1
|
Parizad R, Batta A, Hatwal J, Taban-Sadeghi M, Mohan B. Emerging risk factors for heart failure in younger populations: A growing public health concern. World J Cardiol 2025; 17:104717. [PMID: 40308622 PMCID: PMC12038706 DOI: 10.4330/wjc.v17.i4.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/21/2025] Open
Abstract
Heart failure (HF) is a growing public health concern, with an increasing incidence among younger populations. Traditionally, HF was considered a condition primarily affecting the elderly, but of late, emerging evidence hints at a rapidly rising HF incidence in youth in the past 2 decades. HF in youth has been linked to a complex interaction between emerging risk factors, such as metabolic syndrome, environmental exposures, genetic predispositions, and lifestyle behaviors. This review examines these evolving determinants, including substance abuse, autoimmune diseases, and the long-term cardiovascular effects of coronavirus disease 2019, which disproportionately affect younger individuals. Through a comprehensive analysis, the study highlights the importance of early detection, targeted prevention strategies, and multidisciplinary management approaches to address this alarming trend. Promoting awareness and integrating age-specific interventions could significantly reduce the burden of HF and improve long-term outcomes among younger populations.
Collapse
Affiliation(s)
- Razieh Parizad
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz 51656-87386, Iran
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India.
| | - Juniali Hatwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | | | - Bishav Mohan
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India
| |
Collapse
|
2
|
Caldera L, Masci C, Cappozzo A, Forlani M, Antonelli B, Leoni O, Ieva F. Uncovering mortality patterns and hospital effects in COVID-19 heart failure patients: a novel multilevel logistic cluster-weighted modeling approach. Biometrics 2025; 81:ujaf046. [PMID: 40293213 DOI: 10.1093/biomtc/ujaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/21/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Evaluating hospital performance and its relationship to patients' characteristics is of utmost importance to ensure timely, effective, and optimal treatment. This is particularly relevant in areas and situations where the healthcare system must deal with an unexpected surge in hospitalizations, such as heart failure patients in the Lombardy Region of Italy during the COVID-19 pandemic. Motivated by this issue, the paper introduces a novel multilevel logistic cluster-weighted model for predicting 45-day mortality following hospitalization due to COVID-19. The methodology flexibly accommodates dependence patterns among continuous and dichotomous variables; effectively accounting for group-specific effects in distinct subgroups showing different attributes. A tailored classification expectation-maximization algorithm is developed for parameter estimation, and extensive simulation studies are conducted to evaluate its performance against competing models. The novel approach is applied to administrative data from the Lombardy Region, with the aim of profiling heart failure patients hospitalized for COVID-19 and investigating the hospital-level impact on their overall mortality. A scenario analysis demonstrates the model's efficacy in managing multiple sources of heterogeneity, thereby yielding promising results in aiding healthcare providers and policymakers in the identification of patient-specific treatment pathways.
Collapse
Affiliation(s)
- Luca Caldera
- MOX, Department of Mathematics, Politecnico di Milano, Via Bonardi 9, Milan 20133, Italy
| | - Chiara Masci
- Department of Economics, Management, and Quantitative Methods, University of Milan, Via Festa del Perdono 7, Milan 20122, Italy
| | - Andrea Cappozzo
- Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Largo Gemelli 1, Milan 20123, Italy
| | - Marco Forlani
- Regione Lombardia, Informatica SPA, Piazza Città di Lombardia 1, Milan 20124, Italy
| | - Barbara Antonelli
- Regione Lombardia, Divisione Servizi per il Welfare Regionale, Piazza Città di Lombardia 1, Milan 20124, Italy
| | - Olivia Leoni
- U.O. Osservatorio Epidemiologico, DG Welfare, Regione Lombardia, Piazza Città di Lombardia 1, Milan 20124, Italy
| | - Francesca Ieva
- MOX, Department of Mathematics, Politecnico di Milano, Via Bonardi 9, Milan 20133, Italy
- Health Data Science Centre, Human Technopole, Viale Rita Levi-Montalcini 1, Milan 20157, Italy
| |
Collapse
|
3
|
Subramanian SP, Wojtkiewicz M, Yu F, Castro C, Schuette EN, Rodriguez-Paar J, Churko J, Renavikar P, Anderson D, Mahr C, Gundry RL. Integrated Multiomics Reveals Alterations in Paucimannose and Complex Type N-Glycans in Cardiac Tissue of Patients with COVID-19. Mol Cell Proteomics 2025; 24:100929. [PMID: 39988192 DOI: 10.1016/j.mcpro.2025.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025] Open
Abstract
Coronavirus infectious disease of 2019 (COVID-19) can lead to cardiac complications, yet the molecular mechanisms driving these effects remain unclear. Protein glycosylation is crucial for viral replication, immune response, and organ function and has been found to change in the lungs and liver of patients with COVID-19. However, how COVID-19 impacts cardiac protein glycosylation has not been defined. Our study combined single nuclei transcriptomics, mass spectrometry (MS)-based glycomics, and lectin-based tissue imaging to investigate alterations in N-glycosylation in the human heart post-COVID-19. We identified significant expression differences in glycogenes involved in N-glycan biosynthesis and MS analysis revealed a reduction in high mannose and isomers of paucimannose structures post-infection, with changes in paucimannose directly correlating with COVID-19 independent of comorbidities. Our observations suggest that COVID-19 primes cardiac tissues to alter the glycome at all levels, namely, metabolism, nucleotide sugar transport, and glycosyltransferase activity. Given the role of N-glycosylation in cardiac function, this study provides a basis for understanding the molecular events leading to cardiac damage post-COVID-19 and informing future therapeutic strategies to treat cardiac complications resulting from coronavirus infections.
Collapse
Affiliation(s)
- Sabarinath Peruvemba Subramanian
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chase Castro
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Erin N Schuette
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jocelyn Rodriguez-Paar
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jared Churko
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Pranav Renavikar
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Daniel Anderson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Claudius Mahr
- Institute for Advanced Cardiac Care, Medical City Healthcare, Dallas, Texas, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
4
|
Agarwal R, Krishnanda SI, Yausep OE, Nugraha RA, Priyonugroho G, Hertine S, Wicaksono SH, Almazini P, Zamroni D, Muliawan HS. The Role of Neutrophil-to-Lymphocyte Ratio and Right Ventricular Dysfunction in Indonesian Patients with COVID-19: A Retrospective Cohort Study. J Clin Med 2025; 14:2051. [PMID: 40142859 PMCID: PMC11942709 DOI: 10.3390/jcm14062051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: The clinical impact of neutrophil-to-lymphocyte ratio (NLR) and right ventricular (RV) dysfunction on clinical outcomes in COVID-19 remains understudied in the Indonesian population. This study aims to investigate their prognostic value in hospitalized Indonesian adults with COVID-19. Methods: A retrospective cohort study was conducted at a COVID-19 referral hospital in Indonesia. We included all consecutive adults hospitalized between April 2020 and April 2021 who underwent transthoracic echocardiography (TTE) during admission. Clinical information was extracted from electronic medical records. TTE variables were defined according to the American Society of Echocardiography criteria. Statistical analyses were performed using SPSS. Ethical approval was obtained from the Institutional Review Board of Universitas Indonesia (#2022-01-135). Results: A total of 488 patients were included in this study-29 with and 459 without RV dysfunction. The mean age of the population was 54.8, with 42% being female. An NLR >4.793 was considered elevated. Elevated NLR was independently associated with RV dysfunction (OR: 3.38, p = 0.02). Older age (HR: 1.02, p = 0.01), obesity (HR: 1.85, p < 0.01), chronic kidney disease (HR: 1.69, p = 0.01), high NLR (HR: 2.75, p < 0.001), and RV dysfunction (HR: 2.07, p = 0.02) independently increased the risk of 30-day mortality by multivariate Cox regression analysis. Conclusions: In adult Indonesian patients hospitalized with COVID-19, an elevated NLR was associated with RV dysfunction, and both of these parameters increased the risk of 30-day mortality. This retrospective cohort study highlights the prognostic importance of NLR and RV dysfunction in hospitalized COVID-19 patients, providing physicians with tools to identify high-risk patients.
Collapse
Affiliation(s)
- Raksheeth Agarwal
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta Pusat 10430, Indonesia; (S.I.K.); (O.E.Y.); (G.P.); (S.H.W.); (P.A.); (D.Z.)
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, 1400 Pelham Parkway South, Bronx, NY 10461, USA
| | - Stanislaus Ivanovich Krishnanda
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta Pusat 10430, Indonesia; (S.I.K.); (O.E.Y.); (G.P.); (S.H.W.); (P.A.); (D.Z.)
| | - Oliver Emmanuel Yausep
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta Pusat 10430, Indonesia; (S.I.K.); (O.E.Y.); (G.P.); (S.H.W.); (P.A.); (D.Z.)
| | - Raka Aldy Nugraha
- Department of Cardiology and Vascular Medicine, Universitas Indonesia Hospital, Jl. Prof. Bahder Djohan, Depok 16424, Indonesia; (R.A.N.); (S.H.)
| | - Gatut Priyonugroho
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta Pusat 10430, Indonesia; (S.I.K.); (O.E.Y.); (G.P.); (S.H.W.); (P.A.); (D.Z.)
- Department of Pulmonology, Universitas Indonesia Hospital, Jl. Prof. Bahder Djohan, Depok 16424, Indonesia
| | - Siti Hertine
- Department of Cardiology and Vascular Medicine, Universitas Indonesia Hospital, Jl. Prof. Bahder Djohan, Depok 16424, Indonesia; (R.A.N.); (S.H.)
| | - Sony Hilal Wicaksono
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta Pusat 10430, Indonesia; (S.I.K.); (O.E.Y.); (G.P.); (S.H.W.); (P.A.); (D.Z.)
- Department of Cardiology and Vascular Medicine, Universitas Indonesia Hospital, Jl. Prof. Bahder Djohan, Depok 16424, Indonesia; (R.A.N.); (S.H.)
| | - Prima Almazini
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta Pusat 10430, Indonesia; (S.I.K.); (O.E.Y.); (G.P.); (S.H.W.); (P.A.); (D.Z.)
- Department of Cardiology and Vascular Medicine, Universitas Indonesia Hospital, Jl. Prof. Bahder Djohan, Depok 16424, Indonesia; (R.A.N.); (S.H.)
| | - Dian Zamroni
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta Pusat 10430, Indonesia; (S.I.K.); (O.E.Y.); (G.P.); (S.H.W.); (P.A.); (D.Z.)
- Department of Cardiology and Vascular Medicine, Universitas Indonesia Hospital, Jl. Prof. Bahder Djohan, Depok 16424, Indonesia; (R.A.N.); (S.H.)
| | - Hary Sakti Muliawan
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No.6, Jakarta Pusat 10430, Indonesia; (S.I.K.); (O.E.Y.); (G.P.); (S.H.W.); (P.A.); (D.Z.)
- Department of Cardiology and Vascular Medicine, Universitas Indonesia Hospital, Jl. Prof. Bahder Djohan, Depok 16424, Indonesia; (R.A.N.); (S.H.)
| |
Collapse
|
5
|
Luo Z, Jiao Y, Ma B. COVID-19 worsens quality of life in elderly heart failure patients: a clinical study. Am J Transl Res 2025; 17:1416-1427. [PMID: 40092129 PMCID: PMC11909553 DOI: 10.62347/atqd2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/16/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has significantly worsened the health and quality of life of vulnerable populations, particularly elderly patients with heart failure. This study aimed to assess the effect of COVID-19 infection on the quality of life in elderly patients with heart failure during the pandemic. METHODS This retrospective case-control study included elderly heart failure patients admitted to the Second People's Hospital of Lanzhou between December 2022 and December 2023, all of whom were diagnosed during the ongoing COVID-19 pandemic. All patients underwent COVID-19 nucleic acid testing upon admission. Among the 96 heart failure patients who tested positive for COVID-19 and the 68 who tested negative, multiple validated instruments were used to assess both physical and mental health quality of life. These instruments included the Minnesota Living with Heart Failure Questionnaire (MLHFQ), 36-Item Short Form Health Survey physical component summary score (SF-36 PCS), 6-Minute Walking Test (6MWT), Geriatric Depression Scale-15 (GDS-15), Self-Rating Anxiety Scale (SAS) Total, Pittsburgh Sleep Quality Index (PSQI), Mini Nutritional Assessment-Short Form (MNA-SF), and the Fatigue, Resistance, Ambulation, Illness, and Loss of weight (FRAIL) Scale. RESULTS Heart failure patients who tested positive for COVID-19 exhibited significantly lower blood pressure, SF-36 scores, and 6MWT distances compared to those who tested negative (P<0.05). Additionally, the COVID-19-positive group had higher MLHFQ scores, older average age, a greater proportion of patients in NYHA class III-IV, more frequent electrolyte imbalances, elevated D-dimer, C-reactive protein (CRP), and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, and longer hospital stays (P<0.05). These patients also exhibited higher levels of anxiety (SAS total), poorer sleep quality (PSQI), and greater frailty (FRAIL Scale) compared to their COVID-19-negative counterparts (P<0.05). In addition, heart failure patients with COVID-19 infection reported more severe symptoms of dyspnea and fatigue (P<0.05). Both age and COVID-19 infection were identified as significant factors negatively affecting the quality of life in this patient population. CONCLUSION COVID-19 infection significantly exacerbates the decline in quality of life in elderly patients with heart failure. This highlights the urgent need for strengthened, comprehensive treatment and targeted mental health support for this vulnerable group.
Collapse
Affiliation(s)
- Zhangxing Luo
- Department of Geriatrics, The Second People's Hospital of Lanzhou Lanzhou 730046, Gansu, China
| | - Yun Jiao
- Department of Geriatrics, The Second People's Hospital of Lanzhou Lanzhou 730046, Gansu, China
| | - Binwu Ma
- Department of Geriatrics, The Second People's Hospital of Lanzhou Lanzhou 730046, Gansu, China
| |
Collapse
|
6
|
Vlase CM, Gutu C, Bogdan Goroftei RE, Boghean A, Iordachi TFD, Arbune AA, Arbune M. Echocardiographic Left Ventricular Function in the Third Year After COVID-19 Hospitalization: A Follow-Up Pilot Study in South-East of Romania. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:333. [PMID: 40005449 PMCID: PMC11857121 DOI: 10.3390/medicina61020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Cardiac involvement in COVID-19 has been confirmed during the acute stage of the infection. However, the prevalence and spectrum of post-infectious cardiac dysfunction remain incompletely clarified. The objective of our study was to evaluate the frequency of echocardiographic changes 2 years after hospitalization for moderate and severe COVID-19 in patients with no previously known cardiac pathology. Material and Methods: We conducted a retrospective cohort study analyzing severity markers of COVID-19 infection and echocardiographic parameters assessed ≥2 years after the acute illness, based on recent guideline recommended algorithm for echocardiographic diagnostic of left ventricular (LV) dysfunction. Results: The study included 50 Caucasian patients, 60% male, 54% aged < 65 years, and 32% with severe forms of the disease. The primary comorbidities were hypertension, obesity, and diabetes. COVID-19 severity correlated with the computed tomography (CT) lung lesion score and a neutrophil-to-lymphocyte ratio >6 but was not associated with post-COVID-19 echocardiographic changes. Left ventricular ejection fraction (LVEF) was reduced in only 18% of cases, but global longitudinal strain (GLS) impairment was observed in 46% of patients, contributing to the LV systolic subclinical dysfunction in 61%. Impaired LV diastolic disfunction with normal pressure filling was present in 30.61% of cases and with elevated pressure 10.2%. Conclusions: COVID-19 is an independent predictive factor for GLS impairment, which can indicate myocardial contractile dysfunction, even in patients with asymptomatic heart disease. This underscores the importance of regular echocardiographic monitoring for patients recovering from moderate to severe COVID-19.
Collapse
Affiliation(s)
- Constantin-Marinel Vlase
- Medical Clinic Department, Dunarea de Jos University, 800008 Galati, Romania; (C.-M.V.); (M.A.)
- “Dr. Aristide Serfioti” Military Emergency Hospital, 800008 Galati, Romania;
| | - Cristian Gutu
- Medical Clinic Department, Dunarea de Jos University, 800008 Galati, Romania; (C.-M.V.); (M.A.)
- “Dr. Aristide Serfioti” Military Emergency Hospital, 800008 Galati, Romania;
| | - Roxana Elena Bogdan Goroftei
- Medical Clinic Department, Dunarea de Jos University, 800008 Galati, Romania; (C.-M.V.); (M.A.)
- Clinic Emergency Children Hospital, 800487 Galati, Romania
| | - Andreea Boghean
- Doctoral School of Biomedical Sciences, Dunarea de Jos University, 800008 Galati, Romania
| | | | - Anca-Adriana Arbune
- Multidisciplinary Integrated Center for Dermatological Interface Research, 800010 Galati, Romania;
- Neurology Department, Fundeni Clinical Institute, 077086 Bucharest, Romania
| | - Manuela Arbune
- Medical Clinic Department, Dunarea de Jos University, 800008 Galati, Romania; (C.-M.V.); (M.A.)
- Infectious Diseases Clinic I, Infectious Diseases Clinic Hospital Galati, 800179 Galati, Romania
| |
Collapse
|
7
|
Singh H, Nair A, Mahajan SD. Impact of genetic variations of gene involved in regulation of metabolism, inflammation and coagulation on pathogenesis of cardiac injuries associated with COVID-19. Pathol Res Pract 2024; 263:155608. [PMID: 39447244 DOI: 10.1016/j.prp.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND SARS-CoV-2 infection can result in long-term chronic cardiovascular (CV) damage after the acute phase of the illness. COVID-19 frequently causes active myocarditis, SARS-CoV-2 can directly infect and kill cardiac cells, causing severe pathology and dysfunction across the organs and cells. Till now, the pathogenesis of COVID-19-associated cardiac injuries has not been understood, but there are several factors that contribute to the progression of cardiac injuries, such as genetic, dietary, and environmental. Among them ranges of host genetic factor including metabolizing, inflammation, and coagulation related genes have a role to contribute the cardiac injuries induced by COVID-19. Hereditary DNA sequence variations contribute to the risk of illness in almost all of these diseases. Hence, we comprehended the occurrence of genetic variations of metabolizing, inflammation and coagulation-related genes in the general population, their expression in various diseases, and their impact on cardiac injuries induced by COVID-19. METHOD We utilized multiple databases, including PubMed (Medline), EMBASE, and Google Scholar, for literature searches. DESCRIPTION The genes involved in metabolism (APOE, MTHFR), coagulation (PAI-1, ACE2), and immune factors (CRP, ESR, and troponin I) may have a role in the progression of COVID-19-associated cardiac injuries. The risk factors for CVD are significantly varied between and within different regions. In healthy individuals, the ACE I allele is responsible for the predisposition to CAD, but the ACE D haplotype is responsible for susceptibility and severity, which ultimately leads to heart failure. Patients who carry the T allele of rs12329760 in the TMPRSS2 gene are at risk for developing the severe form of COVID-19. IL-6 (rs1800796/rs1800795) polymorphism is associated with an increased mortality rate and susceptibility to severe COVID-19 disease. While the putative role of IL-6 associated with chronic, inflammatory diseases like cardiac and cerebrovascular disease is well known. CONCLUSION The occurrence of genetic variations in the ACE-2, AGT, DPP-IV, TMPRSS2, FUIRN, IL-4, IL-6, IFN-γ, and CYP2D6 genes is varied among different populations. Examining the correlation between these variations and their protein levels and cardiac injuries induced by COVID-19 may provide valuable insights into the pathogenesis of cardiac injuries induced by COVID-19.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India.
| | - Aishwarya Nair
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India
| | - Supriya D Mahajan
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Kole C, Stefanou Ε, Karvelas N, Schizas D, Toutouzas KP. Acute and Post-Acute COVID-19 Cardiovascular Complications: A Comprehensive Review. Cardiovasc Drugs Ther 2024; 38:1017-1032. [PMID: 37209261 PMCID: PMC10199303 DOI: 10.1007/s10557-023-07465-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE OF REVIEW The risk of cardiovascular complications due to SARS-CoV-2 are significantly increased within the first 6 months of the infection. Patients with COVID-19 have an increased risk of death, and there is evidence that many may experience a wide range of post-acute cardiovascular complications. Our work aims to provide an update on current clinical aspects of diagnosis and treatment of cardiovascular manifestations during acute and long-term COVID-19. RECENT FINDINGS SARS-CoV-2 has been shown to be associated with increased incidence of cardiovascular complications such as myocardial injury, heart failure, and dysrhythmias, as well as coagulation abnormalities not only during the acute phase but also beyond the first 30 days of the infection, associated with high mortality and poor outcomes. Cardiovascular complications during long-COVID-19 were found regardless of comorbidities such as age, hypertension, and diabetes; nevertheless, these populations remain at high risk for the worst outcomes during post-acute COVID-19. Emphasis should be given to the management of these patients. Treatment with low-dose oral propranolol, a beta blocker, for heart rate management may be considered, since it was found to significantly attenuate tachycardia and improve symptoms in postural tachycardia syndrome, while for patients on ACE inhibitors or angiotensin-receptor blockers (ARBs), under no circumstances should these medications be withdrawn. In addition, in patients at high risk after hospitalization due to COVID-19, thromboprophylaxis with rivaroxaban 10 mg/day for 35 days improved clinical outcomes compared with no extended thromboprophylaxis. In this work we provide a comprehensive review on acute and post-acute COVID-19 cardiovascular complications, symptomatology, and pathophysiology mechanisms. We also discuss therapeutic strategies for these patients during acute and long-term care and highlight populations at risk. Our findings suggest that older patients with risk factors such as hypertension, diabetes, and medical history of vascular disease have worse outcomes during acute SARS-CoV-2 infection and are more likely to develop cardiovascular complications during long-COVID-19.
Collapse
Affiliation(s)
- Christo Kole
- Cardiology Department, Sismanoglio General Hospital of Attica, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Εleni Stefanou
- Artificial Kidney Unit, General Hospital of Messinia, Kalamata, Greece
| | - Nikolaos Karvelas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | |
Collapse
|
9
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
10
|
Dong T, Zhu W, Yang Z, Matos Pires NM, Lin Q, Jing W, Zhao L, Wei X, Jiang Z. Advances in heart failure monitoring: Biosensors targeting molecular markers in peripheral bio-fluids. Biosens Bioelectron 2024; 255:116090. [PMID: 38569250 DOI: 10.1016/j.bios.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs), especially chronic heart failure, threaten many patients' lives worldwide. Because of its slow course and complex causes, its clinical screening, diagnosis, and prognosis are essential challenges. Clinical biomarkers and biosensor technologies can rapidly screen and diagnose. Multiple types of biomarkers are employed for screening purposes, precise diagnosis, and treatment follow-up. This article provides an up-to-date overview of the biomarkers associated with the six main heart failure etiology pathways. Plasma natriuretic peptides (BNP and NT-proBNP) and cardiac troponins (cTnT, cTnl) are still analyzed as gold-standard markers for heart failure. Other complementary biomarkers include growth differentiation factor 15 (GDF-15), circulating Galactose Lectin 3 (Gal-3), soluble interleukin (sST2), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). For these biomarkers, the electrochemical biosensors have exhibited sufficient sensitivity, detection limit, and specificity. This review systematically summarizes the latest molecular biomarkers and sensors for heart failure, which will provide comprehensive and cutting-edge authoritative scientific information for biomedical and electronic-sensing researchers in the field of heart failure, as well as patients. In addition, our proposed future outlook may provide new research ideas for researchers.
Collapse
Affiliation(s)
- Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, P.O. Box 235, Kongsberg, 3603, Norway
| | - Wangang Zhu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Güneş M, Özdemir Ö. COVID-19 and cardiac complications: Myocarditis and multisystem inflammatory syndrome in children. World J Cardiol 2024; 16:260-268. [PMID: 38817651 PMCID: PMC11135331 DOI: 10.4330/wjc.v16.i5.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Coronavirus is an important pathogen causing disease in humans and animals. At the end of 2019, an investigation into an increase in pneumonia cases in Wuhan, Hubei Province, China, found that the cause was a new coronavirus. This disease, which spread rapidly across China and caused an outbreak worldwide, resulted in a pandemic. Although this virus has previously been referred to as 2019-nCoV, which causes coronavirus disease 2019 (COVID-19), later it was named severe acute respiratory syndrome coronavirus 2. Children were usually asymptomatic and rarely severely affected. In April 2020, reports from the United Kingdom indicated that children may have Kawasaki disease or a clinical condition similar to toxic shock syndrome. This clinical picture was later defined as multisystem inflammatory syndrome in children. Since then, similarly affected children as well as cases with other cardiac complications have been reported in other parts of the world. In this review, we aimed to evaluate COVID-19 in terms of cardiac involvement by reviewing the literature.
Collapse
Affiliation(s)
- Muhammed Güneş
- Department of Pediatric Cardiology, Research and Training Hospital of Sakarya, Adapazarı 54100, Sakarya, Türkiye
| | - Öner Özdemir
- Department of Pediatric Allergy and Immunology, Research and Training Hospital of Sakarya, Sakarya University Medical Faculty, Adapazarı 54100, Sakarya, Türkiye.
| |
Collapse
|
12
|
Dhaliwal JS, Sekhon MS, Rajotia A, Dang AK, Singh PP, Bilal M, Sakthivel H, Ahmed R, Verma R, Ramphul K, Sethi PS. Disparities and Outcomes in the First and Second Year of the Pandemic on Events of Acute Myocardial Infarction in Coronavirus Disease 2019 Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:597. [PMID: 38674243 PMCID: PMC11052327 DOI: 10.3390/medicina60040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Coronavirus disease 2019 (COVID-19) caused several cardiovascular complications, including acute myocardial infarction (AMI), in infected patients. This study aims to understand the overall trends of AMI among COVID-19 patients during the first two years of the pandemic and the disparities and outcomes between the first and second years. Materials and Methods: The retrospective analysis was conducted via the 2020 and 2021 National Inpatient Sample (NIS) database for hospitalizations between April 2020 and December 2021 being analyzed for adults with a primary diagnosis of COVID-19 who experienced events of AMI. A comparison of month-to-month events of AMI and mortality of AMI patients with concomitant COVID-19 was made alongside their respective patient characteristics. Results: Out of 2,541,992 COVID-19 hospitalized patients, 3.55% experienced AMI. The highest rate of AMI was in December 2021 (4.35%). No statistical differences in trends of AMI mortality were noted over the 21 months. AMI cases in 2021 had higher odds of undergoing PCI (aOR 1.627, p < 0.01). They experienced higher risks of acute kidney injury (aOR 1.078, p < 0.01), acute ischemic stroke (aOR 1.215, p < 0.01), cardiac arrest (aOR 1.106, p < 0.01), need for mechanical ventilation (aOR 1.133, p < 0.01), and all-cause mortality (aOR 1.032, 95% CI 1.001-1.064, p = 0.043). Conclusions: The incidence of AMI among COVID-19 patients fluctuated over the 21 months of this study, with a peak in December 2021. COVID-19 patients reporting AMI in 2021 experienced higher overall odds of multiple complications, which could relate to the exhaustive burden of the pandemic in 2021 on healthcare, the changing impact of the virus variants, and the hesitancy of infected patients to seek care.
Collapse
Affiliation(s)
- Jasninder Singh Dhaliwal
- Department of Internal Medicine, University of California Riverside School of Medicine, Riverside, CA 92521, USA
| | - Manraj S. Sekhon
- Department of Internal Medicine, University of California Riverside School of Medicine, Riverside, CA 92521, USA
| | - Arush Rajotia
- Department of Internal Medicine, University of California Riverside School of Medicine, Riverside, CA 92521, USA
| | - Ashujot K. Dang
- Department of Internal Medicine, University of California Riverside School of Medicine, Riverside, CA 92521, USA
| | - Prabh Partap Singh
- School of Medicine, University of California Riverside School of Medicine, Riverside, CA 92521, USA
| | - Maham Bilal
- Department of Internal Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Hemamalini Sakthivel
- One Brooklyn Health System/Interfaith Medical Ctr Program, Brooklyn, NY 11213, USA
| | - Raheel Ahmed
- Royal Brompton Hospital, Part of Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Renuka Verma
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV 89154, USA
| | | | - Prabhdeep S. Sethi
- Department of Internal Medicine, University of California Riverside School of Medicine, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Xi Y, Mao Y, Zhu W, Xi P, Huang F, Tan H, Liao X, Zhou L. IL-6 is a predictor and potential therapeutic target for coronavirus disease 2019-related heart failure: A single-center retrospective study. Cytokine 2024; 176:156514. [PMID: 38277928 DOI: 10.1016/j.cyto.2024.156514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Inflammation is linked to coronavirus disease 2019 (COVID-19)-related heart failure (HF), but the specific mechanisms are unclear. This study aimed to assess the relationship between specific inflammatory factors, such as interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, interferon (IFN)-α, and IFN-γ, and COVID-19-related HF. METHODS We retrospectively identified 212 adult patients with COVID-19 who were hospitalized at Shanghai Public Health Center from March 1 to May 30, 2022 (including 80 patients with HF and 132 without HF). High-sensitivity C-reactive protein (hs-CRP), procalcitonin (PCT), and inflammatory factors, including IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, IFN-α, and IFN-γ, were compared between patients with COVID-19 with and without HF. RESULTS Patients with COVID-19 having and not having HF differed with regard to sex, age, hs-CRP, PCT, and IL-6 levels (p < 0.05). Logistic regression analysis indicated a significant positive association between IL and 6 and HF (odds ratio = 1.055; 95 % confidence interval: 1.019-1.093, p < 0.005). Sex, age, and hs-CRP were also associated with HF. Women had a greater risk of HF than men. Older age, higher levels of hs-CRP, and IL-6 were associated with a greater risk of HF. CONCLUSIONS In patients with COVID-19, increased IL-6 levels are significantly associated with COVID-19-related HF.
Collapse
Affiliation(s)
- Yan Xi
- Department of General Practice, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Yu Mao
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Wei Zhu
- General Hospital of Eastern Theater Command, Nanjing City, Jiangsu Province 210000, China
| | - Peng Xi
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Feifei Huang
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Hongwei Tan
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Xudong Liao
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Lin Zhou
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China.
| |
Collapse
|
14
|
Hashem A, Khalouf A, Mohamed MS, Nayfeh T, Elkhapery A, Elbahnasawy M, Rai D, Deshwal H, Feitell S, Balla S. COVID-19 Infection Is Associated With Increased In-Hospital Mortality and Complications in Patients With Acute Heart Failure: Insight From National Inpatient Sample (2020). J Intensive Care Med 2023; 38:1068-1077. [PMID: 37350092 PMCID: PMC10291223 DOI: 10.1177/08850666231182380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
Introduction: Patients with acute heart failure (AHF) exacerbation are susceptible to complications in the setting of COVID-19 infection. Data regarding the clinical outcomes of COVID-19 in patients admitted with AHF is limited. Methods: We used the national inpatient sample database by utilizing ICD-10 codes to identify all hospitalizations with a diagnosis of AHF in 2020. We classified the sample into AHF with COVID-19 infection versus those without COVID-19. Primary outcome was in-hospital mortality. Secondary outcomes were acute myocardial infarction, need for pressors, mechanical cardiac support, cardiogenic shock, and cardiac arrest. Also, we evaluated for acute pulmonary embolism (PE), bacterial pneumonia, need for a ventilator, and acute kidney injury (AKI). Results: We identified a total of 694,920 of AHF hospitalizations, 660,463 (95.04%) patients without COVID-19 and 34,457 (4.96%) with COVID-19 infection. For baseline comorbidities, diabetes mellitus, chronic heart failure, ESRD, and coagulopathy were significantly higher among AHF patients with COVID-19 (P < .01). While CAD, prior MI, percutaneous coronary intervention, and coronary artery bypass graft, atrial fibrillation, chronic obstructive pulmonary disease, and peripheral vascular disease were higher among those without COVID-19. After adjustment for baseline comorbidities, in-hospital mortality (aOR 5.08 [4.81 to 5.36]), septic shock (aOR 2.54 [2.40 to 2.70]), PE (aOR 1.75 [1.57 to 1.94]), and AKI (aOR 1.33 [1.30 to 1.37]) were significantly higher among AHF with COVID-19 patients. The mean length of stay (5 vs 7 days, P < .01) and costs of hospitalization ($42,143 vs $60,251, P < .01) were higher among AHF patients with COVID-19 infection. Conclusion: COVID-19 infection in patients with AHF is associated with significantly higher in-hospital mortality, need for mechanical ventilation, septic shock, and AKI along with higher resource utilization. Predictors for mortality in AHF patients during the COVID-19 pandemic, COVID-19 infection, patients with end-stage heart failure, and atrial fibrillation. Studies on the impact of vaccination against COVID-19 in AHF patients are needed.
Collapse
Affiliation(s)
- Anas Hashem
- Internal Medicine Department, Rochester General Hospital, Rochester, NY, USA
| | - Amani Khalouf
- Internal Medicine Department, Rochester General Hospital, Rochester, NY, USA
| | | | - Tarek Nayfeh
- Evidence-based medicine, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Ahmed Elkhapery
- Internal Medicine Department, Rochester General Hospital, Rochester, NY, USA
| | | | - Devesh Rai
- Department of Cardiology, Rochester General Hospital, Sands-Constellation Heart Institute, Rochester, NY, USA
| | - Himanshu Deshwal
- Department of Pulmonary, Sleep and Critical Care Medicine, West Virginia University, Morgantown, WV, USA
| | - Scott Feitell
- Department of Cardiology, Rochester General Hospital, Sands-Constellation Heart Institute, Rochester, NY, USA
| | - Sudarshan Balla
- Department of Cardiovascular Disease, West Virginia University – Health Sciences Campus, Morgantown, WV, USA
| |
Collapse
|
15
|
Al-Yafeai Z, Aziz D, Ghoweba M, Alawadi M, Babbili A. Vaccines and Heart Failure: Analysis of Vaccine Adverse Event Reporting System Between 1990 and 2021. Am J Ther 2023; 30:e475-e478. [PMID: 37713701 DOI: 10.1097/mjt.0000000000001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Zaki Al-Yafeai
- Department of Internal Medicine LSUHSC Shreveport, Shreveport, LA
| | - David Aziz
- Department of Internal Medicine LSUHSC Shreveport, Shreveport, LA
| | - Mohamed Ghoweba
- Department of Internal Medicine, CHRISTUS Good Shepherd/Texas A&M College of Medicine, Longview, TX
| | | | - Akhilesh Babbili
- Department of Internal Medicine LSUHSC Shreveport, Shreveport, LA
| |
Collapse
|
16
|
Zhao Y, Han X, Li C, Liu Y, Cheng J, Adhikari BK, Wang Y. COVID-19 and the cardiovascular system: a study of pathophysiology and interpopulation variability. Front Microbiol 2023; 14:1213111. [PMID: 37350790 PMCID: PMC10282193 DOI: 10.3389/fmicb.2023.1213111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans can lead to various degrees of tissue and organ damage, of which cardiovascular system diseases are one of the main manifestations, such as myocarditis, myocardial infarction, and arrhythmia, which threaten the infected population worldwide. These diseases threaten the cardiovascular health of infected populations worldwide. Although the prevalence of coronavirus disease 2019 (COVID-19) has slightly improved with virus mutation and population vaccination, chronic infection, post-infection sequelae, and post-infection severe disease patients still exist, and it is still relevant to study the mechanisms linking COVID-19 to cardiovascular disease (CVD). This article introduces the pathophysiological mechanism of COVID-19-mediated cardiovascular disease and analyzes the mechanism and recent progress of the interaction between SARS-CoV-2 and the cardiovascular system from the roles of angiotensin-converting enzyme 2 (ACE2), cellular and molecular mechanisms, endothelial dysfunction, insulin resistance, iron homeostasis imbalance, and psychosocial factors, respectively. We also discussed the differences and mechanisms involved in cardiovascular system diseases combined with neocoronavirus infection in different populations and provided a theoretical basis for better disease prevention and management.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaorong Han
- Department of Special Care Center, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yucheng Liu
- Department of Family and Community Medicine, Feinberg School of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Jiayu Cheng
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | | | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Wang Y, Cui H, Li L, Cao Y, Qu H, Ailina H, Dou Z, Tang C, Qin W, Wang C, Yang X, Feng S, Liu Y, Han D. Digitalization of prevention and treatment and the combination of western and Chinese medicine in management of acute heart failure. Front Cardiovasc Med 2023; 10:1146941. [PMID: 37304970 PMCID: PMC10248001 DOI: 10.3389/fcvm.2023.1146941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 06/13/2023] Open
Abstract
Digitalization has emerged as a new trend in healthcare, with great potential and creating many unique opportunities, as well as many challenges. Cardiovascular disease is one of the major causes of disease-related morbidity and mortality worldwide, and the threat to life posed by acute heart failure is evident. In addition to traditional collegiate therapies, this article reviews the current status and subdisciplinary impact of digital healthcare at the level of combined Chinese and Western medical therapies. It also further discusses the prospects for the development of this approach, with the objective of developing an active role for digitalization in the combination of Western and Chinese medicine for the management of acute heart failure in order to support maintenance of cardiovascular health in the population.
Collapse
Affiliation(s)
- Yingxin Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Herong Cui
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Liwen Li
- School of Acupuncture and Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Cao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Hanyun Qu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Halisi Ailina
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Zhili Dou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chuwei Tang
- School of Acupuncture and Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wanli Qin
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Chenlu Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Shixing Feng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixing Liu
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Dongran Han
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Wei KC, Wang WH, Wu CL, Chang SH, Huang YT. Heart failure after dengue infection- a population-based self-controlled case-series study. Travel Med Infect Dis 2023; 53:102589. [PMID: 37230157 DOI: 10.1016/j.tmaid.2023.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Major cardiovascular events (MACEs) have been described with dengue infection. Among these MACEs, heart failure (HF) is the most common but has not been thoroughly assessed. This study aimed to evaluate the association between dengue and HF. METHODS Under the self-controlled case-series study design, we used the Notifiable Infectious Disease dataset linkage with the National Health Insurance claims data to obtain the study subjects. All laboratory-confirmed dengue cases who were hospitalized for HF after dengue infection within one year between 2009 and 2015 in Taiwan were included. We identified the first 7 and 14 days after dengue infection as the risk intervals. The incidence rate ratio (IRR) and 95% confidence interval (CI) for HF were estimated by conditional Poisson regression. RESULTS Among the 65,906 dengue patients, 230 had admission for HF after dengue infection within one year. The IRR of HF admission within the first week after dengue infection was 27.2456.50 (95% C.I. 43.88-72.75). This risk was highest in >60 years (IRR = 59.32, 95% C.I. 45.43-77.43) and lower in 0-40 years (IRR = 25.82, 95% C.I. 2.89-231.02). The risk was nearly nine times higher among admission (for dengue infection) than among nonadmission cases (IRR 75.35 vs. 8.61, p < 0.0001). The risks increased slightly in the second week 8.55 and became less obvious after the third and fourth week. CONCLUSIONS Patients with dengue infection have a risk of developing acute heart failure within one week, especially in >60 years, men, and dengue admission subjects. The findings emphasize the awareness of diagnosis and further appropriate treatment of HF.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Hwa Wang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; College of Management, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Ling Wu
- Center for Big Data Analytics and Statistics, Department of Medical Research and Development, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Shang-Hung Chang
- Center for Big Data Analytics and Statistics, Department of Medical Research and Development, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Department of Medical Research and Development, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan; Department of Health Care Management, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Isath A, Malik A, Bandyopadhyay D, Goel A, Hajra A, Dhand A, Lanier GM, Fonarow GC, Lavie CJ, Gass AL. COVID-19, Heart Failure Hospitalizations, and Outcomes: A Nationwide Analysis. Curr Probl Cardiol 2023; 48:101541. [PMID: 36529234 PMCID: PMC9754747 DOI: 10.1016/j.cpcardiol.2022.101541] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Heart Failure (HF) patients are at a higher risk of adverse events associated with Coronavirus disease 2019 (COVID-19). Large population-based reports of the impact of COVID-19 on patients hospitalized with HF are limited. The National Inpatient Sample database was queried for HF admissions during 2020 in the United States (US), with and without a diagnosis of COVID-19 based on ICD-10-CM U07. Propensity score matching was used to match patients across age, race, sex, and comorbidities. Multivariate logistic regression analysis was used to identify predictors of mortality. A weighted total of 1,110,085 hospitalizations for HF were identified of which 7,905 patients (0.71%) had a concomitant diagnosis of COVID-19. After propensity matching, HF patients with COVID-19 had higher rate of in-hospital mortality (8.2% vs 3.7%; odds ratio [OR]: 2.33 [95% confidence interval [CI]: 1.69, 3.21]; P< 0.001), cardiac arrest (2.9% vs 1.1%, OR 2.21 [95% CI: 1.24,3.93]; P<0.001), and pulmonary embolism (1.0% vs 0.4%; OR 2.68 [95% CI: 1.05, 6.90]; P = 0.0329). During hospitalizations for HF, COVID-19 was also found to be an independent predictor of mortality. Further, increasing age, arrythmias, and chronic kidney disease were independent predictors of mortality in HF patients with COVID-19. COVID-19 is associated with increased in-hospital mortality, longer hospital stays, higher cost of hospitalization and increased risk of adverse outcomes in patients admitted with HF.
Collapse
Affiliation(s)
- Ameesh Isath
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Aaqib Malik
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | | | - Akshay Goel
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Adrija Hajra
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Abhay Dhand
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Gregg M. Lanier
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Gregg C. Fonarow
- Department of Cardiology, University of California Los Angeles Medical Center, Los Angeles, CA
| | - Carl J. Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA
| | - Alan L. Gass
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY,Corresponding author: Alan L. Gass, MD, Department of Cardiology, Westchester Medical Center, New York Medical College, Valhalla, NY
| |
Collapse
|
20
|
Gao LJ, He ZM, Li YY, Yang RR, Yan M, Shang X, Cao JM. Role of OAS gene family in COVID-19 induced heart failure. J Transl Med 2023; 21:212. [PMID: 36949448 PMCID: PMC10031198 DOI: 10.1186/s12967-023-04058-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND COVID-19, the current global pandemic caused by SARS-CoV-2 infection, can damage the heart and lead to heart failure (HF) and even cardiac death. The 2',5'-oligoadenylate synthetase (OAS) gene family encode interferon (IFN)-induced antiviral proteins which is associated with the antiviral immune responses of COVID-19. While the potential association of OAS gene family with cardiac injury and failure in COVID-19 has not been determined. METHODS The expression levels and biological functions of OAS gene family in SARS-CoV-2 infected cardiomyocytes dataset (GSE150392) and HF dataset (GSE120852) were determined by comprehensive bioinformatic analysis and experimental validation. The associated microRNAs (miRNAs) were explored from Targetscan and GSE104150. The potential OAS gene family-regulatory chemicals or ingredients were predicted using Comparative Toxicogenomics Database (CTD) and SymMap database. RESULTS The OAS genes were highly expressed in both SARS-CoV-2 infected cardiomyocytes and failing hearts. The differentially expressed genes (DEGs) in the two datasets were enriched in both cardiovascular disease and COVID-19 related pathways. The miRNAs-target analysis indicated that 10 miRNAs could increase the expression of OAS genes. A variety of chemicals or ingredients were predicted regulating the expression of OAS gene family especially estradiol. CONCLUSION OAS gene family is an important mediator of HF in COVID-19 and may serve as a potential therapeutic target for cardiac injury and HF in COVID-19.
Collapse
Affiliation(s)
- Li-Juan Gao
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Zhong-Mei He
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yi-Ying Li
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Rui-Rui Yang
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Min Yan
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xuan Shang
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
21
|
Orlando L, Bagnato G, Ioppolo C, Franzè MS, Perticone M, Versace AG, Sciacqua A, Russo V, Cicero AFG, De Gaetano A, Dattilo G, Fogacci F, Tringali MC, Di Micco P, Squadrito G, Imbalzano E. Natural Course of COVID-19 and Independent Predictors of Mortality. Biomedicines 2023; 11:939. [PMID: 36979918 PMCID: PMC10046319 DOI: 10.3390/biomedicines11030939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND During the SARS-CoV-2 pandemic, several biomarkers were shown to be helpful in determining the prognosis of COVID-19 patients. The aim of our study was to evaluate the prognostic value of N-terminal pro-Brain Natriuretic Peptide (NT-pro-BNP) in a cohort of patients with COVID-19. METHODS One-hundred and seven patients admitted to the Covid Hospital of Messina University between June 2022 and January 2023 were enrolled in our study. The demographic, clinical, biochemical, instrumental, and therapeutic parameters were recorded. The primary outcome was in-hospital mortality. A comparison between patients who recovered and were discharged and those who died during the hospitalization was performed. The independent parameters associated with in-hospital death were assessed by multivariable analysis and a stepwise regression logistic model. RESULTS A total of 27 events with an in-hospital mortality rate of 25.2% occurred during our study. Those who died during hospitalization were older, with lower GCS and PaO2/FiO2 ratio, elevated D-dimer values, INR, creatinine values and shorter PT (prothrombin time). They had an increased frequency of diagnosis of heart failure (p < 0.0001) and higher NT-pro-BNP values. A multivariate logistic regression analysis showed that higher NT-pro-BNP values and lower PT and PaO2/FiO2 at admission were independent predictors of mortality during hospitalization. CONCLUSIONS This study shows that NT-pro-BNP levels, PT, and PaO2/FiO2 ratio are independently associated with in-hospital mortality in subjects with COVID-19 pneumonia. Further longitudinal studies are warranted to confirm the results of this study.
Collapse
Affiliation(s)
- Luana Orlando
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Gianluca Bagnato
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Carmelo Ioppolo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Maria Stella Franzè
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Russo
- Department of Medical Translational Sciences, Division of Cardiology, Monaldi Hospital, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy
| | - Arrigo Francesco Giuseppe Cicero
- IRCCS Policlinico S. Orsola—Malpighi, Hypertension and Cardiovascular risk Research Center, DIMEC, University of Bologna, 40100 Bologna, Italy
| | - Alberta De Gaetano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giuseppe Dattilo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Federica Fogacci
- IRCCS Policlinico S. Orsola—Malpighi, Hypertension and Cardiovascular risk Research Center, DIMEC, University of Bologna, 40100 Bologna, Italy
| | - Maria Concetta Tringali
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Pierpaolo Di Micco
- Department of Medicine, PO Santa Maria delle Grazie Pozzuoli, 80100 Naples, Italy
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
22
|
Bezati S, Velliou M, Ventoulis I, Simitsis P, Parissis J, Polyzogopoulou E. Infection as an under-recognized precipitant of acute heart failure: prognostic and therapeutic implications. Heart Fail Rev 2023:10.1007/s10741-023-10303-8. [PMID: 36897491 PMCID: PMC9999079 DOI: 10.1007/s10741-023-10303-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
As the prevalence of heart failure (HF) continues to rise, prompt diagnosis and management of various medical conditions, which may lead to HF exacerbation and result in poor patient outcomes, are of paramount importance. Infection has been identified as a common, though under-recognized, precipitating factor of acute heart failure (AHF), which can cause rapid development or deterioration of HF signs and symptoms. Available evidence indicates that infection-related hospitalizations of patients with AHF are associated with higher mortality, protracted length of stay, and increased readmission rates. Understanding the intricate interaction of both clinical entities may provide further therapeutic strategies to prevent the occurrence of cardiac complications and improve prognosis of patients with AHF triggered by infection. The purpose of this review is to investigate the incidence of infection as a causative factor in AHF, explore its prognostic implications, elucidate the underlying pathophysiological mechanisms, and highlight the basic principles of the initial diagnostic and therapeutic interventions in the emergency department.
Collapse
Affiliation(s)
- Sofia Bezati
- Emergency Medicine Department, Attikon University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece.
| | - Maria Velliou
- Emergency Medicine Department, Attikon University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Keptse Area, Ptolemaida, 50200, Greece
| | - Panagiotis Simitsis
- National and Kapodistrian University of Athens, 2nd Department of Cardiology, Heart Failure Unit, Attikon University Hospital, Athens, Greece
| | - John Parissis
- Emergency Medicine Department, Attikon University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece.,Emergency Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Effie Polyzogopoulou
- Emergency Medicine Department, Attikon University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece.,Emergency Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Naeem A, Tabassum S, Gill S, Khan MZ, Mumtaz N, Qaiser Q, Karamat M, Arif M, Naeem F, Afifi A, Basit J, Nashwan AJ. COVID-19 and Cardiovascular Diseases: A Literature Review From Pathogenesis to Diagnosis. Cureus 2023; 15:e35658. [PMID: 37009373 PMCID: PMC10065369 DOI: 10.7759/cureus.35658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) took the world by storm after the first case of COVID-19 emerged in China on December 8, 2019. The disease is generally considered as an infection of the respiratory system, but serious life-threatening myocardial injuries have been reported with this infection. Coronavirus can damage cardiac myocytes by entering the cell through angiotensin-converting enzyme 2 (ACE-2) receptor binding. Myocardial infarction, myocarditis, heart failure, cardiac arrhythmias, and Takotsubo cardiomyopathy are cardiac clinical manifestations commonly seen among patients affected by COVID-19. These cardiac pathologies are seen both during ongoing infection and post-infection. Elevated levels of myoglobin, troponin, creatine kinase-MB, plasma interleukin-6, lactate dehydrogenase (LDH), and N-terminal pro-b-type natriuretic peptide (NT-proBNP) have been found in COVID-19-associated myocardial injuries. The diagnostic modalities used in myocardial injuries due to COVID-19 include electrocardiography (ECG), cardiac magnetic resonance imaging (CMR), endomyocardial biopsy, echocardiography (Echo), and computerized tomography (CT-Scan). This literature review will discuss, in detail, the pathogenesis, clinical manifestations, and diagnosis of myocardial injuries due to COVID-19.
Collapse
Affiliation(s)
- Aroma Naeem
- Internal Medicine, Mayo Hospital, Lahore, Lahore, PAK
| | | | - Saima Gill
- Internal Medicine, Mayo Hospital, Lahore, Lahore, PAK
| | | | - Nimra Mumtaz
- Internal Medicine, Mayo Hospital, Lahore, Lahore, PAK
| | - Qamoos Qaiser
- Medicine and Surgery, Lahore General Hospital, Lahore, PAK
| | | | - Mashhood Arif
- Internal Medicine, Aziz Fatimah Medical and Dental College, Faisalabad, PAK
| | - Farhan Naeem
- Internal Medicine, Mayo Hospital, Lahore, Lahore, PAK
| | | | - Jawad Basit
- Medicine, Holy Family Hospital, Rawalpindi, PAK
- Cardiology, Rawalpindi Medical University, Rawalpindi, PAK
| | | |
Collapse
|
24
|
Zuin M, Rigatelli G, Bilato C. Excess of heart failure-related deaths during the 2020 COVID-19 pandemic in Unites States. Heart Lung 2023; 58:104-107. [PMID: 36446263 PMCID: PMC9684122 DOI: 10.1016/j.hrtlng.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND HF can be encountered at different stages in the course of COVID-19 disease. However, data regarding the HF-related mortality during COVID-19 pandemic are scant OBJECTIVE: We investigate the heart failure (HF)-related mortality rate in the US among patient with or without COVID-19 infection during the first two pandemic waves in 2020 and to compare them to those of previous years (2014-2019). METHODS Age-adjusted mortality rates (AAMR) per 100.000 person-years, with relative 95% confidence interval (CI) were determined using the free-available dataset for Multiple cause-of-death, provided by the Center for Disease Control. RESULTS Throughout the 2020, the first year of the COVID-19 pandemic, 522.848 HF-related deaths were registered (461.594 and 61.254 in subjects without and with COVID-19 infection, respectively). The overall HF-related AAMR was 124.6 (65% CI 123.4-125.6), reflecting an increased HF-related mortality of 13.2% and 25.9% compared to 2019 and 2018 (p < 0.0001). HF-related AAMR was 111.0 (95% CI: 110.7-111.4) and 14.8 (95% CI: 14.6-14.9) per 100.000 population for decedents without and with COVID-19 disease, respectively. The proportionate mortality of HF in COVID-19 patients was 11.7%. HF-related AAMR in COVID-19 patients was higher in men (18.0 per 100.000, 95% CI: 17.8-18.2), in patients aged more 65 years (104.0 per 100.000, 95% CI: 103.1-104.9), in African Americans (22.5 per 100.000, 95% CI: 22.0-22.3) and in those living in rural counties (18.4 per 100.000, 95% CI: 18.0-18.7). CONCLUSIONS A significant increase in the HF-related mortality during the 2020 was observed synchronously with the COVID-19 pandemic.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Cardiology, West Vicenza Hospital, Arzignano, Italy; Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Gianluca Rigatelli
- Department of Cardiology, Madre Teresa Hospital, Schiavonia, Padova, Italy
| | - Claudio Bilato
- Department of Cardiology, West Vicenza Hospital, Arzignano, Italy
| |
Collapse
|
25
|
O’Sullivan O, Holdsworth DA, Ladlow P, Barker-Davies RM, Chamley R, Houston A, May S, Dewson D, Mills D, Pierce K, Mitchell J, Xie C, Sellon E, Naylor J, Mulae J, Cranley M, Talbot NP, Rider OJ, Nicol ED, Bennett AN. Cardiopulmonary, Functional, Cognitive and Mental Health Outcomes Post-COVID-19, Across the Range of Severity of Acute Illness, in a Physically Active, Working-Age Population. SPORTS MEDICINE - OPEN 2023; 9:7. [PMID: 36729302 PMCID: PMC9893959 DOI: 10.1186/s40798-023-00552-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND The COVID-19 pandemic has led to significant morbidity and mortality, with the former impacting and limiting individuals requiring high physical fitness, including sportspeople and emergency services. METHODS Observational cohort study of 4 groups: hospitalised, community illness with on-going symptoms (community-symptomatic), community illness now recovered (community-recovered) and comparison. A total of 113 participants (aged 39 ± 9, 86% male) were recruited: hospitalised (n = 35), community-symptomatic (n = 34), community-recovered (n = 18) and comparison (n = 26), approximately five months following acute illness. Participant outcome measures included cardiopulmonary imaging, submaximal and maximal exercise testing, pulmonary function, cognitive assessment, blood tests and questionnaires on mental health and function. RESULTS Hospitalised and community-symptomatic groups were older (43 ± 9 and 37 ± 10, P = 0.003), with a higher body mass index (31 ± 4 and 29 ± 4, P < 0.001), and had worse mental health (anxiety, depression and post-traumatic stress), fatigue and quality of life scores. Hospitalised and community-symptomatic participants performed less well on sub-maximal and maximal exercise testing. Hospitalised individuals had impaired ventilatory efficiency (higher VE/V̇CO2 slope, 29.6 ± 5.1, P < 0.001), achieved less work at anaerobic threshold (70 ± 15, P < 0.001) and peak (231 ± 35, P < 0.001), and had a reduced forced vital capacity (4.7 ± 0.9, P = 0.004). Clinically significant abnormal cardiopulmonary imaging findings were present in 6% of hospitalised participants. Community-recovered individuals had no significant differences in outcomes to the comparison group. CONCLUSION Symptomatically recovered individuals who suffered mild-moderate acute COVID-19 do not differ from an age-, sex- and job-role-matched comparison population five months post-illness. Individuals who were hospitalised or continue to suffer symptoms may require a specific comprehensive assessment prior to return to full physical activity.
Collapse
Affiliation(s)
- Oliver O’Sullivan
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC) Stanford Hall, Loughborough, LE12 5QW UK ,grid.4563.40000 0004 1936 8868Academic Unit of Injury, Recovery and Inflammation Sciences, University of Nottingham, Nottingham, UK
| | - David A. Holdsworth
- Academic Department of Military Medicine, Birmingham, UK ,grid.410556.30000 0001 0440 1440Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Ladlow
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC) Stanford Hall, Loughborough, LE12 5QW UK ,grid.7340.00000 0001 2162 1699Department for Health, University of Bath, Bath, UK
| | - Robert M. Barker-Davies
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC) Stanford Hall, Loughborough, LE12 5QW UK ,grid.6571.50000 0004 1936 8542School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Rebecca Chamley
- Academic Department of Military Medicine, Birmingham, UK ,grid.410556.30000 0001 0440 1440Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew Houston
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC) Stanford Hall, Loughborough, LE12 5QW UK
| | - Samantha May
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC) Stanford Hall, Loughborough, LE12 5QW UK
| | - Dominic Dewson
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC) Stanford Hall, Loughborough, LE12 5QW UK
| | - Daniel Mills
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC) Stanford Hall, Loughborough, LE12 5QW UK
| | - Kayleigh Pierce
- grid.410556.30000 0001 0440 1440Oxford University Hospitals NHS Foundation Trust, Oxford, UK ,grid.415490.d0000 0001 2177 007XRoyal Centre for Defence Medicine, Birmingham, UK
| | - James Mitchell
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC) Stanford Hall, Loughborough, LE12 5QW UK ,grid.6572.60000 0004 1936 7486Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Cheng Xie
- grid.410556.30000 0001 0440 1440Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Edward Sellon
- grid.410556.30000 0001 0440 1440Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jon Naylor
- grid.415490.d0000 0001 2177 007XRoyal Centre for Defence Medicine, Birmingham, UK
| | - Joseph Mulae
- grid.415490.d0000 0001 2177 007XRoyal Centre for Defence Medicine, Birmingham, UK
| | - Mark Cranley
- Defence Medical Rehabilitation Centre (DMRC), Stanford Hall, Loughborough, UK
| | - Nick P. Talbot
- grid.410556.30000 0001 0440 1440Oxford University Hospitals NHS Foundation Trust, Oxford, UK ,grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Oliver J. Rider
- grid.4991.50000 0004 1936 8948University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK ,grid.410556.30000 0001 0440 1440Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Edward D. Nicol
- Academic Department of Military Medicine, Birmingham, UK ,grid.439338.60000 0001 1114 4366Royal Brompton Hospital, London, UK
| | - Alexander N. Bennett
- Academic Department of Military Rehabilitation (ADMR), Defence Medical Rehabilitation Centre (DMRC) Stanford Hall, Loughborough, LE12 5QW UK ,grid.7445.20000 0001 2113 8111National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
26
|
DePace NL, Colombo J. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr Cardiol Rep 2022; 24:1711-1726. [PMID: 36178611 PMCID: PMC9524329 DOI: 10.1007/s11886-022-01786-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Long-COVID syndrome is a multi-organ disorder that persists beyond 12 weeks post-acute SARS-CoV-2 infection (COVID-19). Here, we provide a definition for this syndrome and discuss neuro-cardiology involvement due to the effects of (1) angiotensin-converting enzyme 2 receptors (the entry points for the virus), (2) inflammation, and (3) oxidative stress (the resultant effects of the virus). RECENT FINDINGS These effects may produce a spectrum of cardio-neuro effects (e.g., myocardial injury, primary arrhythmia, and cardiac symptoms due to autonomic dysfunction) which may affect all systems of the body. We discuss the symptoms and suggest therapies that target the underlying autonomic dysfunction to relieve the symptoms rather than merely treating symptoms. In addition to treating the autonomic dysfunction, the therapy also treats chronic inflammation and oxidative stress. Together with a full noninvasive cardiac workup, a full assessment of the autonomic nervous system, specifying parasympathetic and sympathetic (P&S) activity, both at rest and in response to challenges, is recommended. Cardiac symptoms must be treated directly. Cardiac treatment is often facilitated by treating the P&S dysfunction. Cardiac symptoms of dyspnea, chest pain, and palpitations, for example, need to be assessed objectively to differentiate cardiac from neural (autonomic) etiology. Long-term myocardial injury commonly involves P&S dysfunction. P&S assessment usually connects symptoms of Long-COVID to the documented autonomic dysfunction(s).
Collapse
Affiliation(s)
- Nicholas L. DePace
- Franklin Cardiovascular Associates, PA – Autonomic Dysfunction and POTS Center, Sicklerville, NJ USA
- Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA USA
- Neuro-Cardiology Research Corporation, LLC, Wilmington, DE USA
| | - Joe Colombo
- Franklin Cardiovascular Associates, PA – Autonomic Dysfunction and POTS Center, Sicklerville, NJ USA
- Neuro-Cardiology Research Corporation, LLC, Wilmington, DE USA
- CTO and Sr. Medical Director, Physio PS, Inc, Atlanta, GA USA
| |
Collapse
|
27
|
Axelerad A, Stuparu AZ, Muja LF, Docu Axelerad S, Petrov SG, Gogu AE, Jianu DC. Narrative Review of New Insight into the Influence of the COVID-19 Pandemic on Cardiovascular Care. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1554. [PMID: 36363511 PMCID: PMC9694465 DOI: 10.3390/medicina58111554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024]
Abstract
Background and Objectives: The purpose of this paper was to perform a literature review on the effects of the COVID-19 pandemic on cardiothoracic and vascular surgery care and departments. Materials and Methods: To conduct this evaluation, an electronic search of many databases was conducted, and the resulting papers were chosen and evaluated. Results: Firstly, we have addressed the impact of COVID-19 infection on the cardiovascular system from the pathophysiological and treatment points of view. Afterwards, we analyzed every cardiovascular disease that seemed to appear after a COVID-19 infection, emphasizing the treatment. In addition, we have analyzed the impact of the pandemic on the cardiothoracic and vascular departments in different countries and the transitions that appeared. Finally, we discussed the implications of the cardiothoracic and vascular specialists' and residents' work and studies on the pandemic. Conclusions: The global pandemic caused by SARS-CoV-2 compelled the vascular profession to review the treatment of certain vascular illnesses and find solutions to address the vascular consequences of COVID-19 infection. The collaboration between vascular surgeons, public health specialists, and epidemiologists must continue to investigate the impact of the pandemic and the response to the public health issue.
Collapse
Affiliation(s)
- Any Axelerad
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Alina Zorina Stuparu
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Lavinia Florenta Muja
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Silvia Georgeta Petrov
- Doctoral School of the Faculty of Psychology and Educational Sciences within the University of Bucharest, 050663 Bucharest, Romania
| | - Anca Elena Gogu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dragos Catalin Jianu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
28
|
Xanthopoulos A, Bourazana A, Giamouzis G, Skoularigki E, Dimos A, Zagouras A, Papamichalis M, Leventis I, Magouliotis DE, Triposkiadis F, Skoularigis J. COVID-19 and the heart. World J Clin Cases 2022; 10:9970-9984. [PMID: 36246800 PMCID: PMC9561576 DOI: 10.12998/wjcc.v10.i28.9970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 02/05/2023] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) occurred in December 2019 due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a strain of SARS-CoV. Patients infected with the virus present a wide spectrum of manifestations ranging from mild flu-like symptoms, cough, fever and fatigue to severe lung injury, appearing as bilateral interstitial pneumonia or acute respiratory failure. Although SARS-CoV-2 infection predominantly offends the respiratory system, it has been associated with several cardiovascular complications as well. For example, patients with COVID-19 may either develop type 2 myocardial infarction due to myocardial oxygen demand and supply imbalance or acute coronary syndrome resulting from excessive inflammatory response to the primary infection. The incidence of COVID-19 related myocarditis is estimated to be accountable for an average of 7% of all COVID-19 related fatal cases, whereas heart failure (HF) may develop due to infiltration of the heart by inflammatory cells, destructive action of pro-inflammatory cytokines, micro-thrombosis and new onset or aggravated endothelial and respiratory failure. Lastly, SARS-CoV-2 can engender arrhythmias through direct myocardial damage causing acute myocarditis or through HF decompensation or secondary, through respiratory failure or severe respiratory distress syndrome. In this comprehensive review we summarize the COVID-19 related cardiovascular complications (acute coronary syndromes, myocarditis, HF, arrhythmias) and discuss the main underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - Angeliki Bourazana
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - Grigorios Giamouzis
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | | | - Apostolos Dimos
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - Alexandros Zagouras
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | | | - Ioannis Leventis
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| | - Dimitrios E Magouliotis
- Department of Cardiothoracic Surgery, University of Thessaly, Larissa Biopolis, Larissa 41110, Greece
| | | | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Greece
| |
Collapse
|
29
|
Prameswari HS, Putra ICS, Raffaello WM, Nathaniel M, Suhendro AS, Khalid AF, Pranata R. Managing Covid-19 in patients with heart failure: current status and future prospects. Expert Rev Cardiovasc Ther 2022; 20:807-828. [PMID: 36185009 DOI: 10.1080/14779072.2022.2132230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/30/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION COVID-19 may contribute to decompensation of previously stable chronic HF or cause a de-novo heart failure, which may come from the hyperinflammatory response and subsequent increase in metabolic demand. AREAS COVERED Two independent investigators searched MEDLINE (via PubMed), Europe PMC, and ScienceDirect databases with the following search terms: COVID-19, heart failure, COVID-19 drugs, heart failure drugs, and device therapy. All of the included full-text articles were rigorously evaluated by both authors in case there was disagreement about whether research should be included or not. In total, 157 studies were included and underwent extensive reading by the authors. EXPERT OPINION The World Health Organization (WHO) and the National Institute of Health (NIH) have published COVID-19 drug recommendations, although recommendations for HF-specific drug choices in COVID-19 are still lacking. We hope that this review can answer the void of comprehensive research data regarding the management options of HF in the COVID-19 condition so that clinicians can at least choose a more beneficial therapy or avoid combination therapies that have a high burden of side effects on HF; thus, morbidity and mortality in COVID-19 patients with HF may be reduced.
Collapse
Affiliation(s)
- Hawani Sasmaya Prameswari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Iwan Cahyo Santosa Putra
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Michael Nathaniel
- School of Medicine and Health Sciences Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Adrian Sebastian Suhendro
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Achmad Fitrah Khalid
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Raymond Pranata
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
30
|
Chatzis DG, Magounaki K, Pantazopoulos I, Bhaskar SMM. COVID-19 and the cardiovascular system-current knowledge and future perspectives. World J Clin Cases 2022; 10:9602-9610. [PMID: 36186205 PMCID: PMC9516937 DOI: 10.12998/wjcc.v10.i27.9602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has had devastating impact on populations around the world. The high mortality rates in patients with COVID-19 has been attributed to the influence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), its causative viral agent, on several physiological systems in human body, including the respiratory, cardiovascular, and neurological systems. There is emerging evidence on propensity of this virus to attack cardiovascular system. However, various pathophysiological mechanisms by which SARS-CoV-2 interacts with cardiovascular system and leads to high morbidity and mortality, including cardiovascular complications, are poorly understood. This mini review aims to provide an update on the current knowledge and perspectives on areas of future research.
Collapse
Affiliation(s)
| | - Kalliopi Magounaki
- Department of Internal Medicine, KAT General Hospital, Athens 14561, Greece
| | - Ioannis Pantazopoulos
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, Larissa 41500, Greece
| | - Sonu Menachem Maimonides Bhaskar
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW 2170, Australia
- Department of Neurology and Neurophysiology, Liverpool Hospital and South Western Sydney Local Health District, Sydney, NSW 2170, Australia
| |
Collapse
|
31
|
Liu L, Jing H, Wu X, Xiang M, Novakovic VA, Wang S, Shi J. The cross-talk of lung and heart complications in COVID-19: Endothelial cells dysfunction, thrombosis, and treatment. Front Cardiovasc Med 2022; 9:957006. [PMID: 35990983 PMCID: PMC9390946 DOI: 10.3389/fcvm.2022.957006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic respiratory illness SARS-CoV-2 has increasingly been shown to be a systemic disease that can also have profound impacts on the cardiovascular system. Although associated cardiopulmonary sequelae can persist after infection, the link between viral infection and these complications remains unclear. There is now a recognized link between endothelial cell dysfunction and thrombosis. Its role in stimulating platelet activation and thrombotic inflammation has been widely reported. However, the procoagulant role of microparticles (MPs) in COVID-19 seems to have been neglected. As membrane vesicles released after cell injury or apoptosis, MPs exert procoagulant activity mainly by exposing phosphatidylserine (PS) on their lipid membranes. It can provide a catalytic surface for the assembly of the prothrombinase complex. Therefore, inhibiting PS externalization is a potential therapeutic strategy. In this paper, we describe the pathophysiological mechanism by which SARS-CoV-2 induces lung and heart complications through injury of endothelial cells, emphasizing the procoagulant effect of MPs and PS, and demonstrate the importance of early antithrombotic therapy. In addition, we will detail the mechanisms underlying hypoxia, another serious pulmonary complication related to SARS-CoV-2-induced endothelial cells injury and discuss the use of oxygen therapy. In the case of SARS-CoV-2 infection, virus invades endothelial cells through direct infection, hypoxia, imbalance of the RAAS, and cytokine storm. These factors cause endothelial cells to release MPs, form MPs storm, and eventually lead to thrombosis. This, in turn, accelerates hypoxia and cytokine storms, forming a positive feedback loop. Given the important role of thrombosis in the disease, early antithrombotic therapy is an important tool for COVID-19. It may maintain normal blood circulation, accelerating the clearance of viruses, waning the formation of MPs storm, and avoiding disease progression.
Collapse
Affiliation(s)
- Langjiao Liu
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Shuye Wang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Shuye Wang
| | - Jialan Shi
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jialan Shi ;
| |
Collapse
|
32
|
Xu SC, Zhao XY, Xing HP, Wu W, Zhang SY. Cardiac Involvement in COVID-19: A Global Bibliometric and Visualized Analysis. Front Cardiovasc Med 2022; 9:955237. [PMID: 35966543 PMCID: PMC9365052 DOI: 10.3389/fcvm.2022.955237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/20/2022] [Indexed: 01/08/2023] Open
Abstract
ObjectiveCoronavirus disease 2019 (COVID-19), which was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), had already resulted in widespread epidemics worldwide and millions of people's deaths since its outbreak in 2019. COVID-19 had also been demonstrated to affect people's cardiac function. However, the specific mechanism and influence of this damage were not clear yet. The purpose of the present study was to provide a bibliometric analysis of the current studies related to cardiac involvement after SARS-CoV-2 infection.MethodsA bibliometric literature search was performed on the web of science. The number and type of publications, countries, institutional sources, journals, and citation patterns were analyzed. In addition, qualitative and quantitative evaluations were carried out to visualize the scientific achievements in this field by using the VOSviewer software.ResultsWeb of science had recorded 2,24,097 documents on COVID-19 at the time of data collection (May 12, 2022). A total of 2,025 documents related to cardiac involvement were recorded at last. The countries with the most published articles were the United States of America (USA) (n =747, 36.9%), Italy (n =324, 16%), and England (n =213, 10.5%). Although the countries and institutions that published the most articles were mainly from the USA, the top three authors were from Germany, England, and Poland. Frontiers in Cardiovascular Medicine was the journal with the most studies (65 3.2%), followed by ESC Heart Failure (59 2.9%) and Journal of Clinical Medicine (56 2.8%). We identified 13,739 authors, among which Karin Klingel and Amer Harky had the most articles, and Shaobo Shi was co-cited most often. There existed some cooperation between different authors, but the scope was limited. Myocarditis and heart failure (HF) were the main research hotspots of COVID-19 on cardiac dysfunction and may be crucial to the prognosis of patients.ConclusionsIt was the first bibliometric analysis of publications related to COVID-19-associated cardiac disorder. This study provided academics and researchers with useful information on the most influential articles of COVID-19 and cardiac dysfunction. Cooperation between countries and institutions must be strengthened on myocarditis and HF during COVID-19 pandemic.
Collapse
|
33
|
Abdel Moneim A, Radwan MA, Yousef AI. COVID-19 and cardiovascular disease: manifestations, pathophysiology, vaccination, and long-term implication. Curr Med Res Opin 2022; 38:1071-1079. [PMID: 35575011 DOI: 10.1080/03007995.2022.2078081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a new coronavirus family member, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is linked with many disease manifestations in multiple organ systems on top of pulmonary manifestations. COVID-19 is also accompanied by several cardiovascular pathologies including myocarditis, acute myocardial infarction, stress cardiomyopathy, arterial and venous thromboembolism, pericarditis, and arrhythmias. The pathophysiological mechanisms explaining these clinical symptoms are multifactorial including systemic inflammation (cytokine storm), coagulopathy, direct viral invasion through angiotensin-converting enzyme 2, hypoxemia, electrolyte imbalance, and fever. Several case reports have shown the development of an unusual cardiovascular event after receiving SARS-CoV-2 vaccines. The current article aimed to review cardiovascular involvement in the COVID-19 pandemic with respect to clinical features, pathogenesis, long-term effects, and the adverse effects of treatments and vaccines based on the latest evidence.
Collapse
Affiliation(s)
- Adel Abdel Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Marwa A Radwan
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed I Yousef
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
34
|
Abdulrazzaq YM, Bastaki SMA, Adeghate E. Histamine H3 receptor antagonists - Roles in neurological and endocrine diseases and diabetes mellitus. Biomed Pharmacother 2022; 150:112947. [PMID: 35447544 DOI: 10.1016/j.biopha.2022.112947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022] Open
Abstract
Human histamine H3 receptor (H3R) was initially described in the brain of rat in 1983 and cloned in 1999. It can be found in the human brain and functions as a regulator of histamine synthesis and release. H3 receptors are predominantly resident in the presynaptic region of neurons containing histamine, where they modulate the synthesis and release of histamine (autoreceptor) or other neurotransmitters such as dopamine, norepinephrine, gamma-aminobutyric acid (GABA), glutamate, acetylcholine and serotonin (all heteroreceptors). The human histamine H3 receptor has twenty isoforms of which eight are functional. H3 receptor expression is seen in the cerebral cortex, neurons of the basal ganglia and hippocampus, which are important for process of cognition, sleep and homoeostatic regulation. In addition, histamine H3R antagonists stimulate insulin release, through inducing the release of acetylcholine and cause significant reduction in total body weight and triglycerides in obese subjects by causing a feeling of satiety in the hypothalamus. The ability of histamine H3R antagonist to reduce diabetes-induced hyperglycaemia is comparable to that of metformin. It is reasonable therefore, to claim that H3 receptor antagonists may play an important role in the therapy of disorders of cognition, the ability to sleep, oxidative stress, inflammation and anomaly of glucose homoeostasis. A large number of H3R antagonists are being developed by pharmaceutical companies and university research centres. As examples of these new drugs, this review will discuss a number of drugs, including the first histamine H3R receptor antagonist produced.
Collapse
Affiliation(s)
- Yousef M Abdulrazzaq
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Salim M A Bastaki
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates; Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
35
|
Braga CL, Acquarone M, Arona VDC, Osório BS, Barreto TG, Kian RM, Pereira JPAL, Silva MDMCD, Silva BA, de Oliveira GMM, Macedo Rocco PR, Silva PL, Alencar AKN. Can Epigenetics Help Solve the Puzzle Between Concomitant Cardiovascular Injury and Severity of Coronavirus Disease 2019? J Cardiovasc Pharmacol 2022; 79:431-443. [PMID: 34935698 DOI: 10.1097/fjc.0000000000001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023]
Abstract
ABSTRACT The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has significant implications in patients with concomitant cardiovascular disease (CVD) because they are the population at the greatest risk of death. The treatment of such patients and complications may represent a new challenge for the fields of cardiology and pharmacology. Thus, understanding the involvement of this viral infection in CVD might help to reduce the aggressiveness of SARS-CoV-2 in causing multiorgan infection and damage. SARS-CoV-2 disturbs the host epigenome and several epigenetic processes involved in the pathophysiology of COVID-19 that can directly affect the function and structure of the cardiovascular system (CVS). Hence, it would be relevant to identify epigenetic alterations that directly impact CVS physiology after SARS-CoV-2 infection. This could contribute to the view of this virus-induced CVS injury and direct forthcoming tackles for COVID-19 treatment to reduce mortality in patients with CVD. Targeting epigenetic marks could offer strong evidence for the development of novel antiviral therapies, especially in the context of COVID-19-related CVS damage. In this review, we address some of the main signaling pathways that are currently known as being involved in COVID-19 pathophysiology and the importance of this glint on epigenetics and some of its modifiers (epidrugs) to control the unregulated epitope activity in the context of SARS-CoV-2 infection, COVID-19, and underlying CVD.
Collapse
Affiliation(s)
- Cássia L Braga
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor da C Arona
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Brenno S Osório
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Thiago G Barreto
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Ruan M Kian
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | | | - Marina de Moraes C da Silva
- Serviço de Radiologia do Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bagnólia A Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Gláucia Maria M de Oliveira
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Patricia Rieken Macedo Rocco
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan K N Alencar
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Cardiac biomarkers alterations in patients with SARS-CoV-2 infection. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2022; 60:6-13. [PMID: 34610232 DOI: 10.2478/rjim-2021-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 12/21/2022]
Abstract
Reliable biomarkers are necessary for the risk stratification of patients infected with SARS-CoV-2. This novel coronavirus is now established to affect several organs in addition to the lungs, most prominently the heart. This is achieved through direct damage to the myocardium and indirect immune-associated effects during the cytokine storm. We performed a literature review aiming to identify the prognostic value of alterations of cardiac biomarkers in SARS-CoV-2 infection. Cardiac biomarkers are significantly elevated in patients with severe COVID-19 and are independent predictors of mortality. High-sensitivity troponin I and T are correlated with multiple inflammatory indexes and poor outcomes. Although cut-off values have been established for most of cardiac biomarkers, lower limits for troponins may have better prognostic values and longitudinal monitoring of cardiac biomarkers can help the clinician assess the patient's course. Additional measurements of NT-proBNP, can detect the subgroup of patients with poor prognosis.
Collapse
|
37
|
Kebria MM, Milan PB, Peyravian N, Kiani J, Khatibi S, Mozafari M. Stem cell therapy for COVID-19 pneumonia. MOLECULAR BIOMEDICINE 2022; 3:6. [PMID: 35174448 PMCID: PMC8850486 DOI: 10.1186/s43556-021-00067-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is a highly contagious microorganism, and despite substantial investigation, no progress has been achieved in treating post-COVID complications. However, the virus has made various mutations and has spread around the world. Researchers have tried different treatments to reduce the side effects of the COVID-19 symptoms. One of the most common and effective treatments now used is steroid therapy to reduce the complications of this disease. Long-term steroid therapy for chronic inflammation following COVID-19 is harmful and increases the risk of secondary infection, and effective treatment remains challenging owing to fibrosis and severe inflammation and infection. Sometimes our immune system can severely damage ourselves in disease. In the past, many researchers have conducted various studies on the immunomodulatory properties of stem cells. This property of stem cells led them to modulate the immune system of autoimmune diseases like diabetes, multiple sclerosis, and Parkinson's. Because of their immunomodulatory properties, stem cell-based therapy employing mesenchymal or hematopoietic stem cells may be a viable alternative treatment option in some patients. By priming the immune system and providing cytokines, chemokines, and growth factors, stem cells can be employed to build a long-term regenerative and protective response. This review addresses the latest trends and rapid progress in stem cell treatment for Acute Respiratory Distress Syndrome (ARDS) following COVID-19.
Collapse
Affiliation(s)
- Maziar Malekzadeh Kebria
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Present Address: Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Khatibi
- Babol University of Medical Sciences, Infection Diseases Centre, Mazandaran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Toda N, Takeoka J, Tanigaki K, Hirashima H, Fujita M, Komiya T. Two episodes of acute dyspnea that were induced by COVID-19 in a peritoneal dialysis patient. CEN Case Rep 2022; 11:22-25. [PMID: 34269997 PMCID: PMC8284031 DOI: 10.1007/s13730-021-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 10/28/2022] Open
Abstract
Dialysis patients have an increased risk of coronavirus disease 2019 (COVID-19)-related mortality. Acute heart failure is a frequent, lethal complication of COVID-19, and it is a risk factor for mortality in hemodialysis patients. Therefore, it is crucial to rapidly distinguish heart failure from COVID-19 pneumonia. Here, we report a case of two episodes of acute dyspnea that were induced by COVID-19 in a peritoneal dialysis (PD) patient. The first episode of acute dyspnea was an exacerbation of heart failure caused by COVID-19 when the patient had a volume overload status due to a peritoneal dialysis catheter malfunction. Heart failure induced by a catheter malfunction was due to omental wrapping, and it was treated with ultrafiltration by hemodialysis and mini-laparotomy. The patient's acute dyspnea was immediately resolved. The second episode of acute dyspnea was caused by COVID-19 pneumonia, which occurred 1 week after the first episode. This case suggests the importance of identifying heart failure and beginning adequate treatment, in COVID-19 patients with PD.
Collapse
Affiliation(s)
- Naohiro Toda
- Department of Nephrology, Kansai Electric Power Hospital, 2-1-7, Fukushima, Fukushima-ku 54, Osaka, 553-0003, Japan.
- Division of Renal Disease and Blood Purification, Kansai Electric Power Medical Research Institute, Kobe, Japan.
| | - Jun Takeoka
- Department of Nephrology, Kansai Electric Power Hospital, 2-1-7, Fukushima, Fukushima-ku 54, Osaka, 553-0003, Japan
| | - Katsuya Tanigaki
- Department of Nephrology, Kansai Electric Power Hospital, 2-1-7, Fukushima, Fukushima-ku 54, Osaka, 553-0003, Japan
| | - Hisako Hirashima
- Department of Nephrology, Kansai Electric Power Hospital, 2-1-7, Fukushima, Fukushima-ku 54, Osaka, 553-0003, Japan
| | - Masaaki Fujita
- Department of Nephrology, Kansai Electric Power Hospital, 2-1-7, Fukushima, Fukushima-ku 54, Osaka, 553-0003, Japan
| | - Toshiyuki Komiya
- Department of Nephrology, Kansai Electric Power Hospital, 2-1-7, Fukushima, Fukushima-ku 54, Osaka, 553-0003, Japan
- Division of Renal Disease and Blood Purification, Kansai Electric Power Medical Research Institute, Kobe, Japan
| |
Collapse
|
39
|
Homme RP, George AK, Singh M, Smolenkova I, Zheng Y, Pushpakumar S, Tyagi SC. Mechanism of Blood-Heart-Barrier Leakage: Implications for COVID-19 Induced Cardiovascular Injury. Int J Mol Sci 2021; 22:ijms222413546. [PMID: 34948342 PMCID: PMC8706694 DOI: 10.3390/ijms222413546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Although blood–heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.
Collapse
|
40
|
Aleksova A, Sinagra G, Beltrami AP, Pierri A, Ferro F, Janjusevic M, Gagno G. Biomarkers in the management of acute heart failure: state of the art and role in COVID-19 era. ESC Heart Fail 2021; 8:4465-4483. [PMID: 34609075 PMCID: PMC8652929 DOI: 10.1002/ehf2.13595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Acute heart failure (AHF) affects millions of people worldwide, and it is a potentially life‐threatening condition for which the cardiologist is more often brought into play. It is crucial to rapidly identify, among patients presenting with dyspnoea, those with AHF and to accurately stratify their risk, in order to define the appropriate setting of care, especially nowadays due to the coronavirus disease 2019 (COVID‐19) outbreak. Furthermore, with physical examination being limited by personal protective equipment, the use of new alternative diagnostic and prognostic tools could be of extreme importance. In this regard, usage of biomarkers, especially when combined (a multimarker approach) is beneficial for establishment of an accurate diagnosis, risk stratification and post‐discharge monitoring. This review highlights the use of both traditional biomarkers such as natriuretic peptides (NP) and troponin, and emerging biomarkers such as soluble suppression of tumourigenicity (sST2) and galectin‐3 (Gal‐3), from patients' emergency admission to discharge and follow‐up, to improve risk stratification and outcomes in terms of mortality and rehospitalization.
Collapse
Affiliation(s)
- Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, Via Valdoni 7, Trieste, 34149, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, Via Valdoni 7, Trieste, 34149, Italy
| | - Antonio P Beltrami
- Clinical Pathology Department, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC) and Department of Medicine (DAME), University of Udine, Udine, 33100, Italy
| | - Alessandro Pierri
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, Via Valdoni 7, Trieste, 34149, Italy
| | | | - Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, Via Valdoni 7, Trieste, 34149, Italy
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, Via Valdoni 7, Trieste, 34149, Italy
| |
Collapse
|
41
|
Touyz RM, Boyd MO, Guzik T, Padmanabhan S, McCallum L, Delles C, Mark PB, Petrie JR, Rios F, Montezano AC, Sykes R, Berry C. Cardiovascular and Renal Risk Factors and Complications Associated With COVID-19. CJC Open 2021; 3:1257-1272. [PMID: 34151246 PMCID: PMC8205551 DOI: 10.1016/j.cjco.2021.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
The current COVID-19 pandemic, caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus, represents the largest medical challenge in decades. It has exposed unexpected cardiovascular vulnerabilities at all stages of the disease (pre-infection, acute phase, and subsequent chronic phase). The major cardiometabolic drivers identified as having epidemiologic and mechanistic associations with COVID-19 are abnormal adiposity, dysglycemia, dyslipidemia, and hypertension. Hypertension is of particular interest, because components of the renin-angiotensin system (RAS), which are critically involved in the pathophysiology of hypertension, are also implicated in COVID-19. Specifically, angiotensin-converting enzyme-2 (ACE2), a multifunctional protein of the RAS, which is part of the protective axis of the RAS, is also the receptor through which SARS-CoV-2 enters host cells, causing viral infection. Cardiovascular and cardiometabolic comorbidities not only predispose people to COVID-19, but also are complications of SARS-CoV-2 infection. In addition, increasing evidence indicates that acute kidney injury is common in COVID-19, occurs early and in temporal association with respiratory failure, and is associated with poor prognosis, especially in the presence of cardiovascular risk factors. Here, we discuss cardiovascular and kidney disease in the context of COVID-19 and provide recent advances on putative pathophysiological mechanisms linking cardiovascular disease and COVID-19, focusing on the RAS and ACE2, as well as the immune system and inflammation. We provide up-to-date information on the relationships among hypertension, diabetes, and COVID-19 and emphasize the major cardiovascular diseases associated with COVID-19. We also briefly discuss emerging cardiovascular complications associated with long COVID-19, notably postural tachycardia syndrome (POTS).
Collapse
Affiliation(s)
- Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Marcus O.E. Boyd
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Linsay McCallum
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Patrick B. Mark
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - John R. Petrie
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Robert Sykes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Colin Berry
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
42
|
Tumor Necrosis Factor-Alpha Exacerbates Viral Entry in SARS-CoV2-Infected iPSC-Derived Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22189869. [PMID: 34576032 PMCID: PMC8470197 DOI: 10.3390/ijms22189869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.
Collapse
|
43
|
In-depth review of cardiopulmonary support in COVID-19 patients with heart failure. World J Cardiol 2021. [DOI: 10.4330/wjc.v13.i8.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
44
|
Raffaello WM, Huang I, Budi Siswanto B, Pranata R. In-depth review of cardiopulmonary support in COVID-19 patients with heart failure. World J Cardiol 2021; 13:298-308. [PMID: 34589166 PMCID: PMC8436686 DOI: 10.4330/wjc.v13.i8.298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 infection has spread worldwide and causing massive burden to our healthcare system. Recent studies show multiorgan involvement during infection, with direct insult to the heart. Worsening of the heart function serves as a predictor of an adverse outcome. This finding raises a particular concern in high risk population, such as those with history of preexisting heart failure with or without implantable device. Lower baseline and different clinical characteristic might raise some challenge in managing either exacerbation or new onset heart failure that might occur as a consequence of the infection. A close look of the inflammatory markers gives an invaluable clue in managing this condition. Rapid deterioration might occur anytime in this setting and the need of cardiopulmonary support seems inevitable. However, the use of cardiopulmonary support in this patient is not without risk. Severe inflammatory response triggered by the infection in combination with the preexisting condition of the worsening heart and implantable device might cause a hypercoagulability state that should not be overlooked. Moreover, careful selection and consideration have to be met before selecting cardiopulmonary support as a last resort due to limited resource and personnel. By knowing the nature of the disease, the interaction between the inflammatory response and different baseline profile in heart failure patient might help clinician to salvage and preserve the remaining function of the heart.
Collapse
Affiliation(s)
| | - Ian Huang
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Bambang Budi Siswanto
- Department of Cardiology and Vascular Medicine, National Cardiovascular Center Harapan Kita, Universitas Indonesia, Jakarta 11420, Indonesia
| | - Raymond Pranata
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang 15810, Indonesia.
| |
Collapse
|
45
|
Abstract
Since its emergence in Wuhan, China, covid-19 has spread and had a profound effect on the lives and health of people around the globe. As of 4 July 2021, more than 183 million confirmed cases of covid-19 had been recorded worldwide, and 3.97 million deaths. Recent evidence has shown that a range of persistent symptoms can remain long after the acute SARS-CoV-2 infection, and this condition is now coined long covid by recognized research institutes. Studies have shown that long covid can affect the whole spectrum of people with covid-19, from those with very mild acute disease to the most severe forms. Like acute covid-19, long covid can involve multiple organs and can affect many systems including, but not limited to, the respiratory, cardiovascular, neurological, gastrointestinal, and musculoskeletal systems. The symptoms of long covid include fatigue, dyspnea, cardiac abnormalities, cognitive impairment, sleep disturbances, symptoms of post-traumatic stress disorder, muscle pain, concentration problems, and headache. This review summarizes studies of the long term effects of covid-19 in hospitalized and non-hospitalized patients and describes the persistent symptoms they endure. Risk factors for acute covid-19 and long covid and possible therapeutic options are also discussed.
Collapse
Affiliation(s)
- Harry Crook
- Faculty of Medicine, Imperial College London, London, UK
| | - Sanara Raza
- Faculty of Medicine, Imperial College London, London, UK
| | - Joseph Nowell
- Faculty of Medicine, Imperial College London, London, UK
| | - Megan Young
- Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Faculty of Medicine, Imperial College London, London, UK
- Cardiff University, Cardiff, UK
| |
Collapse
|
46
|
Cicco S, Vacca A, Cariddi C, Carella R, Altamura G, Solimando AG, Lauletta G, Pappagallo F, Cirulli A, Stragapede A, Susca N, Grasso S, Ria R. Imaging Evaluation of Pulmonary and Non-Ischaemic Cardiovascular Manifestations of COVID-19. Diagnostics (Basel) 2021; 11:1271. [PMID: 34359355 PMCID: PMC8304239 DOI: 10.3390/diagnostics11071271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) has been a pandemic challenge for the last year. Cardiovascular disease is the most described comorbidity in COVID-19 patients, and it is related to the disease severity and progression. COVID-19 induces direct damage on cardiovascular system, leading to arrhythmias and myocarditis, and indirect damage due to endothelial dysfunction and systemic inflammation with a high inflammatory burden. Indirect damage leads to myocarditis, coagulation abnormalities and venous thromboembolism, Takotsubo cardiomyopathy, Kawasaki-like disease and multisystem inflammatory syndrome in children. Imaging can support the management, assessment and prognostic evaluation of these patients. Ultrasound is the most reliable and easy to use in emergency setting and in the ICU as a first approach. The focused approach is useful in management of these patients due its ability to obtain quick and focused results. This tool is useful to evaluate cardiovascular disease and its interplay with lungs. However, a detailed echocardiography evaluation is necessary in a complete assessment of cardiovascular involvement. Computerized tomography is highly sensitive, but it might not always be available. Cardiovascular magnetic resonance and nuclear imaging may be helpful to evaluate COVID-19-related myocardial injury, but further studies are needed. This review deals with different modalities of imaging evaluation in the management of cardiovascular non-ischaemic manifestations of COVID-19, comparing their use in emergency and in intensive care.
Collapse
Affiliation(s)
- Sebastiano Cicco
- Internal Medicine Unit “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (R.C.); (A.G.S.); (G.L.); (F.P.); (A.C.); (A.S.); (N.S.); (R.R.)
| | - Antonio Vacca
- Division of Internal Medicine, Department of Medicine, Building 8, University of Udine, I-33100 Udine, Italy;
| | - Christel Cariddi
- Anesthesiology and Intensive Care Unit, Department of Emergency and Organ Transplantation (DETO) Ospedale Policlinico, University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (C.C.); (G.A.); (S.G.)
| | - Rossella Carella
- Internal Medicine Unit “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (R.C.); (A.G.S.); (G.L.); (F.P.); (A.C.); (A.S.); (N.S.); (R.R.)
| | - Gianluca Altamura
- Anesthesiology and Intensive Care Unit, Department of Emergency and Organ Transplantation (DETO) Ospedale Policlinico, University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (C.C.); (G.A.); (S.G.)
| | - Antonio Giovanni Solimando
- Internal Medicine Unit “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (R.C.); (A.G.S.); (G.L.); (F.P.); (A.C.); (A.S.); (N.S.); (R.R.)
| | - Gianfranco Lauletta
- Internal Medicine Unit “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (R.C.); (A.G.S.); (G.L.); (F.P.); (A.C.); (A.S.); (N.S.); (R.R.)
| | - Fabrizio Pappagallo
- Internal Medicine Unit “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (R.C.); (A.G.S.); (G.L.); (F.P.); (A.C.); (A.S.); (N.S.); (R.R.)
| | - Anna Cirulli
- Internal Medicine Unit “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (R.C.); (A.G.S.); (G.L.); (F.P.); (A.C.); (A.S.); (N.S.); (R.R.)
| | - Assunta Stragapede
- Internal Medicine Unit “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (R.C.); (A.G.S.); (G.L.); (F.P.); (A.C.); (A.S.); (N.S.); (R.R.)
| | - Nicola Susca
- Internal Medicine Unit “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (R.C.); (A.G.S.); (G.L.); (F.P.); (A.C.); (A.S.); (N.S.); (R.R.)
| | - Salvatore Grasso
- Anesthesiology and Intensive Care Unit, Department of Emergency and Organ Transplantation (DETO) Ospedale Policlinico, University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (C.C.); (G.A.); (S.G.)
| | - Roberto Ria
- Internal Medicine Unit “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Azienda Ospedaliero-Universitaria Policlinico, Piazza G. Cesare 11, I-70124 Bari, Italy; (R.C.); (A.G.S.); (G.L.); (F.P.); (A.C.); (A.S.); (N.S.); (R.R.)
| |
Collapse
|
47
|
Veluswamy P, Wacker M, Stavridis D, Reichel T, Schmidt H, Scherner M, Wippermann J, Michels G. The SARS-CoV-2/Receptor Axis in Heart and Blood Vessels: A Crisp Update on COVID-19 Disease with Cardiovascular Complications. Viruses 2021; 13:1346. [PMID: 34372552 PMCID: PMC8310117 DOI: 10.3390/v13071346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.
Collapse
Affiliation(s)
- Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Dimitrios Stavridis
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Thomas Reichel
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Hendrik Schmidt
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Guido Michels
- Department of Acute and Emergency Care, Sankt Antonius-Hospital Eschweiler, 52249 Eschweiler, Germany;
| |
Collapse
|