1
|
Zhong C, Deng K, Lang X, Shan D, Xie Y, Pan W, Yu J. Therapeutic potential of natural flavonoids in atherosclerosis through endothelium-protective mechanisms: An update. Pharmacol Ther 2025; 271:108864. [PMID: 40274196 DOI: 10.1016/j.pharmthera.2025.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Atherosclerosis and its associated cardiovascular complications remain significant global public health challenges, underscoring the urgent need for effective therapeutic strategies. Endothelial cells are critical for maintaining vascular health and homeostasis, and their dysfunction is a key contributor to the initiation and progression of atherosclerosis. Targeting endothelial dysfunction has, therefore, emerged as a promising approach for the prevention and management of atherosclerosis. Among natural products, flavonoids, a diverse class of plant-derived phenolic compounds, have garnered significant attention for their anti-atherosclerotic properties. A growing body of evidence demonstrates that flavonoids can mitigate endothelial dysfunction, highlighting their potential as endothelial dysfunction-targeted therapeutics for atherosclerosis. In this review, we summarize current knowledge on the roles of natural flavonoids in modulating various aspects of endothelial dysfunction and their therapeutic effects on atherosclerosis, focusing on the underlying molecular mechanisms. We also discuss the challenges and future prospects of translating natural flavonoids into clinical applications for cardiovascular medicine. This review aims to provide critical insights to advance the development of novel endothelium-protective pharmacotherapies for atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Dan Shan
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yanfei Xie
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Zeng X, Qiu R, Peng W. The protective effects of annexin A1 against oxidized-LDL-induced monocytes adhesion to endothelial cells: implication in atherosclerosis. J Thromb Thrombolysis 2025; 58:267-275. [PMID: 39397189 DOI: 10.1007/s11239-024-03050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-associated endothelial dysfunction is a critical factor in the initiation and progression of Atherosclerosis (AS). Annexin A1 is an important member of the annexin family. Despite its wide range of biological functions across various tissues and cells, the role of Annexin A1 in AS remains largely unexplored. In this study, we demonstrate that Annexin A1 treatment effectively reduced the expression of LOX-1 at both the mRNA and protein levels in HUVECs exposed to ox-LDL. Annexin A1 also ameliorated oxidative stress (OS) by decreasing mitochondrial ROS levels and restoring reduced GSH levels. Moreover, Annexin A1 decreased the expression of pro-inflammatory cytokines, including IL-6 and MCP-1. Importantly, Annexin A1 inhibited ox-LDL-induced expressions of the endothelial adhesion molecules, such as E-selectin and VCAM-1 in HUVECs, which leads to reduced attachment of THP-1 monocytes to HUVECs. Mechanically, we found that Annexin A1 reversed the expression of KLF2 against ox-LDL mediated by the PI3K/Akt axis. Notably, the silencing of KLF2 abrogated the protective effects of Annexin A1 on E-selectin and VCAM-1 expression and the attachment of THP-1 monocytes to HUVECs. Our findings suggest that Annexin A1 is a potential therapeutic agent for atherosclerosis, offering a novel approach to mitigate endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Department of Cardiology, Jingzhou Central Hospital, No. 26, Chu Yuan Road, Jingzhou, Hubei, 434020, China.
| | - Ruhui Qiu
- Department of Cardiology, Jingzhou Central Hospital, No. 26, Chu Yuan Road, Jingzhou, Hubei, 434020, China
| | - Wen Peng
- Department of Cardiology, Jingzhou Central Hospital, No. 26, Chu Yuan Road, Jingzhou, Hubei, 434020, China
| |
Collapse
|
3
|
Huang M, Xie X, Yuan R, Xin Q, Ma S, Guo H, Miao Y, Hu C, Zhu Y, Cong W. The multifaceted anti-atherosclerotic properties of herbal flavonoids: A comprehensive review. Pharmacol Res 2025; 211:107551. [PMID: 39701504 DOI: 10.1016/j.phrs.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Atherosclerosis (AS) is a major etiological factor underpinning a spectrum of cardiovascular diseases, leading to cerebral infarction, coronary artery disease, and peripheral vascular disease. The chronic progression of AS, spanning from initial plaque formation to the occurrence of acute cardiovascular events, underscores the complexity of AS and the challenges it presents in terms of treatment. Currently, the clinical management of AS relies predominantly on statins and proprotein convertase subtilisin/kexin type 9 inhibitors, which primarily aim to reduce low-density lipoprotein levels and have demonstrated some therapeutic efficacy. Nevertheless, due to their potential side effects, there is a pressing need to actively investigate alternative treatment approaches. Researches on natural compounds derived from herbal medicines, such as flavonoids, hold significant promise in combating AS by regulating lipid metabolism, reducing oxidative stress and inflammation, inhibiting the proliferation of vascular smooth muscle cells, modulating autophagy and additional pathways. Various targets participate in these physiological processes, encompassing acyl-CoA: cholesterol acyltransferase (ACAT), ATP citrate lyase (ACLY), nuclear factor erythroid 2-related factor 2 (Nrf2), krüppel-like factor 2 (KLF2), NOD-like receptor protein 3 (NLRP3), transcription factor EB (TFEB) and so on. This comprehensive review endeavors to synthesize and analyse the most recent findings on herbal flavonoids, shedding light on their anti-atherosclerotic potential and the underlying protective mechanisms and related-targets, which might pave the way for the development of novel drug candidates or the optimization of flavonoid-based therapies.
Collapse
Affiliation(s)
- Meiwen Huang
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuena Xie
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hongai Guo
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chunyu Hu
- Department of Teaching Quality Construction, Graduate School, China Academy of Chinese Medical Sciences, 100700, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Weihong Cong
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
4
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
5
|
Xu H, Li X, Liu K, Huang P, Liu XJ. PM2.5 Promotes Macrophage-Mediated Inflammatory Response Through Airway Epithelial Cell-Derived Exosomal miR-155-5p. J Inflamm Res 2024; 17:8555-8567. [PMID: 39539727 PMCID: PMC11559224 DOI: 10.2147/jir.s482509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Background Airway epithelial cells (AECs) and alveolar macrophages are involved in airway inflammation. The direct effects of atmospheric fine-particulate-matter (PM2.5) on airway cells, such as AECs and alveolar macrophages, have been widely investigated, but the effect of cell-cell interaction on inflammatory response remains unclear. Exosomes play a crucial role in intercellular communication. However, the cellular interaction of exosomes in PM2.5-induced airway inflammation is unclear. Methods The PM2.5-induced human bronchial epithelial (BEAS-2B) cells and phorbol 12-myristate 13-acetate-induced macrophages (Mφ) were co-cultured and then the expression of IL-6, IL-1β, TNF-α and miRNA-155-5p were detected. Exosomes from PM2.5-exposed BEAS-2B cells were then co-cultured with Mφ to detect the expression of miR-155-5p and inflammatory cytokines, as well as cytokine signaling inhibitor-1 (SOCS1)/NFκB, and to detect the effect of the exosome inhibitor GW4869. Results After the co-culture of PM2.5-induced BEAS-2B cells and Mφ, the expression of Mφ-derived IL-6, IL-1β, and TNF-α, as well as miRNA-155-5p were upregulated. The expression of miRNA-155-5p was upregulated in BEAS-2B and BEAS-2B cell-derived exosomes after exposure to PM2.5. Furthermore, co-culturing exosomes derived from PM2.5-exposed BEAS-2B cells with Mφ, upregulated miR-155-5p and inflammatory cytokines, decreased cytokine signaling inhibitor-1 (SOCS1) expression, and activated NF-κB. In addition, adding exosome inhibitor GW4869 to PM2.5-interfered BEAS-2B cells co-culture with Mφ downregulated miRNA-155-5p expression, inhibited NF-κB, and reduced the levels of inflammatory factors. Conclusion PM2.5 promotes Mφ inflammation by upregulating miRNA-155-5P in exosomes obtained from BEAS-2B cells through miR-155-5P/SOCS1/NF-κB pathway. Exosomal miRNAs mediate cellular communication between BEAS-2B cells and Mφ, which may be a new mechanism of PM2.5-stimulated pulmonary inflammatory response.
Collapse
Affiliation(s)
- Hui Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Kai Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Ping Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Xiao-Ju Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
6
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
7
|
Shan L, Tao M, Zhang W, Zhao JD, Liu XC, Fang ZH, Gao JR. Comprehensive analysis of the m 6A demethylase FTO in endothelial dysfunction by MeRIP sequencing. Exp Cell Res 2024; 442:114268. [PMID: 39343042 DOI: 10.1016/j.yexcr.2024.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
N6-methyladenosine (m6A) is the most general post-transcriptional modification of eukaryotic mRNAs and long-stranded non-coding RNAs. In this process, It has been shown that FTO associates with the m6A mRNA demethylase and plays a role in diabetic vascular endothelial dysfunction. In the present study, we detected FTO protein expression in HUVECs by Western blot and found that FTO was highly expressed in all disease groups relative to the control group. To explore the mechanism of FTO in T2DM vasculopathy, we performed an analysis by methylated RNA immunoprecipitation sequencing (MeRIP-seq) to elucidate the role of aberrant m6A modification and mRNA expression in endothelial dysfunction. The results showed 202 overlapping genes with varying m6A modifications and varied mRNA expression, and GO and KEGG enrichment analysis revealed that these genes were predominantly enriched in pathways associated with T2DM complications and endothelial dysfunction. By an integrated analysis of MeRIP-seq and RNA-seq results, the IGV plots showed elevated kurtosis of downstream candidate gene modifications, which may be downstream targets for FTO to exercise biological functions. HOXA9 and PLAU mRNA expression levels were significantly down after FTO inhibition. In the current work, we set up a typological profile of the m6A genes among HUVECs as well as uncovered a hidden relationship between RNA methylation modifications for T2DM vasculopathy-associated genes. Taken together, this study indicates that endothelial functional impairment is present in T2DM patients and may be related to aberrant expression of FTO.
Collapse
Affiliation(s)
- Li Shan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Meng Tao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Wei Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Jin-Dong Zhao
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Xiao-Chuang Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Zhao-Hui Fang
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
8
|
Cui X, Wang B, Han D, Cheng M, Yuan P, Du P, Hou Y, Su C, Tang J, Zhang J. Exacerbation of atherosclerosis by STX17 knockdown: Unravelling the role of autophagy and inflammation. J Cell Mol Med 2024; 28:e18402. [PMID: 39008328 PMCID: PMC11133389 DOI: 10.1111/jcmm.18402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 07/16/2024] Open
Abstract
Syntaxin 17 (STX17) has been identified as a crucial factor in mediating the fusion of autophagosomes and lysosomes. However, its specific involvement in the context of atherosclerosis (AS) remains unclear. This study sought to elucidate the role and mechanistic contributions of STX17 in the initiation and progression of AS. Utilizing both in vivo and in vitro AS model systems, we employed ApoE knockout (KO) mice subjected to a high-fat diet and human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) to assess STX17 expression. To investigate underlying mechanisms, we employed shRNA-STX17 lentivirus to knock down STX17 expression, followed by evaluating autophagy and inflammation in HUVECs. In both in vivo and in vitro AS models, STX17 expression was significantly upregulated. Knockdown of STX17 exacerbated HUVEC damage, both with and without ox-LDL treatment. Additionally, we observed that STX17 knockdown impaired autophagosome degradation, impeded autophagy flux and also resulted in the accumulation of dysfunctional lysosomes in HUVECs. Moreover, STX17 knockdown intensified the inflammatory response following ox-LDL treatment in HUVECs. Further mechanistic exploration revealed an association between STX17 and STING; reducing STX17 expression increased STING levels. Further knockdown of STING enhanced autophagy flux. In summary, our findings suggest that STX17 knockdown worsens AS by impeding autophagy flux and amplifying the inflammatory response. Additionally, the interaction between STX17 and STING may play a crucial role in STX17-mediated autophagy.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Bo Wang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Dongjian Han
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Mengdie Cheng
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Peiyu Yuan
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Pengchong Du
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Yachen Hou
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Chang Su
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Junnan Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| | - Jinying Zhang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhouHenanChina
| |
Collapse
|
9
|
Liang C, Wang P, Li M, Li R, Lai KP, Chen J. Anti-cancer mechanisms of natural isoflavones against melanoma. Heliyon 2024; 10:e28616. [PMID: 38586368 PMCID: PMC10998210 DOI: 10.1016/j.heliyon.2024.e28616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
The incidence of skin-related neoplasms has generally increased in recent years. Melanoma arises from malignant mutations in melanocytes in the basal layer of the epidermis and is a fatal skin cancer that seriously threatens human health. Isoflavones are polyphenolic compounds widely present in legumes and have drawn scientists' attention, because they have good efficacy against a variety of cancers, including melanoma, without significant toxic side effects and resistance. In this review article, we summarize the research progress of isoflavones in melanoma, including anti-melanoma roles and mechanisms of isoflavones via inhibition of tyrosinase activity, melanogenesis, melanoma cell growth, invasion of melanoma cells, and induction of apoptosis in melanoma cells. This information is important for the prevention, clinical treatment, and prognosis and survival of melanoma.
Collapse
Affiliation(s)
- Cheng Liang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ping Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Mengzhen Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
10
|
Chen J, Zhou L, Li X, Wu X, Li Y, Si L, Deng Y. Protective effect of zerumbone on sepsis-induced acute lung injury through anti-inflammatory and antioxidative activity via NF-κB pathway inhibition and HO-1 activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2241-2255. [PMID: 37812239 DOI: 10.1007/s00210-023-02706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Sepsis is a systemic illness for which there are no effective preventive or therapeutic therapies. Zerumbone, a natural molecule, has anti-oxidative and anti-inflammatory properties that may help to prevent sepsis. In the present study, we have assessed the protective effect of zerumbone against sepsis-induced acute lung injury (ALI) and its underlying mechanisms. During the experiment, mice were divided into five groups: a sham group, a sepsis-induced ALI group, and three sepsis groups that are pre-treated with zerumbone at different concentrations. We found that zerumbone greatly decreased the sepsis-induced ALI using histological investigations. Also, zerumbone treatment reduced the sepsis-induced inflammatory cytokine concentrations as well as the number of infiltrating inflammatory cells in BALF compared to non-treated sepsis animals. The zerumbone-pretreated sepsis groups had reduced pulmonary myeloperoxidase (MPO) activity than the sepsis groups. Moreover, the mechanism underlying the protective action of zerumbone on sepsis is accomplished by the activation of antioxidant genes such as nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), superoxide dismutase (SOD), and heme oxygenase 1 (HO-1). The obtained results revealed that zerumbone inhibited the sepsis-induced ALI through its anti-inflammatory and antioxidative activity via inhibition of the NF-κB pathway and activation of HO-1 pathway. Our findings demonstrate that zerumbone pretreatment suppresses sepsis-induced ALI via antioxidative activities and anti-inflammatory, implying that zerumbone could be a viable preventive agent for sepsis-induced ALI.
Collapse
Affiliation(s)
- Jianjun Chen
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Liangliang Zhou
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xinxin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xufeng Wu
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yingbin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yijun Deng
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China.
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China.
| |
Collapse
|
11
|
Brunelle DC, Larson KJ, Bundy A, Roemmich JN, Warne D, Redvers N. Chokeberry reduces inflammation in human preadipocytes. J Funct Foods 2024; 112:105947. [PMID: 38644957 PMCID: PMC11031191 DOI: 10.1016/j.jff.2023.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
Chokeberry, Aronia melanocarpa, is an indigenous fruit from North America used as food and to prevent chronic disease by Indigenous Peoples. The objective of this study was to test anti-inflammatory effects of anthocyanin on palmitic acid (PA)-induced IL-6 gene expression, IL-6 DNA methylation, and histone (H3) acetylation. Additionally, we examined effects of anthocyanins Cyanidin-3-O-galactoside (C3Gal) and Cyanidin-3-glucoside (C3G) on IL-6 gene expression. Human primary pre-adipocytes were treated with chokeberry juice extract (CBE), C3Gal or C3G in the presence or absence of PA or lipopolysaccharide (LPS). CBE inhibited LPS- and PA-induced IL-6 mRNA expression (p < 0.0001), while C3G and C3Gal had smaller effects. Human IL-6 promoter DNA methylation was increased (p = 0.0256) in CBE treated cells compared to control. Histone H3 acetylations were not affected by CBE or PA treatment. These data indicate that CBE epigenetically reduced PA-induced inflammation by regulating IL-6 DNA methylation without affecting histone modifications in human preadipocyte cells.
Collapse
Affiliation(s)
- Dale C. Brunelle
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Kate J. Larson
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Amy Bundy
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - James N. Roemmich
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Donald Warne
- Department of Indigenous Health, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, United States
| | - Nicole Redvers
- Department of Indigenous Health, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58203, United States
- Schulich School of Medicine & Health Sciences, Western University, London, ON N6G 2M1, Canada
| |
Collapse
|
12
|
Tamargo IA, Baek KI, Kim Y, Park C, Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol 2023; 20:738-753. [PMID: 37225873 PMCID: PMC10206587 DOI: 10.1038/s41569-023-00883-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Atherosclerotic diseases such as myocardial infarction, ischaemic stroke and peripheral artery disease continue to be leading causes of death worldwide despite the success of treatments with cholesterol-lowering drugs and drug-eluting stents, raising the need to identify additional therapeutic targets. Interestingly, atherosclerosis preferentially develops in curved and branching arterial regions, where endothelial cells are exposed to disturbed blood flow with characteristic low-magnitude oscillatory shear stress. By contrast, straight arterial regions exposed to stable flow, which is associated with high-magnitude, unidirectional shear stress, are relatively well protected from the disease through shear-dependent, atheroprotective endothelial cell responses. Flow potently regulates structural, functional, transcriptomic, epigenomic and metabolic changes in endothelial cells through mechanosensors and mechanosignal transduction pathways. A study using single-cell RNA sequencing and chromatin accessibility analysis in a mouse model of flow-induced atherosclerosis demonstrated that disturbed flow reprogrammes arterial endothelial cells in situ from healthy phenotypes to diseased ones characterized by endothelial inflammation, endothelial-to-mesenchymal transition, endothelial-to-immune cell-like transition and metabolic changes. In this Review, we discuss this emerging concept of disturbed-flow-induced reprogramming of endothelial cells (FIRE) as a potential pro-atherogenic mechanism. Defining the flow-induced mechanisms through which endothelial cells are reprogrammed to promote atherosclerosis is a crucial area of research that could lead to the identification of novel therapeutic targets to combat the high prevalence of atherosclerotic disease.
Collapse
Affiliation(s)
- Ian A Tamargo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA.
- Department of Medicine, Emory University School, Atlanta, GA, USA.
| |
Collapse
|
13
|
Zhou Y, Tai S, Zhang N, Fu L, Wang Y. Dapagliflozin prevents oxidative stress-induced endothelial dysfunction via sirtuin 1 activation. Biomed Pharmacother 2023; 165:115213. [PMID: 37517289 DOI: 10.1016/j.biopha.2023.115213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Recent studies have demonstrated that dapagliflozin, a sodium-glucose cotransporter type 2 (SGLT2) inhibitor, prevents endothelial dysfunction; however, direct effects of dapagliflozin on the endothelium under oxidative stress and the underlying mechanism of action are not completely understood. This study aimed to define the role and related mechanisms of dapagliflozin in hydrogen peroxide (H2O2)-induced endothelial dysfunction. The endothelium-dependent vasorelaxation effect of dapagliflozin was assessed in an organ bath study. Endothelial dysfunction was assessed using protein expression level and phosphorylation of endothelial nitric oxide synthase (eNOS), nitric oxide (NO), reactive oxygen species (ROS), senescence-associated beta-galactosidase (SA-β-gal) activity, and senescence marker proteins (p21, p53). Co-immunoprecipitation and protein acetylation were performed to detect protein interactions. Dapagliflozin exerted a direct vasorelaxant effect in the aortic rings of C57BL/6 J mice. Furthermore, there was a significant improvement in endothelium-dependent vasorelaxation in dapagliflozin-treated diabetic mice compared to vehicle controls. Moreover, intracellular ROS levels and ONOO- levels, increased by H2O2, were reduced by dapagliflozin. Importantly, dapagliflozin inhibited H2O2-induced senescence in the human umbilical vein endothelial cells (HUVECs), as indicated by reduced SA-β-gal, p21, and p53. Mechanistically, dapagliflozin reversed the H2O2-mediated inhibition of eNOS serine phosphorylation and sirtuin 1 (SIRT1) expression in endothelial cells. In particular, SIRT1-mediated eNOS deacetylation is reportedly involved in dapagliflozin-enhanced eNOS activity. These findings indicate that dapagliflozin ameliorates endothelial dysfunction by restoring eNOS activity, restoring NO bioavailability, and reducing ROS generation via SIRT1 activation in oxidative stress-stimulated endothelial cells.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha 410011, China; Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Liyao Fu
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha 410011, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410000, China.
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha 410011, China.
| |
Collapse
|
14
|
Gao Y, Wang R, Li L, He Y, Yuan D, Zhang Y, Hu Y, Wang S, Yuan C. Total saponins from Panax japonicus reduce inflammation in adipocytes through the miR155/SOCS1/NFκB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154827. [PMID: 37087792 DOI: 10.1016/j.phymed.2023.154827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The rising incidence of metabolic diseases due to chronic inflammation in the adipose tissue has been attributed to factors such as high fat diet (HFD). Previous studies have demonstrated that the total saponins from Panax japonicus (TSPJ) can reduce HFD-induced adipocyte inflammation, but the underlying mechanism remains unclear. In this work, we explored the molecular mechanism by which TSPJ reduces inflammation response in adipocytes. METHODS We first established C57BL/6 mouse and 3T3-L1 adipocyte models. Lentiviruses packaged with the plasmids were injected into mice through the tail vein or into adipocytes to generate the in vivo and in vitro models with miR155 knockdown and overexpression. The mice were fed with HFD to trigger inflammation and administered TSPJ (25 mg/kg∙d and 75 mg/kg∙d) by gavage. The adipocytes were treated with palmitic acid (PA) to trigger inflammation response, then treated with TSPJ (25 μg/ml and 50 μg/ml). Finally, the expression of miR155, inflammatory factors, SOCS1, and NFκB pathway-related proteins was explored. RESULTS TSPJ significantly inhibited the expression of inflammation-related genes and the miR155 expression in adipocytes both in vitro and in vivo. The dual luciferase reporter gene assay revealed that miR155 mediated the downregulation of SOCS1. TSPJ significantly inhibited and upregulated the phosphorylation of the NFκB protein and the SOCS1 proteins, respectively. CONCLUSION TSPJ inhibits miR155 to upregulate the SOCS1 expression, which subsequently inhibits the NFκB signaling pathway, thereby mitigating the inflammatory response in the adipocytes of HFD mice.
Collapse
Affiliation(s)
- Yan Gao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Luoying Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
15
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
16
|
Fu Z, Zhao PY, Yang XP, Li H, Hu SD, Xu YX, Du XH. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front Pharmacol 2023; 14:1094020. [PMID: 36755953 PMCID: PMC9899821 DOI: 10.3389/fphar.2023.1094020] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Cannabidiol (CBD) is a terpenoid naturally found in plants. The purified compound is used in the treatment of mental disorders because of its antidepressive, anxiolytic, and antiepileptic effects. CBD can affect the regulation of several pathophysiologic processes, including autophagy, cytokine secretion, apoptosis, and innate and adaptive immune responses. However, several authors have reported contradictory findings concerning the magnitude and direction of CBD-mediated effects. For example, CBD treatment can increase, decrease, or have no significant effect on autophagy and apoptosis. These variable results can be attributed to the differences in the biological models, cell types, and CBD concentration used in these studies. This review focuses on the mechanism of regulation of autophagy and apoptosis in inflammatory response and cancer by CBD. Further, we broadly elaborated on the prospects of using CBD as an anti-inflammatory agent and in cancer therapy in the future.
Collapse
Affiliation(s)
- Ze Fu
- Medical School of Chinese PLA, Beijing, China
| | | | | | - Hao Li
- Medical School of Chinese PLA, Beijing, China
| | - Shi-Dong Hu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying-Xin Xu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Xiao-Hui Du,
| |
Collapse
|
17
|
Yao H, Zhao X, Wang L, Ren Y. Atorvastatin ameliorated PM 2.5-induced atherosclerosis in rats. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2023:1-6. [PMID: 36660941 DOI: 10.1080/19338244.2023.2166892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
PM2.5 provokes atherosclerotic events. Atorvastatin presents anti-inflammatory and antioxidant activities, and may ameliorate PM2.5-induced atherosclerosis development. The purpose of this study was to investigate the cardiotoxic effect of fine particulate matter (PM2.5) on atherosclerosis (AS) in rats, and the intervention effects of atorvastatin (ATO) on PM2.5-induced AS development. AS model was established using 32 male Wistar rats through intraperitoneal injection of vitamin D3 combined with a high-fat diet (10% fat and 4% cholesterol). The rats were randomly divided into 4 groups: control group, PM2.5-exposed group, ATO group, and ATO treated PM2.5-exposed group. PM2.5 increased levels of TC, TG, LDL, MDA, IL-6, and TNF-α, as well as decreased SOD levels. Besides, PM2.5 also enhanced AI. After the treatment of ATO, most levels of various contents in serum, including TC, TG, LDL, MDA, IL-6, TNF-α, hS-CRP, and ox-LDL, significantly decreased compared to the PM2.5-exposed group. Moreover, after the treatment of ATO, AI was significantly reduced compared to the PM2.5-exposed group. In addition, PM2.5 exacerbated the nuclear translocation and ATO resulted in an obvious decrease in PM2.5-induced nuclear translocation. The present study suggests that PM2.5 could induce oxidative damage and systemic inflammatory response in atherosclerosis model rats, while ATO could ameliorate PM2.5-induced atherosclerosis development, possibly by lowering lipid, inhibiting inflammation, and suppressing oxidation.
Collapse
Affiliation(s)
- Hongmei Yao
- Department of Cardiology, the First Hospital of Shanxi Medical University, TaiYuan City, China
| | - Xingxing Zhao
- Department of Cardiology, the First Hospital of Shanxi Medical University, TaiYuan City, China
| | - Lili Wang
- Department of Cardiology, the First Hospital of Shanxi Medical University, TaiYuan City, China
| | - Yi Ren
- Department of Endocrinology, the First Hospital of Shanxi Medical University, TaiYuan City, China
| |
Collapse
|
18
|
Lin S, Lin R, Zhang H, Xu Q, He Y. Peripheral vascular remodeling during ischemia. Front Pharmacol 2022; 13:1078047. [PMID: 36532724 PMCID: PMC9751613 DOI: 10.3389/fphar.2022.1078047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 05/04/2025] Open
Abstract
About 230 million people worldwide suffer from peripheral arterial disease (PAD), and the prevalence is increasing year by year. Multiple risk factors, including smoking, dyslipidemia, diabetes, and hypertension, can contribute to the development of PAD. PAD is typically characterized by intermittent claudication and resting pain, and there is a risk of severe limb ischemia, leading to major adverse limb events, such as amputation. Currently, a major progress in the research field of the pathogenesis of vascular remodeling, including atherosclerosis and neointima hyperplasia has been made. For example, the molecular mechanisms of endothelial dysfunction and smooth muscle phenotype switching have been described. Interestingly, a series of focused studies on fibroblasts of the vessel wall has demonstrated their impact on smooth muscle proliferation and even endothelial function via cell-cell communications. In this review, we aim to focus on the functional changes of peripheral arterial cells and the mechanisms of the pathogenesis of PAD. At the same time, we summarize the progress of the current clinical treatment and potential therapeutic methods for PAD and shine a light on future perspectives.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruoran Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongkun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Qin Y, Chen F, Tang Z, Ren H, Wang Q, Shen N, Lin W, Xiao Y, Yuan M, Chen H, Bu T, Li Q, Huang L. Ligusticum chuanxiong Hort as a medicinal and edible plant foods: Antioxidant, anti-aging and neuroprotective properties in Caenorhabditis elegans. Front Pharmacol 2022; 13:1049890. [PMID: 36386171 PMCID: PMC9643709 DOI: 10.3389/fphar.2022.1049890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 02/05/2023] Open
Abstract
Ligusticum chuanxiong Hort. (CX) is a medicinal and edible plant including a variety of active substances, which may be an available resource for the treatment of related diseases. To expand the medicinal uses of CX, this study aims to explore the antioxidant, anti-aging and neuroprotective effects of the Ligusticum chuanxiong leaves (CXL) and rhizome (CXR) extracts. We first characterize CX phytochemical spectrum by LC-MS as well as antioxidant capacity. Acute toxicity, anti-oxidative stress capacity, lifespan and healthspan was evaluated in C elegans N2. Neuroprotective effect was evaluated in vitro and in vivo (C elegans CL4176 and CL2355). In this study, we detected 74 and 78 compounds from CXR and CXL, respectively, including phthalides, alkaloids, organic acids, terpenes, polyphenols and others. Furthermore, we found that CXs not only protect against oxidative stress, but also prolong the lifespan, alleviate lipofuscin, malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation, and improve movement level, antioxidant enzyme activity in C elegans N2. However, only CXR reduced the β-amyloid peptide (Aβ)-induced paralysis phenotype in CL4176s and alleviated chemosensory behavior dysfunction in CL2355s. In addition, CXR treatment reduced the production of Aβ and ROS, enhanced SOD activity in CL4176s. The possible mechanism of anti-aging of CXL and CXR is to promote the expression of related antioxidant pathway genes, increase the activity of antioxidant enzymes, and reduce the accumulation of ROS, which is dependent on DAF-16 and HSF-1 (only in CXR). CXR was able to activate antioxidase-related (sod-3 and sod-5) and heat shock protein genes (hsp-16.1 and hsp-70) expression, consequently ameliorating proteotoxicity related to Aβ aggregation. In summary, these findings demonstrate the antioxidant, anti-aging and neuroprotective (only in CXR) activities of the CX, which provide an important pharmacological basis for developing functional foods and drugs to relieve the symptoms of aging and AD. However, the material basis of neuroprotective activity and antiaging effects need to be elucidated, and the relationship between these activities should also be clarified in future studies.
Collapse
Affiliation(s)
- Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Fangfang Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China,*Correspondence: Zizhong Tang,
| | - Hongjiao Ren
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qing Wang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Nayu Shen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya’an, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
20
|
Li F, Wan DW, Hu J, Qin R. Effect of artificial skin membrane on the expression of miR-155 and miR-506-3p in patients with second-degree burns. J Clin Lab Anal 2022; 36:e24564. [PMID: 35949047 PMCID: PMC9459302 DOI: 10.1002/jcla.24564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE To investigate the effect of artificial skin on the expression of miR-155 and miR-506-3p in patients with second-degree burns. METHODS The study subjects included 50 patients with second-degree burns treated from July 2019 to July 2021. The control group received routine nursing, while the research group received both routine and artificial skin intervention simultaneously. The changes in wound tissue fibrosis and prognosis were observed. The expression levels of miR-155 and miR-506-3p and their downstream regulatory factors were detected and correlated with the rehabilitation of patients after artificial skin treatment. RESULTS After treating second-degree burns with artificial skin membranes, the patient's wound tissue fibrosis and inflammation level improved. At the same time, the expression levels of miR-155 and miR-506-3p in related tests were higher than those in patients with available treatment. CONCLUSION The effect of artificial skin membrane on the wound healing of second-degree burn patients may be realized by influencing the expression levels of miR-155 and miR-506-3p and their related signaling pathways.
Collapse
Affiliation(s)
- Fei Li
- Department of EmergencyXuancheng People's HospitalXuanchengChina
| | - Dong Wu Wan
- Department of EmergencyXuancheng People's HospitalXuanchengChina
| | - Jun Hu
- Department of EmergencyXuancheng People's HospitalXuanchengChina
| | - Runhe Qin
- Department of Surgery, Division of Life Sciences and MedicineThe First Affiliated Hospital of USTC, University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
21
|
Li XW, Wu P, Yao J, Zhang K, Jin GY. Genistein Protects against Spinal Cord Injury in Mice by Inhibiting Neuroinflammation via TLR4-Mediated Microglial Polarization. Appl Bionics Biomech 2022; 2022:4790344. [PMID: 35498148 PMCID: PMC9054478 DOI: 10.1155/2022/4790344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The present study was designed to study the effect of genistein on spinal cord injury (SCI) in mice and to explore its underlying mechanisms. Methods We established SCI mouse model, and genistein was administered for treatment. We used the Basso, Beattie, and Bresnahan (BBB) exercise rating scale to evaluate exercise recovery, and the detection of spinal cord edema was done using the wet/dry weight method. Apoptosis was determined by TUNEL staining, and inflammation was evaluated by measuring inflammatory factors by an ELISA kit. The expression of M1 and M2 macrophage markers was determined using flow cytometry, and the expression of proteins was detected using immunoblotting. Results Genistein treatment not only improved the BBB score but also reduced spinal cord edema in SCI mice. Genistein treatment reduced apoptosis by increasing Bcl2 protein expression and decreasing Bax and caspase 3 protein expression. It also reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) in the SCI area of SCI mice. Flow cytometry analysis indicated that genistein treatment significantly decreased the ratio of M1 macrophages (CD45+/Gr-1-/CD11b+/iNOS+) and increased the ratio of M2 macrophages (CD45+/Gr-1-/CD11b+/Arginase 1+) in the SCI area of SCI mice on the 28th day after being treated with genistein. We also found that genistein treatment significantly decreased the expression of TLR4, MyD88, and TRAF6 protein in the SCI area of SCI mice on 28th day after being treated with genistein. Conclusion Our findings suggested that genistein exerted neuroprotective action by inhibiting neuroinflammation by promoting the activation of M2 macrophages, and its underlying mechanisms might be related to the inhibition of the TLR4-mediated MyD88-dependent signaling pathway.
Collapse
Affiliation(s)
- Xin-Wu Li
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Peng Wu
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Jian Yao
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Kai Zhang
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 200011 Shanghai, China
| | - Gen-Yang Jin
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| |
Collapse
|
22
|
Li X, Gong Y, Lin X, Lin Q, Luo J, Yu T, Xu J, Chen L, Xu L, Hu Y. Down-regulation of microRNA-155 suppressed Candida albicans induced acute lung injury by activating SOCS1 and inhibiting inflammation response. J Microbiol 2022; 60:402-410. [PMID: 35157222 PMCID: PMC8853013 DOI: 10.1007/s12275-022-1663-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 10/31/2022]
Abstract
Acute lung injury caused by Candida albicans could result in high mortality and morbidity. MicroRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) have been believed to play a key in the regulation of inflammatory response. Whether miR-155/SOCS1 axis could regulate the acute lung injury caused by C. albicans has not been reported. The acute lung injury animal model was established with acute infection of C. albicans. miR-155 inhibitor, miR-155 mimic, and sh-SOCS1 were constructed. The binding site between miR-155 and SOCS1 was identified with dual luciferase reporter assay. Knockdown of miR-155 markedly inhibited the germ tube formation of C. albicans. Knockdown of miR-155 significantly up-regulated the expression of SOCS1, and the binding site between miR-155 and SOCS1 was identified. Knockdown of miR-155 improved the acute lung injury, suppressed inflammatory factors and fungus loading through SOCS1. Knockdown of SOCS1 greatly reversed the influence of miR-155 inhibitor on the cell apoptosis in vitro. The improvement of acute lung injury caused by C. albicans, suppression of inflammatory response and C. albicans infection, and inhibitor of cell apoptosis were achieved by knocking down miR-155 through SOCS1. This research might provide a new thought for the prevention and treatment of acute lung injury caused by C. albicans through targeting miR-155/SOCS1 axis.
Collapse
|
23
|
Mas-Bargues C, Borrás C, Viña J. The multimodal action of genistein in Alzheimer's and other age-related diseases. Free Radic Biol Med 2022; 183:127-137. [PMID: 35346775 DOI: 10.1016/j.freeradbiomed.2022.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Genistein is a phytoestrogen that, due to its structural similarity with estrogen, can both mimic and antagonize estrogen effects. Early analysis proved that at high concentrations, genistein inhibits breast cancer cell proliferation, thereby suggesting an anticancer activity. Since then, many discoveries have identified the genistein mechanism of action, including cell cycle arrest, apoptosis induction, as well as angiogenesis, and metastasis inhibition. In this review, we aim to discuss the multimodal action of genistein as an antioxidant, anti-inflammatory, anti-amyloid β, and autophagy promoter, which could be responsible for the genistein beneficial effect on Alzheimer's. Furthermore, we pinpoint the main signal transduction pathways that are known to be modulated by genistein. Genistein has thus several beneficial effects in several diseases, many of them associated with age, such as the above mentioned Alzheimer disease. Indeed, the beneficial effects of genistein for health promotion depend on each multimodality. In the context of geroscience, genistein has promising beneficial effects due to its multimodal action to treat age associated-diseases.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain
| |
Collapse
|
24
|
Friedrich J, Hammes HP, Krenning G. miRetrieve-an R package and web application for miRNA text mining. NAR Genom Bioinform 2021; 3:lqab117. [PMID: 34988440 PMCID: PMC8696973 DOI: 10.1093/nargab/lqab117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
microRNAs (miRNAs) regulate gene expression and thereby influence biological processes in health and disease. As a consequence, miRNAs are intensely studied and literature on miRNAs has been constantly growing. While this growing body of literature reflects the interest in miRNAs, it generates a challenge to maintain an overview, and the comparison of miRNAs that may function across diverse disease fields is complex due to this large number of relevant publications. To address these challenges, we designed miRetrieve, an R package and web application that provides an overview on miRNAs. By text mining, miRetrieve can characterize and compare miRNAs within specific disease fields and across disease areas. This overview provides focus and facilitates the generation of new hypotheses. Here, we explain how miRetrieve works and how it is used. Furthermore, we demonstrate its applicability in an exemplary case study and discuss its advantages and disadvantages.
Collapse
Affiliation(s)
- Julian Friedrich
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- 5th Medical Department, Section of Endocrinology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Section of Endocrinology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- European Center of Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Guido Krenning
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
| |
Collapse
|
25
|
Yamagata K, Yamori Y. Potential Effects of Soy Isoflavones on the Prevention of Metabolic Syndrome. Molecules 2021; 26:5863. [PMID: 34641407 PMCID: PMC8512040 DOI: 10.3390/molecules26195863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Isoflavones are polyphenols primarily contained in soybean. As phytoestrogens, isoflavones exert beneficial effects on various chronic diseases. Metabolic syndrome increases the risk of death due to arteriosclerosis in individuals with various pathological conditions, including obesity, hypertension, hyperglycemia, and dyslipidemia. Although the health benefits of soybean-derived isoflavones are widely known, their beneficial effects on the pathogenesis of metabolic syndrome are incompletely understood. This review aims to describe the association between soybean-derived isoflavone intake and the risk of metabolic syndrome development. We reviewed studies on soy isoflavones, particularly daidzein and genistein, and metabolic syndrome, using PubMed, ScienceDirect, and Web of Science. We describe the pathological characteristics of metabolic syndrome, including those contributing to multiple pathological conditions. Furthermore, we summarize the effects of soybean-derived daidzein and genistein on metabolic syndrome reported in human epidemiological studies and experiments using in vitro and in vivo models. In particular, we emphasize the role of soy isoflavones in metabolic syndrome-induced cardiovascular diseases. In conclusion, this review focuses on the potential of soy isoflavones to prevent metabolic syndrome by influencing the onset of hypertension, hyperglycemia, dyslipidemia, and arteriosclerosis and discusses the anti-inflammatory effects of isoflavones.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience & Biotechnology, College of Bioresource Science, Nihon University (UNBS), Fujisawa 282-8510, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan;
| |
Collapse
|
26
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Sadia H, Qadri QR, Raza S, Irshad A, Akbar A, Reiner Ž, Al-Harrasi A, Al-Rawahi A, Satmbekova D, Butnariu M, Bagiu IC, Bagiu RV, Sharifi-Rad J. Genistein as a regulator of signaling pathways and microRNAs in different types of cancers. Cancer Cell Int 2021; 21:388. [PMID: 34289845 PMCID: PMC8296701 DOI: 10.1186/s12935-021-02091-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are complex diseases orchestrated by a plethora of extrinsic and intrinsic factors. Research spanning over several decades has provided better understanding of complex molecular interactions responsible for the multifaceted nature of cancer. Recent advances in the field of next generation sequencing and functional genomics have brought us closer towards unravelling the complexities of tumor microenvironment (tumor heterogeneity) and deregulated signaling cascades responsible for proliferation and survival of tumor cells. Phytochemicals have begun to emerge as potent beneficial substances aimed to target deregulated signaling pathways. Isoflavonoid genistein is an essential phytochemical involved in regulation of key biological processes including those in different types of cancer. Emerging preclinical evidence have shown its anti-cancer, anti-inflammatory and anti-oxidant properties. Testing of this substance is in various phases of clinical trials. Comprehensive preclinical and clinical trials data is providing insight on genistein as a modulator of various signaling pathways both at transcription and translation levels. In this review we have explained the mechanistic regulation of several key cellular pathways by genistein. We have also addressed in detail various microRNAs regulated by genistein in different types of cancer. Moreover, application of nano-formulations to increase the efficiency of genistein is also discussed. Understanding the pleiotropic potential of genistein to regulate key cellular pathways and development of efficient drug delivery system will bring us a step towards designing better chemotherapeutics.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Sajid Naeem
- School of Life Sciences, Lanzhuo University, Lanzhou, 730000 People’s Republic of China
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Qamar Raza Qadri
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Shahid Raza
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616 Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616 Oman
| | - Dinara Satmbekova
- High School of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Timisoara, Romania
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania
- Preventive Medicine Study Center, Timisoara, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021; 73:924-967. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Citation(s) in RCA: 567] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1β monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peter J Little
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Hong Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Danielle Kamato
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Zhuoming Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peiqing Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jihong Han
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Ian C Harding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Eno E Ebong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Scott J Cameron
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Alastair G Stewart
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| |
Collapse
|
28
|
Bernatoniene J, Kazlauskaite JA, Kopustinskiene DM. Pleiotropic Effects of Isoflavones in Inflammation and Chronic Degenerative Diseases. Int J Mol Sci 2021; 22:ijms22115656. [PMID: 34073381 PMCID: PMC8197878 DOI: 10.3390/ijms22115656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavones are phytoestrogens of plant origin, mostly found in the members of the Fabaceae family, that exert beneficial effects in various degenerative disorders. Having high similarity to 17-β-estradiol, isoflavones can bind estrogen receptors, scavenge reactive oxygen species, activate various cellular signal transduction pathways and modulate growth and transcription factors, activities of enzymes, cytokines, and genes regulating cell proliferation and apoptosis. Due to their pleiotropic activities isoflavones might be considered as a natural alternative for the treatment of estrogen decrease-related conditions during menopause. This review will focus on the effects of isoflavones on inflammation and chronic degenerative diseases including cancer, metabolic, cardiovascular, neurodegenerative diseases, rheumatoid arthritis and adverse postmenopausal symptoms.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
- Correspondence:
| | - Jurga Andreja Kazlauskaite
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| |
Collapse
|
29
|
Čoma M, Lachová V, Mitrengová P, Gál P. Molecular Changes Underlying Genistein Treatment of Wound Healing: A Review. Curr Issues Mol Biol 2021; 43:127-141. [PMID: 34067763 PMCID: PMC8929053 DOI: 10.3390/cimb43010011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023] Open
Abstract
Estrogen deprivation is one of the major factors responsible for many age-related processes including poor wound healing in postmenopausal women. However, the reported side-effects of estrogen replacement therapy (ERT) have precluded broad clinical administration. Therefore, selective estrogen receptor modulators (SERMs) have been developed to overcome the detrimental side effects of ERT on breast and/or uterine tissues. The use of natural products isolated from plants (e.g., soy) may represent a promising source of biologically active compounds (e.g., genistein) as efficient alternatives to conventional treatment. Genistein as natural SERM has the unique ability to selectively act as agonist or antagonist in a tissue-specific manner, i.e., it improves skin repair and simultaneously exerts anti-cancer and chemopreventive properties. Hence, we present here a wound healing phases-based review of the most studied naturally occurring SERM.
Collapse
Affiliation(s)
- Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., 040 11 Košice, Slovakia
| | - Veronika Lachová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (V.L.); (P.M.)
| | - Petra Mitrengová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (V.L.); (P.M.)
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., 040 11 Košice, Slovakia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (V.L.); (P.M.)
- Laboratory of Cell Interactions, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
- Prague Burn Center, Third Faculty of Medicine, Charles University, 100 34 Prague, Czech Republic
- Correspondence: ; Fax: +421-55-789-1613
| |
Collapse
|
30
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
31
|
Lee Y, Im E. Regulation of miRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and eNOS. Antioxidants (Basel) 2021; 10:antiox10030377. [PMID: 33802566 PMCID: PMC8000568 DOI: 10.3390/antiox10030377] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.
Collapse
Affiliation(s)
| | - Eunok Im
- Correspondence: ; Tel.: +82-51-510-2812; Fax: +82-51-513-6754
| |
Collapse
|
32
|
Inhibitory Effects of Genistein on Vascular Smooth Muscle Cell Proliferation Induced by Ox-LDL: Role of BKCa Channels. ACTA ACUST UNITED AC 2021; 2020:8895449. [PMID: 33415067 PMCID: PMC7752275 DOI: 10.1155/2020/8895449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022]
Abstract
Background Oxidized low-density lipoprotein (Ox-LDL) is a crucial pathogenic factor for vascular diseases, which can induce the proliferation of vascular smooth muscle cells (VSMCs). Genistein is the main component of soybean isoflavone. Genistein has a variety of pharmacological properties in the treatment of vascular diseases and a promising clinical application. Large-conductance calcium-activated potassium (BKCa) channels are the primary type of potassium channels in VSMCs, which regulate various biological functions of VSMCs. However, whether genistein exerts an antiproliferation effect on Ox-LDL-stimulated VSMCs remains unclear. The current study is aimed at elucidating the effect of genistein on the Ox-LDL-stimulated proliferation of VSMCs and its possible molecular mechanism, especially the electrophysiological mechanism related to BKCa channels. Methods Monoculture VSMC was obtained by an acute enzyme-dispersing method. The proliferation of cells was measured by CCK-8, cell cycle, and proliferating cell nuclear antigen (PCNA) expression. The BKCa whole-cell currents were measured by patch-clamp. Results Ox-LDL treatment induced the proliferation of VSMCs, upregulated the BKCa protein expression, and increased the density of BKCa currents, while genistein significantly inhibited these effects caused by Ox-LDL. BKCa channels exerted a regulatory role in the proliferation of VSMCs in response to Ox-LDL. The inhibition of BKCa channels suppressed Ox-LDL-stimulated VSMC proliferation, while the activation of BKCa channels showed the opposite effect. Moreover, genistein suppressed the activity of BKCa, including protein expression and current density in a protein tyrosine kinase- (PTK-) dependent manner. Conclusion This study demonstrated that genistein inhibited the Ox-LDL-mediated proliferation of VSMCs by blocking the cell cycle progression; the possible molecular mechanism may be related to PTK-dependent suppression of BKCa channels. Our results provided novel ideas for the application of genistein in the treatment of vascular diseases and proposed a unique insight into the antiproliferative molecular mechanism of genistein.
Collapse
|
33
|
The Role of Isoflavones in Type 2 Diabetes Prevention and Treatment-A Narrative Review. Int J Mol Sci 2020; 22:ijms22010218. [PMID: 33379327 PMCID: PMC7795922 DOI: 10.3390/ijms22010218] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Given the growing number of type 2 diabetic individuals and the substantial social and financial costs associated with diabetes management, every effort should be made to improve its prevention and treatment methods. There is an ongoing search for natural dietary compounds that could be used for this purpose. This narrative review focuses on the therapeutic potential of isoflavones in diabetes prevention and treatment. This review summarizes (i) the molecular mechanisms of isoflavones action that are critical to their anti-diabetic properties; (ii) preclinical (in vitro and in vivo) studies evaluating the influence of isoflavones on the function of key organs involved in the pathogenesis of diabetes; and (iii) epidemiological studies and clinical trials that assessed the effectiveness of isoflavones in the prevention and treatment of type 2 diabetes in humans. Apart from discussing the effects of isoflavones on the function of organs “classically” associated with the pathogenesis of diabetes (pancreas, liver, muscles, and adipose tissue), the impact of these compounds on other organs that contribute to the glucose homeostasis (gastrointestinal tract, kidneys, and brain) is also reviewed.
Collapse
|
34
|
Kumari A, Bhawal S, Kapila S, Yadav H, Kapila R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2020; 62:619-639. [PMID: 33081489 DOI: 10.1080/10408398.2020.1825286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epigenome is an overall epigenetic state of an organism, which is as important as that of the genome for normal development and functioning of an individual. Epigenetics involves heritable but reversible changes in gene expression through alterations in DNA methylation, histone modifications and regulation of non-coding RNAs in cells, without any change in the DNA sequence. Epigenetic changes are owned by various environmental factors including pollution, microbiota and diet, which have profound effects on epigenetic modifiers. The bioactive compounds present in the diet mainly include curcumin, resveratrol, catechins, quercetin, genistein, sulforaphane, epigallocatechin-3-gallate, alkaloids, vitamins, and peptides. Bioactive compounds released during fermentation by the action of microbes also have a significant effect on the host epigenome. Besides, recent studies have explored the new insights in vitamin's functions through epigenetic regulation. These bioactive compounds exert synergistic, preventive and therapeutic effects when combined as well as when used with chemotherapeutic agents. Therefore, these compounds have potential of therapeutic agents that could be used as "Epidrug" to treat many inflammatory diseases and various cancers where chemotherapy results have many side effects. In this review, the effect of diet derived bioactive compounds through epigenetic modulations on in vitro and in vivo models is discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shalaka Bhawal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
35
|
Ousmaal MEF, Gaceb A, Khene MA, Ainouz L, Giaimis J, Andriantsitohaina R, Martínez MC, Baz A. Circulating microparticles released during dyslipidemia may exert deleterious effects on blood vessels and endothelial function. J Diabetes Complications 2020; 34:107683. [PMID: 32713709 DOI: 10.1016/j.jdiacomp.2020.107683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/18/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
Abstract
AIMS To compare the bioactivity of circulating microparticles (MPs) isolated from dyslipidemic Psammomys obesus (P. obesus) fed a high-energy diet (HED) with those released from healthy P. obesus fed a normal diet (ND). METHODS Vascular reactivity of aortic rings was evaluated by myography, after 24 h incubation in the absence or in the presence of circulating MPs isolated, by differential centrifugations, from the plasma of animals subjected to HED (MPsHED) or ND (MPsND) for 12 weeks. Human umbilical vein endothelial cells (HUVECs) were treated for 24 h with MPsHED or MPsND animals and subjected to immunofluorescence staining of caveolin-1 (cav-1), intercellular adhesion molecule-1 (ICAM-1), endothelial nitric oxide synthase (eNOS), F-actin and reactive oxygen species (ROS) detection. RESULTS The HED exerted a distinctly pronounced hyperlipidemic effect marked by plasmatic increase of total cholesterol, low-density lipoprotein-cholesterol (LDL-C) and triglyceride (TG). Both MPsND and MPsHED induced a significant reduction of maximal relaxation induced by acetylcholine (ACh). Interestingly, MPsHED significantly decreased eNOS expression up to ~25% and increased ROS production up to ~75% on in vitro treated HUVECs. Moreover, in HUVECs, MPsHED significantly decreased cav-1 expression up to ~50% whereas significant increase of ICAM-1 expression by about 2-fold approximately was observed. CONCLUSION Our experimental study demonstrated the dual role of MPs on vascular function by modulating endothelial cell function. Furthermore, MPs may be considered as vectors of a bioactive information contributing to inflammation and vascular damage.
Collapse
Affiliation(s)
- Mohamed E F Ousmaal
- Laboratory of valorisation and bio-engineering of natural resources, Faculty of Sciences, University of Algiers, Algiers, Algeria; Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria.
| | - Abderahim Gaceb
- Translational Neurology group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - M'hammed A Khene
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria
| | - Lynda Ainouz
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria
| | - Jean Giaimis
- UMR Qualisud- Faculty of Pharmacy, University of Montpellier I, Montpellier, France
| | | | - M Carmen Martínez
- SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, Bat IRIS IBS, Rue des Capucins, 49100 Angers, France
| | - Ahsene Baz
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria
| |
Collapse
|
36
|
Yang J, Lin X, Wang L, Sun T, Zhao Q, Ma Q, Zhou Y. LncRNA MALAT1 Enhances ox-LDL-Induced Autophagy through the SIRT1/MAPK/NF-κB Pathway in Macrophages. Curr Vasc Pharmacol 2020; 18:652-662. [PMID: 32183682 DOI: 10.2174/1570161118666200317153124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular and cerebrovascular diseases. In
advanced atherosclerotic plaque, macrophage apoptosis coupled with inflammatory cytokine secretion
promotes the formation of necrotic cores. It has also been demonstrated that the long-noncoding Ribonucleic
Acid (lnc RNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), with its
potent function on gene transcription modulation, maintains oxidized low-density lipoprotein (ox-LDL)-
induced macrophage autophagy (i.e., helps with cholesterol efflux). It also showed that MALAT1 activated
Sirtuin 1 (SIRT1), which subsequently inhibited the mitogen-activated protein kinase (MAPK)
and nuclear factor kappa-B (NF-κB) signaling pathways. ox-LDL has been used to incubate human
myeloid leukemia mononuclear cells (THP-1)-derived macrophages to establish an in vitro foam cell
model. Quantitative reverse-transcription polymerase chain reaction and Western blot analyses confirmed
the increased expression level of MALAT1 and the autophagy-related protein Microtubuleassociated
protein light chain 3 (LC-3), beclin-1. The small interfering RNA study showed a significant
decrease in autophagy activity and an increase in apoptotic rate when knocking down MALAT1. Further
study demonstrated that MALAT1 inhibited the expression of MAPK and NF-κB (p65) by upregulating
SIRT1.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xuze Lin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Liangshan Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tienan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qi Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qian Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
37
|
Číž M, Dvořáková A, Skočková V, Kubala L. The Role of Dietary Phenolic Compounds in Epigenetic Modulation Involved in Inflammatory Processes. Antioxidants (Basel) 2020; 9:antiox9080691. [PMID: 32756302 PMCID: PMC7464822 DOI: 10.3390/antiox9080691] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/09/2023] Open
Abstract
A better understanding of the interactions between dietary phenolic compounds and the epigenetics of inflammation may impact pathological conditions and their treatment. Phenolic compounds are well-known for their antioxidant, anti-inflammatory, anti-angiogenic, and anti-cancer properties, with potential benefits in the treatment of various human diseases. Emerging studies bring evidence that nutrition may play an essential role in immune system modulation also by altering gene expression. This review discusses epigenetic mechanisms such as DNA methylation, post-translational histone modification, and non-coding microRNA activity that regulate the gene expression of molecules involved in inflammatory processes. Special attention is paid to the molecular basis of NF-κB modulation by dietary phenolic compounds. The regulation of histone acetyltransferase and histone deacetylase activity, which all influence NF-κB signaling, seems to be a crucial mechanism of the epigenetic control of inflammation by phenolic compounds. Moreover, chronic inflammatory processes are reported to be closely connected to the major stages of carcinogenesis and other non-communicable diseases. Therefore, dietary phenolic compounds-targeted epigenetics is becoming an attractive approach for disease prevention and intervention.
Collapse
Affiliation(s)
- Milan Číž
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Correspondence: ; Tel.: +420-541-517-104
| | - Adéla Dvořáková
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Skočková
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| |
Collapse
|
38
|
Zhang B, Tian L, Xie J, Chen G, Wang F. Targeting miRNAs by natural products: A new way for cancer therapy. Biomed Pharmacother 2020; 130:110546. [PMID: 32721631 DOI: 10.1016/j.biopha.2020.110546] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression through mRNA degradation or translation inhibition. MiRNAs play important roles in a variety of biological processes, and dysregulation of miRNA expression is highly associated with cancer development. Individual miRNA regulates multiple gene expressions, enabling them to regulate multiple cellular signaling pathways simultaneously. Hence, miRNAs could be served as cancer biomarkers for diagnosis and prognosis, and also therapeutic targets. Recently, more and more evidences showed that natural products such as paclitaxel, curcumin, resveratrol, genistein or epigallocatechin-3-gallate exert their anti-proliferative and/or pro-apoptotic effects through regulating one or more miRNAs, leading to the inhibition of cancer cell growth, induction of apoptosis or enhancement of conventional cancer therapeutic efficacy. Herein, we outlined the recent advances in the regulation of miRNAs expression by the natural products and highlight the importance of these natural drugs as a potential strategy in cancer treatment. This review will help us better understand how natural products modulate miRNAs and contribute to the development of effective and safe natural drugs for therapeutic purposes.
Collapse
Affiliation(s)
- Beilei Zhang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Ling Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jinrong Xie
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China.
| |
Collapse
|
39
|
Abstract
Soybeans are among the most popular foods worldwide, and intake of soy-containing foods has been associated with many health benefits in part because of it structure similar to estrogen. Epidemiologic studies have demonstrated that soy consumption improves serum profiles of hypercholesterolemic patients. Several studies have also indicated an inverse relationship between the consumption of soy isoflavones and the incidence of cardiovascular diseases (CVD). Soy is a rich dietary source of isoflavones. The main soy isoflavones are daidzein and genistein; equol, another isoflavone and a major intestinal bacterial metabolite of daidzein, is generated by enterobacterial effects. Many isoflavones have antioxidative effects and anti-inflammatory actions, as well as induce nitric oxide production to maintain a healthy endothelium and prevent endothelial cell dysfunction. These effects may limit the development of atherosclerosis and CVD and restore healthy endothelial function in altered endothelia. Although the evidence supporting the benefits of soy isoflavones in CVD prevention continues to increase, the association between soy isoflavones and disease is not fully understood. This review summarized recent progress in identifying the preventive mechanisms of action of dietary soybean isoflavones on vascular endothelial cells. Furthermore, it describes the beneficial roles that these isoflavones may have on endothelial dysfunction-related atherosclerosis.
Collapse
|
40
|
Jiang Q, Zhang C, Chen S, Shi L, Li DC, Lv N, Cui L, Chen Y, Zheng Y. Particulate Matter 2.5 Induced Developmental Cardiotoxicity in Chicken Embryo and Hatchling. Front Pharmacol 2020; 11:841. [PMID: 32581800 PMCID: PMC7289969 DOI: 10.3389/fphar.2020.00841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Particulate matter poses health risk to developing organisms. To investigate particulate matters with a diameter smaller than 2.5 um (PM2.5)-induced developmental cardiotoxicity, fertile chicken eggs were exposed to PM2.5 via air cell injection at doses of 0.05, 0.2, 0.5, 2, and 5 mg/egg kg. Morphological changes in the embryonic day four (ED4) and hatchling hearts were assessed with histological techniques. Heart rates of hatchling chickens were measured with electrocardiography. The protein expression levels of nuclear factor kappa-light-chain-enhancer of activated B cells p65 (NF-kb p65), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9) were assessed with immunohistochemistry or western blotting in hatchling hearts. PM2.5 exposure elevated areas of heart in ED4 embryo, increased heart rate, and thickened right ventricular wall thickness in hatchling chickens. Immunohistochemistry revealed enhanced NF-kb p65 expression in hatchling hearts. Western blotting results indicated that both iNOS and MMP9 expression were enhanced by lower doses of PM2.5 exposure (0.2 and 0.5 mg/kg) but not 2 mg/kg. In summary, developmental exposure to PM2.5 induced developmental cardiotoxicity in chicken embryo and hatchling chickens, which is associated with NF-kb p65, iNOS, and MMP9.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chao Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dao Chuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Na Lv
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanxia Chen
- Department of Occupational Diseases, Occupational Disease Center, Qingdao Central Hospital, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Wang S, Wang F, Yang L, Li Q, Huang Y, Cheng Z, Chu H, Song Y, Shang L, Hao W, Wei X. Effects of coal-fired PM 2.5 on the expression levels of atherosclerosis-related proteins and the phosphorylation level of MAPK in ApoE -/- mice. BMC Pharmacol Toxicol 2020; 21:34. [PMID: 32384920 PMCID: PMC7206822 DOI: 10.1186/s40360-020-00411-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Air pollution increases the morbidity and mortality of cardiovascular disease (CVD). Atherosclerosis (AS) is the pathological basis of most CVD, and the progression of atherosclerosis and the increase of fragile plaque rupture are the mechanism basis of the relationship between atmospheric particulate pollution and CVD. The aim of the present study was to investigate the effects of coal-fired fine particulate matter (PM2.5) on the expression levels of atherosclerosis-related proteins (von Willebrand factor (vWF), Endothelin-1 (ET-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin, and to explore the role and mechanism of the progression of atherosclerosis induced by coal-fired PM2.5 via the mitogen-activated protein kinase (MAPK) signaling pathways. Methods Different concentrations of PM2.5 were given to apolipoprotein-E knockout (ApoE−/−) mice via intratracheal instillation for 8 weeks. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of vWF, ET-1 in serum of mice. Immunohistochemistry was used to observe the expression and distribution of ICAM-1 and E-selectin in the aorta of mice. Western blot was used to investigate the phosphoylation of proteins relevant to MAPK signaling pathways. Results Coal-fired PM2.5 exacerbated atherosclerosis induced by a high-fat diet. Fibrous cap formation, foam cells accumulation, and atherosclerotic lesions were observed in the aortas of PM2.5-treated mice. Coal-fired PM2.5 increased the protein levels of ET-1, ICAM-1, and E-selectin, but there was no significant difference in the vWF levels between the PM2.5-treatment mice and the HFD control mice. Coal-fired PM2.5 promoted the phosphorylation of p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) in aortic tissues of mice. Conclusion Coal-derived PM2.5 exacerbated the formation of atherosclerosis in mice, increased the expression levels of atherosclerosis-related proteins in mice serum, and promoted the phosphorylation of proteins relevant to MAPK signaling pathway. Thus, MAPK signaling pathway may play a role in the atherosclerosis pathogenesis induced by Coal-derived PM2.5.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Qin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Yao Huang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Zhiyuan Cheng
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People's Republic of China.,Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Yiming Song
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Lanqin Shang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China.
| |
Collapse
|
42
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|
43
|
Kuryłowicz A, Cąkała-Jakimowicz M, Puzianowska-Kuźnicka M. Targeting Abdominal Obesity and Its Complications with Dietary Phytoestrogens. Nutrients 2020; 12:nu12020582. [PMID: 32102233 PMCID: PMC7071386 DOI: 10.3390/nu12020582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
In the assessment of the health risk of an obese individual, both the amount of adipose tissue and its distribution and metabolic activity are essential. In adults, the distribution of adipose tissue differs in a gender-dependent manner and is regulated by sex steroids, especially estrogens. Estrogens affect adipocyte differentiation but are also involved in the regulation of the lipid metabolism, insulin resistance, and inflammatory activity of the adipose tissue. Their deficiency results in unfavorable changes in body composition and increases the risk of metabolic complications, which can be partially reversed by hormone replacement therapy. Therefore, the idea of the supplementation of estrogen-like compounds to counteract obesity and related complications is compelling. Phytoestrogens are natural plant-derived dietary compounds that resemble human estrogens in their chemical structure and biological activity. Supplementation with phytoestrogens may confer a range of beneficial effects. However, results of studies on the influence of phytoestrogens on body composition and prevalence of obesity are inconsistent. In this review, we present data from in vitro, animal, and human studies regarding the role of phytoestrogens in adipose tissue development and function in the context of their potential application in the prevention of visceral obesity and related complications.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
- Correspondence: ; Tel.: +48226086591; Fax: +48226086410
| | - Marta Cąkała-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826, Warsaw, Poland
| |
Collapse
|
44
|
Kumai A, Tsugami Y, Wakasa H, Suzuki N, Suzuki T, Nishimura T, Kobayashi K. Adverse Effects of Coumestrol and Genistein on Mammary Morphogenesis and Future Milk Production Ability of Mammary Epithelial Cells. ACTA ACUST UNITED AC 2020; 4:e1900187. [PMID: 32293160 DOI: 10.1002/adbi.201900187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Isoflavones are a class of flavonoids present in legumes and are called phytoestrogens because of their estrogen-like activity. Endogenous estrogen is well known to regulate mammary gland morphogenesis during pregnancy. Each isoflavone also has different physiological activities. However, it is difficult to investigate the direct effect of each isoflavone in mammary morphogenesis in vivo because isoflavones are metabolized into different isoflavones by enteric bacteria. In this study, investigated are the direct influences of coumestrol, daidzein, and genistein on mammary structure development and future milk production ability of mammary epithelial cells (MECs) using in vitro culture models. Mouse MECs are cultured in Matrigel with basic fibroblast growth factor and epidermal growth factor to induce ductal branching and alveolar formation, respectively. Coumestrol and genistein inhibit ductal branching and alveolar formation by affecting the proliferation and migration of MECs with the induction of apoptosis. Daidzein hardly influences mammary structure development. Furthermore, pretreatment with coumestrol adversely affects the induction of milk production ability of MECs. These results suggest that each isoflavone differentially influences mammary morphogenesis and future milk production by affecting MEC behaviors. These results also suggest that the culture models are effective to study mammary epithelial morphogenesis in vitro.
Collapse
Affiliation(s)
- Aogu Kumai
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Haruka Wakasa
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Norihiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| |
Collapse
|
45
|
Hu J, Wang W, Hao Q, Zhang T, Yin H, Wang M, Zhang C, Zhang C, Zhang L, Zhang X, Wang W, Cao X, Xiang J, Ye X. Suppressors of cytokine signalling (SOCS)-1 inhibits neuroinflammation by regulating ROS and TLR4 in BV2 cells. Inflamm Res 2020; 69:27-39. [PMID: 31707448 DOI: 10.1007/s00011-019-01289-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE The suppressors of cytokine signaling (SOCS) proteins are physiological suppressors of cytokine signaling which have been identified as a negative feedback loop to weaken cytokine signaling. However, the underlying molecular mechanisms is unknown. This study was to investigate the role of SOCS1 in the oxygen-glucose deprivation and reoxygenation (OGDR) or LPS-induced inflammation in microglia cell line BV-2 cells. MATERIALS AND METHODS BV-2 microglial cells were used to construct inflammation model. A SOCS1 over-expression plasmid was constructed, and the SOCS1-deficient cells were generated by utilizing the CRISPR/CAS9 system. BV-2 microglial cells were pretreated with over-expression plasmid or SOCS1 CRISPR plasmid before OGDR and LPS stimulation. The effect of SOCS1 on proinflammatory cytokines, toll-like receptor 4 (TLR4), and reactive oxygen species (ROS) were evaluated. RESULTS We found that SOCS1 increased in OGDR or LPS-treated BV-2 microglial cells in vitro. SOCS1 over-expression significantly reduced the production of proinflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6, and CRISPR/CAS9-mediated SOCS1 knockout reversed this effect. Also we determined that SOCS1 over-expression reduced the level of reactive oxygen species (ROS) while the absence of SOCS1 increased the production of ROS after OGDR or LPS-stimulated inflammation. Furthermore, we found that OGDR and LPS induced the expression of toll-like receptor 4 (TLR4) in BV2 cells. Nevertheless, SOCS1 over-expression attenuated the expression of TLR4, while knockdown of SOCS1 upregulated TLR4. CONCLUSIONS Our study indicated that SOCS1 played a protective role under inflammatory conditions in OGDR or LPS treated BV-2 cells through regulating ROS and TLR4. These data demonstrated that SOCS1 served as a potential therapeutic target to alleviate inflammation after ischemic stroke.
Collapse
Affiliation(s)
- Jinxia Hu
- Institute of Stroke Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.,School of Material Science and Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Weiwei Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China.,Department of Rehabilitation Medicine, Linyi Cancer Hospital, Linyi, 276001, Shandong, People's Republic of China
| | - Qi Hao
- Institute of Stroke Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Tao Zhang
- Institute of Stroke Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Hanhan Yin
- Institute of Stroke Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Miao Wang
- Institute of Stroke Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Cheng Zhang
- Institute of Stroke Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Conghui Zhang
- Institute of Stroke Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lijie Zhang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Xiao Zhang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Wei Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Xichuan Cao
- School of Material Science and Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Jie Xiang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China.
| | - Xinchun Ye
- Institute of Stroke Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
46
|
Inhibition of Endothelial Dysfunction by Dietary Flavonoids and Preventive Effects Against Cardiovascular Disease. J Cardiovasc Pharmacol 2020; 75:1-9. [DOI: 10.1097/fjc.0000000000000757] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Protective Effect of Genistein on Condylar Cartilage through Downregulating NF- κB Expression in Experimentally Created Osteoarthritis Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2629791. [PMID: 32083119 PMCID: PMC7011344 DOI: 10.1155/2019/2629791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/12/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Temporomandibular joint osteoarthrosis (TMJOA) is characterised by chronic inflammatory changes, with subsequent gradual loss of joint cartilage. NF-κB is a crucial transcription factor in the course of inflammatory and immune responses, which are involved in OA pathology activated by proinflammatory cytokines. Genistein is known to have anti-inflammation and modulation of metabolic pathways through repression of the NF-κB signaling pathway in inflammatory disease. But so far, studies on the effects of genistein on TMJOA are very limited. So, the purpose of this study is to investigate the protective effect of genistein against experimentally induced condylar cartilage degradation through downregulating NF-κB expression in created osteoarthritis rats in vivo. Male SD rats were created as temporomandibular joint osteoarthritis models and administered through oral gavage with low and high dosage genistein (30 mg/kg and 180 mg/kg, respectively) daily for 4 weeks. The morphological changes of the condylar cartilage were studied with HE and Masson staining. The expressions of p65 and inflammatory cytokines (IL-1β and TNFα) were detected using immunohistochemistry and real-time PCR. The results showed that experimentally created osteoarthritis reduced the condylar cartilage thickness of rats and increased the gene expression of cytokines (IL-1β and TNFα) and positive cells of p65. Genistein treatment had positive effects on the condylar cartilage renovation, while high dose genistein treatment had more significant effects on the reversing of OA changes and reduction of the expression of p65 and inflammatory cytokines (IL-1β and TNFα). The results indicated that high dose genistein treatment had obvious therapeutic effects on condyle cartilage damages of OA rats. The mechanism may be that genistein suppresses the NF-κB expression activated by inflammatory cytokines.
Collapse
|
48
|
Lorente-Cebrián S, Herrera K, I. Milagro F, Sánchez J, de la Garza AL, Castro H. miRNAs and Novel Food Compounds Related to the Browning Process. Int J Mol Sci 2019; 20:E5998. [PMID: 31795191 PMCID: PMC6928892 DOI: 10.3390/ijms20235998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Obesity prevalence is rapidly increasing worldwide. With the discovery of brown adipose tissue (BAT) in adult humans, BAT activation has emerged as a potential strategy for increasing energy expenditure. Recently, the presence of a third type of fat, referred to as beige or brite (brown in white), has been recognized to be present in certain kinds of white adipose tissue (WAT) depots. It has been suggested that WAT can undergo the process of browning in response to stimuli that induce and enhance the expression of thermogenesis: a metabolic feature typically associated with BAT. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in a variety of tissues, including WAT and BAT. Likewise, it was shown that several food compounds could influence miRNAs associated with browning, thus, potentially contributing to the management of excessive adipose tissue accumulation (obesity) through specific nutritional and dietetic approaches. Therefore, this has created significant excitement towards the development of a promising dietary strategy to promote browning/beiging in WAT to potentially contribute to combat the growing epidemic of obesity. For this reason, we summarize the current knowledge about miRNAs and food compounds that could be applied in promoting adipose browning, as well as the cellular mechanisms involved.
Collapse
Affiliation(s)
- Silvia Lorente-Cebrián
- Department of Nutrition, Food Science and Physiology/Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (S.L.-C.)
- Navarra Institute for Health Research, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Katya Herrera
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology/Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (S.L.-C.)
- Navarra Institute for Health Research, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07020 Palma, Spain
| | - Ana Laura de la Garza
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| | - Heriberto Castro
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico; (K.H.)
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, Mexico
| |
Collapse
|
49
|
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 2019; 10:864-882. [PMID: 31701394 PMCID: PMC6881266 DOI: 10.1007/s13238-019-0653-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyl-lysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.
Collapse
Affiliation(s)
- Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Zhang P, Yu J, Gui Y, Sun C, Han W. Inhibition of miRNA-222-3p Relieves Staphylococcal Enterotoxin B-Induced Liver Inflammatory Injury by Upregulating Suppressors of Cytokine Signaling 1. Yonsei Med J 2019; 60:1093-1102. [PMID: 31637892 PMCID: PMC6813146 DOI: 10.3349/ymj.2019.60.11.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Staphylococcal enterotoxin B (SEB) has been well-documented to induce liver injury. miRNA-222-3p (miR-222-3p) was implicated in SEB-induced lung injury and several liver injuries. This study aimed to explore the role of miR-222-3p in SEB-induced liver injury. MATERIALS AND METHODS Expression of miR-222-3p and suppressors of cytokine signaling 1 (SOCS1) was detected using real-time quantitative PCR and western blot. Liver injury was determined by levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and inflammatory cytokines, numbers of infiltrating mononuclear cells using AST/ALT assay kit, enzyme-linked immunosorbent assay (ELISA), and hematoxylin-eosin staining, respectively. Target binding between miR-222-3p and SOCS1 was predicted on targetScan software, and confirmed by luciferase reporter assay. RESULTS SEB induced liver injury in D-galactosamine (D-gal)-sensitized mice, as demonstrated by increased serum levels of AST and ALT, elevated release of interferon-gamma (INF-γ), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-2, and promoted infiltrating immune cells into liver. Expression of miR-222-3p was dramatically upregulated, and SOCS1 was downregulated in SEB-induced liver injury both in mice and splenocytes. Moreover, miR-222-3p knockout (KO) mice exhibited alleviated liver injury accompanied with SOCS1 upregulation. Besides, splenocytes under SEB challenge released less INF-γ, TNF-α, IL-6, and IL-2 during miR-222-3p knockdown. Mechanically, SOCS1 was targeted and downregulated by miR-222-3p. Upregulation of SOCS1 attenuated INF-γ, TNF-α, IL-6, and IL-2 release in SEB-induced splenocytes; downregulation of SOCS1 could block the suppressive role of miR-222-3p knockdown in SEB-induced splenocytes. CONCLUSION Inhibition of miR-222-3p relieves SEB-induced liver inflammatory injury by upregulating SOCS1, thereby providing the first evidence of miR-222-3p in SEB-induced liver injury.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Clinical Laboratory, the Third People's Hospital of Dalian, Dalian, China
| | - Jingda Yu
- Department of Clinical Laboratory, the Baotou Medical College of Inner Mongolia University of Science and Technology, Inner Mongolia, China
| | - Yifang Gui
- Department of Clinical Laboratory, the Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Cui Sun
- Department of Clinical Laboratory, the Third People's Hospital of Dalian, Dalian, China
| | - Weiping Han
- Department of Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|