3) in the form of inclusion bodies. After purification with Ni-NTA His-Bind resin, the yield of recombinant lactoferrin was 17 mg l(-1) with purity of 92.1%, and that of lactoferrin N-lobe was 20 mg l(-1) with purity of 98.5%. The inhibition efficiency of refolded lactoferrin N-lobe against Staphylococcus aureus ATCC 25923 reaches 48.6% at the concentration of 25 micromol l(-1). However, the refolded lactoferrin (12.5 micromol l(-1)) didn't display obvious inhibition activity in the test. The expression of recombinant Kunming mice lactoferrin and its N-lobe will be helpful for the study of lactoferrin on structure, function and application in a mouse model system.
Collapse
Affiliation(s)
- Jiarong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, 100081 Beijing, China
| | | | | | | | | | | |
Collapse
|
43
|
Latorre D, Puddu P, Valenti P, Gessani S. Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response. Toxins (Basel) 2010; 2:54-68. [PMID: 22069546 PMCID: PMC3206615 DOI: 10.3390/toxins2010054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 01/07/2023] Open
Abstract
Lactoferrin (Lf), an iron-binding glycoprotein expressed in most biological fluids, represents a major component of the mammalian innate immune system. Lf’s multiple activities rely not only on its capacity to bind iron, but also to interact with molecular and cellular components of both host and pathogens. Lf can bind and sequester lipopolysaccharide (LPS), thus preventing pro-inflammatory pathway activation, sepsis and tissue damage. However, Lf-bound LPS may retain the capacity to induce cell activation via Toll-like receptor 4-dependent and -independent mechanisms. This review discusses the complex interplay between Lf and LPS and its relevance in the regulation of the immune response.
Collapse
Affiliation(s)
- Daniela Latorre
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Patrizia Puddu
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Piera Valenti
- Department of Public Health Sciences, Sapienza, University of Rome, Italy
| | - Sandra Gessani
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
- Author to whom correspondence should be addressed; ; Tel.: +39-064-990-3169; Fax: +39-064-990-3641
| |
Collapse
|
44
|
Beck A, Cochet O, Wurch T. GlycoFi's technology to control the glycosylation of recombinant therapeutic proteins. Expert Opin Drug Discov 2009; 5:95-111. [DOI: 10.1517/17460440903413504] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Hwang SA, Wilk K, Kruzel ML, Actor JK. A novel recombinant human lactoferrin augments the BCG vaccine and protects alveolar integrity upon infection with Mycobacterium tuberculosis in mice. Vaccine 2009; 27:3026-34. [PMID: 19428915 PMCID: PMC2680785 DOI: 10.1016/j.vaccine.2009.03.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/04/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
Abstract
Lactoferrin, an iron binding glycoprotein, possesses multiple immune modulatory activities, including the ability to promote antigen specific cell-mediated immunity. Previous studies showed that adding bovine lactoferrin to the BCG vaccine (an attenuated strain of Mycobacterium bovis Bacillus Calmette Guerin) resulted in increased host protective responses upon subsequent challenge with virulent Erdman Mycobacterium tuberculosis (MTB) in mice. The studies outlined here investigate utility of a novel recombinant human lactoferrin to enhance the BCG vaccine and protect against alveolar injury during experimental MTB infection in mice. Sialylated and non-sialylated forms of the recombinant human lactoferrin (rhLF), glycoengineered in yeast (Pichia pastoris) and expressing humanized N-glycosylation patterns, were examined for their ability to enhance efficacy of the BCG vaccine in a murine TB model system. Results indicated that the sialylated form of the recombinant human lactoferrin generated increased antigen specific recall responses to BCG antigens. Furthermore, augmented protection was demonstrated using the sialylated lactoferrin adjuvant with BCG, resulting in significant reduction in associated pathology following challenge with virulent organisms.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX
| | - Katarzyna Wilk
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX
| | - Marian L. Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, TX
| | - Jeffrey K. Actor
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX
- Program in Molecular Pathology, University of Texas-Houston Medical School, Houston, TX
| |
Collapse
|
46
|
Rich JR, Withers SG. Emerging methods for the production of homogeneous human glycoproteins. Nat Chem Biol 2009; 5:206-15. [PMID: 19295526 DOI: 10.1038/nchembio.148] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most circulating human proteins exist as heterogeneously glycosylated variants (glycoforms) of an otherwise homogeneous polypeptide. Though glycan heterogeneity is most likely important to glycoprotein function, the preparation of homogeneous glycoforms is important both for the study of the consequences of glycosylation and for therapeutic purposes. This review details selected approaches to the production of homogeneous human N- and O-linked glycoproteins with human-type glycans. Particular emphasis is placed on recent developments in the engineering of glycosylation pathways within yeast and bacteria for in vivo production, and on the in vitro remodeling of glycoproteins by enzymatic means. The future of this field is very exciting.
Collapse
Affiliation(s)
- Jamie R Rich
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
47
|
Hwang SA, Kruzel ML, Actor JK. Influence of bovine lactoferrin on expression of presentation molecules on BCG-infected bone marrow derived macrophages. Biochimie 2009; 91:76-85. [PMID: 18486627 PMCID: PMC2626195 DOI: 10.1016/j.biochi.2008.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/21/2008] [Indexed: 01/14/2023]
Abstract
The current vaccine for tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is an attenuated strain of Mycobacterium bovis bacillus Calmette-Guerin (BCG). BCG has proven to be effective in children, however, efficacy wanes in adulthood. Lactoferrin, a natural protein with immunomodulatory properties, is a potential adjuvant candidate to enhance efficacy of BCG. These studies define bovine lactoferrin as an enhancer of the BCG vaccine, functioning in part by modulating macrophage ability to present antigen and stimulate T-cells. BCG-infected bone marrow derived macrophages (BMMs) cultured with bovine lactoferrin increased the number of MHC II(+) expressing cells. Addition of IFN-gamma and lactoferrin to BCG-infected BMMs enhanced MHC II expressiona dna increased the ratio of CD86/CD80. Lactoferrin treated BCG-infected BMMs were able to stimulate an increase in IFN-gamma production from presensitized CD3(+) splenocytes. Together, these results demonstrate that bovine lactoferrin is capable of modulating BCG-infected macrophages to enhance T-cell stimulation through increased surface expression of antigen presentation and co-stimulatory molecules, which potentially explains the observed in vivo bovine lactoferrin enhancement of BCG vaccine efficacy to protect against virulent MTB infection.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology, Medical School, University of Texas-Houston, Houston, TX 77030, USA.
| | | | | |
Collapse
|
48
|
Abstract
Lactoferrin, an iron-binding glycoprotein, is a cell-secreted mediator that bridges innate and adaptive immune function in mammals. It is a pleiotropic molecule that directly assists in the influence of presenting cells for the development of T-helper cell polarization. The aim of this review is to provide an overview of research regarding the role of lactoferrin in maintaining immune homeostasis, in particular as a mediator of immune responses to infectious assault, trauma and injury. These findings are critically relevant in the development of both prophylactic and therapeutic interventions in humans. Understanding these particular effects of lactoferrin will provide a logical framework for determining its role in health and disease.
Collapse
Affiliation(s)
- Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, TX 77030, USA.
| | | | | |
Collapse
|
49
|
Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 2008; 4:58-70. [DOI: 10.1038/nprot.2008.213] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Wiesner J, Premsler T, Sickmann A. Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 2008; 8:4466-83. [DOI: 10.1002/pmic.200800329] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|